
Secure Logging with Crash Tolerance

Erik-Oliver Blass1 and Guevara Noubir2

1Airbus Group Innovations, Munich, Germany
erik-oliver.blass@airbus.com

2Northeastern University, Boston, MA, USA
noubir@ccs.neu.edu

Abstract. Forward-secure logging protects old log entries in a log file against an
adversary compromising the log device. However, we show that previous work
on forward-secure logging is prone to crash-attacks where the adversary removes
log entries and then crashes the log device. As the state of the log after a crash-
attack is indistinguishable from the state after a real crash, e.g., power failure, the
adversary can hide attack traces. We present SLiC, a new logging protocol that
achieves forward-security against crash-attacks. Our main idea is to decouple the
time of a log event with the position of its resulting log entry in the log file. Each
event is encrypted and written to a pseudo-random position in the log file. Conse-
quently, the adversary can only remove random log events, but not specific ones.
Yet, during forensic analysis, the verifier can replay pseudo-random positions.
This allows to distinguish a real crash (last events missing) from a crash-attack
(random events missing). Besides a formal analysis, we also present an evaluation
of SLiC as a syslog server to indicate its practicality.

1 Introduction

Virtually all modern computer systems, cell phones, and even embedded devices use
logging services to store important information in a log file. Prominent examples for
logging services in the Unix world are syslogd or journald. Log files are often used for
system audits and during forensic analysis to learn about malfunction, attacks, and to
detect system compromise.

However, in case an adversary fully compromises the device running the logging
service, they can access and modify any information on that device. Typically, “covert”
adversaries [1] then modify logs to hide traces of their attacks and remain undetected. If
the verifier of a log file does not know whether entries in the log file have been tampered
with, the log itself becomes useless for (forensic) analysis.

Consequently, a significant amount of work has investigated log integrity in case of
log device compromise. Relying on hardware and trusted computing is often expensive
and difficult to deploy on legacy devices, so research has mostly focused on software
solutions. Their rationale is to provide forward security or forward integrity for log file
entries [2, 4, 6, 10–14]. The main insight is that there cannot be security for log entries
starting from the time of compromise t. By compromising the log device, the adversary
has access to all information, even cryptographic secrets, and can fabricate log entries
from then on. Yet, forward security ensures that all log entries from before time t are

integrity protected. That is, if the adversary tampers with entries logged before time t,
this will be detected by the verifier. This weak form of security (tamper evidence) is
especially helpful in scenarios, where log entries before the time of compromise reveal
an ongoing attack and will be integrity protected.

However in practice, log devices crash. Besides operating system crashes, log de-
vices might operate in harsh environments and, e.g., experience power failure. Without
strong assumptions on the operating system, file system, and cache, a crash can leave
the log file in an inconsistent state. In the specific context of logging, this turns out to
be a security challenge. In what we call a crash-attack, the adversary compromises the
log device, modifies or removes log entries and integrity tags, and then purposefully
crashes the log device. During forensic analysis, it is then difficult for a verifier to de-
cide whether a crash and the inconsistent state and integrity information of the log is
due to a (regular) crash or a crash-attack. None of the state of the art protocols for se-
cure logging has been designed to cope with crashes, and their application in many real
world scenarios is therefore risky.

A second challenge stems from the fact that either logging devices are resource-
constrained, e.g., micro-controller based, or the amount of log entries per unit of time
can become large. This requires secure logging protocols to be very lightweight.

In this paper, we design a new, efficient protocol for forward-secure logging that
is “crash tolerant” and enables the verifier to distinguish a regular crash from a crash-
attack. As a motivation, we start by showing how related work is prone to crash-attacks.
The adversary learns time relations of log entries in the log, even if log entries are
encrypted. That is, the time of an event determines the position of its log entry in the
log file. This allows the adversary to, e.g., remove the most recent ` log entries, their
integrity information, and then crash the log device.

In contrast, the idea of our new protocol SLiC is to (pseudo-)randomize positions
of log entries in the log file. We design a new variation of Algorithm P by Knuth [7]
to iteratively shuffle an array of an increasing number of log entries. Each of the n
encrypted log entries will be at any position in the array with probability 1

n . Thus, the
adversary can only tamper or remove random log entries in the log, but not specific ones.
The verifier, however, can reconstruct (pseudo-)random positions of each log entry, so
they know which log entries can be lost in case of a device crash. Consequently, the
verifier can distinguish regular crashes (the latest entries are lost) from crash-attacks
(random entries are lost).

In summary, the technical highlights of this paper are:

– The first formal treatment of crash-attacks in the context of forward-secure logging.
We demonstrate insecurity of recent work as soon as an adversary can deliberately
crash the logging device.

– A new crash tolerant forward-secure logging protocol SLiC. To support either resource-
constrained devices or large amounts of high-frequency log data, SLiC is very effi-
cient and relies only on symmetric key cryptography. To add a new log entry, SLiC’s
time complexity is constant O(1) in the total number of log entries. To recover a
log of n log entries after a crash, its worst case complexity is O(n · log n). SLiC is
very general and does not require strong assumptions on underlying operating and
file systems with respect to consistency.

– An optimistic version of our recovery technique for devices with small cache. Here,
the complexity to recover n log entries is O(n), i.e., asymptotically optimal.

– Besides a theoretical analysis where we formally prove its security, we also imple-
ment and evaluate SLiC practically. Our Python implementation realizes SLiC as a
standard Syslogd server. On a 2.3 GHz i5, SLiC processes up to 700 syslog messages
per second. This represents a slowdown by only one order of magnitude compared to
just storing unprotected syslog messages.

2 Background

Based on initial ideas by Schneier and Kelsey [13], a significant amount of research
has been conducted on forward-security and its application to secure logging, cf. [2, 4,
6, 10–12] and derivatives. These schemes focus on a symmetric key setting, and their
main idea can be roughly summarized as follows.

Each event mi, simply a bit string, is stored in the log file together with an au-
thentication tag hi as a log entry. For example for event mi, a log entry si = (mi,
hi = HMACK(mi)) would be added to the log file. To provide forward security, it is
important that key K changes over time. Otherwise, if an adversary can compromise
the device and learn key K, they would be able to modify old log entries. The rationale
is therefore to change K for each log entry. If PRF is a pseudo-random function, key
Ki can be computed as PRFKi−1(χ) for some constant χ. To log event mi, the logging
device stores entry (mi, hi = HMACKi(mi)), computes Ki+1 = PRFKi(χ), and then
deletes Ki from its memory. As the verifier knows initial key K0, they can reconstruct
the chain of keys and verify individual log entries.

To protect against “truncation attacks” [10] where the adversary cuts the last ` en-
tries from the log, related work adds a single, aggregated authentication tag Hi captur-
ing the whole log file. For example, in addition to storing (mi, hi), the log device also
storesHi = HMACKi(Hi−1,mi) and deletesHi−1 for each log eventmi. If the adver-
sary cuts entries from the end of the log, they would have to restore an old Hj , j < i.

Verification is straightforward: as the verifier can recompute all Ki, they can check
the HMAC for eachmi, respectively. At the same time, they also iteratively compute the
aggregated HMACs Hi. At the end of the log file, they check whether their aggregated
Hn matches the one stored on the logging device.

Some work has targeted public verifiability using public-key cryptography [14].
Similar to other work using HMACs, they use signatures to protect log entries and
signature aggregation to protect the whole log file.

None of the above work has investigated implications of (adversarial) log device
crashes on log entry integrity.

Forward-Secure Logging and Crashes: Before formalizing security in the presence
of crashes in the next section, we briefly demonstrate why the state of the art is insecure
as soon as the adversary can crash the logging device (crash-attack).

Looking at current solutions above, we can identify that at least the following file
system operations take place for each log event mi.

1 store (mi, hi);
2 store Hi;
3 delete Hi−1;

Many modern log-structured or journaling file systems such as YAFFS, EXT4, HFS
or NTFS offer some guarantees regarding consistency of these three operations. How-
ever in this paper, we explicitly avoid making strong assumptions on the underlying
storage (file system). Legacy systems, notably in industrial environments, use older
file systems such as FAT32 or ext2. Some systems might even implement their own
file systems, file system caches, and cache write-back strategies. The operating system,
disk driver or even the disk itself can re-order disk writes for improved performance.
A prominent example is the reordering of write operations following an elevator move-
ment to minimize hard disk head seek times. If the three operations are reordered, and
a crash occurs, this can lead to inconsistencies.

While there is exists a rich theory on consistency and hazards, we refrain from
rigorous formalization at this point. The following more intuitive definition is sufficient
for our security discussion: after logging event mi, we want that either all operations 1
to 3 have been successfully performed, i.e., log entry (mi, hi) and Hi are stored on the
disk, and Hi−1 has been deleted, or none of the three operations has been performed.

This would allow the verifier to successfully verify the log, potentially with a miss-
ing last log entry. However by chance, it is possible that Hi−1 is deleted from the disk,
but Hi has not been (successfully) written. That is, file system operations 2 and 3 have
been reordered by the operating system, and the logging device crashed after perform-
ing operation 3. Consequently, there is no valid Hi anymore on the disk, and log veri-
fication fails. Note that we are primarily concerned about disk write operations (store,
delete). Disk reads are uncritical in our particular context.

A straightforward way to handle verification in case a logging device has crashed
would be to accept a log of a crashed device even withHi missing. Yet, this would allow
adversary A compromising the log device to perform a crash-attack: A would truncate
the log file, delete Hn, and then deliberately crash the device. Verifier V recovering the
crashed log would not be able to distinguish this “truncation&crash” crash-attack from
a regular crash. In conclusion, related work does not cope with crash-attacks.

We stress that this paper focuses on scenarios with the logging device being offline
most of the time and no frequent connectivity to the verifier. This is the case in envi-
ronments where network connectivity to the verifier is expensive or impossible, such
as in industrial environments with unattended computer systems. Still, if an adversary
can compromise the logging device, e.g., by physical access, we require some security
guarantees. For completeness sake, we mention that if frequent connectivity with the
verifier is available, other solutions become possible where the device can periodically
offload some of its state for security, see Bowers et al. [5].

3 System and Adversary Model

We now present an overview over our system and adversary model. We envision a
general scenario with three parties: 1) a logging device L, 2) a verifier V , and 3) an
adversary A. Logging device L receives log events mi ∈ {0, 1}∗ and writes them
somehow to its storage.

At some point in time, A compromises L. Informally speaking, by compromise we
mean that A gets full access to log and internal state of the logging device. A can read
out secrets, change the program, and tamper with the storage. A can even crash the
logging device.

Finally, verifier V downloads the (crashed) log file from the logging device and
checks the log’s integrity. We consider scenarios where L logs autonomously and unat-
tended. That is, besides an initial exchange of system parameters and keys, there is no
communication channel between L and V . Device L logs unattended by V , and V gets
access to L’s log only after some time. If there would be a permanent communication
channel, L could automatically forward all log events to V .

Our security goal will be, roughly, thatA cannot modify or remove log events from
before the time of compromise without being detected.

3.1 Logging Protocols

A logging protocol Π is not required to be file-based and to append a single log entry
for each event as related work. Very general, protocol Π comprises three algorithms:
1. Gen(1λ) : Algorithm Gen takes security parameter λ as input and outputs Σ0, L’s

initial state.
L’s state comprises all information currently stored on L, e.g., a log file (initially
empty), cryptographic keys etc. The initial state Σ0 is shared by L and verifier V .

2. Log(Σi−1,mi) : For new log event mi ∈ {0, 1}∗ and old state Σi−1, Log either
outputs an updated state Σi, or a special state ΣCr

i . We call a state ΣCr
i a crashed

state, and non-crashed states are simply valid states. With ΣCr
i we model a crashing

L. After algorithm Log has output a crashed state, it cannot be executed again; device
L has crashed.

3. Recover(Σ,Σ0) : Receives as input either a valid state Σ = (Log(Log(. . . Log(Σ0,
m1) . . .),mn) or a crashed state ΣCr. A crashed ΣCr does not contain all n log
events, but only n′ < n. That is, (n − n′) events were lost due to a crash and are
impossible to recover (e.g., hard disk power off during writing of some blocks).
Recover outputs a set of n′ ≤ n index-event tuples {(τ1,m′1), . . . , (τn′ ,m′n′)}. For
tuple (τi,m′i), τi denotes the original index (order) of eventm′i. For example, if τ3 =
5, then m′3 was the 5th log event m5. We require Recover to unambiguously recover
an event for a specific index; all indices τ must be different (∀i 6= j : τi 6= τj).
In case of a crash, Recover’s contribution is to useΣ and simply recover some of the
original log events mi. For correctness, we require that if Σ is a valid state, Recover
outputs {(1,m1), . . . , (n,mn)}. If Σ is a crashed state ΣCr, Recover outputs only a
subset of {(1,m1), . . . , (n,mn)}.
Finally, if Recover detects that A has tampered with state Σ, it can also output
special symbol ⊥.
Algorithm Log is executed by device L and Recover by verifier V . Note that |Σn| ∈

Ω(n), i.e., the size of the state has to be at least linear in the number of log events.
Otherwise, administrator V would never be able to recover all log events from a state.
As a result, Recover’s time complexity must be in Ω(n), too. In conclusion, the idea
behind Recover is that it can recover log events out of a crashed state ΣCr. Based on
ΣCr, it should output a subset of all log events.

Efficiency: To support high frequency logging or resource-constrained hardware, we
target Log’s computational complexity to be constant in the number of log events n.

3.2 System Cache

A crash might not only involve a single log event not being correctly added to the log.
Depending on the frequency of log events and the size and strategy of operating sys-
tem and disk caches, many disk operations (store, delete, . . .) can reside in the device’s
Cache. In case of a crash, only a random subset of these operations is executed.

Thus, we introduce an important system parameter: cache size cs. Depending on
Cache (OS cache, filesytem cache, hard disk cache, . . .), and the expected frequency
of log events, you can roughly estimate an upper bound for the number cs of lost log
events. This is the maximum number of log events that might not have been properly
included in the log after a crash, because their disk write operations were residing in a
cache. To support a broad range of real-world scenarios, we assume that, in case of a
crash, the resulting disk operations of these cs events are executed 1) only partially, and
2) in a random order. Typically, cs is a constant system parameter, independent of the
total number of log events n. Being a part of the device’s state, we write Cache ⊂ Σ.

Depending on the concrete logging protocol Π , each invocation of Log(mi) creates
multiple write operations. These write operations write data on disk that is necessary to
later recover mi. However in addition, Log(mi) might also imply disk writes affecting
verification of other events mj . This leads to the following two definitions.

Definition 1 (Disk Write Operations). Let mi be a log event. A disk write operation
o(mi) is a disk write of mi’s data necessary to later verify mi.

Let Π = (Gen, Log,Recover) be a logging protocol. For event mi, we define
OLog(Σi−1,mi) = {o(mu), . . . , o(mv)} to be the set of disk write operations implied
by adding mi to the log with algorithm Log.

Basically,OLog is the set of log events mj that is impacted by adding mi to the log.
If L crashes during Log(Σi−1,mi) andmj ∈ OLog(Σi−1,mi), thenmj is also affected
by the crash, as parts of its data might have been unsuccessfully written.

Therewith, we can now introduce the notion of expendable log events. A log event
is expendable, if it might have been lost due to a crash.

Definition 2 (Expendable Log Event). Let Σn be a valid state comprising events
{m1, . . . ,mn} and Cachen = ∅, and let Cachen′ be the contents of the cache after
L adds events (mn+1, . . . ,mn′) with Log. An event mi is expendable in state Σn′ , iff

o(mi) ∈ {OLog(Σn,mn+1) ∪ · · · ∪ OLog(Σn′−1,mn′)} ∧ o(mi) ∈ Cachen′ ⊂ Σn′ .

The set of all expendable log entries in Σn′ is E = {mi|mi is expendable in Σn′}.

The rationale of how V detects a crash-attack will be based on whether there are log
entries missing that are not expendable at the time of the crash. As we will see, V can
reconstruct indices of log events in Cache at the time of the crash.

Crash Functionality: To allow adversary A to learn about the implications of crashes
on device states, we introduce another functionality Crash(Σ,Π) which A can call.

ExpCrIntA,Π,Crash(λ) :

1 (m1, . . . ,mn, stA)← A(1λ,Gen, Log,Recover,Crash);
2 Σ0 ← Gen(1λ);
3 for i = 1 to n do
4 Σi ← Log(Σi−1,mi)
5 end
6 (Σ′, α1, . . . , α`)← A(stA, Σn,Gen, Log,Crash);
7 R← Recover(Σ′, Σ0) // Either R = ⊥ or R = {(τ1,m′1), . . . , (τn′ ,m′n′)}
8 ifR = ⊥ then output ⊥;
9 else if ∃i ≤ n′ : m′i 6= mτi then output forge;

10 else if [∀αi : mαi 6∈ En ∧mαi 6∈ {m′1, . . . ,m′n′}] then output delete;
11 else output {m′1, . . . ,m′n′} endif

Experiment 1: Crash Integrity

The output of Crash(Σ,Π) is a crashed state ΣCr which would be the state of logging
device L running Π and crashing at a time where its internal state is Σ. In practice,
Crash reflects an adversary running a logging device on their own and playing with the
effects of crashes.

3.3 Security Definition

The challenge for a security definition supporting crashes is that a crash implies losing
a set of log events based on hardware and operating system properties. No security
protocol can protect against such crashes. Instead, it should be difficult for A to delete
specific events they choose independent of the crash.

We present our new security model in Experiment 1. In a first phase in Line 1,
adversary A gets oracle access to Π = (Gen, Log,Recover) and Crash functionalities.
Oracle access allows A to learn about the system and prepare their attack.

After learning, A must output a sequence of log events mi which challenger L will
log. For each log event mi, Log simply updates L’s internal state. Eventually at time
n, A compromises L and receives state Σn. Again, A gets oracle access, but only to
functionalities Gen, Log, and Crash (see discussion below). Now,A outputs a tampered
state Σ′ together with a sequence of positions αi. These αi are positions of log events
{mα1

, . . . ,mα`
} ⊆ {m1, . . . ,mn} that A wants to remove from the log. To avoid

trivial attacks, the mαi
must not be expendable log events such as the ones currently in

the cache. Expendable log entries would be lost anyways in a regular crash, so A could
“legitimately” remove them just by crashing L.

Based on Σ′, algorithm Recover outputs a sequence of n′ ≤ n index-event tuples
{(τi,m′i)}. If among events {m′1, . . . ,m′n′} there is at least one m′i that differs from
mτi , then A has successfully forged (or modified) the τ th

i event. If Recover outputs a
sequence of events (m′1, . . . ,m

′
n′) that does not comprise {mα1 , . . . ,mα`

} ⊆ {m1,
. . . ,mn}, then A has successfully deleted log events. We stress that A specifies which
events to delete. Their goal is not to remove any element, but instead those that reveal
A’s attack.

Definition 3 (Crash Integrity). A logging protocolΠ = (Gen, Log,Recover) provides
[f1(·), f2(·)]-crash integrity, iff for all PPT adversariesA there exist functions f1(·) and

f2(·) such that

Pr[ExpCrIntA,Π,Crash(λ) = forge] ≤ f1(·) ∧ Pr[ExpCrIntA,Π,Crash(λ) = delete] ≤ f2(·).

This very general security definition allows to upper-bound adversarial success
probabilities. Ideally, functions f1 and f2 become very (negligible) small depending
on their concrete input parameter, e.g., the number of events ` to delete or a security
parameter λ. We give concrete examples in Section 4.

Discussion: As you can see from this definition, we now distinguish between two
classes of attacks, forgery and deletion. We do this to allow for greater flexibility and
support schemes where, e.g., function f1 is significantly smaller than f2, or f1 uses
different security parameters (as we will see later with SLiC). Obviously, there can
be schemes with f1 = f2. Also note that A cannot adaptively choose log events mi

in ExpCrIntA,Π,Crash. No scheme can be adaptively secure, as observing an intermediate
Σi would allow A to later “rewind” Σn to Σi, by just presenting Σi in Line 6 of
ExpCrIntA,Π,Crash. As Σi has been a valid state, Recover would simply output a sequence of
events, and tampering would go unnoticed.

Finally, note that the set of expendable log entries E depends on a concrete protocol
Π . One might argue that there could be trivial protocols which, e.g., would rewrite
the whole log file or database for each invocation of Log. Roughly speaking, all log
events would be expendable leading to worthless security. However, we are interested
in efficient protocols, specifically where Log hasO(1) computational complexity and cs
is constant, too. This leads to an asymptotically constant number of expendable events
which is small in practice and therewith meaningful security.

Our adversary model is similar to covert adversaries by Aumann and Lindell [1].
AdversaryA is fully malicious, but wants to achieve a goal without being detected. You
can imagine various real-world scenarios where A wants to keep a compromise unde-
tected. For example,A has extracted sensitive information or wants to continuously spy
on a system keeping it as future asset (even after the crashed device is rebooted).

4 Crash Recovery with SLiC

Based on our presentation of related work in Section 2, we make two observations.
First, using an aggregated tag (HMAC or signature) over the whole log file is useless
in the presence of crashes. Due to potential write reordering, the aggregated tag might
be lost or not up to date after a crash. Second, with related work, even if log events mi

are encrypted, the adversary can easily correlate which log event corresponds to which
log entry in the log file. Related work appends a new log entry to the log file, so the
most recent log events correspond to the log entries at the end of the file. This helps the
adversary to remove specific log entries, i.e., events, of their liking.

We will now present SLiC, a new protocol for crash integrity, and a modification
of it that we call SLiCOpt. Both SLiC and SLiCOptshare the same idea of initialization
and log algorithms, and they differ only in their recovery algorithm. To recover all n′

log events from a (crashed) log, SLiC’s Recover has O(n′ · log n′) run time complexity,
but does not rely on any additional assumption. In contrast, SLiCOptis optimistic and

assumes a log device L with cache or filesystem properties such that. SLiCOpthas time
complexity O(n′); this is asymptotically optimal.

4.1 Overview

Before presenting technical details, we first give an overview of our main idea and
ingredients to reach crash integrity.

To generally achieve forward integrity for previous log events, we can store for each
log event mi a log entry si consisting of mi and hi. As with related work, hi is, e.g.,
HMACKi

(mi). Again, key Ki is evolved from Ki−1, and Ki−1 is thrown away. So, A
cannot tamper and modify old log entries without being detected. This holds even if A
can crash logging device L. Therewith, we already achieve forward integrity.

However, the challenge for crash recovery is that we cannot rely on a protection
mechanism securing integrity of the set of all log entries, i.e., completeness of the log as
a whole. As shown before, using a simple tag would be prone to crashes which in return
can be exploited by the adversary performing a truncation attack and rewinding the log
to a previous version. Thus, we abstain from whole-log tag protection. Instead, our ideas
is to randomize the mapping between log events and the position of their corresponding
log entries in the log file. If A cannot determine which log entry corresponds to which
event, it becomes difficult for them to change the log to a proper previous state where
only expendable log entries are missing. Random modifications to the log by A will be
detected by verifier V and allow to distinguish from real crashes.

Randomized Mappings: The mapping between an event mi and a log entry sj will be
based on a PRG. Informally, this mapping will look like a “random” mapping toA, but
is deterministic to V as V knows the initial seed for the PRG. Similarly to evolving keys
in related work after each log event, the PRG will be used in a forward-secure manner
by updating its seed after each invocation.

To randomize mappings, we devise a new array shuffling technique based on Knuth’s
“Algorithm P” [7]. Instead of Knuth’s random shuffle of a fixed-length array of n ele-
ments in place, our technique gradually builds a random shuffle of an array of increasing
length. The idea is to swap a newly added element with an element at a random position
in the array.

We apply this idea to the generation of a log file. We first compute the ith log entry
si by authentically encrypting mi and then add si to the log by swapping it with a
previous log entry, randomly chosen from a position between 1 and i. We show that
for adversary A and a log file with n entries, the position of any entry is uniformly
distributed. That is, at all times, a log entry in an array of current length n is at any
position with probability 1

n .

Recovery: To be able to recover log events from their random positions in the log, we
augment the ith log entry by κi = PRFKi

(i). During recovery, we then sort all n log
entries based on their κi values. To recover the ith event mi, we search in the sorted list
of log entries for κi = PRFKi(i). This is the main idea of SLiC’s Recover.

An alternative way to recover log entries relies on the fact that verifier V knows
the initial state of the PRG. Therefore, V can re-compute the random coins used during

Input: Security parameter λ
Output: Initial state Σ0

1 K0
$← {0, 1}λ;

2 seed0
$← {0, 1}λ;

// Let S be a dynamic array, fill with random permutation
of {dummy1, . . . , dummyλ} using Log

3 S ← λ randomly ordered dummy events;
4 output Σ0 = (K0, seed0,S);

Algorithm 2: Gen(λ)

swapping of entries and is able to determine which log entry resides in which position
in the log. This is the idea of SLiCOpt’s Recover.

Security Rationale: The security rationale of this position randomization is that A’s
probability to successfully remove ` log events from a log is hypergeometrically dis-
tributed. While for very small `, it is easy to remove log events, a larger ` implies
increasing difficulty for A to remove all mαi

. Still, a hypergeometric probability does
not give much security, asA could also delete all but one log entry. We therefore require
a certain minimum number of events in a log by initially adding dummy events. More-
over, V checks whether the set of recovered log events is plausible, i.e., all missing log
events could have been lost in a crash.

The idea of SLiC’s plausibility check is to verify whether all missing log events are
expendable. Missing log events that are not expendable can only be due to adversarial
tampering with the log: a crash-attack.

4.2 SLiC Details

First, to protect individual log events against modifications and forgery, we use stan-
dard authenticated encryption, e.g., encrypt-then-MAC as related work. That is, for
a log event mi, we prepare a log entry si = (ci, hi) with ci = EncKi

(mi) and
hi = HMACKi(ci). We change key Ki to Ki+1 after each log entry by computing
Ki+1 = PRFKi(χ) for some constant χ. Similarly, after using a PRG with a seed
seedi, we update the seed to seedi+1 = PRFseedi(χ

′). This already guarantees for-
ward integrity.

Gen: Algorithm 2 shows SLiC’s initialization Gen. Key K0 and seed seed0 are chosen
uniformly from random. Also, a “dynamic” array S is created which will be used to
store log entries. Dynamic simply says that the length of S, i.e., the number of log
entries stored in S, can increase over time. Following standard notation, we write S[i]
to point to the element at position i in S. We initialize S by storing λ dummy events
in a random order in it. To add these dummy elements dummy1, . . . , dummyλ to S,
we can use, e.g., the same idea than in our Log mechanism that we describe next. The
output of Gen is the initial state Σ0 comprising key K0 seed seed0, and array S. State
Σ0 is shared between L and V . Actually, it is sufficient to only shareK0 and seed0 with
V to reconstruct Σ0.

Log: Algorithm 3 describes details of Log. First, we authentically encrypt new log event
mi and compute sorting key κi. As the current length of array S is λ + i − 1, we then

Input: Old state Σi−1, log event mi

Output: Updated state Σi
// Let Σi−1 = (Ki−1, seedi−1,S), |S| = λ+ i− 1

1 ci = EncKi−1(mi); hi = HMACKi−1(ci); κi = PRFKi−1(i);
2 si = (ci, hi, κi);

3 pos
$PRG(seedi−1)←−−−−−−−−− {1, . . . , λ+ i};

4 if pos = λ+ i then
5 S = S||(si);
6 else
7 S = S||S[pos]; S[pos] = si;
8 end
9 Ki = PRFKi−1(χ); seedi = PRFseedi−1(χ

′);
10 output Σi = (Ki, seedi,S);

Algorithm 3: Log(Σi−1,mi)

randomly select a position pos between 1 and λ+i. With PRG(seedi) we denote that the
random coins required to determine pos are based on a PRG with seed seedi. Position
pos is the position where we store new log entry si = (ci, hi, κi). If pos 6= λ + i, we
perform a swap: we do not append si to S, but append the old contents of S[pos] to S
and write si at S[pos]. Finally, we evolve Ki−1 to Ki and seedi−1 to seedi and output
the updated state Σi.

Recover: SLiC’s Recover technique is shown in Algorithm 4. As input, this algorithm
receives a possibly crashed stateΣ containing some permutation π′ of log entries π′(s′1,
. . . , s′n′). Being a potentially crashed state, some of the s′i might be “broken”, i.e., not
fully written to disk and contain junk. Just the size of Σ allows storing of up to n′ log
entries. As we know the size of a log entry, we can therefore parse n′ potentially broken
log entries out of Σ.

First, we advance K0 and seed0 to the earliest possible time of a valid state. If Σ
has n′ entries and cache size is cs, then at least n′ − cs log events were properly added
to the log, and up to cs events might have been in the cache or only partially written
to the log. We then prepare the set of expendable log events E (see more details later
in Section 4.3). Yet, to be able to compute E , we reconstruct the permutation π that
determines where log entries should be located in a valid S. Here, π[i] = j denotes that
log entry si resides at S[j]. Permutation π−1 is the inverse permutation to π.

It is straightforward to compute π and π−1 as V can replay L’s random coins and
therewith the swaps. V knows the initial seed seed0, and for each pos computed in
Line 8 of Algorithm 4, π and π−1 can be updated in constant time. The updated π and
π−1 then allow adding the next two expendable log entries to E . As we do not know
when exactly the crash occurred, we iterate over all possible times of the crash, i.e.,
between the (n′ − cs)th and (n′ + cs)th event.

We sort log entries s′i by their keys κ′i and store them in a binary search tree. This
allows to search for individual entries in logarithmic time. We iterate over all n′ + cs
possible log entries that could have resided in a crashed state of length n′ (we will see
later why) and check their HMACs. If the HMACs match, we add the individual log
entry to set R. Finally, we perform a plausibility check to distinguish a regular crash
from a crash-attack. The total number of log entries recovered must be at least λ − cs,

Input: State Σ to check, initial state Σ0

Output: Recovered log events {m1, . . . ,mn′}
// Let Σ0 = (K0, seed0,S0)
// Parse Σ as (Kn′ , seedn′ ,S ′ = π′(s′1, . . . , s

′
n′)), let s′i = (c′i, h

′
i, κ
′
i)

1 R = ∅; E = ∅;
// Evolve key, seed, π, π−1

2 for i = 1 to n′ − cs− 1 do
3 Ki = PRFKi−1(χ); seedi = PRFseedi−1(χ

′);
4 Update π and π−1;
5 end
// Compute expendable log indices

6 for i = n′ − cs to n′ + cs do
7 Ki = PRFKi−1(χ); seedi = PRFseedi−1(χ

′);

8 pos
$PRG(seedi)←−−−−−−−− {1, . . . , i};

9 Update π and π−1;
10 E = E ∪ {i, π−1[pos]};
11 end

// Sort log entries based on κ′i
12 SearchTree = Sort(π′(s′1, . . . , s

′
n′));

13 for i = 1 to n′ + cs do
14 κi = PRFKi(i);
15 (c′i, h

′
i) = BinSearch(SearchTree, κ′i);

16 if HMACKi(c
′
i) = h′i then

17 R = R∪ {(i,DecKi(c
′
i))}

18 end
19 end

// Check plausibility
20 if (|R| < λ− cs) ∨ (∃i ∈ {1, . . . , n′ − cs} : {(i, ·)} 6∈ R ∧ i 6∈ E) then output ⊥ ;
21 else outputR endif;

Algorithm 4: Recover(Σ,Σ0)

i.e., the number of dummy elements that were in the log initially minus the size of the
cache. For a potentially crashed state of length n′, we know that at least entries mi− cs
were once written into S. So, if we cannot recover a log event mi, 1 ≤ n′ − cs, it must
be in the set of expendable events E . If not, we know that A has removed it.

Overwriting keys: As mentioned in Section 3.1, a state Σ contains all information
currently stored in L, in our case including cryptographic keys and seeds. So far, we
have ignored that when we overwrite Ki−1 by Ki in Algorithm 3, the disk operation
is buffered in the cache, too. One might argue that over time many old Ki (and seeds)
remain in the cache before being evicted, allowingA to successfully rewind. In practice,
the situation is much simpler. Caches typically replace a write operation in a cache by
a new one to the same location. Thus, A would be able to only recover the previous to
the current key. Moreover, in our case neither keys nor seeds need to be persistent. That
is, in contrast to aggregated authentication tagsH of related work, they are not required
to be written to disk, but can be lost in a crash. As a result, we can store them in main
memory, where overwrites are instantaneous.

Algorithm 4 does not make use of Kn′−1 or seedn′−1. Similar to (aggregated) au-
thentication tags H of related work, these might be old or invalid due to a crash.

4.3 Complexity Analysis

Efficiency: Adding a new log event with Log has O(1) computational complexity.
Writing the new si to array S requires only a constant number of disk operations (two),
even if S is realized as a simple file, and all mi have the same length. If in practice the
mi have different lengths, we can simply pad them to a maximum size. Real-world log
services such as syslogD specify a maximum size, e.g., 1024 Byte [9].

To estimate the computational complexity of Recover, we inspect the 3 for-loops,
Sort, and BinSearch. The first for-loop has asymptotic run time of O(n′), and the sec-
ond loop has constant O(1) complexity (cs is a system constant). Sort runs in time
complexity O(n′ · log n′). As BinSearch has complexity O(log n′) the third for-loop
also has a complexity of O(n′ · log n′). The plausibility check has a run time of O(n′)
In total, Recover’s time complexity adds up to O(n · log n).

Computation of Expendable Log Events: Before analyzing security, we explain which
elements belong into E and compute the number of expendable events |E|.

Assume that L crashes while its cache is full. From a log file consistency perspec-
tive, this is the worst situation. So, there are cs events that have not been successfully
written to the log file. Furthermore, assume that the size of S on disk at the time of the
crash is n′ events, some of them potentially broken. If we look at the swap operation
in Algorithm 3, lines 4 to 8, there are two cases: either, si is just appended to S (single
disk write operation, Definition 1), or an old sj is first read from disk into the cache,
and then si and sj are written to disk. Consequently, the cache might contain a mix of
previous log entries already written to S and new ones to be added.

In one extreme case, the cache only contains new entries, i.e., (sn′+1, . . . , sn′+cs).
Therefore, these entries are expendable and belong to E . The other extreme case is
where over time all all entries before si, i ≤ n′ have been read from disk, and cs new
entries have been written to the old positions. That is, the cache contains cs old entries
that are determined by the PRG. Consequently, also these old entries have to be in E .

Any other cache configuration will contain just a mix of subsets of cs old and cs
new log entries. In conclusion, E contains cs old entries and cs new entries, |E| = 2 · cs.

4.4 Security Analysis

For space reasons, we have moved our security analysis to Appendix A. Here, we only
state main results.

Theorem 1. Let A know Σn comprising S, |S| = n+ λ, let ` be the number of events
A wants to delete, cs the system’s cache size, and n′ the number of entries output by A
as part of their malicious state Σ′. Let ε(λ) = max(εPRF(λ), εPRG(λ), εEnc(λ)).

For security parameter λ, if PRG is a pseudo-random generator, PRF is a pseudo-
random function, |m1| = . . . = |mn|, and Enc is IND-CPA encryption, then SLiC

provides [εPRF(λ), f(n, n′, `, cs, λ)]-crash integrity, with

f =

0 , if n′ < λ− cs

max(ε(λ),
(n−2·`−n′+2·cs

2·cs−`)
(n
n′)

) , otherwise.

To understand implications of Theorem 1, in particular A’s success probability for
typical system parameters, we provide an asymptotic bound for the fraction of two

binomial coefficients (n−2·`−n′+2·cs
2·cs−`)
(n
n′)

of f . Roughly speaking, the following Corollary 1

(proof in Appendix A) states that, as λ < n, f decreases exponentially in both ` and λ.

Corollary 1.

∃n0, λ0 s.t. ∀n > n0,∀λ > λ0 :

(
n−2·`−n′+2·cs

2·cs−`
)(

n
n′

) < max(e−2·(`−cs), (
λ

n
)λ · 1

n`−4·cs
).

Practical Implications: Cache size cs can easily be upper bounded, if the maximum
frequency of log events is known. During our experiments with syslogD on a Debian
Linux laptop with 2.3 GHz i5, syslog UDP packets were dropped as soon as the rate
was more than 500 events per second. In addition, a standard Linux kernel evicts a
page cache entry after at most 30 sec [8]. So, with maximum rate r and eviction time t,
cs ≤ r·t. This back-of-an-envelope computation assumes the amount of RAM available
for the page cache to be sufficient to hold r · t entries.

As of Corollary 1, f decreases exponentially with increasing security parameter λ
and the number ` of elements A wants to delete. To support our theoretical security
results with real-world parameters, we set the cache eviction time t to Linux’ standard
value of 30 sec, rate r to 500, λ = 215 = 32768, n = 33000 (λ dummy entries plus
a few “real” entries), and n′ to the minimum of 215. Therewith, A can successfully
delete a single (` = 1) unwanted entry with only probability ≈2−36. Removing ` = 10
unwanted entries is possible with probability 2−100. Even if A presents a state with
n′ = n−1 entries and wants to remove ` = 1 unwanted entries, their success probability
in this configuration is quite low with ≈2−15. If n increases, e.g., n = 215 + 210 (210

real entries), ` = 10, n′ = n − `, success chances get very low with 2−129. So in
general, an increasing number of entries strengthens security. In practice, parameter λ
renders adversarial success very small.

Remark: As all related work on forward-secure logging, we also assume that unwanted
events mαi

have been evicted from the system’s cache at the time of the compromise.
If an adversary has fully compromised a system, they could otherwise tamper with
the operating system and remove cache entries containing the mαi . If A compromises
L, they can theoretically remove all events from the last 30 s (maximum cache entry
eviction time). Without changing standard cache write-back behavior, no protocol for
forward-secure logging can protect against these attacks. Although out of scope for
this paper, one could imagine that, e.g., some small integrity information is allowed to
circumvent the page cache and is directly written to disk.

4.5 Evaluation

To demonstrate its real world applicability, we have implemented and practically evalu-
ated SLiC in Python. Our implementation uses AES-256 (CTR mode, PKCS#5 padding)
and HMAC-SHA256 as underlying cryptographic primitives.

Besides SLiC’s core functionality, we have implemented a wrapper. This wrapper
allows SLiC’s logging with either a text file as a source for log events, or register as
a real syslog server. Other syslog servers, either on the same physical machine or re-
motely, can then send a copy of their syslog events to our secure logging syslog server.
Our implementation accepts any text string received on its UDP port as a new log event,
so it is trivially compatible with current versions of syslog, syslog-ng, rsyslog etc. While
the UDP scenario with our protocol running as part of a real world syslog environment
is more realistic, we also include the performance measurement on a file to avoid po-
tential network and network stack side effects.

Our benchmark hardware has been 1) a Windows laptop with 2.6 GHz i5-2540M
CPU, and 2) a Raspberry Pi B+ with 700 MHz ARM CPU running Linux. We set λ =
215 for good security. Computing λ = 215 dummy elements on the laptop takes ≈40 s
(≈770 dummy elements/s) and ≈1000 s on the Raspberry (≈30 dummy elements/s).
Computation time of dummy elements is linear in the number of dummy elements (but
their number has an exponential effect on security, see security analysis in Appendix A).
Note that dummy elements need to be computed only initially and once per log device.

File Benchmark: We prepare a file with 220 random “log events”, each a text string
of length 160 characters. On our laptop, we can log ≈740 events/s. This represents a
slowdown by a factor of 20 compared to simply storing plain, unprotected syslog events.
The Raspberry Pi B+ can log ≈30 events/s, a slowdown by factor of 60.

As part of Recover, sorting all 220 log entries is very fast and takes only ≈7 s
on the laptop (≈140000 entries/s). During subsequent recovery, ≈1000 log entries are
processed/s. Finally, security checks are required to see, e.g., whether missing entries
are expendable, cf. Algorithm 4. These plausibility checks are also fast, and the laptop
performs them with ≈12000 log entries/s. On the Pi, sorting 220 entries for recovery
takes ≈1 min (≈16000 entries/s). During recovery, the Pi processes ≈30 entries/s and
performs plausibility checks with ≈320 entries/s.

UDP Benchmark: To measure UDP performance, we generated syslog events with a
Python script on another machine and sent them to our SLiC syslog servers on laptop
and Pi. In this setup, the laptop securely logs ≈500 syslog events/s and the Raspberry
Pi ≈10 syslog events/s. Compared to the laptop, we conjecture the bad Pi performance
to be caused by Python’s poor I/O handling and writing to an SD card.

On both Linux and Windows, we experienced syslog UDP rate limitation (ca. 500/s),
and packets were dropped. While Windows silently discards some UDP packets to cope
with a receiving thread unable to process another UDP packet, the Linux kernel gen-
erates another syslog event to inform about a new rate limit. In an environment where
actual delivery of a large amount of syslog events is important, one might consider
changing the regular syslog communication protocol from UDP to TCP.

Although our prototypical implementation in Python is not optimized for perfor-
mance and serves only as a proof of concept, we can conclude that SLiC is efficient.

Being able to log 500 (or even 700) log events per second on simple laptop hardware
demonstrates usability in larger systems and extensive amounts of logging data. Even
running on the resource-constrained Raspberry Pi as a remote logging server, SLiC can
serve as a secure logging device in environments with fewer log events.

4.6 SLiCOpt

We briefly sketch an alternative to SLiC that we call SLiCOptand that has optimal com-
putational complexity O(n′). In many real-world scenarios, SLiCOptis expected to run
faster than SLiC in scenarios where cache size cs is smaller thanO(log n). This is espe-
cially the case for RAM-constrained systems, systems that frequently evict their cache
or a low rate of log entries.

Overview: SLiCOptdoes not follow the approach of sorting log entries using a sorting
key κ and subsequently searching for log entries. Instead, the idea is to directly find all
non-expendable log entries at the positions in S where they are expected to reside. As
V knows the initial keys and PRG seed, it can replay all random coins and therewith all
permutations π. Given a potentially crashed state S with n′ log entries, some of them
may be broken, V can compute the permutation π at the time of the crash. Therewith, V
can simply lookup all non-expendable entries and check whether their HMAC matches.

More precisely, as the crash might have occurred anywhere between time (n′ − cs)
and (n′ − cs), V iterates over all 2 · cs possible permutations and tries to find all non-
expendable log entries.

Details: We keep Gen and Log from SLiC and only present our modified Recover in
Algorithm 5. Due to space reasons, he have moved Algorithm 5 to Appendix B. The
main difference here is that V iterates over two nested loops. In the outer loop, V tries
to recover the maximum (n′ + cs) of possible log entries. In the inner loop, V iterates
over the possible times of a crash, i.e., between (n′−cs) and (n′+cs). In contrast to the
previous algorithm for recovery, V must now keep track of expendable and recovered
entries per possible crash time, i.e., Ej andRj . During each iteration, V tries to directly
find the c′ following the current permutation π. Permutations π are updated as before.

The plausibility check at the end verifies whether there was a time of crash j such
that entries in S at time j match the plausibility check of Algorithm 4. That is, if there
is no such time of crash j that would pass the plausibility check of Algorithm 4, then V
has detected a crash-attack.

Run time of the outer loop is O(n′). As cs is a constant parameter, independent of
the total number of log entries, the inner loop has run time O(1). The plausibility check
is over a constant number of possible crash times, and has run time of O(n′), too. In
total, Algorithm 5 has optimal run time complexity O(n′).

5 Conclusion

In case a logging device crashes, log file and integrity information become inconsistent.
An adversary compromising the device can exploit this by performing a crash-attack
where they delete unwanted log entries and crash the device to hide attack traces. In

this paper, our first contribution has been to show that previous work on forward-secure
logging against compromising adversaries has not been designed with crash-attacks in
mind and is insecure. Our second and main contribution is SLiC, a first forward-secure
logging protocol that copes with crashes. Observing that any integrity tag for the log as
a whole is futile, our idea is to decorrelate the time of a log event with its position in the
log file. We encrypt and place log events at random positions in the log. Deleting spe-
cific log entries, therefore, becomes difficult for the adversary, and tampering is likely to
be detected. We finally show that SLiC is efficient both asymptotically and practically.
SLiC can process ≈700 log events per second even on simple laptop hardware.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for real-
istic adversaries. Journal of Cryptology, 23(2):281–343, 2010. ISSN 0933-2790.

[2] M. Backes, C. Cachin, and A. Oprea. Secure Key-Updating for Lazy Revocation. In Pro-
ceedings of European Symposium on Research in Computer Security, volume 4189 of Lec-
ture Notes in Computer Science, pages 327–346, Hamburg, Germany, 2006. Springer. ISBN
3-540-44601-X.

[3] M. Bellare. New Proofs for NMAC and HMAC: Security Without Collision-Resistance.
Cryptology ePrint Archive, Report 2006/043, 2006. http://eprint.iacr.org/.

[4] M. Bellare and B.S. Yee. Forward-Security in Private-Key Cryptography. In Proceedings
of Cryptographers’ Track at the RSA Conference, pages 1–18, San Francisco, USA, 2003.
ISBN 978-3-540-36563-1.

[5] K.D. Bowers, C. Hart, A. Juels, and N. Triandopoulos. PillarBox: Combating Next-
Generation Malware with Fast Forward-Secure Logging. In Proceedings of Research in
Attacks, Intrusions and Defenses, pages 46–67, 2014.

[6] J.E. Holt. Logcrypt: forward security and public verification for secure audit logs. In
Proceedings of Australasian Symposium on Grid Computing and e-Research, volume 54,
pages 203–211, Hobart, Australia, 2006.

[7] D.E. Knuth. The Art of Computer Programming, Seminumerical Algorithms, volume 2,
chapter 3.4.2, pages 139–140. Addison Wesley, 2nd edition, 1981. ISBN 978-0201896848.

[8] Linux Kernel Documentation. /proc/sys/vm/dirty expire centisecs, 2015.
Standard value is 30 sec on kernel 3.16.0-4, 64 bit, https://www.kernel.org/doc/
Documentation/sysctl/vm.txt.

[9] C. Lonvick. The BSD syslog Protocol. IETF, Request for Comments: 3164, 2001. https:
//tools.ietf.org/html/rfc3164.

[10] D. Ma and G. Tsudik. A New Approach to Secure Logging. ACM Transactions on Storage,
5(1), 2009. ISSN: 1553-3077.

[11] G.A. Marson and B. Poettering. Practical Secure Logging: Seekable Sequential Key Gen-
erators. Cryptology ePrint Archive, Report 2013/397, 2013. http://eprint.iacr.
org/.

[12] G.A. Marson and B. Poettering. Even More Practical Secure Logging: Tree-Based Seekable
Sequential Key Generators. In Proceedings of European Symposium on Research in Com-
puter Security, volume 8713 of Lecture Notes in Computer Science, pages 37–54, Wroclaw,
Poland, 2014. Springer. ISBN 978-3-319-11211-4.

[13] B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Transac-
tions on Information and System Security, 2(2):159–176, 1999.

[14] A.A Yavuz, P. Ning, and M.K. Reiter. BAF and FI-BAF: Efficient and Publicly Verifiable
Cryptographic Schemes for Secure Logging in Resource-Constrained Systems. Transac-
tions on Information System Security, 15(2):9, 2012. ISSN 1094-9224.

A Security Analysis

Lemma 1. Let Xi be the random variable describing the position of log entry si in the
log. If the output of PRG is pseudo-random, then after adding n events to the log using
Algorithm 3:

∀i, j, 1 ≤ i, j ≤ n : Pr[Xi = j] =
1

n
.

Proof. We prove by induction over n.

1. Basis: Let n = 2. The log contains the two entries s1 and s2. When s2 was added
to the log, Algorithm 3 swapped s1 with s2 with probability 1

2 (if PRG is pseudo-
random). So, both log entries are at any of the two positions with probability 1

n = 1
2 .

2. Inductive step: Let the claim be true for a log of length n entries. We now show that
it also holds when adding the next log entry n+ 1. To compute the probability that
any log entry si is at any position j, we consider two cases.
First, ∀i, 1 ≤ i ≤ n+ 1 : Pr[Xi = n+ 1] = 1

n+1 . That is, the probability that any
of the n+1 log entries is at position n+1 is 1

n+1 , because Algorithm 3 selects any
of them pseudo-randomly with equal probability.
Second, we compute the complementary probability that any of the n+1 log entries
is at a position j, 1 ≤ j ≤ n, left of n+ 1.
For entry sn+1, ∀j ≤ n : Pr[Xn+1 = j] = 1

n+1 , as Algorithm 3 selects pseudo-
randomly between 1 and n+ 1. For the other entries, we have

∀i,1 ≤ i ≤ n, ∀j ≤ n :

Pr[Xi = j] = Pr[si was at position j before adding element n+ 1

∧ Algorithm 3 does not swap si to position n+ 1]

=
1

n
·
(
1− 1

n+ 1

)
=
n+ 1− 1

n20 + n
=

1

n+ 1
.

The first probability, si was at position j before adding element n + 1 (in Algo-
rithm 3), equals 1

n by induction hypothesis.

For simplicity, we assume that HMACK(c) = PRFK(c, 1) in our analysis, where “,”
is an unambiguous pairing of inputs [3]. So, we use the same pseudo-random function
to evolve keys and compute authentication tags.

Lemma 2. LetA compromiseL at time t when n events have been added to the log. Let
A get access to internal stateΣn comprising S, |S| = n+λ. If PRG is a pseudo-random
generator, PRF is a pseudo-random function, and Enc is IND-CPA encryption, then the
distribution of log entries si, i ≤ n in S logged before time t is indistinguishable from
a random distribution for A.

Proof (Sketch). If PRF is a pseudo-random function, then seedt does not reveal details
about seeds seedi, keysKi, and sort keys κi, i < n toA. As moreover PRG is a pseudo-
random generator, this implies that A does not learn any information about previous
swap operations during Log. Finally, with Enc being IND-CPA encryption, si does not
leak information about mi (even though A specified the distribution of mis).

In conclusion, for A the distribution of si is pseudo-random. A cannot determine
which event mi (and entry si) is stored at which position in S.

In the following, we come back to Definition 3 and state our main security claim.
Let εPRF(λ), εPRG(λ), εEnc(λ) denote the negligible adversarial success probabilities of
PRF, PRG, and Enc security when initialized with security parameter λ.

Theorem 1. Let A know Σn comprising S, |S| = n+ λ, let ` be the number of events
A wants to delete, cs the system’s cache size, and n′ the number of entries output by A
as part of their malicious state Σ′. Let ε(λ) = max(εPRF(λ), εPRG(λ), εEnc(λ)).

For security parameter λ, if PRG is a pseudo-random generator, PRF is a pseudo-
random function, |m1| = . . . = |mn|, and Enc is IND-CPA encryption, then SLiC
provides [εPRF(λ), f(n, n′, `, cs, λ)]-crash integrity, with

f =

0 , if n′ < λ− cs

max(ε(λ),
(n−2·`−n′+2·cs

2·cs−`)
(n
n′)

) , otherwise.

Proof (Sketch). We focus on delete attacks and quickly ignore forge attacks by stating
that they are as likely as breaking HMAC security, i.e., εPRF(λ).

First, if n′ < λ − cs, then there are less entries in S than theoretically possible.
The initial size of S is λ, and at most cs entries of these can become expendable. So, V
knows that A has removed an entry from S.

In case, n′ ≥ λ − cs, probability f is hypergeometrically distributed. Assume A
compromises L at time t = n − λ, so there are a total of n events in S. To suc-
ceed in the security experiment, A must present a subset of n′ out of all n events such
that none of the ` unwanted events is in this subset. For simplicity, we assume for
now that the ` unwanted events are all expendable. Moreover, A’s subset must con-
tain all of the (n′ − 2 · cs) non-expendable events. So, the probability computes to
(`0)·(

n′−2·cs
n′−2·cs)·(

n−`−n′+2·cs
n′−n′+2·cs)

(n
n′)

=
(n−`−n′+2·cs

2·cs)
(n
n′)

.

A last requirement to succeed in the security experiment is that all ` unwanted events

are part of the 2·cs expendable events. So, f computes to
(`0)·(

n′−(2·cs−`)

n′−(2·cs−`))·(
n−`−n′+2·cs−`
n′−n′+2·cs−`)

(n
n′)

=

(n−2·`−n′+2·cs
2·cs−`)
(n
n′)

.

Finally, the adversary might win by breaking cryptographic tools used in SLiC.
They can do that with probability ε(λ), such that f computes to f = max(ε(λ),
(n−2·`−n′+2·cs

2·cs−`)
(n
n′)

).

Again, we assume in this proof same-length log events mi. As discussed in Sec-
tion 4.3, we can pad different length events mi to a maximum length, e.g., as standard-
ized by an actual logging service [9].

Corollary 1.

∃n0, λ0 s.t. ∀n > n0,∀λ > λ0 :

(
n−2·`−n′+2·cs

2·cs−`
)(

n
n′

) < max(e−2·(`−cs), (
λ

n
)λ · 1

n`−4·cs
).

Proof. Let BIN =
(n−2·`−n′+2·cs

2·cs−`)
(n
n′)

. We bound BIN using standard binomial inequalities

leading to BIN < g =
(
e·(n−2·`−n′+2·cs

2·cs−`)2·cs−`

(n
n′)

n′ . Considering g as a function of n′, we first

compute its derivative and obtain

g′(n′) = [(n− n′ + 2 · cs− `) · (1 + ln
n′

n
)− (2 · cs− `)] · (n

n′
)n
′
·A,

where A is a positive constant which neither depends on n nor n′.
If n′ > n

e , then (1 + ln n′

n) is strictly positive, and therefore there exists n0 such
that for n > n0, (n−n′+2 · cs− `)(1+ ln n′

n) > (2 · cs− `). Thus for n > n0, we get
g′(n′) > 0 and conclude that g will be monotonically increasing in n′. Therefore, g, and
consequently BIN, is upper bounded at the highest legitimate value n′ that the adversary
can select, i.e., n′ = n−`. Alternatively, for n′ < n

e , ∃n0 such that n > n0, g′(n′) < 0.
Therefore, g, is monotonically decreasing and consequently BIN, has an upper bound at
the smallest legitimate value for n′, i.e., n′ = λ−2 ·cs. So, BIN < max(g(n′ = n− `),
g(n′ = λ− 2 · cs)). We bound g(n′ = n− `) by

g(n′ = n− `) = e2·cs−`

(n
n−`)

n−` < e−2·(`−cs).

Similarly, we bound g(n′ = λ− 2 · cs) by

g(n′ = λ− 2 · cs) < (e · (n− 2 · `− λ+ 4 · cs))2·cs−` · (λ− 2 · cs)(λ−2·cs)

nλ−2·cs · (2 · cs− `)(2·cs−`)

< (
λ

n
)λ · 1

n`−4·cs
, for λ� 2 · cs− `.

Essentially, Theorem 1 and Corollary 1 state that SLiC achieves negligible adversar-
ial success probability in both security parameter λ and number of events `, matching
traditional security notions. As shown in the main body of the paper (Section 4.4), ad-
versarial advantage is also low in practice, i.e., for typical real-world parameters of
SLiC.

B Optimistic Recover

Input: State Σ to check, initial state Σ0

Output: Recovered log events {m1, . . . ,mn′}
// Let Σ0 = (K0, seed0,S0)
// Parse Σ as (Kn′ , seedn′ ,S ′ = π′(s′1, . . . , s

′
n′≤n)), let s′i = (c′i, h

′
i)

1 Rn′−cs = . . . = Rn′+cs = ∅;
2 En′−cs = . . . = En′+cs = ∅;
// Evolve key, seed, π, π−1

3 for i = 1 to n′ − cs− 1 do
4 Ki = PRFKi−1(χ); seedi = PRFseedi−1(χ

′);
5 Update π and π−1;
6 end
// Outer Loop

7 for i = 1 to n′ + cs do
8 Ki = PRFKi−1(χ);

// Inner Loop
9 for j = n′ − cs to n′ + cs do

10 pos
$PRG(seedi)←−−−−−−−− {1, . . . , j};

11 Update π and π−1;
12 Ej = Ej ∪ {j, π−1[pos]};
13 if HMACKi(c

′
π[i]) = h′π[i] then

14 Rj = Rj ∪ {DecKi(c
′
π[i])};

15 break Inner Loop;
16 end
17 end
18 end

// Check plausibility
19 if @j : [(|Rj | ≥ λ− cs) ∧ (∀i ∈ {1, . . . , j} : {(i, ·)} ∈ Rj ⊕ i ∈ Ej)] then
20 output ⊥
21 else
22 outputRj ;
23 end

Algorithm 5: Optimistic RecoverOpt(Σ,Σ0)

