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Abstract. Profiled side-channel attacks represent the most powerful
category of side-channel attacks. In this context, the attacker gains ac-
cess of a profiling device to build a precise model which is used to attack
another device in the attacking phase. Mostly, it is assumed that the
attacker has unlimited capabilities in the profiling phase, whereas the
attacking phase is very restricted. We step away from this assumption
and consider an attacker who is restricted in the profiling phase, while
the attacking phase is less limited as in the traditional view. Clearly, in
general, the attacker is not hindered to exchange any available knowledge
between the profiling and attacking phase. Accordingly, we propose the
concept of semi-supervised learning to side-channel analysis, in which the
attacker uses the small amount of labeled measurements from the profil-
ing phase as well as the unlabeled measurements from the attacking phase
to build a more reliable model. Our results show that semi-supervised
learning is beneficial in many scenarios and of particular interest when
using template attack and its pooled version as side-channel attack tech-
niques. Besides stating our results in varying scenarios, we discuss more
general conclusions on semi-supervised learning for SCA that should help
to transfer our observations to other settings in SCA.

1 Introduction

Side-channel analysis (SCA) consists of extracting secret data from (noisy) mea-
surements. As of today, it is made up of a collection of miscellaneous techniques,
combined in order to maximize the probability of success, for a low number of
trace measurements and as low computation complexity as possible.

The most powerful attacks currently known are based on a profiling phase,
where the link between leakage and the secret is learned under the assump-
tion that the attacker knows the secret on a profiling device. This knowledge is
subsequently exploited to extract another secret using fresh measurements (on a
different device). In order to run such an attack, one has a plethora of techniques
and options to choose from where the two main groups of attacks are based on
1) template attack (relying on probability estimation), and 2) machine learning



(ML) techniques. When working with the typical assumption for profiled SCA
that the profiling phase is not bounded, the situation actually becomes rather
simple if neglecting computational costs. If the attacker is able to acquire an
unlimited amount of traces, the template attack (TA) is proven to be optimal
from an information theoretic point of view (see e.g., [1, 2]). In that context
of unbounded and unrestricted profiling phase, ML techniques seem not to be
needed.

Stepping away from the assumption on unbounded number of traces the situ-
ation becomes much more interesting and of practical relevance. A number of re-
sults in recent years showed that in those cases, machine learning techniques can
actually significantly outperform template attack (see e.g., [3]). Recently, these
results were further strengthened when showing that deep learning techniques
can outperform both template attack and machine learning techniques [4, 5].

Still, all of the aforesaid attacks work under the assumption that the attacker
has a (significantly) large amount of traces to learn the model. The opposite
case would be to learn a model without any labeled examples. Machine learning
approaches (mostly based on clustering) have been proposed up to now only for
public key encryption schemes where only two possible classes are present – 0
and 1 – and where the key is guessed using only a single-trace (see e.g., [6]). In
the case of differential attacks (using more than one encryptions) and using more
than two classes, to the best of our knowledge unsupervised machine learning
techniques have not been studied yet.

In this paper, we aim to address a scenario lying between supervised and
unsupervised learning, the so-called semi-supervised learning in the context of
SCA. Figure 1 illustrates the different approaches of supervised (on the left)
and semi-supervised learning (on the right). Supervised learning assumes that
the attacker first possesses a device similar to the one under attack. Having
this additional device, he is then able to build a precise profiling model using a
set of measurement traces and knowing the plaintext/ciphertext and the secret
key of this device. In the second step, the attacker uses the beforehand profiling
model to reveal the secret key of the device under attack. For this, he additionally
measures a new set of traces, but as the key is secret he has no further information
about the intermediate processed data and thus build hypotheses. Accordingly,
the only information which the attacker transfers between the profiling phase
and the attacking phase is the profiling model he builds.

In realistic settings, the attacker is not obliged to view the profiling phase
independently from the attacking phase. He can rather combine all available re-
sources to make the attack as effective as possible. In particular, the attacker has
at hand a set of traces for which he precisely knows the intermediate processed
states (i.e., labeled data) and another set of traces with a secret unknown key
and thus no information about the intermediate variable (i.e., unlabeled data).
To take advantage of both sets at once, we propose a new strategy of conducting
profiled side-channel analysis to build a more reliable model (see Figure 1 on
the right). This new view is of particular interest when the number of profiling
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Fig. 1: Profiling side-channel scenario: traditional (left), semi-supervised (right)

traces is (very) low, and thus any additional data is helpful to improve the model
estimation.

From a practical perspective, the assumption of a bounded (restricted) pro-
filing phase is more reasonable due to resource constraints (e.g., time, space,
computational power, man power) for hardware security evaluators and actual
attackers. When considering possible restrictions for attackers, one example that
naturally comes in mind is the “lunchtime” attack. There, the attacker is only
able to gain access of the profiling device, on which he has (or a group of persons
have) full knowledge of the properties, during the lunch time. Accordingly, the
profiling phase is extremely limited in the number of traces. On the contrary,
for the device under attack any similar device is suitable so the attacker is able
to gain a larger amount of traces for the key recovery.

To show the efficiency and applicability of semi-supervised learning for SCA,
we conduct extensive experiments where semi-supervised learning is outperform-
ing supervised learning if certain assumptions are satisfied. More precisely, the
results show a number of scenarios where the accuracy on the test set is signif-
icantly higher if semi-supervised learning is used (when compared to the “clas-
sical” supervised approach). We start with the scenario we call the “extreme
profiling” where the attacker has only a very limited number of traces to learn
the model. From there, we increase the number of available traces making the
attacker more powerful until we reach a setting where there is no more need for
the semi-supervised learning. Still, our results show that using semi-supervised
learning even in those contexts, is not deteriorating the efficiency of attacks.

To the best of our knowledge, the only paper up to now implementing a
semi-supervised analysis in SCA is [7] where the authors conclude that the semi-
supervised setting cannot compete with a supervised setting. Unfortunately, the
assumed scenario is hard to justify and consequently their results are expected
(but without much implication for SCA). More precisely, the authors compared
the supervised attack with n + m labeled traces for all classes with a semi-
supervised attack with n labeled traces for one class and m unlabeled traces for
other unknown classes (i.e., in total n+m traces). On the basis of such experi-
ments they concluded that the supervised attack is better, which is intuitive and
straightforward. A proper comparison would be between the supervised attack
with n traces and the semi-supervised attack with n + m traces, which is the



direction we take in this paper. Also our analysis is not restricted to only one
labeled class in the learning phase.

Note, even if the basic principle to combine labeled and unlabeled data is well-
known in the area of machine learning, we want to stress that it is not restricted
to the machine learning algorithms. Summarizing, our main contributions are:
1. We introduce a new perspective on profiled side-channel analysis called semi-

supervised learning, where the setting we use is justified from the theoretical
perspective.

2. We conduct extensive experiments in order to assess the efficiency of semi-
supervised learning. Our experiments vary with the respect to the level of
noise, number of classes, number of traces, semi-supervised learning paradigms,
and classification algorithms.

3. We analyze the benefits and limits of applicability of semi-supervised learn-
ing in side-channel analysis and give recommendations when to use it.

4. We show that semi-supervised learning can be used to stabilize covariance
matrices for template attack.

We emphasize that we primarily focus on improving the accuracy if the profiling
phase is limited. Since we are considering extremely difficult scenarios, the im-
provements one can realistically expect are often not too big (i.e., in the range
of only a few percent). Still, we consider any improvement to be relevant since
it makes the attack easier, while not requiring any additionally knowledge or
measurements.

The rest of this paper is organized as following. In Section 2 we discuss the
semi-supervised paradigm, how can it be used in order to boost classification
results, and the classes of algorithms we consider. Next, in Section 3 we give de-
tails about the datasets we consider, the algorithms we use, and our experimental
evaluation procedure. Section 4 presents the experimental results for both semi-
supervised experiments as well as for the supervised experiments, which serve
as a baseline case. Section 5 brings discussion about results obtained, pitfalls
one can face when using semi-supervised learning, and possible future research
directions. Finally, Section 6 offers a brief conclusion.

2 Semi-supervised Learning

Traditionally, in side-channel analysis, two types of learning approaches are used:
supervised learning and unsupervised learning. In supervised learning, one has
at his disposal a number of training examples that are actually pairs consist-
ing of measurements and corresponding classes (labels). On the basis of those
training examples, one trains a model that is then used to map (predict the
labels) the unlabeled measurements (test examples). Classifiers used are mostly
the template attack and various supervised machine learning attacks. The attack
scenario behind this supervised approach is that an attacker is able to possess a
device on which he has unlimited capacities. In particular, he knows the imple-
mented secret key (and plaintexts) and is able to perform an unlimited amount
of encryptions which are resulting in an unlimited amount of side-channel mea-



surements. The attacking device is another device on which he tries to reveal
the secret key using as less encryptions (and thus side-channel measurements)
as possible.

In unsupervised learning, one has at his disposal a number of test examples
consisting only of measurements (there is no information about the correspond-
ing classes). Then, on the basis of those measurements one tries to find some
structure in the data. This scenario maps to an attacker who has access to only
one device with unknown properties. On this device he tries to reveal the secret
key using as less encryptions as possible.

Semi-supervised learning (SSL) is positioned in the middle between super-
vised and unsupervised leaning. There, the basic idea is to take advantage of
a large quantity of unlabeled data during a supervised learning procedure [8].
This approach assumes that the attacker is able to possess a device to conduct a
profiling phase but does not have unlimited capacities. This may reflect a more
realistic scenario in some practical applications, as the attacker may be limited by
time, resources, and also face implemented countermeasures which prevent him
from taking an unlimited amount of side-channel measurements while knowing
the secret key of the device.

In the following, we describe semi-supervised learning in a more formal way
and discuss why it may (or may not) work. Afterwards we discuss two differ-
ent approach used for semi-supervised learning in this paper and describe their
implementations. We note that we use interchangeably the notions of training,
profiling, and learning phase as well as testing or attacking phase.

2.1 Notation and Types of Semi-supervised Learning

Let x = (x1, . . . , xn) be a set of n samples where each sample xi is assumed to be
drawn i.i.d. from a common distribution X with probability P (x). This set x can
be divided into three parts: the points xl = (x1, . . . , xl) for which we know the
labels yl = (y1, . . . , yl) and the points xu = (xl+1, . . . , xl+u) for which we do not
know the labels. Additionally, the third part is the test set xt = (xl+u+1, . . . , xn)
for which labels are also not known. We see that differing from the supervised
case where we also do not know labels in the test phase, here unknown labels
appear already in the training phase. As for supervised learning, the goal of
semi-supervised learning is to predict a class for each sample in the test set
xt = (xl+u+1, . . . , xn). For semi-supervised learning two learning paradigms can
be discussed: transductive and inductive learning [9]. In transductive learning
(which is a natural setting for some semi-supervised algorithms), predictions are
performed only for the unlabeled data on a known test set. The goal is to opti-
mize the classification performance on the test set. More formally, the algorithm
makes predictions yt = (yl+u+1, . . . , yn) on xt = (xl+u+1, . . . , xn). In inductive
learning, the goal is to find a prediction function defined on the complete space
X , i.e., to find a function f : X → Y. This function is then used to make predic-
tions f(xi) for each sample xi in the test set. Obviously, transductive learning is
easier since no general rule needs to be inferred and consequently we opt to con-
duct it whenever possible. This is also in accordance with Vapnik principle that



states when solving a problem, one should not try to solve more difficult prob-
lem as an intermediate step. From the algorithm class perspective, we will use
two approaches in order to achieve successful semi-supervised learning, namely:
self-training [9] (Section 2.3) and graph-based algorithms [9, 10](Section 2.4).

2.2 Why Semi-supervised Learning (Does Not) Work

In Figure 2 we show how semi-supervised learning can help in the process of
classification. It depicts a binary classification problem (two classes) for which
some samples are labeled while others do not have labels. Assuming that each
class makes a coherent group, we observe that the decision boundary between
classes changes when also using unlabeled data when compared to the scenario
when only labeled data is used.

Fig. 2: Classification with semi-supervised learning.

Although on an intuitive level semi-supervised learning sounds as an ex-
tremely powerful paradigm (after all, humans learn through semi-supervised
learning) the results show that is not always the case. More precisely, when
comparing semi-supervised learning with supervised learning, it is not always
possible to obtain more accurate predictions. Consequently, here we are inter-
ested in cases where semi-supervised learning can outperform supervised learn-
ing. In order to be able to do so, the following needs to hold: the knowledge
on p(x) one gains through unlabeled data has to carry useful information for
inference of p(y|x). In the case this is not true, semi-supervised learning will not
be better than supervised learning and can be even worse. To assume a struc-
ture about the underlying distribution of data and to have useful information in
the process of inference, we use two main assumptions which should hold when
conducting semi-supervised learning [9]. We first argue why these assumption
are likely to hold for SCA and further use simulated data (see Section 2.4) for
illustration.

Smoothness Assumption If two points x1 and x2 are close, then their cor-
responding labels y1 and y2 are close. The smoothness assumption can be gen-
eralized in order to be useful for semi-supervised learning: If two points x1 and
x2 in a high density region are close, then so should the corresponding labels y1



and y2. Intuitively, this assumption tells us that if two samples (measurements)
belong to the same cluster, then their labels (e.g., their Hamming weight or in-
termediate value) should be close. Note that, this assumption also implies that,
if two points are separated by a low-density region, then their labels need not be
close. The smoothness assumption should generally hold for SCA, as the power
consumption (or electromagnetic emanation) is related to the activity of the
device. For example, a low Hamming weight or low intermediate value should
result in a low side-channel measurement.

Manifold Assumption The high-dimensional data lie on or close to a low-
dimensional manifold. If the data really lie on a low-dimensional manifold, then
the classifier can operate in a space of the corresponding (low) dimension. In-
tuitively, the manifold assumption tells us that a set of samples is connected in
some way: e.g., all measurements in the Hamming weight class 4 lie on their
own manifold, while all measurements for the Hamming weight class 5 lie on
a different but nearby manifold. Then, we can try to develop representations
for each of these manifolds using just the unlabeled data while assuming that
the different manifolds will be represented using different learned features of the
data.

2.3 Self-training

In self-training (or self-learning), any classification method is selected and the
classifier is trained with the labeled data. Afterwards, the classifier is used to
classify the unlabeled data. From the obtained predictions, one selects only those
instances with the highest output probabilities (i.e., where the output probability
is higher than a given threshold σ) and then adds them to the labeled data. This
procedure is repeated k times. A depiction of this process is given in Figure 3.
Self-training is a well-known semi-supervised technique and one that is probably
the simplest to start with [9]. The biggest drawback with this technique is that it
depends on the choice of the underlying classifier and that possible mistakes re-
inforce themselves as the number of repeats increase. Naturally, one expects that
the first step of self-learning will introduce errors (wrongly predicted classes).
It is therefore important to retain only those instances for which the prediction
probability of the class is high. Note that a very high class prediction probabil-
ity (even 100%) does not guarantee that the actual class is correctly predicted.
The assumption taken by the self-training algorithm is the same as the assump-
tion taken for the underlying supervised learner – i.e., when we use SVM as
the classifier, then we work with the manifold assumption while if we use Naive
Bayes then we use the semi-supervised smoothness assumption (alongside the
independence assumption, which is a standard for Naive Bayes).

In our experiments, we separately use Naive Bayes and SVM (with RBF ker-
nel) as classifiers (details about classifiers are given in Section 3.1). The labeling
threshold is set to the value obtained by cross-validation where a ratio between
training set classification accuracy and a size of the labeled samples from the



Fig. 3: Depiction of self-training process.

unlabeled set is optimized. To speed up the cross-validation process we imple-
mented a parallel program in Java programming language. We concurrently train
classifier models, choosing one with the best threshold value.

Except parallel cross-validation, we implement a custom Java wrapper around
Weka [11] in order to better fulfill our requirements. To speed up the labeling
process of the unlabeled samples, we use a parallel stream filter. The stream
filter selects the samples with class probability higher than the threshold and
classifies them into appropriate classes. We repeat the labeling process as long
as the classification accuracy on the testing set is growing or if samples exist
where the output probability of the classifier is higher than the threshold. The
second readjustment is important because we noticed that even a wrong labeling
could improve the classifier generalization on the testing set. Here, by classifier
generalization we consider how well will the classifier behave on a yet unseen
dataset.

2.4 Graph-based Learning

In graph-based learning, the data are represented as nodes in graphs where a
node is both labeled and unlabeled example. The edges are labeled with the
pairwise distance of incident nodes and if an edge is not labeled, it corresponds
to the infinite distance. Most of the graph-based learning techniques depend on
the manifold assumption. Most of the graph-based learning methods refer to the
graph by utilizing the graph Laplacian. Let G = (E, V ) be a graph with edge
weights given by w : E → R. The weight w(e) of an edge e corresponds to the
similarity of the incident nodes and a missing edge means no similarity. The
similarity matrix W of graph G is defined as:

Wij =

{
w(e) if e = (i, j) ∈ E
0 if e = (i, j) /∈ E

(1)

The diagonal matrix called the degree matrix Dii is defined as Dii =
∑
jWij .

To define the graph Laplacian two well-known ways are to use:



– normalized graph Laplacian L = I −D−1/2WD−1/2,

– unnormalized graph Laplacian L = D −W .

In our experiments, we use graph-based learning technique called Label
spreading that is based on normalized graph Laplacian. As a classifier within
the Label spreading, we use k-nearest neighbors (k-NN) (i.e., the technique how
to assign labels) since it produces sparse matrix that can be calculated very
quickly. k-nearest neighbors is the basic non-parametric instance-based learn-
ing method. The classifier has no training phase; it just stores the training set
samples. In the test phase, the classifier assigns a class to an instance by de-
termining the k instances that are the closest to it, with respect to Euclidean
distance metric: d(xi, xj) =

√∑n
r=1(ar(xi)− ar(xj))2. Here, ar is the r -th at-

tribute of an instance x. Class is assigned as the most commonly occurring one
among the k -nearest neighbors of the test instance. This procedure is repeated
for all test set instances. The simple method is highly useful and accurate in
practice, especially in the cases when there are many more instances than the
number of attributes and in the presence of noise (for k¿1) [12]. The method is
encumbered with the problem of irrelevant attributes - as all of them are used in
determining the distance, some irrelevant attributes may contribute to false de-
cisions. Although feature selection (and dimensionality reduction) methods may
be used to eliminate the majority of irrelevant attributes for k-NN, this usually
slows the whole procedure and is not examined in detail in this work [13].

We use Label spreading as implemented in Python [14] but we wrote a custom
wrapper around it in order to better suit our requirements. There, instead of
using all measurements obtained from semi-supervised learning, we use only
those samples that have the highest classification probabilities (similar to self-
training).

Figure 4 illustrates semi-supervised learning. Each plot shows the decision
boundaries for the different classes given the samples (circles). Colored circles
correspond to labeled samples, while white circles depict unlabeled samples.
The plot on the top left shows the decision boundaries when using SVM with a
RBF kernel and only labeled data. The other plots show the decision boundaries
with {0%, 25%, 50%} of unlabeled data and using label spreading. It is easy
to see clusters of data belonging to different classes and that the smoothness
assumption holds – points that are close are more likely to have outputs that
are close. Notice the small differences at the boundaries among classes when
considering results with 0%, 25%, and 50% of unlabeled significantly. Therefore,
in this example, having 50% of unlabeled or only labeled data does not influence
the outcome of the classifier heavily, which shows the relevance and feasibility
of semi-supervised learning. However, the number of classes for 25% and 50% is
smaller than for 100%. Accordingly, there exists a limitation of the number of
labeled samples needed in the profiling phase. We emphasize that these results
were obtained with simulated data (HW of an AES S-box output) in a low noise
scenario. Clearly, the real-world data sets used for our experiments in Section 4
are constituting more challenging scenarios.



Fig. 4: Decision boundaries after SVM with only labeled data and semi-
supervised learning using 0%, 25%, 50% of unlabeled data. 0% means there is
no semi-supervised learning phase since all data is known. For 25%, 50% labels
are predicted using label spreading.

Finally, we note that both transductive and inductive learning are used in this
paper. With self-training in each step we build a model, which is the example of
inductive learning (although we use only the last obtained model on test data).
With Label spreading we first use transductive learning to find the labels for the
unlabeled traces in the training set. Then, we use inductive learning to find the
model to be used on test set.

3 Experimental Setting

3.1 Classification algorithms

The techniques described next are used as classification algorithms in semi-
supervised and supervised settings. Note that the same technique can be used in
both phases. We display in Table 1 the time and space complexities for classifi-
cation algorithms we use and give details on algorithms in subsequent sections.
In Table 1, N is the number of samples in the training set, M is the number of
samples in the test set, D is the number of attributes, and |Y| is the number of
classes of the target attribute.

Template Attack The template attack (TA) relies on the Bayes theorem such
that the posterior probability of each class value y, given the vector ofN observed
attribute values x:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
, (2)



Table 1: Time and space complexities
Alg. Training Testing

Time Space Time Space

TA O
(
ND2

)
O
(
|Y|D2v

)
O
(
|Y|D2

)
O
(
|Y|D2v

)
k-NN O

(
1
)

O
(
ND

)
O
(
M(ND + kN)

)
O
(
ND +MD

)
SVM O

(
N3D

)
O
(
N2D

)
O
(
MND

)
O
(
N2D

)

where X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
When used as a classifier, p(X = x) in Eq. (2) can be dropped as it does
not depend on the class y. Accordingly, the attacker estimates in the profiling
phase p(Y = y) and p(X = x|Y = y) which are used in the attacking phase to
predict p(Y = y|X = x). Note that the class variable Y is discrete while the
measurement X is continuous. So, the discrete probability p(Y = y) is equal to
its sample frequency where p(Xi = xi|Y = y) displays a density function.

Mostly in the state of the art, TA is based on a multivariate normal distri-
bution of the noise and thus the probability density function used to compute
p(X = x|Y = y) equals:

p(X = x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (x−µy)

TΣ−1
y (x−µy), (3)

where µy is the mean over X for 1, . . . , D and Σy the covariance matrix for each
class y. The authors of [15] propose to use only one pooled covariance matrix to
cope with statistical difficulties that result into low efficiency. We will use both
version of the template attack, where we denote pooled TA attack as TAp.

Naive Bayes The Naive Bayes classifier [16] is also based on the Bayesian rule,
but is labeled “Naive” as it works under a simplifying assumption that the pre-
dictor features (measurements) are mutually independent among the D features,
given the class value. Existence of highly-correlated features in a dataset can thus
influence the learning process and reduce the number of successful predictions.
Additionally, Naive Bayes assumes normal distribution for predictor features.
As the classifier assumes independence among D, individual probabilities can be
multiplied in Eq. (2):

p(X = x|Y = y) =

D∏
i=1

p(Xi = xi|Y = y). (4)

Naive Bayes classifies as:

p(Y = y|X = x) = p(Y = y)

D∏
i=1

p(Xi = xi|Y = y). (5)



As we assume a univariate normal distribution, the probability density function
used to compute p(Xi = xi|Y = y) equals:

p(Xi = xi|Y = y) =
1√

2πσy
e
− (xi−µy)2

2σ2y . (6)

Support Vector Machines Support Vector Machine (SVM) is a kernel based
machine learning technique used to accurately classify both linearly separable
and linearly inseparable data [17]. The SVM algorithm is parametric and deter-
ministic. The basic idea when the data are not linearly separable is to transform
them to a higher dimensional space by using a transformation kernel function.
In this new space, the samples can usually be classified with a higher accuracy.
Many types of kernel functions have been developed, with the most used ones
being polynomial and radial-based. As a learning method, a Sequential Minimal
Optimization (SMO) algorithm is used [18, 19]. Since SMO is a binary classifi-
cation algorithm, for multiclass classification purposes it is adapted to perform
n× (n− 1)/2 binary classifications. In SVM with radial kernel, a low cost of the
margin parameter C makes the decision surface smooth, while a high C aims at
classifying all training examples correctly. The radial kernel parameter γ defines
how much influence a single training example has, where the larger γ is, the
closer other examples must be to be affected. The radial kernel is considered
to be a good choice when there is no expert knowledge about the problem and
the number of features is not too high and when there is no linear separation
between the data [20].

3.2 Evaluation criteria

We use the following measures to depict our results. Our main measure is the ac-
curacy, which is the percentage of correctly classified instances: ACC = TP

TP+TN .
In the training phase for supervised approaches as well as in the training phase
for semi-supervised learning we use only accuracy as a measure of quality. In
the testing phase (and only for ML algorithms), we also report the area under
the ROC curve (AUC). The area under the ROC curve is used to measure the
accuracy and ROC curve is the ratio between true positive rate and false positive
rate. A truly useless test has an area of 0.5, while a perfect test has an area of 1.
Values close to 0.5 should be considered similar to a random guess [21]. Usually
AUC is used in a comparative way between various methods and there is no
absolute value where one can say that all values above it are good.

3.3 Datasets

In our experiments, we use two datasets that mainly differ in the amount of
noise and the side-channel leakage distribution and we investigate scenarios with
different number of classes – 9 classes and 256 classes. We note that we do not
consider the variations in the number of available features, since in such a case



the number of scenarios would become quite large. Accordingly, we select 50
points of interests with the highest correlation between the class value and data
set for all analyzed data sets.

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote ran-
dom variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. Let k∗ be the fixed secret cryptographic key
(byte) and the random variable T the plaintext or ciphertext of the cryptographic
algorithm which is uniformly chosen. The measured leakage is denoted as X and
we are particularly interested in multivariate leakage X = X1, . . . , XD, where
D is the number of time samples or features (attributes) in machine learning
terminology.

Considering a powerful attacker who has a device with knowledge about the
secret key implemented, a set of N profiling traces X1, . . . ,XN is used in order
to estimate the leakage model beforehand. Note that this set is multi-dimensional
(i.e., it has dimension equal to D × N). In the attack phase the attacker then
measures additional traces X1, . . . ,XQ from the device under attack in order
to break the unknown secret key k∗.

DPAcontest v2 [22]. DPAcontest v2 provides measurements of an AES hard-
ware implementation. Previous works showed that the most suitable leakage
model (when attacking the last round of an unprotected hardware implementa-
tion) is the register writing in the last round, i.e.,

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (7)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and
b2 is given through the inverse ShiftRows operation of AES. In particular, we
choose b1 = 12 resulting in b2 = 8 as it is one of the easiest bytes to attack5.
In Eq. (7) Y (k∗) consists in 256 values, as an additional model we applied the
Hamming weight (HW) on this value resulting in 9 classes. These measurements
are relatively noisy and the resulting model-based signal-to-noise ratio SNR =
var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , lies between 0.0069 and 0.0096.

DPAcontest v4 [23]. The 4th version provides measurements of a masked
AES software implementation. However, as the mask is known, one can easily
turn it into an unprotected scenario. Though, as it is a software implementation,
the most leaking operation is not the register writing, but the processing of the
S-box operation and we attack the first round. Accordingly, the leakage model
changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (8)

where Pb1 is a plaintext byte and we choose b1 = 1. Again we consider the
scenario of 256 classes and 9 classes (considering HW (Y (k∗))). Compared to

5 see e.g., in the hall of fame on [22]



the measurements from the version 2, the model-based SNR is much higher and
lies between 0.1188 and 5.8577.

3.4 Dataset Preparation

In all experiments, we use a set of randomly selected 20 000 measurements (pro-
filed traces) from DPAcontest v2 and DPAcontest v4 datasets, with 256 or 9
HW classes (see Section 3.3). These measurements are divided into 2:1 ratio for
training and testing sets (i.e., 13 000 in total for training with or without semi-
supervised learning and 7 000 for testing). When using supervised learning, the
training datasets are divided into 10 stratified folds and evaluated by 10-fold
cross-validation procedure.

When considering semi-supervised learning, we divide the training dataset
into a labeled set of size l and unlabeled set of u. Besides the number of traces
belonging to labeled and unlabeled sets, we give the percentage shares for both
sets.

– (100+12.9k): l = 100 , u = 12 900 – 0.77% vs 99.23%
– (250+12.75k): l = 250 , u = 12 750 – 1.93% vs 98.07%
– (500+12.5k): l = 500 , u = 12 500 – 3.85% vs 96.15%
– (1k+12k): l = 1 000 , u = 12 000 – 7.69% vs 92.31%
– (3k+10k): l = 3 000 , u = 10 000 – 23.08% vs 76.92%
– (5k+8k): l = 5 000 , u = 8 000 – 38.46% vs 61.54%
– (7k+6k): l = 7 000 , u = 6 000 – 53.85% vs 46.15%
– (10k+3k): l = 10 000 , u = 3 000 – 76.92% vs 23.08%

4 Experimental Results

In supervised learning, the classifiers are built on labeled sets and estimated on
unlabeled sets. We give results here only for the results obtained from the testing
phase. When discussing semi-supervised learning, we first learn the classifiers on
labeled sets. Then, we learn with the labeled set and unlabeled set in a number of
steps where in the each step we augment the labeled set with the most confident
predictions from the unlabeled set. Once we cannot add any more measurements,
we finish the learning phase. Finally, we conduct the estimation phase on different
unlabeled set.

For machine learning techniques that have parameters to be tuned, we con-
ducted a tuning phase on labeled sets and use such tuned parameters in conse-
quent experimental phases. For SVM with radial kernel, we use C equal to 10
and γ equal to 0.6. When using k-NN with Label spreading, we select k to be
equal to 7. Naive Bayes and Template attack do not have parameters to tune.

4.1 Supervised Learning Results

In Tables 2 and 3, we give the results for the testing phase for supervised learning
for DPAcontest v4 and v2, respectively. These results serve to establish a baseline



when comparing with semi-supervised learning. Using only 100 traces in profiling
phase can be considered as the worst case scenario while using all 13 000 in the
profiling phase can be considered as the best case scenario. We can expect that
all semi-supervised learning results should be within those ranges (possibly with
some small deviations). Indeed, when having extremely small number of traces
in profiling phase, it is a natural assumption that adding more measurements in
semi-supervised phase should help. Since we must assume there will be at least
some portion of measurements incorrectly classified during the semi-supervised
learning, we cannot expect semi-supervised learning to be more successful than
supervised learning with all traces.

In Table 2 we give results for DPAcontest v4 and we can see that for both
9 and 256 classes, machine learning techniques work well. SVM performs better
than Naive Bayes but that is as expected since SVM is more powerful classifica-
tion technique. When considering template attacks, we see that pooled version
is better since it does not have the problem with covariance matrices instability.
As it can be seen, for 13 000 measurements and 9 classes TA and TA pooled
perform similarly, which is a strong indication that the covariance matrices got
stable and that if there would be further increase in the number of measure-
ments, TA may outperform the pooled version. As particularly interesting we
consider the efficiency of ML techniques even in scenarios with only 100 to 500
measurements. This leads us to the conclusion that ML is extremely powerful
option to be used even in the most extreme profiling cases provided that the
level of noise is not too high. Finally, considering the AUC measure we see that
the results for ML technique are reliable. The only exceptions are scenarios with
100 and 250 measurements for 256 classes and Naive Bayes classifier where we
can see the behavior of the classifier is much more random.

For DPAcontest v2 (Table 3) we see the results are much worse, which is ex-
pected due to the higher amount of noise. For the Hamming weight scenario, we
can also notice an interesting behavior for the smaller numbers of measurements,
e.g., up to 1 000 measurements with Naive Bayes and TA techniques. We see that
the accuracies are actually higher than for the cases with more measurements.
Although this may look counterintuitive, a closer analysis of results reveals the
cause for such a behavior. Since there are very limited number of traces in the
profiling phase, some of the classes do not have any correctly trained represen-
tatives. As an example, for the scenario with 100 measurements we actually see
there are no instances of HW 0, HW 1, HW 7, and HW 8 classes present in the
profiling phase. Consequently, the classifiers do not work anymore with 9 classes,
but only with 5 classes, which makes it a much simpler classification problem.
Naturally, although such results look good, they are not very helpful in the SCA
context to reveal the secret key.

For 256 classes the accuracies are as expected since we are dealing with a
very noisy scenario. When taking the AUC measure into account, we see that
in all scenarios with ML techniques, the results are only slightly better than
those one would expect from purely random guessing (recall, AUC would then
be equal to 50.0).



Table 2: Testing results, supervised learning, DPAcontest v4, (ACC/AUC)
Dataset NB SVM TA TAp

9 classes

100 61.51/87.7 69.07/89.8 0.30 45.41
250 64.31/89.3 78.44/93.9 0.30 52.99
500 65.93/90.8 82.70/95.6 0.34 68.93
1k 64.81/91.1 86.56/96.7 1.33 73.14
3k 67.20/91.7 90.81/97.7 5.23 74.86
5k 67.86/91.8 92.00/98.0 2.83 75.79
7k 67.96/91.8 92.84/98.2 11.16 76.51
10k 68.09/91.9 93.26/98.3 0.39 77.24
13k 68.36/91.9 93.71/98.5 75.31 77.74

256 classes

100 1.49/51.5 5.07/60.8 0.30 0.41
250 2.21/54.8 6.77/73.6 0.30 3.32
500 4.89/63.7 10.29/82.5 0.43 6.42
1k 10.46/79.3 13.64/89.1 0.43 10.15
3k 16.49/91.6 22.37/95.0 0.11 16.26
5k 18.04/93.0 27.44/96.5 0.19 19.23
7k 19.46/93.6 30.03/97.2 0.31 20.62
10k 20.14/94.2 33.31/97.8 0.04 22.48
13k 20.17/94.5 34.89/98.1 0.06 23.69

4.2 Semi-supervised Learning Results

In this section, we present the results for semi-supervised learning with self-
training (Tables 5 and 7) and for Label spreading (Tables 6 and 8). For all
tables we follow the same procedure: we label the unlabeled set in the profiling
phase with either self-training or Label spreading. Then, on such labeled sets
we use ML and TA classifiers to conduct the testing phase. The results for the
testing phase are reported in tables. Recall that self-training is done with two
classifiers – Naive Bayes and SVM. We use the same classifier then in semi-
supervised phase as in the supervised phase (although that is not a must but
simply our decision in order to limit the number of experiments). For template
and pooled template attack we use only one of those two models where we select
the better performing one.

We already mention that we do not take all measurements from the semi-
supervised phase, but only those with the most confident predictions. The ques-
tion is how to select the threshold to recognize the measurements to be added.
There is no deterministic way to do it (this is a reason why in the literature
some semi-supervised techniques are also called heuristic techniques). In this
paper, we select thresholds by setting them to the highest values that enables
any number of unlabeled measurements to be added to labeled measurements
set. For instance, we start with the threshold σ and add all measurements that



Table 3: Testing results, supervised learning, DPAcontest v2, (ACC/AUC)
Dataset NB SVM TA TAp

9 classes

100 20.64/50.2 21.57/50.6 0.40 17.69
250 10.39/50.6 21.00/49.7 10.22 15.78
500 10.76/51.1 22.00/50.2 5.50 15.29
1k 11.94/51.0 23.77/50.5 3.76 13.76
3k 7.34/50.7 24.49/50.4 8.73 10.39
5k 9.29/50.6 24.61/50.1 0.87 8.90
7k 8.80/50.6 25.53/50.2 2.07 8.43
10k 8.80/50.6 25.26/50.1 7.52 8.16
13k 8.34/50.5 26.20/50.6 15.06 7.60

256 classes

100 0.31/49.9 0.41/50.5 0.27 0.41
250 0.44/50.1 0.36/50.4 0.59 0.39
500 0.36/50.6 0.44/50.2 0.37 0.39
1k 0.49/50.4 0.43/50.3 0.37 0.49
3k 0.44/51.1 0.40/50.7 0.33 0.39
5k 0.59/50.9 0.53/50.6 0.43 0.50
7k 0.66/51.1 0.46/50.8 0.46 0.36
10k 0.61/49.6 0.54/50.6 0.41 0.40
13k 0.64/51.2 0.50/50.5 0.36 0.30

have the highest probability larger than σ. If there are such values, we stay with
the threshold. If not, we decrease the threshold and repeat the procedure. As the
lowest σ value we take the training accuracy obtained on the labeled set only.
The beginning values for σ are easily found by inspecting the results for the
supervised setting. The smaller the number of classes the higher the achieved
probabilities (idem for noise levels). Naturally, the threshold levels are depen-
dent on classifiers used and require some tuning. We note that our results show
that they are not extremely sensitive and a slightly non-optimal threshold will
not change the testing results significantly. Table 4 states the threshold levels σ
for all scenarios we consider.

Table 4: Threshold levels
DPAcontest v4 DPAcontest v2

Classifier 9 classes 256 classes 9 classes 256 classes

NB, k-NN 0.99 0.99 0.99 0.99
SVM 0.22 0.22 0.01435 0.004



In Table 5 we give results for DPAcontest v4 obtained with self-training.
When considering 9 classes, only for the case with 100 measurements the results
for ML are slightly worse when compared with supervised learning. The other
results are either better or within statistical margin. What is extremely inter-
esting is that TA and TAp results are significantly better than those obtained
with supervised learning. In particular, the accuracy for TA and TAp increases
for all scenarios regardless of the number of added unlabeled measurements. For
TA the explanation is simple but with profound consequences: by adding more
measurements we are able to resolve instabilities in the estimation of the covari-
ance matrices and consequently the accuracy of TA is significantly increasing.
The highest increase (more than 58%) can be observed for TA when using 100
labeled measurements and 12 900 unlabeled ones. Interestingly, we see that for
TA and TAp using 10k+3k is approximately as efficient as using 13k labeled
traces, which can be seen as the upper bound of efficiency. The highest increases
for TAp can be observed in the first 4 scenarios (up to 12 000 of additional un-
labeled measurements). Afterwards the accuracy is still higher when compared
to the supervised scenario, but the margin is getting smaller. This observation
is in accordance with our discussions before.

AUC results for ML techniques show us high confidence and we do not dete-
riorate to random guessing due to added measurements (where a part of those
measurements can be considered as an additional noise since they are wrongly
predicted in SSL phase). For 256 classes the results for Naive Bayes are better
for the most extreme cases (i.e., up to 1 000 labeled measurements) but slightly
worse for other scenarios. A similar behavior can be seen for TA.

With Label spreading (Table 6) we see that the results are in general worse
than for self-training. When considering 9 classes, the first case with 100 labeled
measurements has a significant drop in accuracy when compared to supervised
case or self-training. The rest of results for 9 classes are comparable with the
results obtained with self-training. What is important to notice are the cases
1k + 12k and 5k + 8k where TA is not stable and consequently the results are
much worse than for self-training. Scenarios with 256 classes are again similar but
we note that there are no cases where Label spreading outperforms self-training.

Table 7 gives results for DPAcontest v2 with self-training. Here, differing
from the results from DPAcontest v4 we see that the most extreme cases be-
have worse than supervised learning when considering ML techniques. This is
somewhat expected since the level of noise is much higher and it is more difficult
to form “good” clusters with very small number of labeled measurements. For
the cases where the amount of labeled measurements is higher than 5 000 we see
improvements with SSL, which is a clear indication that more measurements are
necessary for SSL if the data is noisy. Unfortunately, not all cases for TA be-
come stable. The analysis shows that some classes are underrepresented which
makes covariance matrices unstable. When considering 256 classes we see the
most extreme cases for ML to have AUC equal to 50% which means those are
random guesses and not results of any practical value. Interestingly, TA works
better with SSL than supervised learning for a number of cases.



Table 5: Testing results, semi-supervised learning, DPAcontest v4, self-training,
(ACC/AUC)

Dataset NB SVM TA TAp

9 classes

100+12.9k 59.04/81.1 69.02/90.2 58.89 67.55
250+12.75k 64.61/92.0 78.24/95.4 12.60 75.22
500+12.5k 66.15/92.3 82.81/96.1 56.62 76.86

1k+12k 68.13/93.3 87.10/97.1 44.20 78.28
3k+10k 68.32/92.4 90.54/98.6 53.04 78.09
5k+8k 68.08/93.1 92.28/98.4 46.44 78.35
7k+6k 68.44/94.7 92.69/98.6 75.61 77.98
10k+3k 68.67/92.4 93.58/98.2 73.76 77.91

256 classes

100+12.9k 2.70/52.0 4.19/60.3 0.33 3.40
250+12.75k 3.11/54.6 6.40/71.5 0.30 3.67
500+12.5k 5.72/64.4 8.54/79.9 0.47 7.14

1k+12k 9.28/78.7 12.76/88.2 0.49 9.52
3k+10k 15.64/91.6 21.67/94.9 0.36 15.52
5k+8k 17.31/93.0 25.73/96.3 0.07 18.71
7k+6k 18.38/93.6 28.94/97.1 0.13 20.95
10k+3k 19.61/94.2 32.82/97.8 0.23 22.39

Table 6: Testing results, semi-supervised learning, DPAcontest v4, label spread-
ing, (ACC/AUC)

Dataset NB SVM TA TAp

9 classes

100+12.9k 29.66/74.9 24.96/77.5 18.76 21.08
250+12.75k 65.30/90.0 77.54/93.8 61.39 71.31
500+12.5k 65.51/90.6 81.13/95.1 58.77 74.49

1k+12k 67.73/91.4 84.06/96.0 7.10 76.55
3k+10k 68.66/91.8 91.83/98.0 66.60 77.41
5k+8k 68.79/91.9 91.83/98.0 3.24 77.95
7k+6k 68.61/91.9 92.51/98.2 14.78 77.85
10k+3k 68.7/91.9 93.53/98.4 4 9.64 77.97

256 classes

100+12.9k 1.70/50.7 3.74/58.7 0.27 2.56
250+12.75k 3.01/54.0 6.12/70.0 0.29 3.49
500+12.5k 5.72/64.4 7.93/77.3 0.35 6.95

1k+12k 8.45/74.1 11.02/85.2 0.42 9.02
3k+10k 15.03/90.8 18.65/92.9 0.31 14.75
5k+8k 15.91/92.0 24.78/94.1 0.05 17.21
7k+6k 16.98/92.6 26.90/95.5 0.11 20.05
10k+3k 18.10/93.2 28.75/96.5 0.19 21.89



Table 7: Testing results, semi-supervised learning, DPAcontest v2, self-training,
(ACC/AUC)

Dataset NB SVM TA TAp

9 classes

100+12.9k 14.45/51.2 18.67/49.2 7.30 16.95
250+12.75k 12.32/50.3 20.84/50.3 0.50 16.20
500+12.5k 12.90/52.1 21.40/49.1 1.39 17.55

1k+12k 12.73/52.5 25.21/50.6 0.40 14.86
3k+10k 7.02/52.4 25.00/51.5 1.47 12.43
5k+8k 10.34/54.2 25.51/50.2 15.03 11.80
7k+6k 10.95/52.2 26.04/50.2 1.67 11.05
10k+3k 10.18/50.8 26.24/50.3 8.33 8.62

256 classes

100+12.9k 0.55/50.0 0.50/50.0 0.50 0.40
250+12.75k 0.68/50.0 0.51/50.3 0.50 0.41
500+12.5k 0.55/50.2 0.45/50.3 0.59 0.44

1k+12k 0.50/50.4 0.38/50.4 0.59 0.51
3k+10k 0.42/50.3 0.48/50.1 0.36 0.41
5k+8k 0.45/50.5 0.42/50.0 0.41 0.40
7k+6k 0.62/50.7 0.64/50.3 0.39 0.44
10k+3k 0.51/51.1 0.54/50.3 0.43 0.41

Finally, Table 8 gives results for DPAcontest v2 with Label spreading. The
behavior is quite similar to that of self-training but we see somewhat worse ac-
curacies throughout all scenarios. Smaller number of measurements for 9 classes
have higher accuracies than using more measurements but this is due to a lack
of labeled examples of all classes which corresponds to easier problem since then
the classification process has less classes to choose from. When considering 256
classes, again we see AUC equal to 50% in a number of cases, which strongly
suggests that high level of noise coupled with many classes does not work well
for semi-supervised learning if the number of labeled measurements is low.

5 Discussion

5.1 Lessons Learned

In this section, we give more general conclusions on semi-supervised learning that
can be transferred to other SCA settings. Although some of those considerations
are quite natural and confirmed in different application domains [9], we translate
them to the context of SCA.

Influence of Noise As expected, the more noise is present, the more difficult is
the classification process. This is valid for supervised as well as semi-supervised
learning. The results for DPAcontest v4 show that such a noise level is within the



Table 8: Testing results, semi-supervised learning, DPAcontest v2, label spread-
ing, (ACC/AUC)

Dataset NB SVM TA TAp

9 classes

100+12.9k 11.75/50.9 18.10/50.4 5.90 15.56
250+12.75k 11.32/50.2 19.76/50.1 0.40 15.10
500+12.5k 11.81/52.0 20.95/50.8 1.11 16.65

1k+12k 12.25/52.4 25.05/50.6 0.38 13.13
3k+10k 6.84/51.8 24.90/51.4 1.42 12.02
5k+8k 9.44/54.1 25.11/50.2 14.13 10.65
7k+6k 10.41/51.1 25.97/50.1 1.25 10.85
10k+3k 9.98/50.5 26.02/50.3 6.93 7.97

256 classes

100+12.9k 0.45/50.0 0.44/50.0 0.34 0.38
250+12.75k 0.48/50.0 0.45/50.0 0.39 0.40
500+12.5k 0.47/50.0 0.40/50.1 0.47 0.42

1k+12k 0.45/50.4 0.32/50.2 0.48 0.48
3k+10k 0.37/50.3 0.41/49.9 0.31 0.38
5k+8k 0.42/50.2 0.37/50.0 0.38 0.83
7k+6k 0.54/50.5 0.61/50.2 0.35 0.40
10k+3k 0.46/51.0 0.54/50.2 0.40 0.38

capabilities of semi-supervised learning and improvements can be easily reached.
DPAcontest v2 is significantly more difficult for semi-supervised learning but still
reasonable improvements are observed. For scenarios where we cannot observe
any improvements, the number of measurements needs to be increased or number
of class decreased in order to gain improvements for semi-supervised learning.

Number of Measurements In this paper, we limited the total number of traces
to 20 000 and the number of traces in supervised/semi-supervised learning phase
to 13 000. The results show that this choice was a reasonable one for our sce-
narios. Still, further experiments indicate if there would be an even larger set
of unlabeled traces in the training phase, the results would improve more (see
also future work). Looking the extreme cases when the number of labeled mea-
surements is small (100 or 250 measurements) we see that we are approaching
the limits when SSL can help. This is apparent for 9 classes scenarios. For 256
classes semi-supervised learning requires much more labeled measurements to
obtain real improvements. It is interesting question whether an even smaller
number of labeled measurements may be used if we can choose their class distri-
bution (i.e., having a chosen ciphertext attack). Regarding the ratio between the
labeled and unlabeled measurements in the training phase it is hard to give one
definitive conclusion but we see that when there is significantly more labeled
than unlabeled examples, SSL does not improve a lot and consequently there
does not seem to be strong justification to use semi-supervised learning.



Number of Classes The less there are classes, the easier for SSL to be successful.
Still, if there are enough examples per class it does not seem that having a lot of
classes (e.g., 256 classes) presents a problem for SSL (granted, if the level of noise
is not too high and the number of measurements is high enough). Interesting
cases are when the number of labeled examples are so low that we do not have
all class examples successfully trained. Then, the accuracy in the classification
can go up since the problem becomes simpler due to decreased number of classes.
Such increase in performance unfortunately does not help in SCA context.

Threshold Levels In the semi-supervised learning, unlabeled examples are clas-
sified and help to augment the behavior of a classifier in the testing phase. The
question is whether all predicted labels should be considered or only those with
the highest probabilities. We opted to use the second approach in order to avoid
adding too many measurements that are misclassified. Then, one needs to select
what measurements to actually use, i.e., to decide which measurements have
sufficiently high enough probabilities. Unfortunately, this threshold is an addi-
tional parameter one needs to tune but that process is relatively straightforward
and robust. Starting with very high probability threshold and decreasing it until
some measurements are classified seem to be a good option. All experiments
suggest that using a threshold level that is lower than strictly necessary will not
significantly deteriorate the behavior of a classifier.

Generalizations of Models The aim of the training phase is to obtain a model that
generalizes well to unseen data. In general, we see that SSL is able to build strong
models that can compete with supervised learning. Our experiments show that
having misclassified measurements from semi-supervised learning can be even
beneficial in obtaining such models. Indeed, adding “noise” can help prevent
models from over-training (thus, overfitting).

Choice of Classifiers In our experiments we use three classifiers in the semi-
supervised phase. Later, in the supervised phase we use two classifiers belonging
to ML family as well as TA. The obtained results show differences (as expected)
in the performance with respect to the choice of classifiers. Those differences
occur both in semi-supervised and supervised learning. Still, the stable behavior
across a number of testing scenarios suggest that different families of classifiers
can be used with good results.

Stability of Covariance Matrices It is well-known that TA can become unstable
due to dependencies in the covariance matrices. Such instabilities occur when the
number of measurements are too low or when there are more features (points
of interest) then there are samples belonging to a single class. To circumvent
those instabilities one common option is to use pooled TA. Another option is to
simply acquire more traces, which is, at least in theory, not a problem since most
scenarios assume unbounded number of traces available in the training phase.
Here, we see that using semi-supervised learning provides a novel perspective in
solving the problems with covariance matrices. Our results show such an option
is easy to use and provides good results in a number of scenarios.



5.2 Future Work

Since the results obtained in our experiments show that semi-supervised learning
can significantly improve SCA, we believe there is a number of research avenues of
high interest. We considered four scenarios with respect to the number of classes
and the amount of noise. The first straightforward extension of this paper would
be to experiment further in those directions and consider more relevant scenarios
appearing in SCA. For example, when using simulated data, a threshold for the
signal-to-noise ratio in combination with the number of profiling measurements
could be defined.

Besides that, we considered a number of cases with respect to the amount of
traces but all scenarios had upper limit of 20 000 traces in total for training and
testing phases. Since the results show that semi-supervised learning is of highest
help when the number of labeled traces is significantly lower than the number of
unlabeled traces, extending the search with the respect to the number of traces
could produce even more interesting results. As an example, we could consider
scenarios where the number of labeled traces is extremely small (100 labeled
traces like we used here, or even less) while the number of unlabeled examples
is much larger, for example 30 000 or even more.

Next, in this paper we considered two paradigms from semi-supervised learn-
ing domain: self-training and graph-based algorithms. Those techniques can be
considered as older examples from the semi-supervised learning domain. It would
be interesting to investigate whether the more recent (and often considered more
powerful) techniques could still be more beneficial for SCA. For further inves-
tigation we note especially the Co-training class of algorithms that falls under
the paradigm of multi-view learning, first introduced by Blum and Mitchel [24].
The idea is that, when starting from a small training set with two different views
(feature spaces) X1 and X2, the method iteratively re-trains a pair of different
classifiers, one for each view, adding at each step the unlabeled samples that are
classified with high confidence by one of the classifiers. As an example, instead
of having one classifier working with all 50 features, we could divide it into two
random sets of 25 that form two different views for co-training.

As already stated, from the semi-supervised learning we did not take all
measurements but only those with the highest probabilities. Although our inves-
tigations show such an approach gives very good results we could easily imagine
improving it further. There, we could consider not only the highest probabilities
but also the distribution of probabilities. As an example, the question is whether
we should more believe in results where the best prediction is 60% while the sec-
ond best is 40% (meaning all the other probabilities are zero) or when the best
prediction is 50% while all the other ones are below 10%. Although in the first
scenario the accuracy for the best prediction is higher, the difference between
the first and the second best is larger in the second scenario, which we believe
is the behavior we could use to further improve classification.

Another fact to take into account in future work is that when going away
from the academic view of profiling, actually two different devices with at least
slightly differences in their leakage distribution have to be considered. In fact,



the measurements of the DPAcontest are attained by measuring the same device,
therefore besides extrinsic noise, no differences in the distributions between the
profiling and the attacking phase should be expected. In a real-world scenario,
however, two different devices should be measured which may result in (slightly)
different distributions (see e.g., [25, 26]). From our perspective, using a semi-
profiled learning approach might greatly benefit the efficiency of the attack as
the model is learned on both distributions, instead of only the one from the
profiling device. This may open a new field of future investigation that consider
real-world attacking scenarios.

In the semi-supervised phase, we used machine learning classifiers to obtain
new labeled measurements but there is no reason why not to also use pooled
template attack. Consequently, we plan to investigate the scenario where pooled
template attack is used as the classifier in the self-training paradigm.

6 Conclusions

This paper investigates how to use semi-supervised learning in the context of
SCA and whether such a paradigm is useful in realistic scenarios. Previously,
in the SCA community, profiled side-channel analysis has been considered as a
strict two-step process, where only the profiled model is transferred between the
two phases. Most of the time it is assumed that the profiling phase is unbounded
and the attacker has unrestricted possibilities and full knowledge of the profiling
device. Contrary to that, the capabilities in the attacking are highly restricted
and the attacker can only measure a very limited number of traces.

In this paper, we explore the scenario in which an attacker is more restricted
in the profiling phase. For example, we adapt the concept of the “lunchtime”
attack, in which the attacker might only gain access to a device where he has
(or a group of people have) full knowledge of the underlying properties (e.g.,
secret key) during lunch time. Then again, in the attacking phase he may be not
as restricted as he has the possibility to choose any device (similar to the one
he used for profiling). Accordingly, the scenario changes to a (very) restricted
profiling phase with labeled samples and a more unrestricted attacking phase
with unlabeled samples. Clearly, in general, the attacker is not unhindered in
exchanging all possible information between the profiling and attacking phase.
In particular, he could use the additional available information given from the
attacking measurements already to build the profiled model.

To achieve this, we introduced the concept of semi-supervised learning to side-
channel analysis. Two concept for semi-supervised learning (i.e., self-training
and Label spreading) have been studied in scenarios with low and high noise
using 9 or 256 classes for prediction. The amount of traces in the profiling phase
were ranging from 100 up to 10 000. As side-channel attack techniques we used
two ML techniques (Naive Bayes and SVM), template attack, and its pooled
version. The obtained results show that semi-supervised learning is able to help
in many scenarios. Significant improvements are achieved for template attack
and its pooled version in the low noise scenario. Particularly, we observed that



using additional samples from the attacking phase improved the estimation of
the covariance matrices which resulted in improvements of up to 58%. Naturally,
the higher the amount of samples in the profiling phase the less influential are the
additional added unlabeled samples from the attacking phase. Note that, in the
scenarios with no increase in accuracy, the behavior is not deteriorated compared
to supervised learning (standard profiling phase), which makes semi-supervised
learning a general technique to be considered.

Besides stating our results in these investigated contexts, we discuss more
general conclusions on semi-supervised learning for SCA. This should help to
transfer our observations to other settings in SCA. From our perspective, semi-
supervised learning can significantly improve SCA and we are confident there
is a number of research directions for future work as discussed in the previous
section.
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