
Entropy Reduction for the Correlation-Enhanced
Power Analysis Collision Attack

Andreas Wiemers, Dominik Klein

Bundesamt für Sicherheit in der Informationstechnik (BSI)
{firstname.lastname}@bsi.bund.de

Abstract. Side Channel Attacks are an important attack vector on se-
cure AES implementations. The Correlation-Enhanced Power Analysis
Collision Attack by Moradi et al. [13] is a powerful collision attack that
exploits leakage caused by collisions in between S-Box computations of
AES. The attack yields observations from which the AES key can be
inferred. Due to noise, an insufficient number of collisions, or errors in
the measurement setup, the attack does not find the correct AES key
uniquely in practice, and it is unclear how to determine the key in such
a scenario. Based on a theoretical analysis on how to quantify the remain-
ing entropy, we derive a practical search algorithm. Both our theoretical
analysis and practical experiments show that even in a setting with high
noise or few available traces we can either successfully recover the full
AES key or reduce its entropy significantly.

1 Introduction

Kocher’s [11] groundbreaking paper on side channel attacks has led both science
and industry to focus on attacking and hardening their implementations [1].
Due to its popularity and de-facto standard w.r.t. symmetric cryptographic al-
gorithms, AES [4, 9, 10, 14, 15] is of particular interest. Despite its theoretical
cryptographic strength, a secure AES implementation that does not leak in-
formation about processed data remains to be a challenge. A popular counter-
measure to minimize leakage about the AES key is masking. Different masking
schemes exist, but the general idea of masking is that whenever secret data is
about to enter critical stages of operation, some reversible operation that makes
the data appear to be random is applied. Any cryptanalysis of intermediate data
of the processing step is thus worthless. After leaving the critical stage of opera-
tion, the operation is reversed and the processed result can be used. Appropriate
masking schemes can successfully prevent several attacks.

One particular class of attacks against AES are collision attacks. In collision
attacks, one exploits the fact that sometimes leakage of the device can indicate
that the same intermediate value has been processed during some critical stage
of operation. By using this observation, one can gather information about se-
cret data and cryptanalyze the device. In particular attacks that detect internal
collisions are of interest. This kind of attack method was originally applied to
DES [12, 17], but later applied to AES [3, 16] as well.



A very powerful kind of collision attack against AES was applied in [13], and
later improved in [8]. The attack works by feeding data into a device in order
to create collisions. A major important observation by [13] is that since the S-
Box in AES is the same for every key byte (as opposed to i.e. DES), in most
implementations the S-Box is the same for every key byte as well. This implies
that for two same processed values, the resulting power consumption should be
the same as well. Their idea is to create collisions such that this leakage between
S-Box computations of different key byte positions is exploitable. This makes
the attack very powerful — it is shown in in [13] that a device with S-Boxes
that are masked using the state-of-the-art Canright S-Box implementation [5,
6] can be broken with a reasonable amount of available traces. It is important
to note here that in general the leakage of the device attacked in [13] was mini-
mal, and in particular a typical state-of-the-art template attack [7] was close to
impossible to execute. In particular the amount of trace data needed to mount
a successful attack was magnitudes lower for the correlation attack than for a
template attack.

The attack gives some information about the correct AES key. However, the
attack might not find the correct AES key uniquely in practice. There are several
reasons for this: Noise, an insufficient number of collisions, errors in the mea-
surement setup, or simply the device itself, i.e. the design and implementation
of the cryptographic co-processor for a hardware implementation, or the proces-
sor design and execution flow in a software implementation. Moreover, it is not
clear a priori how to find a set of key candidates that fit to the observations
of the attack. A naive approach, i.e. enumerating all possible key candidates is
computationally infeasible due to the large search space.

It is also unclear how to assess the leakage of the device; in particular it leaves
open the question how many measurements (traces) are required to successfully
mount the attack. Obviously, if the key uniquely identified for a certain amount
of traces, this gives an upper bound. However what if less measurements are
available?

In this paper we provide an algorithm to recover the AES key in the above
scenario. The theoretical motivation of the algorithm is the basis for our analysis
on how to quantify the remaining entropy, which can be used to assess the leakage
of a device. Both our theoretical analysis and practical experiments show that
even in a fuzzy setting with high noise or few available traces, we can either
successfully recover the full AES key or reduce its entropy significantly.

This paper is structured as follows. In Section 2, we first briefly recall the
attack by Moradi et al. as formulated in [13] and then introduce our algorithm
in Section 3. For the algorithm we give a thorough theoretical justification in
Section 4. Then in Section 5 we analyze the success rate of the algorithm, i.e.
its impact on the entropy of a vulnerable system w.r.t. its leakage, and give
upper and lower bounds of the remaining entropy. Our theoretical findings are
verified by providing experimental data in Section 6. Finally, we conclude our
presentation in Section 7.



2 Correlation-Enhanced Power Analysis Collision Attack

Let 𝐾1, . . . ,𝐾16 be the correct key which is used in the first round of an AES
encryption. We denote by small letters 𝑘1, . . . , 𝑘16 candidates for the key. We
briefly recall the Correlation-Enhanced Power Analysis Collision Attack as de-
scribed in [13].

During the measurement phase we record 𝑁 power consumption traces of the
first round of an AES-128 encryption. These traces consists of 16 single S-Box
computations. The measurement of each single S-Box computation is given as
a vector of 𝑇 numbers. We denote by 𝑏𝑖,𝑤,𝑡 this power consumption trace of a
single S-Box computation 𝑖 of a known plaintext 𝑝𝑤,𝑖, 1 ≤ 𝑖 ≤ 16, 1 ≤ 𝑤 ≤ 𝑁 ,
1 ≤ 𝑡 ≤ 𝑇 . As a first step we compute the average value 𝑀𝑖,𝛽,𝑡 over all 𝑤
with 𝛽 = 𝑝𝑤,𝑖. Secondly, for any 𝑖, 𝑗 and 𝑡 we derive the empirical correlation
coefficient 𝐶𝑖,𝑗,𝛼,𝑡 between 𝑀𝑖,𝛽,𝑡 and 𝑀𝑖,𝛽⊕𝛼,𝑡 for any byte value 𝛼, where we
treat 𝛽 as a random variable uniformly distributed on all 256 byte values. At
last, we set 𝑐𝑖,𝑗(𝛼) for the maximum of all 𝐶𝑖,𝑗,𝛼,𝑡, where 𝑡 runs over all time
points.

The idea of this approach is as follows: If the measurement 𝑏𝑖,𝑤,𝑡 is slightly
dependent on the input byte 𝑝𝑤,𝑖 ⊕𝐾𝑖 of the S-Box computation 𝑖, the average
𝑀𝑖,𝛽,𝑡 depends on 𝛽 ⊕𝐾𝑖 even more significantly. Now the input bytes 𝛽 ⊕𝐾𝑖

of S-Box 𝑖 and 𝛽 ⊕𝐾𝑗 ⊕ 𝛼 of S-Box 𝑗 are the same for the choice 𝛼 = 𝐾𝑖 ⊕𝐾𝑗 .
Therefore, we can hope that the correlation 𝐶𝑖,𝑗,𝛼,𝑡 has — at least for some 𝑡 —
a significantly higher value for the correct choice 𝐾𝑖 ⊕𝐾𝑗 of 𝛼.

3 Recovering the AES Key

In this section we formulate our algorithm for computing candidates for the full
AES key. We assume that we have given 120 · 256 values in the form

𝑐𝑖,𝑗(𝛼)

for 1 ≤ 𝑖 < 𝑗 ≤ 16, where 𝛼 runs over all byte values. If for each 𝑖, 𝑗 the value
𝑐𝑖,𝑗(𝐾𝑖 ⊕ 𝐾𝑗) is always the highest among all 𝑐𝑖,𝑗(𝛼), then it is easy to derive
the full key. Here we are interested in the situation, where for each 𝑖, 𝑗, the value
𝑐𝑖,𝑗(𝐾𝑖 ⊕𝐾𝑗) has only a tendency of being large compared to other 𝑐𝑖,𝑗(𝛼) with
𝛼 ̸= 𝐾𝑖 ⊕ 𝐾𝑗 . The idea of our approach is to consider the ad-hoc evaluation
function

𝐵 =
∑︁
𝑖<𝑗

𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗)

for any key candidate (𝑘1, · · · , 𝑘16) and choose the key candidate with the highest
value in 𝐵. Since this is not feasible in a straightforward manner, we instead try
to compute 𝐵 via partial sums. To this end, we fix an integer 𝑊 , resp. integers
𝑔2, · · · , 𝑔16.



Algorithm 1 Recovering the AES Key

1: Set 𝑘1 = 0, 𝑆1 = {𝑘1} and 𝐵1 = 0.
2: for 𝑠 = 1, . . . , 15 do
3: for each key candidate 𝑘1, . . . , 𝑘𝑠 in 𝑆𝑠 do
4: for each value of the next key bytes 𝑘𝑠+1 do
5: compute the evaluation function

𝐵𝑠+1 = 𝐵𝑠((𝑘1, . . . , 𝑘𝑠)) +
∑︁

1≤𝑖≤𝑠

𝑐𝑖,𝑠+1(𝑘𝑖 ⊕ 𝑘𝑠+1)

6: end for
7: end for
8: select subset of candidates 𝑘1, . . . , 𝑘𝑠, 𝑘𝑠+1 w.r.t. some criteria and store in 𝑆𝑠+1:
9: Variant I: Select 𝑊 candidates 𝑘1, . . . , 𝑘𝑠, 𝑘𝑠+1 with largest 𝐵𝑠+1

10: Variant II: Select all 𝑘1, . . . , 𝑘𝑠, 𝑘𝑠+1 with 𝐵𝑠+1 ≥ 𝑔𝑠+1

11: end for
12: return

Remarks and Observations

– Since 𝐵𝑠 and 𝐵 only depend on ⊕-sums of key bytes, we can choose one key
byte as a fixed value. Here, we set 𝑘1 = 0.

– The success probability of both variants of our algorithm for finding the
correct key depends on the input parameters 𝑊 , resp. 𝑔2, · · · , 𝑔16. If we
choose 𝑔𝑠 = 𝐵𝑠((𝐾𝑖 ⊕ 𝐾𝑗)), Variant II of Algorithm 1 is guaranteed to
output the correct key. However, in this case 𝑆𝑠 might become too large to
store in practice.

– 𝑊 can be treated as a measure of the workload (i.e. the number of compu-
tational steps) of Variant I of Algorithm 1.

– Both variants of the algorithm assume a fixed order of key byte positions.
The result of the algorithm depends on that assumed order of the key bytes.
One can repeat the algorithm with different orders. As 𝑠 grows, the order
becomes less important. We investigate the effect of the order on the success
of the algorithm in Section 6.

– The choice of the order could take into account the actual distribution of
the values 𝑐𝑖,𝑗(𝛼). Those 𝑖, 𝑗 with significantly high values in 𝑐𝑖,𝑗(𝛼) could
be considered first. In a practical setting, visual inspection of 𝐶𝑖,𝑗,𝛼,𝑡 could
give a hint, cf. for example Figures 5a and 5b. In general however, we are
more interested in the situation where 𝑐𝑖,𝑗(𝐾𝑖⊕𝐾𝑗) is not automatically the
highest value among the 𝑐𝑖,𝑗(𝛼), but is only larger on average over all 𝑖, 𝑗.

4 Theoretical Justification

In this section, we give a justification of the evaluation function 𝐵. To this end,
we treat 𝑐𝑖,𝑗(𝛼) for any 𝑖, 𝑗, 𝛼 as a realization of a normally distributed random
variable. We assume the easiest scenario: For any 𝑖, 𝑗, 𝛼 with 𝛼 ̸= 𝐾𝑖 ⊕ 𝐾𝑗



the means and the standard deviations are equal and are denoted by 𝑎, resp. 𝜎.
Furthermore, for the correct 𝛼 = 𝐾𝑖⊕𝐾𝑗 the means are equal and are denoted by
𝑏 and in addition, the standard deviations are equal to 𝜎. For any key candidate
𝑘 = (𝑘1, · · · , 𝑘16) we can check whether for all key candidates 𝑘

𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) ≈ 𝑎, if 𝑘𝑖 ⊕ 𝑘𝑗 = 𝑘𝑖 ⊕ 𝑘𝑗

𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) ≈ 𝑏, if 𝑘𝑖 ⊕ 𝑘𝑗 ̸= 𝑘𝑖 ⊕ 𝑘𝑗

As a likelihood measure for any key candidate we seek a function in the single
probability density functions as

1√
2𝜋𝜎

exp(− (𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) − 𝑎)2

2𝜎2
), resp.

1√
2𝜋𝜎

exp(− (𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) − 𝑏)2

2𝜎2
)

The cumulative probability density function of two independent random vari-
ables is just the product of the single probability density functions. Therefore,
we are led to use as an evaluation function the product over all single probability
density functions. Taking logarithms we get

∑︁
�̃�

⎡⎢⎢⎣ ∑︁
𝑖<𝑗,

�̃�𝑖⊕�̃�𝑗=𝑘𝑖⊕𝑘𝑗

(𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) − 𝑎)2 +
∑︁
𝑖<𝑗,

�̃�𝑖⊕�̃�𝑗 ̸=𝑘𝑖⊕𝑘𝑗

(𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗) − 𝑏)2

⎤⎥⎥⎦
An equivalent evaluation function is therefore∑︁

𝑖<𝑗

𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗).

5 Success Rate of the Algorithm (Variant II)

In this section we want to give theoretical estimates of the success rate and
workload for the second variant of the algorithm. The purpose of this section is
to find relations between those theoretical estimates and basic properties of the
distributions of 𝑐𝑖,𝑗(𝛼). To make the derivation as simple as possible, we restrict
ourselves to the scenario in the last section, i.e. 𝑐𝑖,𝑗(𝛼) for any 𝑖, 𝑗, 𝛼 is treated
as a realization of a normally distributed random variable with mean 𝑎, resp.
𝑏, and standard deviation 𝜎. Furthermore, for any key candidate the evaluation
function

𝐵𝑠 =
∑︁

𝑖<𝑗≤𝑠

𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗)

is considered as a sum of independent random variables. Therefore, 𝐵𝑠 is a
normally distributed random variable. For a randomly chosen key candidate we
have the expectation value

E(𝑐𝑖,𝑗(𝑘𝑖 ⊕ 𝑘𝑗)) =
255

256
𝑎 +

1

256
𝑏 ≈ 𝑎



since 𝑏 is assumed to be only slightly larger than 𝑎. Therefore, the mean and stan-

dard deviation of 𝐵𝑠 are
(︀
𝑠
2

)︀
𝑎, resp.

√︁(︀
𝑠
2

)︀
𝜎. For the correct key, 𝐵𝑠((𝐾1, . . . ,𝐾𝑠))

is normally distributed with mean
(︀
𝑠
2

)︀
𝑏.

For having 𝐵𝑠 near to its mean value, we want to avoid small values in
(︀
𝑠
2

)︀
.

In practice, we set in Variant II of the algorithm 𝑔𝑠 = −∞ for 𝑠 ≤ 4. For the
ease of presentation we want to assume

𝐵𝑠((𝐾1, . . . ,𝐾𝑠)) ≥
(︂
𝑠

2

)︂
𝑏 for 𝑠 ≥ 5

Therefore, we set here 𝑔𝑠 =
(︀
𝑠
2

)︀
𝑏.

5.1 An upper Bound of the Remaining Entropy

Variant II of the algorithm only finds key candidates for which 𝐵𝑠 ≥ 𝑔𝑠 for all
𝑠, 5 ≤ 𝑠 ≤ 16. In every step, the set 𝑆𝑠 is a subset of all key candidates for
which the condition 𝐵𝑠 ≥ 𝑔𝑠 is fulfilled. The size 𝐴𝑠 of this larger set can be
approximated by

#𝑆𝑠 ≤ 𝐴𝑠 = 2(𝑠−1)8 P

(︂
𝐵𝑠 ≥

(︂
𝑠

2

)︂
𝑏

)︂
and log2(𝐴16) is an upper bound for the remaining entropy.1 𝐴16 ≈ 1 means
that the correct key has been found more or less uniquely, and max𝑠 𝐴𝑠 is an
upper bound for the workload of variant II of Algorithm 1. The inequality of
integrals ∫︁ ∞

𝑥

𝑒−𝑡2/2𝑑𝑡 ≤
∫︁ ∞

𝑥

𝑡

𝑥
𝑒−𝑡2/2𝑑𝑡 =

1

𝑥
𝑒−𝑥2/2

can be used to give an upper bound for the standardized normal distribution
𝒩0,1:

𝒩0,1(𝑥,∞) ≤ 1

𝑥
√

2𝜋
𝑒−𝑥2/2

We set

𝜏 =
𝑏− 𝑎

𝜎

and derive

𝐴𝑠 = 2(𝑠−1)8 P

⎛⎝𝐵𝑠 −
(︀
𝑠
2

)︀
𝑎

𝜎
√︁(︀

𝑠
2

)︀ ≥ 𝜏

√︃(︂
𝑠

2

)︂⎞⎠
≤ 2(𝑠−1)8 1

𝜏
√︁

2𝜋
(︀
𝑠
2

)︀𝑒− 1
2 (𝑠

2)𝜏
2

=
1

𝜏
√︁

2𝜋
(︀
𝑠
2

)︀2(𝑠−1)8− 1
2 ln(2) (

𝑠
2)𝜏

2

1 Since one key byte cannot be determined by the algorithm, the accurate remaining
entropy is more properly log2(𝐴16) + 8.



This approximation of log2(𝐴𝑠) has roughly the form of a parabola in 𝑠. The
condition 𝐴16 ≈ 1 corresponds to the equation

𝜏 =
𝑏− 𝑎

𝜎
≈

√︀
2 ln(2) ≈ 1.2

Some results are provided in Table 1. This can be interpreted in that we can

Table 1. Upper Bounds for the Remaining Entropy

𝑏−𝑎
𝜎

log2(𝐴16) log2(𝐴4) max𝑠≥5 log2(𝐴𝑠)

1.4 0 24 15
1.2 0 24 23
1.1 10 24 29
1.0 29 24 36
0.9 45 24 46

expect that for 𝑏−𝑎
𝜎 ≥ 1, Variant II of Algorithm 1 is successful with workload

≤ 236 and remaining entropy ≤ 29.

5.2 A lower Bound of the Remaining Entropy

We want to analyze variant II of Algorithm 1 step by step. We expect that the
size of #𝑆𝑠+1 can be approximated by a conditional probability of the form

#𝑆𝑠+1 ≈ #𝑆𝑠2
8P

(︂
𝐵𝑠+1 ≥

(︂
𝑠 + 1

2

)︂
𝑏 | 𝐵𝑠 ≥

(︂
𝑠

2

)︂
𝑏,

𝐵𝑠−1 ≥
(︂
𝑠− 1

2

)︂
𝑏, . . . , 𝐵5 ≥

(︂
5

2

)︂
𝑏

)︂
Note that

𝑋𝑠 =
𝐵𝑠 −

(︀
𝑠
2

)︀
𝑎

𝜎

is the sum of
(︀
𝑠
2

)︀
𝒩0,1-distributed independent random variables. Therefore, 𝑋𝑠

represents a Gaussian random walk. We write the conditional probability in the
form

P

(︂
𝐵𝑠+1 ≥

(︂
𝑠 + 1

2

)︂
𝑏 | 𝐵𝑠 ≥

(︂
𝑠

2

)︂
𝑏, 𝐵𝑠−1 ≥

(︂
𝑠− 1

2

)︂
𝑏, . . . , 𝐵5 ≥

(︂
5

2

)︂
𝑏

)︂
= P

(︂
𝑋𝑠+1 ≥

(︂
𝑠 + 1

2

)︂
𝜏 | 𝑋𝑠 ≥

(︂
𝑠

2

)︂
𝜏,𝑋𝑠−1 ≥

(︂
𝑠− 1

2

)︂
𝜏, . . . , 𝑋5 ≥

(︂
5

2

)︂
𝜏

)︂



The probability

P

(︂
𝑋𝑠+1 ≥

(︂
𝑠 + 1

2

)︂
𝜏,𝑋𝑠 ≥

(︂
𝑠

2

)︂
𝜏,𝑋𝑠−1 ≥

(︂
𝑠− 1

2

)︂
𝜏, . . . , 𝑋5 ≥

(︂
5

2

)︂
𝜏

)︂

can be interpreted as the probability of a Gaussian random walk with at least
linear growth at special steps. We get a lower bound of the conditional probability
if we omit the conditions on all 𝑠′ < 𝑠.

#𝑆𝑠+1 ≥ 𝑉𝑠2
8P

⎛⎝𝐵𝑠 +
∑︁

1≤𝑖≤𝑠

𝑐𝑖,𝑠+1(𝑘𝑖 ⊕ 𝑘𝑠+1) ≥
(︂
𝑠 + 1

2

)︂
𝑏 | 𝐵𝑠 ≥

(︂
𝑠

2

)︂
𝑏

⎞⎠
for 𝑠 ≥ 5 and #𝑆5 = 𝐴5. Since

(︀
5
2

)︀
= 10, we use for #𝑆5 = 𝐴5 the formula

#𝑆5 = 232𝒩0,1

(︂√
10

𝑏− 𝑎

𝜎
,∞

)︂
The probability P

(︁
𝐵𝑠 +

∑︀
1≤𝑖≤𝑠 𝑐𝑖,𝑠+1(𝑘𝑖 ⊕ 𝑘𝑠+1) ≥

(︀
𝑠+1
2

)︀
𝑏 | 𝐵𝑠 ≥

(︀
𝑠
2

)︀
𝑏
)︁

only de-

pends on 𝑠 and 𝜏 = 𝑏−𝑎
𝜎 . This probability and therefore all lower bounds of

#𝑆𝑠+1 can be calculated numerically. Table 2 extends Table 1 above. We can

Table 2. Bounds for the Remaining Entropy

Lower bound of Lower bound of
𝜏 = 𝑏−𝑎

𝜎
log2(𝐴16) log2(𝐴4) max𝑠≥5 log2(𝐴𝑠) log2(#𝑆16) max𝑠≥5 log2(#𝑆𝑠)

1.4 0 24 15 0 14
1.2 0 24 23 0 21
1.1 10 24 29 2 26
1.0 29 24 36 21 32
0.9 45 24 46 37 41

expect that the remaining entropy and the workload of variant II of Algorithm 1
are within the limits of this table.

5.3 Probability of the Event 𝐵𝑠(𝐾1, . . . ,𝐾𝑠)) ≥
(︀𝑠
2

)︀
𝑏

We consider the event

𝐵𝑠((𝐾1, . . . ,𝐾𝑠)) ≥
(︂
𝑠

2

)︂
𝑏 for all 𝑠 = 16, 15, . . . , 5

Note, that the probability of this event does not depend on 𝑏 and 𝜎, it is just
a real number. On first sight, one could believe that the probability of this



(a) 𝑐0,1(𝛼) (b) 𝑐0,9(𝛼)

Fig. 1. Correlation of 𝑐𝑖,𝑗(𝛼) vs # of traces. The correct value of 𝛼 is shown in black.

event is 2−12. But since 𝐵𝑠−1((𝐾1, . . . ,𝐾𝑠−1)) is a subsum of 𝐵𝑠((𝐾1, . . . ,𝐾𝑠)),
the probability of 𝐵𝑠(𝐾1, . . . ,𝐾𝑠)) ≥

(︀
𝑠
2

)︀
𝑏 is larger than 1

2 if we already know

that 𝐵𝑠−1((𝐾1, . . . ,𝐾𝑠−1)) ≥
(︀
𝑠−1
2

)︀
𝑏. We compute an approximation of this

probability by a simulation of normally distributed random variables. We get

P

(︂
𝐵𝑠((𝐾1, . . . ,𝐾𝑠)) ≥

(︂
𝑠

2

)︂
𝑏 for all 𝑠 = 16, 15, . . . , 5

)︂
≈ 0.15.

To this end, the assumption 𝐵𝑠(𝐾1, . . . ,𝐾𝑠)) ≥
(︀
𝑠
2

)︀
𝑏 for all 𝑠 is not too restrictive.

6 Experiments

Software Implementation

Our setup consists of an AES-128 based software implementation running on an
Atmel ATMEGA328P-PU. The S-Boxes are realized as lookup tables and stored
in the program memory of the ATMEGA. The S-Boxes are masked using the
method presented in [2]. This masking is known to have an inherent weakness,
however the attack does not use any systematic way in exploiting this weakness,
and as shown in [8, 13], even state-of-the-art Canright S-Boxes [5] are susceptible
to correlation attacks. Hence we anticipate that our results are representative.
Moreover, the masking used [2] is straightforward to implement. The ATMEGA
was setup on a custom prototype board, and powered by a lab-grade power
supply at 3.3 Volt. We used a LeCroy HDO6104 to record the power consump-
tion of the ATMEGA with a resistor against ground. We recorded 𝑁 traces of
AES-128 encryption. The plaintext was chosen at random, and we attacked the
masked subbytes procedure of the first AES round.



Practical Results

We recorded 10000 traces with randomly generated plaintext values. Our im-
plementation follows closely the approach shown in [13] and we compute the
correlation w.r.t. each possible value of one 𝐶𝑖,𝑗,𝛼,𝑡. Figure 5a shows the result-
ing correlation of 𝐶0,1,𝛼,𝑡 for one AES round, i.e. in our setup 𝑡 = 0, ..., 25809.
Correlation peaks at the end of the S-Box for the correct value are clearly visible.
However a correlation peak is not apparent for every pair of key byte positions
𝑖, 𝑗; for example considering the correlation values 𝐶9,11,𝛼,𝑡 as depicted in Fig-
ure 5b, no clear peak is observable for the correct value 𝛼. Nevertheless when
ranking all possible values 𝑐9,11(𝛼), the correct value is still at position 18. Fewer
traces result in less collisions and more noise, and the rankings become more
fuzzy. To give two examples, the rankings for the correct value of 𝛼 for 2500 and
10000 traces are as shown in Figure 3a and 3b. If more traces are available, the
correlation values 𝑐𝑖,𝑗(𝛼) for the correct value 𝛼 become very distinct from those
for incorrect values of 𝛼, as illustrated in Figure 1a and Figure 1b.

Fig. 2. Number of Traces vs. Ranking Positions of 𝑐𝑖,𝑗(𝛼) for correct 𝛼.

For 𝑁 = 10000, the correct value of 𝛼 often shows on rank 1, but there are
some outliers. For 𝑁 = 2500, there are few rankings with position 1. Never-
theless, a part of the key can be recovered and the key entropy is significantly
reduced, as is shown in our experiments. Figure 2 shows average, median, and
worst ranking positions for the correct value of 𝛼 in relation to the number of
available traces.

For Variant II of Algorithm 1 one needs to choose appropriate input val-
ues 𝑔2, · · · , 𝑔16. This requires prior knowledge about the quality of the rankings
𝑐𝑖,𝑗(𝛼). If such knowledge is not available, appropriate values could also be esti-
mated by manual analysis of the rankings 𝑐𝑖,𝑗(𝛼) and/or by visual inspection of



Table 3. Full Key Recovery for 𝑊 = 1500 using Algorithm 1 (Variant I).

1500 ... 3500 4000 4500 5000 5500 6000 6500

1 → 16 – X X X X X X
16 → 1 – – – – – – –
random – 1/5 3/5 3/5 3/5 3/5 3/5

7000 7500 8000 8500 9000 9500 10000
1 → 16 – X X X X X X
16 → 1 – – – – – – –
random 3/5 4/5 3/5 4/5 5/5 5/5 5/5

(a) 𝑁 = 10000 (b) 𝑁 = 2500

Fig. 3. Ranking positions for correct 𝛼.

(a) 𝑁 = 10000 (b) 𝑁 = 2500

Fig. 4. Distribution of 𝑐𝑖,𝑗(𝛼) for incorrect values of 𝛼.



(a) 𝐶0,1,𝛼,𝑡 (b) 𝐶9,11,𝛼,𝑡

Fig. 5. Correlation 𝐶𝑖,𝑗,𝛼,𝑡 for each timepoint 𝑡 within one trace. The correct value of
𝛼 is denoted in black.

𝐶𝑖,𝑗,𝛼,𝑡. For example the comparison of Figure 5a and Figure 5b indicates that
for 𝑐0,1(𝛼) the ranking for the correct value of 𝛼 is very likely at one of the top
positions, whereas for 𝑐9,11(𝛼) this is likely not the case. On the other hand,
Variant I of Algorithm 1 requires no prior knowledge at all. This is why we have
here chosen to implement Variant I of the algorithm.

As mentioned in Section 3, the success of the algorithm depends on the order
in which the next key byte position is chosen, the parameter 𝑊 of candidates
that are kept in each iteration, and of course the number of available traces 𝑁 .
As mentioned in Section 2, in particular the order of choosing the next key byte
position is important, as the next example illustrates:

Example 1. For simplicity, suppose we have only a key consisting of three bytes,
and suppose one key byte can take only value 0 or 1. Let 𝑐𝑖,𝑗(𝛼) be as follows:

𝑐0,1(0) = 0.4 𝑐0,1(1) = 0.1 𝑐1,2(0) = 0.4

𝑐1,2(1) = 0.1 𝑐0,2(0) = 0.1 𝑐0,2(1) = 0.8

Suppose that we set 𝑊 = 2. Assume the order 0 < 1 < 2. We start with
𝑆1 = {0, 1}. Since 𝑐0,1(0) > 𝑐0,1(1) and 0 ⊕ 0 = 0 as well as 1 ⊕ 1 = 0, we yield
the set 𝑆2 = {00, 11}. Algorithm 1 terminates with 𝑆3 = {001, 110}. On the
other hand, it is not difficult to verify that for the key byte order 2 < 1 < 0,
Algorithm 1 terminates with the set 𝑆3 = {100, 011}. Note also that Algorithm 1
is nondeterministic in general: If we set 𝑊 = 1 in the second step during the run
with order 0 < 1 < 2, we have 𝐵((00)) = 𝐵((11)) = 0.4, and it is open which
partial key to keep.

We executed Algorithm 1 for 𝑁 = 1500 up to 𝑁 = 10000 in steps of 500 traces,
and for both 𝑊 = 1500 and 𝑊 = 10000. As for the dependency on the order,
we considered the natural order of starting at key byte position 1 and moving
upward to position 16 (denoted by 1 → 16 in the following), the reverse order of



starting at position 16 and moving down to 1 (denoted by 16 → 1), and on five
randomly chosen orders for each value of 𝑁 . Table 3 and Table 42 show results

Table 4. Full Key Recovery for 𝑊 = 10000 using Algorithm 1 (Variant I).

1500 ... 3500 4000 4500 5000 5500 6000 6500

1 → 16 – X X X X X X
16 → 1 – – – – X X X
random – 1/5 3/5 3/5 3/5 3/5 3/5

7000 7500 8000 8500 9000 9500 10000
1 → 16 – X X X X X X
16 → 1 X X – X X X X
random 3/5 4/5 3/5 4/5 5/5 5/5 3/5

for the full recovery of the key for 𝑁 = 1500...10000 and the various orders. As
one can see, the full key is in the computed set with good probability if at least
4000 traces are available. The probability can be increased, if a larger parameter
𝑊 = 10000 is chosen. For less than 4000 traces, Table 5 shows the maximum
number of correctly recovered key bytes in the computed set. For example, when
choosing the order 1 → 16, then in the case of 2500 traces, the computed set
contains a key where 12 key bytes are correctly identified. In other words, the
entropy is significantly reduced, and it is not difficult to devise an algorithm that
exploits the fact that one can assume that a certain amount of key byte position
are correctly identified.

Table 5. Partial Key Recovery for 𝑊 = 1500 using Algorithm 1 (Variant I).

1500 2000 2500 3000 3500

1 → 16 3 5 12 13 14
16 → 1 2 2 4 1 5
random #1 1 5 3 7 9
random #2 1 5 2 5 14
random #3 2 3 5 12 5
random #4 2 3 5 7 8
random #5 2 2 1 8 12

2 Note that the miss for 𝑁 = 8000 and 16 → 1 in Table 4 is precisely due to the
nondeterministic behavior of Algorithm 1, as illustrated in Example 1.



In order to further interpret these results, we investigated the distribution
𝑐𝑖,𝑗 in 𝛼 for all (𝑖, 𝑗). For each (𝑖, 𝑗) we computed the expected value as well
the standard deviation, which were very similar. Figure 4a and Figure 4b show
histograms of all 255·120 𝑐𝑖,𝑗 with incorrect value 𝛼 for 𝑁 = 10000 and 𝑁 = 2500,
respectively. This is apparently very close to a normal distribution. Expected
value and standard deviation are 0.138± 0.037 for 𝑁 = 10000 and 0.144± 0.036
for 𝑁 = 2500. As derived above, we expect a theoretical bound

𝑏− 𝑎

𝜎
≈

√︀
2 ln(2) ≈ 1.2

This is the smallest value 𝑏, for which we can expect that the evaluation function
𝐵 succeeds. For our experimental data we yield

𝑏− 𝑎

𝜎
=

0.32 − 0.138

0.037
≈ 5.0 for 𝑁 = 10000

and
𝑏− 𝑎

𝜎
=

0.19 − 0.1445

0.0355
≈ 1.3 for 𝑁 = 2500

Apparently, the parameters for 𝑁 = 2500 are very close to the theoretical thresh-
old. This fits with our theoretical observations in previous sections and the ex-
perimental data.

7 Conclusion and Future Work

We have shown how to reduce the remaining key entropy of the attack introduced
by [13] by providing a practical, easy-to-implement algorithm. Our theoretical
analysis shows that this algorithm exploits the leakage in a natural way. More-
over, we provide a way to assess the leakage of a device w.r.t. the attack, which
could be used e.g. in a Common Criteria security evaluation. Our practical eval-
uation supports the theoretical analysis. In particular we show that using our
algorithm, a full recovery of the AES key is possible with only few available
traces. That is, the key can be recovered in a setting where no visual clues w.r.t.
the correct ranking are available and the attack as described by [13] would not
have been applicable. The practical analysis of our algorithm for an AES imple-
mented in hardware on an FPGA, as done originally in [13] is subject to future
work.

Acknowledgements We would like to thank Sven Freud for creating the circuit
board for power analysis, and Tobias Senger for his help with implementing the
masking scheme.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The em side—channel(s).
In: Proc. 4th CHES. pp. 29–45 (2003)



2. Akkar, M.L., Giraud, C.: An implementation of des and aes, secure against some
attacks. In: Proc. 3rd CHES. pp. 309–318 (2001)

3. Bogdanov, A.: Multiple-differential side-channel collision attacks on aes. In: Proc.
10th CHES. pp. 30–44 (2008)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Proc. 6th CHES (2004)

5. Canright, D.: A very compact s-box for aes. In: Proc. 7th CHES. pp. 441–455
(2005)

6. Canright, D., Batina, L.: A very compact “perfectly masked” s-box for aes. In:
Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) Proc. 6th ACNS. pp.
446–459 (2008)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Proc. 4th CHES. pp. 13–28
(2003)

8. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected aes. In: Proc. 13th CHES. pp.
49–62 (2011)

9. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Proc. 3rd CHES. pp. 251–261 (2001)

10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Proc. 19th CRYPTO.
pp. 388–397 (1999)

11. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems, pp. 104–113 (1996)

12. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Proc. 6th CHES.
pp. 176–190 (2004)

13. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Proc. 12th CHES. pp. 125–139 (2010)

14. National Institute of Standards and Technology: FIPS PUB 197. Advanced En-
cryption Standard. Tech. rep. (2001)

15. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: Proc. E-smart. pp. 200–210 (2001)

16. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on aes. In: Proc.
6th CHES. pp. 163–175 (2004)

17. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to des. In: Proc. 10th FSE. pp. 206–222 (2003)


