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Abstract—This paper describes the first attack utilizing the
photonic side channel against a public-key crypto-system. We
evaluated three common implementations of RSA modular ex-
ponentiation, all using the Karatsuba multiplication method.
We discovered that the key length had marginal impact on
resilience to the attack: attacking a 2048-bit key required only
9% more decryption attempts than a 1024-bit key. We found
that the most dominant parameter impacting the attacker’s
effort is the minimal block size at which the Karatsuba method
reverts to naive multiplication: even for parameter values as low
as 32 or 64 bits our attacks achieve 100% success rate with
under 10,000 decryption operations. Somewhat surprisingly, we
discovered that Montgomery’s Ladder—commonly perceived as
the most resilient of the three implementations to side-channel
attacks—was actually the most susceptible: for 2048-bit keys, our
attack reveals 100% of the secret key bits with as few as 4000
decryptions.

I. INTRODUCTION

A. Background

While the phenomena of photonic emission from switching
transistors in silicon is actually a very old one, cf. [9], [27],
the role of photons in cryptography as a practical side channel
source has just recently emerged as a novel research direction,
cf. [33], [25], [24], [34], [7], [8]. Thus, it is important to
include photonic side channels in future hardware evaluations
of security ICs. In fact, a recent research tender from the BSI—
the Federal Office for Information Security in Germany (cf.
[3]) demands a Photonic Emission Analysis of a USB-based
FIDO chip [1].

However, so far only the first steps within this direction
have been successfully achieved. The work of [33], [25], [24],
[34], [7], [8], showed that the required equipment to carry
out successful SPEA (Simple Photonic Emission Analysis)
or DPEA (Differential Photonic Emission Analysis) attacks
against real world ICs is comparable in price to that of
normal Power Analysis equipment and showed their validity
in the AES case. The current paper continues the current state
of the art of the Photonic Side Channel and utilizes it to
attack the RSA encryption scheme for different (real-world)
exponentiation implementations. In this respect the present
paper is the first which considers the RSA case.

B. Related Work

Photonic emission analysis (PEA) in silicon is a known
physical phenomena which has been studied since the 1950s
[27]. In the failure analysis community, hot-carrier lumines-
cence has primarily been used to characterize implementation

and manufacturing faults and defects [11], [35]. Here, the
technologies of choice to perform backside analysis are PICA
(Picosecond Imaging Circuit Analysis) [4] and SSPDs (Super-
conducting Single Photon Detectors) [36]. Both technologies
are able to capture photonic emissions with high performance
in their respective field, but carry the downside of immense
cost and complexity.

One of the first uses of PEA in CMOS in a cryptographic
application was presented in 2008 [12]. However, the authors
increased the voltage supply to 7V operating voltage, which is
above the chips maximum limit for voltage. It took the authors
12 hours to recover a single potential key byte [12]. In 2011, an
integrated PEA system and laser stimulation techniques were
used to attack a DES implementation on an FPGA [10]. The
authors proved that the optical side channel might be used for
differential analysis. However, the analysis strongly relied on a
specific implementation of DES in which registers were always
zeroed before their use, and required the use of equipment
valued at more than 2,000,000 Euros.

Nevertheless, recently, a real breakthrough was achieved
by [33], [34]. This work presented a novel low-cost op-
toelectronic setup for time- and spatially-resolved analysis
of photonic emissions. The authors also introduced a cor-
responding methodology, named Simple Photonic Emission
Analysis. They successfully performed such analysis of an
AES implementation and were able to recover AES-128 keys
by monitoring memory accesses. This work was also extended
to AES-192 and AES-256 [34]. The same research group
also introduced Differential Photonic Emission Analysis and
presented a successful attack against AES-128 [25]. They
successfully revealed the entire secret key with their DPEA. In
2015 an enhanced simple photonic emission attack of AES was
introduced by [8]. The authors designed a photonic emission
simulator which they calibrated against the equipment of [33],
and used signal processing and cryptographic post processing
in order to apply an attack against AES using much less
data. Bertoni et al. [7] also offered an improved Simple
Photonic Emission Analysis, monitoring a different section
of the SRAM logic, and also described an attack against a
masked AES. However, they assumed an unrealistic SRAM
structure with only a single byte in every row, their simulations
do not model the physical environment but rather model
a theoretical case in which the value of every bit can be
identified. However the attack is unrealistic since it assumes
and requires monitoring the photonic emission of a single



experiment.
Using side channel attacks to break RSA is a well studied

topic, cf. [23], [30], [31]. The attacks aim at the exponentiation
step of the decryption process, utilizing power or timing side
channel. Side channel analysis using memory access patterns
is also reminiscent of the field of cache attacks and localized
attacks EM radiation attacks [17]. For instance, the first “real
world” cache-based chosen plaintext attacks on AES were
carried out on OpenSSL implementations [5], [28]. A similar
cache-based attack against RSA was discovered around the
same time by Colin Percival [29].

C. Contributions

In this work we attack the RSA crypto-system using the
photonic side channel, which is the first attack utilizing PEA
against a public-key crypto-system in a ”real-world” program-
ming environment.

Namely, we consider three common implementations of
the modular multiplication of RSA: the binary (“square and
multiply”) method, the fixed-window method, and the Mont-
gomery Ladder, using the Karatsuba multiplication method, for
various key sizes and several implementation variations. This
is exactly where our real-world setting differentiates itself from
the apparently similar work of [17] which utilizes localized
attacks EM radiation attacks: We are able to handle in our
PEA the intrinsic complications arising from the Karatsuba
multiplication, whereas [17] attacks an ordinary full length
modular multiplier, which is reasonable only against a custom
FPGA using a 163-bit ECC crypto-system, but not with 2048-
bit RSA on a standard CPU chip.

We first developed an auto-calibrating method to decode
the photonic traces, eliminating the need to manually set
thresholds. Our decoder has attributes of a “soft decoder”:
it returns “ambiguous” for bit values where the number of
photonic emissions is to too close to the threshold, drastically
reducing the post-decoding error-correcting effort.

Then we conducted an extensive evaluation of our attacks
against the RSA implementations. We discovered that the key
length had marginal impact on resilience to the attack: attack-
ing a 2048-bit key required only 9% more decryption attempts
than a 1024-bit key to reach an equivalent success rate. The
parameter that has the most dominant impact on the attacker’s
effort turns out to be the minimal block size B at which the
Karatsuba method switches to the naive multiplication: even
for very small values (B = 32 or B = 64 bits), recommended
for embedded 8-bit RSA implementations, our attacks achieve
100% success rate under 10,000 decryptions.

Somewhat surprisingly, we discovered that Montgomery’s
Ladder—commonly perceived as the most resilient of the
three implementations to side-channel attacks—was actually
the most susceptible: for 2048-bit keys, the attack reveals
100% of the secret key bits with as few as 4000 decryptions.

An additional contribution is to stress again the value of
an Photonic Emission Simulator as put forward by [7] and
[8]. Indeed, due to the lack of PEA equipment we believe
that our simulator might be of great academic value, bringing

Algorithm 1 The Binary Method
1: Input: c, d, n
2: Output: M = cd (mod n)
3: if dk−1 == 1 then
4: M = c
5: else
6: M = 1
7: end if
8: for i = k − 2 downto 0 do
9: M =M ·M (mod n)

10: if di == 1 then
11: M =M ∗ c (mod n)
12: end if
13: end for
14: return M

Algorithm 2 The m-ary
1: Input: c, d, n
2: Output: M = cd (mod n)
3: Pre-Compute and store cω (mod n) for all ω = 2, 3, 4, . . . ,m− 1.
4: Decompose d into r-bit windows Fi for i = 0, 1, 2, . . . , s− 1.
5: M = cFs−1 (mod n)
6: for i = s− 2 downto 0 do
7: M =M2r (mod n)
8: if Fi 6= 0 then
9: M =M · cFi (mod n)

10: end if
11: end for
12: return M

scientific research to a better understanding of the photonic
side-channel. Note that this is in line with the well-accepted
SPICE simulator, which is an accepted de-facto standard in
electrical engineering to check the integrity of circuit designs
and to predict correct circuit behavior.

Organization. The organization of the present paper is
as follows. Section II introduces the modular exponentiation
methods and the phototonic emissions side-channel. Section
III describes how to attack RSA using the photonic side
channel. Section IV explains how we decode the photonic
traces. Section V describes our performance evaluation, and
we conclude in Section VI.

II. PRELIMINARIES AND BACKGROUND

A. RSA crypto-system

In the RSA public-key crypto-system, encryption of a
message M is computed as c = Me (mod n) where n = p ·q
and p and q are two odd primes of approximate equal size, e
is the public exponent, and decryption is done by computing
M = cd (mod n) where d is the private key.

B. Exponentiation Methods

There are several popular methods to calculate modular
exponentiation efficiently. Here we briefly describe the 3
methods we attack in this work.

1) The Binary Method: An efficient yet simple algorithm
is the Binary method (also known as square and multiply) cf.
[21]. This method (Algorithm 1) scans the bits of the exponent
from the MSB to the LSB (an opposite variant of the method
also exists). For each step a squaring is performed, and if the
exponent bit is 1 a subsequent multiplication is performed.



Algorithm 3 The Montgomery’s Ladder
1: Input: c, d, n
2: Output: M = cd (mod n)
3: M1 = c
4: M2 = c2

5: for i = k − 2 downto 0 do
6: if di == 0 then
7: M2 =M1 ∗M2 (mod n)
8: M1 =M2

1 (mod n)
9: else

10: M1 =M1 ∗M2 (mod n)
11: M2 =M2

2 (mod n)
12: end if
13: end for
14: return M1

2) The m-ary method (fixed window): The m-ary method,
(Algorithm 2) c.f. [15], scans the bits of the exponent by r =
log2m-bits at a time. We call r the “window length”. The
exponent d is partitioned into s blocks of length r each for
s · r = k. If r does not divide k, the exponent is left-padded
with at most r zeros. We define Fi = (dir+r−1dir+r−2 . . . dir)
to be the i-th key window. The m-ary method pre-computes
Cω (mod n) for ω = 2, 3, . . . ,m− 1, in advance for a given
exponentiation to the power of d. The bits of d are scanned r
bits at a time and in each step the temporary result is raised
to the 2r power and then also multiplied by CFi for Fi 6= 0.

Note that there is variant of the fixed-window method,
known as the sliding window method [22], which partitions
the exponent into zeros and nonzero words of variable length.
The sliding window method has some performance advantages
if there are long zero-sequences in the exponent, since multi-
plications can be avoided.

3) Montgomery’s Ladder: In order to provide immunity
against timing-based and power-based side channel attacks,
the so called Montgomery Ladder (Algorithm 3) can be used,
c.f. [19]. The algorithm provides two symmetric branches with
the same fixed sequence of operations regardless of the private
key bit value. Its symmetry is the property that protects the
algorithm against prior side channel attacks: It executes in a
fixed time for all inputs of the same size. As we shall see, this
is not enough to defend against side channels that are based
on memory accesses such as the photonic side channel.

C. The Karatsuba Algorithm

All exponentiation methods need to perform many large
number multiplications. The naive multiplication algorithm for
two n bit numbers requires Ω(n2) digit multiplications [21].
A more efficient multiplication algorithm is the Karatsuba
algorithm [20] requiring at most nlog2 3 digit multiplications.
In order to calculate a·b the algorithm splits the n-bit multipli-
cands a and b, into halves denoted a0,a1 and b0,b1 respectively.
The product can be formed using only three recursive n/2-bit
multiplications and some additions and subtractions:

a·b = a1·b1·2n+((a1+a0)·(b1+b0)−a1·b1−a0·b0)·2n/2+a0·b0

The three n/2-bit products can be computed by recursive
calls of the Karatsuba algorithm. The recursion is applied until

Fig. 1. The SRAM memory captured with a CCD by the courtesy of [33].
The row-access transistors appear to the left of the SRAM cells.

the numbers are reduced to a size B where performing a naive
multiplication is more efficient.

A crucial parameter of the Karatsuba algorithm’s perfor-
mance is the value of B. According to [14], the implementa-
tion in the GnuPG library [2] stops the recursion at a block size
of B = 512 bits. Hutter and Schwabe [18] report that on the
8-bit ATMega architecture Karatsuba multiplication is faster
than the naive method for surprisingly small inputs, starting
at 48 or 64 bits, which in our terminology implies stopping
the recursion at a block size of B = 24 or B = 32.

D. The Photonic Side Channel

1) The SRAM: SRAM is a common type of volatile mem-
ory found in many ICs. SRAM is built from memory cells
arranged in rows and columns, and every memory cell can be
approached using a row/column access logic. In particular,
the access logic for each SRAM row includes a so called
row-access transistor, which is activated whenever the IC
needs to access any cell in that SRAM row. In order to
enable an entire row, the row-access transistor is very strong.
This means that the photonic emission of this transistor is
by magnitudes larger than the individual SRAM cells by
themselves. For a thorough introduction into SRAM and its
physical implementation details see [37].

The number of bytes in an SRAM row, denoted by r,
depends on the underlying SRAM architecture. In [33] the
authors found that on an AT-Mega328P an SRAM row consists
of r = 8 bytes, whereas an ATXMega128A1 stores r = 16
bytes in a row. Figure 1 shows a photo of the SRAM, with a
row width of r = 8 bytes.

2) Simple Photonic Emission Analysis (SPEA): Monitoring
the access patterns to the SRAM rows allows the SPEA as
presented in [33]. The authors first used a CCD camera to map
the IC’s layout, locating the SRAM memory cf. [26]. Then
they placed a NIR (Near Infra Red) photon detector offering
time resolved measurements over the row access transistor of
some SRAM row. The authors ran the encryption algorithm
T times encrypting the same plaintext, where T is some large
number, providing a sufficient SNR. By monitoring accesses to
that SRAM row, they revealed sets of potential key candidates
and used them to reveal the secret key.



III. ATTACKING RSA WITH PHOTONIC SIDE CHANNEL
The arguments of the modular exponentiation are stored

in an internal SRAM array of the IC performing the RSA
decryption. In each step of the modular exponentiation, a
value is read from the memory, some computations are made
involving other SRAM locations, and the result is stored.
By monitoring the row access transistor of a memory row
containing bytes involved in the calculation, we can deduce
the course of the algorithm and find the private exponent d.1

When using Karatsuba multiplication, the algorithm recur-
sively splits the multiplicands until it reaches the minimal
size B, where the algorithm performs a naive multiplication
between partial parts of the multiplicands. For this naive
multiplication the B-bit parts of the multiplicands need to
be read from the memory, generating accesses to the relevant
memory section. After conducting the naive multiplication, the
results are not rewritten to the same SRAM addresses—instead
they are kept in the stack, i.e., in locations not controlled by the
monitored row transistor. So the only accesses to the monitored
SRAM memory storing the multiplicands takes place during
the naive multiplication.
A. Attacking the binary method

For the binary method algorithm we monitor the memory
section storing c. During the loop operation we shall observe
accesses for every private key bit di = 1. Thus whenever we
detect accesses we can deduce that the current private key bit
is 1, whereas for time periods lacking accesses— the private
key bit is 0. This way we can recover the private key.

When the Karatsuba algorithm is used, the multiplication
step (M∗c (mod n)) is conducted recursively and the memory
area storing c is only accessed in “limbs” of size B at a
time. So, as stated above, when monitoring a single memory
row, storing several bytes of c, the number of expected row
accesses depends on the size of B. Note that the ATmega328P
processor has an 8-bit data bus, hence every RAM byte that is
read during the naive multiplication potentially generates an
observable memory access.

An alternative approach for revealing the private key is
monitoring the memory area containing the temporary value of
M and differentiating between the cases of the “if” statement
(line 10 in Algorithm 1). Whenever di = 1 an additional
operation (M = M ∗ c (mod n)) is conducted, generating
accesses to the memory storing M . By differentiating between
two different memory access patterns—based on the amount
of memory accesses, we can deduce whether the condition of
the “if” statement was True or not.
B. Attacking the m-ary method

For the m-ary method (Algorithm 2) we place our detector
over the row access transistor of a row containing one of the
precomputed variables cω (line 3), e.g., c2 for the m = 4 case
(2-bit windows). During the loop operation, for every window
of private key bits equaling ‘10’, the operation M∗c2 (mod n)

1Note that all known embedded RSA hardware-coprocessors also map their
long internal registers to the internal RAM array, for easier software handling,
and also that existing modern smartcards are still manufactured in 90nm where
PEA is known to work.

(line 9) will take place, generating accesses to the memory
section we are monitoring and revealing the corresponding 2
bits of the private key.

C. Attacking Montgomery’s Ladder
When attacking Montgomery’s Ladder (Algorithm 3), we

can monitor either of M1 or M2. For example when we
monitor M1, for di = 0 we would have M1 multiplied, squared
and reassigned which will generate more accesses than when
di = 1, in which case M1 is only multiplied and reassigned
(line 10). By differentiating between these two cases based
on the amount of memory accesses, we can reveal the entire
private key.

When monitoring M2 instead of M1 the “if” statement cases
are reversed. Hence, if we do not know whether the monitored
memory location stores M1 or M2, we only have two options
for the key bits which are the bitwise complement of each
other.

IV. DECODING THE PHOTONIC TRACES

We activate the IC (or, in our case, the photonic emission
simulator) T times to decrypt the ciphertext. For each activa-
tion we count the number of detected photons per time step,
while the detector is fixed at some SRAM row as described
above. The time step corresponds to the specific algorithm and
matches the execution time of the operations inside the loop.
We summarize the detection counts per time step, to obtain a
“photonic trace” (an example of a trace can be found in Figure
2 (a)). Following [32], [33] we assume an IC instruction cycle
of 800 ns. [Note that this clock frequency is a slow 1.25MHz.
This clock frequency was calibrated to the real lab setup of
[32], [33]] For multiplication of 2 n-bit multiplicands M1,M2

stored in SRAM memory with a row width of r bytes and
minimal Karatsuba size of B bits, the naive multiplication
executes (B/8)2 1-byte multiplications. Assuming a 1-byte
memory bus, of the (B/8)2 accesses, only an 8 · r/B fraction
is observable by a detector placed over one of the rows of one
multiplicand, giving:

#observable-row-accesses = B · r/8 (1)

Note that (1) differs qualitatively from the effects in SPEA
against AES [32], [33]: RSA multiplications access all the
bytes in the row, multiple times, thus having a larger SRAM
row width r makes the attack more efficient as it increases
the number of observable accesses. In contrast, SPEA against
AES with r = 16 (as in the ATXMega128A1 IC) requires
much more effort than when r = 8 since the attacker must
identify the specific byte that was accessed in the row.

We now need to decode the trace to distinguish between
the two cases of the if statement in order to reveal the value
of the private key bit di. A natural decoding rule is to use
a threshold: if the number of detected activations during the
time step exceeds the threshold, the if statement is True.

A. Threshold Calibration

A crucial task is calibrating the threshold to reliably dis-
tinguish between true detections and noise. Instead of a using



Fig. 2. (a) A photonic trace received from the simulator during RSA
decryption for T = 1, 000. Each point in the x axis corresponds to 220µsec.
The y axis counts photonic detections per time step. (b) The sorted trace in
blue for T = 9, 000. The derivative plot is in red where we can spot a peak.
The corresponding threshold is shown as a horizontal line.

a heuristic trial-and-error process, we calibrate the threshold
automatically to an optimal value.

When monitoring accesses to an SRAM row containing
a variable of the exponentiation algorithm, we have two
cases: (i) “some-to-zero”: distinguish between SRAM accesses
versus no accesses. This is the needed distinguisher when at-
tacking the binary method and monitoring c (Section III-A) or
when attacking the m-ary method (Section III-B). (ii) “many-
to-few”: distinguish between many SRAM accesses versus few
accesses: this is needed when attacking the binary method and
monitoring M , or attacking Montgomery’s Ladder (Section
III-C).

For the first case, if we sort the “photonic trace” in as-
cending order, we expect to see a steep rise, a “jump”, in the
sorted trace (when the SNR is sufficient), between samples
containing SRAM accesses and samples containing only noise.
By looking at the derivative plot of the sorted photonic trace,
we can detect this jump according to a distinct peak in the
derivative plot (see Figure 2 (b)). The value of the threshold
is set to be the value of the sorted photonic trace where the
derivative plot has a peak (the mid-point of the “jump”).

The pseudo-code for the “some-to-zero” threshold calibra-
tion is:

1) Sort the trace in ascending order.
2) Calculate the derivative of the sorted trace.
3) Find a peak in the derivative plot.
4) Set xpeak to be the x value for the peak.
5) Set the threshold to be the value of the sorted trace at

xpeak.

We use this threshold in order to decode the photonic trace
and decide for every bit of the private key d whether the If
statement was carried out or not, revealing the secret key.
For the second case (“many-to-few”) we expect to find two
steep rises in the sorted photonic trace since there will be
one jump between samples containing only noise and samples
containing the lesser amount of accesses, and another jump
between samples containing the lesser amount of accesses and
samples containing more SRAM accesses. For this case we
take the threshold value to be the value of the sorted trace
where the derivative trace has its second peak value.

Fig. 3. (a) The success rate for the Binary method as a function of the
number of decryptions for a key size of 1024 and a Karatsuba stopping size
of B = 32 bits (bottom curve) and B = 64 bits (top curve). (b) The success
rate for Montgomery’s Ladder as a function of the number of decryptions for
a key size of 1024 and a Karatsuba stopping size of B = 8 bits (bottom
curve) B = 32 bits (middle curve) and B = 64 bits (top curve).

B. The Ambiguous Range and Handling Errors

When the number of measurements T is not high enough,
the SNR drops and the threshold calibration method may
introduce decoding errors. Even a single decoding error of one
bit is critical, since we will have no knowledge of which is the
incorrect bit. To enumerate over all possible 1-bit corrections
would require n attempts—and in general O(ne) attempts for
e 1-bit errors. When n = 1024 or more, this error correction
can be prohibitive. The problem becomes much more tractable
when the locations of the incorrect bits are known: then
the correction of e errors only requires O(2e) attempts. We
address this problem by introducing an ambiguous range close
to the threshold. Trace samples in the ambiguous range are
not assigned with a 0/1 value—instead they are declared as
ambiguous bits, and we will have to enumerate over their
values. The ambiguous range is set as follows:

1) Set a threshold T as presented in Section IV-A.
2) Set µx to be the mean value of samples greater than T .
3) Set gap = µx − T , and set the ambiguous range to

Ambiguous range = [T − a · gap, T + a · gap] (2)

In our experiments we set the parameter to be a = 0.1.

V. PRACTICAL RESULTS

We used the photonic emissions simulator of [8] to simulate
an ATmega328P running at 1.25MHz. The experiments were
run on an Intel Core Duo T2450 2GHz, 2GB RAM PC
running Windows Vista. We simulated the ATmega328P IC
with SRAM row width of r = 8 and generated the RSA keys
according to the PKCS standard.

In order to evaluate the performance of the attack we
performed an extensive set of experiments. The experiments
were done on the three modular exponentiation methods, with
various key sizes, using various various stopping sizes B for
the Karatsuba multiplication. We define the success rate as the
percentage of private key bits we decode successfully.

A. Attacking the Binary method and Montgomery’s Ladder

In Figure 3(a) we can see the success rate for the Binary
method where the detector monitors the memory storing c, as a



Fig. 4. (a) The success rate for Montgomery’s Ladder as a function of the
number of decryptions for a key size of 1024 and 2048 and a Karatsuba
stopping size B of 32 and 64 bits. (b) The success rate for the Montgomery
Ladder using the normal threshold (bottom curve) and the ambiguous range
(top curve) as a function of the number of decryptions for a key size of 1024
and B = 64 bits.

Fig. 5. (a) The number of ambiguous bits as a function of the number of
decryptions for a = 0.1 a key size of 1024 and B = 64 bits. (b) The number
of wrong and ambiguous bits for Montgomery’s Ladder as a function of the
parameter a for a key size of 1024, Karatsuba stopping size B = 64 bits,
and 2500 measurements.

function of the number of decryptions performed. We can see
that with B = 64 the success rate approaches 1 around T =
10, 000 decryptions, while B = 32 has a lower success rate
and requires twice as many decryptions for the same success
rate—as expected by Equation 1.

Figure 3(b) shows the success rate in attacking Mont-
gomery’s ladder . Again we see the same effect—larger values
of the Karatsuba minimal block size B help our attack. Further,
comparing Figure 3(a) and (b) we see that our attack is more
efficient against Montgomery’s ladder, where more memory
accesses are generated during the decryption process. This
improves the SNR, and hence, allows fewer measurements to
achieve the same success rate.

Figure 4(a) shows the effect of the key size n on the success
rate. We see that for a larger key size more decryptions are
needed to achieve the same success rate since there are more
secret exponent bits to discover—but the difference is not
dramatic. E.g., for a 99% success rate against Montgomery’s
ladder with B = 64 we need 3300 decryptions for 1024-bit
keys, and 3600 for 2048-bit keys: 9% more.

Figures 4(b) shows the effect of the ambiguous range
on Montgomery’s Ladder. The figure shows that using the
ambiguous range improves the success rate: The success rate
is only measured over the non-ambiguous bits, thus the im-
provement in the success rate indicates that those bits marked
as ambiguous would cause a significant number of decoding
errors when using a hard threshold.

The importance of the ambiguous range is more evident

Fig. 6. The success rate for the m-ary when m = 4 as a function of the
number of decryptions for a key size of 1024 and Karatsuba stopping size of
B = 16 bits (bottom curve) B = 32 bits (middle curve) and B = 64 bits
(top curve).

when considering absolute numbers. Figure 5 shows that the
absolute number of ambiguous bits is very small: between
5–10 ambiguous bits beyond 4000 measurements. So few
missing bits can easily be enumerated over with up to 210 de-
cryption tests—much better than correcting even 5 incorrectly
decoded bits at unknown locations via

(
1024
5

)
· 25 decryptions.

Figure 5(b) shows the numbers of wrong and ambiguous
bits as a function of the parameter a for an intentionally-low
number of tests (T = 2500). As expected, as a grows, we
observe fewer wrong bits, but more ambiguous bits we have
to enumerate on.
B. Attacking the m-ary method

For the m-ary method (Algorithm 2), when m = 4, using
one detector we can monitor access to only one out of the
four precomputed values stored in memory, e.g., the value c2.
So for every 2-bit window in the secret exponent d, for 1/4
of cases there is an observable memory access and we can
learn that the bits’ value is ‘10’. For 3/4 of cases there is
no observable memory access, so we can learn that the bits’
value is not ‘10’. Thus the success rate we can hope for when
m = 4 is 25% (and 1/m in general). From an information-
theory point of view we learn more: for n = 1024 we have 512
2-bit windows, and in 3/4 of these windows we can only have 3
possible values, so the remaining entropy is 512·0.75·log2 3 =
608 bits, i.e., we learn 40.6% of the secret exponent.

Figure 6 shows that the number of required measurements
is as large as in the Binary method, since the number of
SRAM accesses is low. Furthermore, we can see that, as
expected, the success rate approaches 25% once sufficiently
many decryption measurements become available.

Thus we see that the m-ary method is much more resilient
to our attack than Montgomery’s Ladder—in contrast to the
resilience to timing or power-analysis side channels, against
which Montgomery’s Ladder is generally superior.

Note that despite learning only 25% of the secret exponent
bits, the attack can perhaps be extended to reveal the missing
bits. If the RSA implementation uses the CRT, then after our
attack we know the public key n, e exactly, we discover 25%
of the bits of dp and dq , and these bits are in arbitrary (but
known) positions. This situation is close to that described by
Heninger and Shacham [16], where the authors developed a
solver that reveals the entire key with high probability from



a partial key with only 24% randomly located bits. In their
case they also assumed a partial knowledge of p and q, which
we do not have. On the other hand, we know that the missing
bits are constrained: every missing 2-bit window in dp and dq
cannot equal, e.g., the value ‘10’. We leave this direction as
an open question.

An alternative approach is to use multiple detectors: e.g.,
for m = 4, with 3 detectors, we could place them over the
memory areas holding c1, c2, and c3. By repeating our attack
3 times in parallel we would learn 3/4 of the bits (for all the
windows where one of the detectors observes accesses), and
reveal the remaining 25% by identifying windows where none
of detectors observed memory accesses. Using more than one
photonic detector was recently demonstrated in [13]. We leave
the evaluation of the multi-detector attack for future work.

VI. CONCLUSIONS AND COUNTERMEASURES

In this paper we demonstrated, for the first time, that the
photonic side channel can be successfully used against the
RSA public-key crypto-system. We discovered that the key
length had marginal impact on resilience to the attack, while
the minimal Karatsuba block size had a dominant effect.
Somewhat surprisingly, we discovered that Montgomery’s
Ladder—commonly perceived as the most resilient of the three
implementations we evaluated to side-channel attacks—was
actually the most susceptible, while the m-ary method only
allowed us to reveal a 1/m fraction of the secret exponent bits.
This means that resilience to memory-access side channels in
general, and the photonic emission side channel in particu-
lar, should be considered as important aspects of public-key
crypto-system implementations.

While the symmetry of Montgomery’s Ladder protects it
from timing and power analysis side-channels, it is susceptible
to the photonic side channel because its memory access pattern
depends on the secret key bits. Thus, to protect RSA against
the photonic side channel, we need to eliminate secret-key-
dependent branches from the implementation—and there are
ways to do so [6]. More general countermeasures against
photonic side channel attacks include varying the memory
locations of central variables used by the decryption process,
adding dummy operations involving the same memory space
access patterns.
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