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Abstract

We devise a new partitioned simulation technique for MPC where the simulator uses differ-
ent strategies for simulating the view of aborting adversaries and non-aborting adversaries. The
protagonist of this technique is a new notion of promise zero knowledge (ZK) where the ZK prop-
erty only holds against non-aborting verifiers. We show that unlike standard ZK, promise ZK
can be realized in three rounds in the simultaneous-message model under standard assumptions.

We demonstrate the following applications of our new technique:

• We construct the first round-optimal (i.e., four round) MPC protocol for general functions
based on polynomially hard LWE and DDH. Previously, such protocols required sub-
exponential-time hardness assumptions.

• We further show how to overcome the four-round barrier for MPC by constructing a three-
round protocol for “list coin-tossing” – a slight relaxation of coin-tossing that suffices for
most conceivable applications – based on polynomially hard injective one-way functions.
This result generalizes to randomized input-less functionalities also assuming polynomially
hard LWE.

Previously, four round MPC protocols required sub-exponential hardness assumptions and no
multi-party three-round protocols with polynomial simulation were known for any relaxed se-
curity notions against malicious adversaries.

In order to base security on polynomial-time standard assumptions, we also develop a new
leveled rewinding security technique that can be viewed as a polynomial-time alternative to
leveled complexity leveraging for achieving “non-malleability” across different primitives. This
technique may be of independent interest.
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1 Introduction

Provably secure protocols lie at the heart of the theory of cryptography. How can we design
protocols, not only so that we cannot devise attacks against them, but so that we can prove that
no such attacks exist (under well-studied complexity assumptions)? The goal of achieving a proof
of security has presented many challenges and apparent trade-offs in secure protocol design. This
is especially true with regards to the goal of minimizing rounds of interaction, which has been a
long-standing driver of innovation in theoretical cryptography. We begin by focusing on one such
challenge and apparent trade-off in the context of zero-knowledge (ZK) protocols [GMR89], one of
the most fascinating and broadly applicable notions in cryptography.

Recall that in a ZK protocol, a prover should convince a verifier that some statement is true,
without revealing to the verifier anything beyond the validity of the statement being proven. It
is known that achieving zero knowledge (with black-box simulation1) is impossible with three or
fewer rounds of simultaneous message exchange [GK96, GMPP16]. A curious fact emerges, however,
when we take a closer look at the proof of this impossibility result. It turns out that three-round
ZK is impossible when considering verifiers that essentially behave completely honestly, but that
sometimes probabilistically refuse to finish the protocol. We observe that this is bizarre: ZK
protocols are supposed to prevent the verifier from learning information from the prover; how
can behaving honestly but aborting the protocol early possibly help the verifier learn additional
information? Indeed, one might think that we can prove that such behavior cannot possibly help
the verifier learn additional information. Counter-intuitively, however, it turns out that such early
aborts are critical to the impossibility proofs of [GK96, GMPP16]. This observation is the starting
point for our work; now that we have identified a key (but counter-intuitive) reason behind the
impossibility results, we want to leverage this understanding to bypass the impossibility result in
a new and useful way.

Promise Zero Knowledge. Our main idea is to circumvent the impossibility results of [GK96,
GMPP16] by only considering adversarial verifiers that promise not to abort the protocol early
with noticeable probability. However, we do not limit ourselves only to adversarial verifiers that
behave honestly; we will consider adversarial verifiers that may deviate from the prescribed pro-
tocol arbitrarily, as long as this deviation does not cause the protocol to abort. A promise zero-
knowledge protocol is one that satisfies the correctness and soundness guarantees of ordinary zero-
knowledge protocols, but only satisfies the zero knowledge guarantee against adversarial verifiers
that “promise” not to abort with noticeable probability. The centerpiece of our work is a con-
struction of a three-round promise zero-knowledge protocol, in the simultaneous message model,
for proving statements where the statement need not be decided until the last (third) round, but
where such statements should come from a distribution such that both a statement and a witness
for that statement can be sampled in the last round. Our construction requires only the existence
of injective one-way functions. Interestingly, in our construction, we rely upon information learned
from the verifier in the third round, to simulate its view in the third round!

Partitioned Simulation, and Applications to MPC. But why should we care about promise
ZK? Actual adversaries will not make any promise regarding what specific types of adversarial
behavior they will or will not engage in. However, recall our initial insight – early aborting by an

1In this work, we focus on black-box simulation. However, no solutions for three-round ZK from standard as-
sumptions with non-black-box simulation [Bar01] are presently known either. [BKP17] showed how to construct 3
round ZK using non-black-box simulation from the non-standard assumption that keyless multi-collision resistant
hash functions exist.
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adversary should, generally speaking, only hurt the adversary, not help it. We know due to the
impossibility results of [GK96, GMPP16], that we cannot leverage this insight to achieve three-
round standard ZK (with black-box simulation). However, ZK is a ubiquitous technical tool used to
construct secure protocols. Our goal instead, then, is to use our insight to replace ZK with promise
ZK for the construction of other secure protocols. Specifically, we consider the most general goal
of secure protocol design: secure multi-party computation (MPC), as we discuss further below.

To do so, we devise a novel partitioned simulation strategy for leveraging promise ZK. At
a high-level, we split the simulation into two disjoint cases, depending upon whether or not the
adversary is an aborting adversary (i.e., one who aborts with high probability). In one case, we
will exploit promise ZK. In the other, we exploit the intuition that early aborting should only harm
the adversary, to devise alternate simulation strategies that bypass the need for ZK altogether,
and instead essentially rely on a weaker notion called strong witness indistinguishability, that was
recently constructed in three rounds (in the “delayed-input” setting) in [JKKR17].

Secure Multi-Party Computation. The notion of secure multiparty computation (MPC)
[Yao82, GMW87] is a unifying framework for general secure protocols. MPC allows mutually
distrusting parties to jointly evaluate any efficiently computable function on their private inputs in
such a manner that each party does not learn anything beyond the output of the function.

The round complexity of MPC has been extensively studied over the last three decades in a
long sequence of works [GMW87, BMR90, KOS03, KO04, Pas04, PW10, Wee10, Goy11, GMPP16,
ACJ17, BHP17, COSV17a, COSV17b]. In this work, we study the problem of round-optimal MPC
against malicious adversaries who may corrupt an arbitrary subset of parties, in the plain model
without any trust assumptions. The state-of-the-art results on round-optimal MPC for general
functions are due to Ananth et al. [ACJ17] and Brakerski et al. [BHP17], both of which rely on
sub-exponential-time hardness assumptions. (See Section 1.2 for a more elaborate discussion on
related works.) Our goal, instead is to base security on standard, polynomial-time assumptions.

We now highlight the main challenge in basing security on polynomial-time assumptions. In
the setting of four round protocols in the simultaneous-message model, a rushing adversary may
always choose to abort after receiving the honest party messages in the last round. At this point, the
adversary has already received enough information to obtain the purported output of the function
being computed. This suggests that we must enforce “honest behavior” on the parties within the
first three rounds in order to achieve security against malicious adversaries. As discussed above,
three-round zero knowledge is impossible, and this is precisely why we look to our new notion of
promise ZK and partitioned simulation to resolve this challenge.

However, this challenge is exacerbated in the setting of MPC as we must not only enforce
honest behavior but also ensure non-malleability across different cryptographic primitives that are
being executed in parallel within the first three rounds. We show how to combine our notions of
promise ZK with new simulation ideas to overcome these challenges, relying only on polynomial-
time assumptions.

Coin Tossing. Coin-tossing allows two or more participants to agree on a single, unbiased coin.
Fair multiparty coin-tossing is known to be impossible in the dishonest majority setting [Cle86].
Therefore while current notions of secure coin-tossing require that the protocol have a (pseudo)-
random outcome, the adversary is additionally allowed to abort depending on the outcome of the
toss.

The definition of secure coin-tossing roughly requires the existence of a simulator that success-
fully forces an externally sampled random coin, and produces a distribution over adversary’s views
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that is indistinguishable from a real execution. To account for the adversary aborting or misbe-
having based on the outcome, the simulator is allowed to either force an external coin, or force an
abort: as long as the simulated distribution remains indistinguishable from the real one.

In the case of an adversary that always aborts before the end of the protocol, the prescribed
output of any secure coin-tossing protocol is also abort: therefore, the simulator never needs to
force any external coin against such an adversary! Simulating the view of such adversaries that
always abort is thus completely trivial.

This leaves open the setting of non-aborting adversaries, which is exactly the setting that
promise ZK was designed for. Using promise ZK, we design a three-round coin-tossing protocol
which crucially relies on the promise ZK simulator to ensure security against non-aborting ad-
versaries. Previously, multiparty coin-tossing was known to require at least four rounds w.r.t.
black-box simulation [GMPP16, KO04].

For technical reasons, we achieve a slightly weaker notion of coin-tossing than prior literature,
which we call “list coin-tossing”. As we discuss later, this notion nevertheless suffices for nearly all
important applications of coin-tossing. Therefore, promise ZK gives us a way to break down the
four-round barrier for secure coin-tossing [GMPP16, KO04].

1.1 Our Results

We introduce the notion of promise ZK proof systems and devise a new partitioned simulation
strategy for round-efficient MPC protocols. Our first result is a three-round distributional promise
ZK argument system based on injective one-way functions.

Theorem 1 (Informal). Assuming injective one-way functions, there exists a three round distribu-
tional promise ZK argument system in the simultaneous-message model.

Round-Optimal MPC. We present two applications of partitioned simulation to round-optimal
MPC. We first devise a general compiler from any three round semi-malicious MPC protocol –
where the first round is immune to malicious behavior – to a four round malicious secure MPC
protocol. Our compiler can be instantiated with standard assumptions such as DDH or Quadratic
Residuosity or Nth-Residuosity. The resulting protocol is optimal in the number of rounds w.r.t.
black-box simulation [GMPP16]. A three round semi-malicious protocol with the aforementioned
property is known based on LWE [BHP17].

Theorem 2 (Informal). Assuming LWE and DDH/QR/Nth-Residuosity, there exists a four round
MPC protocol for general functions with black-box simulation.

List Coin-Tossing. We also study the feasibility of multiparty coin-tossing in only three rounds.
While three round coin-tossing is known to be impossible [GMPP16], somewhat surprisingly, we
show that a slightly relaxed variant that we refer to as list coin-tossing is, in fact, possible in only
three rounds.

Very briefly, in list coin-tossing, the simulator is allowed to receive polynomially many random
string samples from the ideal functionality (where the exact polynomial may depend upon the
adversary), and it may choose any one of them as its output. It is not difficult to see that this
notion already suffices for most conceivable applications of coin-tossing, such as implementing a
common random string setup. For example, consider the setting where we want to generate a CRS
in the setup algorithm of a non-interactive zero knowledge (NIZK) argument system. Now, in the
ideal world, instead of running a simulator which “forces” one particular random string given by
the ideal functionality, we can substitute it with the simulator of a list coin tossing protocol that
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receives polynomially many random strings from the ideal functionality and “forces” one of them
as the CRS. This would still suffice for the NIZK argument system. We achieve the following result:

Theorem 3 (Informal). Assuming injective one-way functions, there exists a three round multiparty
list coin-tossing protocol with black-box simulation.

With the additional assumption of LWE, we can also generalize the above result to randomized
inputless functionalities where security is defined analogously to list coin-tossing.

Finally, we note that by applying the transformation2 of [GMPP16] on the protocol from The-
orem 3 for the two-party case, we can obtain a four round two-party list coin-tossing protocol in
the unidirectional-message model. This result overcomes the barrier of five rounds for standard
two-party coin-tossing established by [KO04].

Corollary 4 (Informal). Assuming injective one-way functions, there exists a four round two-party
list coin-tossing protocol in the unidirectional-message model with black-box simulation.

Leveled Rewinding Security. While promise ZK addresses the issue of proving honest behav-
ior within three rounds, it does not address non-malleability issues that typically plague security
proofs of constant-round protocols in the simultaneous-message model. In particular, when multi-
ple primitives are being executed in parallel, we need to ensure that they are non-malleable w.r.t.
each other. For example, we may require that a primitive A remains “secure” while the simulator
(or a reduction) is (say) trying to extract adversary’s input from primitive B via rewinding.

In the works of [ACJ17, BHP17], such issues are addressed by using complexity leveraging.
In particular, they rely upon multiple levels of complexity leveraging to establish non-malleability
relationships across primitives, e.g., by setting the security parameters such that primitive X is more
secure than primitive Y that is more secure than primitive Z, and so on. Such a use a complexity
leveraging is, in fact, quite common in the setting of limited rounds (see, e.g., [COSV16]).

We develop a new leveled rewinding security technique to avoid the use of complexity leveraging
and base security on polynomial-time assumptions. Roughly, in our constructions, primitives have
various levels of “bounded rewinding” security that are carefully crafted so that they enable non-
malleability relationships across primitives, while still enabling rewinding-based simulation and
reductions. E.g., a primitive X may be insecure w.h.p. against 1 rewind, however, another primitive
Y may be secure against 1 rewind but insecure against 2 rewinds. Yet another primitive Z may
be secure against 2 rewinds but insecure against 3 rewinds, and so on. We anticipate that this
technique will find applications elsewhere in cryptography.

1.2 Related Work

Concurrent Work. In a concurrent and independent work, Halevi et al. [HHPV17] construct a
four round MPC protocol against malicious adversaries in the plain model based on LWE/DDH/QR/Nth-
Residuosity. They do not consider the problems of promise ZK and list coin-tossing. We will add a
more detailed comparison between the works and the techniques in a revised version once we have
had a chance to review their paper.

Prior Work. The study of constant-round protocols for MPC was initiated by Beaver et al.
[BMR90]. They constructed constant-round MPC protocols in the presence of honest majority.

2The work of Garg et al. [GMPP16] establishes an impossibility result for three round multiparty coin-tossing by
transforming any three round two-party coin-tossing protocol in the simultaneous-message model into a four round
two-party coin-tossing protocol in the unidirectional-message model, and then invoking the impossibility of [KO04].
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Subsequently, a long sequence of works constructed constant-round MPC protocols against dishon-
est majority based on a variety of assumptions and techniques (see, e.g., [KOS03, Pas04, PW10,
Wee10, Goy11]).

Garg et al. [GMPP16] initiated the study of the exact round complexity of MPC. They con-
structed five (resp., six) round MPC using indistinguishability obfuscation (resp., LWE) and three-
round robust non-malleable commitments. Recently, in concurrent works, Ananth et al. [ACJ17]
and Brakerski et al. [BHP17] constructed four round MPC protocol based on sub-exponential-time
hardness assumptions. While [BHP17] require sub-exponential LWE and adaptive commitments
[PPV08], the work of [ACJ17] additionally relied on the recent construction of two-round non-
malleable commitments from [KS17] to obtain a construction from sub-exponential DDH.

Very recently, [COSV17a] constructed four-round multiparty coin-tossing from polynomial-
time assumptions. The same authors also construct four-round two-party computation in the
simultaneous-message model from polynomial-time assumptions [COSV17b]. However, their re-
sults do not extend to general multiparty functionalities, which is the focus of our work.

In the setting of super-polynomial-time simulation, [BGI+17, JKKR17] construct two round
two-party computation from sub-exponential DDH. In the multi-party setting, [KS17] construct
coin-flipping and [BGJ+17] extend this result to input-less randomized functionalities. Garg et al.
[GKP17] construct five round concurrent two-party computation from quasi-poly hard assumptions
and [BGJ+17] construct three round concurrent MPC from sub-exponential LWE.

All of the above results are in the plain model where no trusted setup assumptions are available.
Asharov et. al. [AJL+12] constructed three round MPC protocols in the CRS model. Subsequently,
two-round MPC protocols in the CRS model were constructed by Garg et al. [GGHR14] using in-
distinguishability obfuscation, and by Mukherjee and Wichs [MW16] using LWE assumption. Very
recently, Garg and Srinivasan [GS17] constructed a two-round MPC protocol based on standard
assumptions on bilinear maps.

2 Technical Overview

In this section, we provide an overview of the main ideas underlying our results.

2.1 Promise Zero Knowledge

Recall that the notion of promise ZK is defined in the simultaneous-message model, where in every
round, both the prover and the verifier send a message simultaneously.3 Crucially, the ZK property
is only defined w.r.t. a set of admissible verifiers that promise to send a “valid” non-aborting
message in the last round with some noticeable probability.

We construct a three round distributional promise ZK protocol with black-box simulation based
on injective one-way functions. We work in the delayed-input setting where the statement being
proven is revealed to the (adversarial) verifier only in the last round.4 Further, we work in the
distributional setting, where statements being proven are from an efficiently sampleable public
distribution, i.e., it is possible to efficiently sample a statement together with a witness.

For simplicity of presentation, here we describe our construction using an additional assumption
of two-round WI proofs, a.k.a. Zaps [DN00]. In our actual construction of promise ZK, we replace

3An adversarial prover or verifier can be rushing, i.e., it may wait to receive a message from the honest party in
any round before sending its own message in that round.

4In our actual construction, we consider a slightly more general setting where a statement x has two parts
(x1, x2): the first part x1 is revealed in the second round while the second part x2 is revealed in the third round.
This generalization is used in our applications of promise ZK, but we ignore it here for simplicity of presentation.
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the Zaps with three round delayed-input WI proofs with some additional security guarantees that
we construct based on injective one-way functions.5

Our construction of promise ZK roughly follows the FLS paradigm [FLS90] for ZK:

• First, the prover and the verifier engage in a three round “trapdoor generation phase” that
determines a secret “trapdoor” that is known to the verifier but not the prover.

• Next, in a proof phase, the prover commits to 0 in a (three round) delayed-input extractable
commitment and proves via a Zap that either the purported statement is true or that it
committed to the trapdoor (instead of 0).

By appropriately parallelizing both of these phases, we obtain a three round protocol in the
simultaneous-message model. Below, we discuss the challenges in proving soundness and promise
ZK properties.

Proving Soundness. In order to argue soundness, a natural strategy is to rewind the cheating
prover in the second and third round to extract the value it has committed in the extractable
commitment. If this value is the trapdoor, then we can (hopefully) break the hiding property of
the trapdoor generation phase to obtain a contradiction. Unfortunately, this strategy doesn’t work
as is since the trapdoor generation phase is parallelized with the extractable commitment. Thus,
while extracting from the extractable commitment, we may inadvertently also break the security
of the trapdoor generation phase! Indeed, this is the key problem that arises in the construction
of non-malleable protocols.

Our main observation is that in order to prove soundness, it suffices to extract the trapdoor
from the cheating prover with some noticeable probability (as opposed to overwhelming probability).
Now, suppose that the extractable commitment scheme is such that it is possible to extract the
committed value via k rewinds (for some small integer k) if the “main thread” of execution is non-
aborting with noticeable probability. Then, we can still argue soundness if the trapdoor generation
has a stronger hiding property, namely, security under k rewinds (but is insecure under more than
k rewinds to enable simulation; see below).

We note that standard extractable commitment schemes such as [PRS02, Ros04] achieve the
above extraction property for k = 1. This means that we only require the trapdoor generation
phase to maintain hiding property under 1 rewinding. Such a scheme can be easily constructed
from one-way functions.

Proving Promise ZK. In order to prove the promise ZK property, we construct a simulator
that learns information from the verifier in the third round, in order to simulate its view in the
third round! Roughly, our simulator first creates multiple “look-ahead” execution threads6 with
the adversarial verifier in order to extract the trapdoor from the trapdoor generation phase. Note
that unlike typical ZK protocols where such a look-ahead thread only consists of partial protocol
transcript, in our case, each look-ahead thread must contain a full protocol execution since the
trapdoor generation phase completes in the third round.

Now, since the adversarial verifier may be rushing, the simulator must first provide its third
round message (namely, the second message of Zap) on each look-ahead thread in order to learn the
verifier’s third round message. Since the simulator does not have a trapdoor yet, the only possibility
for the simulator to prepare a valid third round message is by behaving honestly. However, the

5In particular, replacing Zaps with delayed-input WI proofs relies on our leveled rewinding security technique that
we describe in Section 2.2. We do not discuss it here to avoid repetition.

6Throughout, whenever the simulator rewinds, we call each rewound execution a look-ahead thread. The messages
that are eventually output by the simulator are denoted by the main thread.
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simulator does not have a witness for the statement proven by the honest prover. Thus, it may
seem that we have run into a circularity.

This is where the distributional aspect of our notion comes to the rescue. Specifically, on
the look-ahead execution threads, the simulator simply samples a fresh statement together with a
witness from the distribution and proves the validity of the statement like an honest prover. Once it
has extracted the trapdoor, it uses its knowledge to cheat (only) on the main thread (but continues
to behave honestly on each look-ahead thread). 7

2.2 Four Round Secure Multiparty Computation

We now describe the main ideas underlying our compiler from any three round semi-malicious MPC
protocol Π (where the first round is immune to malicious behavior) to a four round malicious-secure
MPC protocol Σ. For simplicity of presentation, in the discussion below, we ignore the first round
of Π, and simply treat it as a two round protocol.

Starting Ideas. Similar to [ACJ17], our starting idea is to follow the GMW paradigm [GMW87]
for malicious security. This entails two main steps: (1) Enabling extraction of adversary’s inputs,
and (2) Forcing honest behavior on the adversary in each round of Π. A natural idea to implement
the first step is to require each party to commit to its input and randomness via a three round
extractable commitment protocol. To force honest behavior, we require each party to give a delayed-
input ZK proof together with every message of Π to establish that it is “consistent” with the input
and randomness committed in the extractable commitment.

In order to obtain a four-round protocol Σ, we need to parallelize all of these sub-protocols
appropriately. This means that while the proof for the second message of Π can be given via a
four round (delayed-input) regular ZK proof, we need a three round proof system to prove the
well-formedness of the first message of Π. However, as discussed earlier, three-round ZK proofs are
known to be impossible w.r.t. black-box simulation [GK96, GMPP16] and even with non-black box
simulation, are not known from standard assumptions.

Promise ZK and Partitioned Simulation. While Ananth et al. [ACJ17] tackled this issue
by using sub-exponential hardness, we address it via partitioned simulation to base security on
polynomial-time assumptions. Specifically, we use different mechanisms for proving honest behavior
depending upon whether or not the adversary is aborting in the third round. For now, let us assume
that the adversary does not abort in the third round of Σ; later we briefly discuss the aborting
adversary case.

For the non-aborting case, we rely upon a three-round (delayed-input) distributional promise
ZK to prove well-formedness of the first message of Π. As we discuss below, however, integrating
promise ZK in our construction involves overcoming several technical challenges due to specific
properties of the promise ZK simulator (in particular, its requirement to behave honestly in look-
ahead threads).8

We also remark that in our actual construction, to address non-malleability concerns [DDN91],
the promise ZK and the standard ZK protocols that we use are suitably “hardened” using three-
round non-malleable commitments [GPR16, Khu17] to achieve simulation soundness [Sah99] in

7The idea of using a witness to continue simulation is an old one[BS05]. Most recently, [JKKR17] used this idea
in the context of arguments in the distributional setting.

8Our construction of four round MPC, in fact, uses promise ZK in a non-black-box manner for technical reasons.
We ignore this point here as it is not important to the discussion.
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order to ensure that the proofs given by the adversarial parties remain sound even when the proofs
given by honest parties are simulated.

For simplicity of discussion, however, here we largely ignore this point, and instead focus on
the technical ideas that are more unique to our construction.

How to do “Non-Malleable” Input Extraction? While the above serves as a good starting
point, things start to unravel quickly when we attempt to prove security. Let us start with the
issue of extraction of adversary’s input and trapdoors (for simulation of ZK proofs). In the above
protocol, in order to extract adversary’s input and trapdoors, the simulator rewinds the second and
third rounds. Note, however, that this process also rewinds the input commitments of the honest
parties since they are executed in parallel. This poses the following fundamental challenge: we
must somehow maintain privacy of honest party’s inputs even under rewinds, while still extracting
the inputs of the adversarial parties.

A plausible strategy to address this issue is to cheat in the rewound executions by sending
random third round messages in the input commitment protocol on behalf of each honest party.
This effectively nullifies the effect of rewinding on the honest party input commitments. However,
in order to implement such a strategy, we need the ability to cheat in the ZK proofs since they are
proving “well-formedness” of the input commitments.9

Unfortunately, such a strategy is not viable in our setting. As discussed in the previous subsec-
tion, in order to simulate the promise ZK on the main thread, the simulator must behave “honestly”
on the rewound execution threads. This suggests that we cannot simply “sidestep” the issue of
rewinding and instead must somehow make the honest party input commitments immune to rewind-
ing. Yet, we must do this while still keeping the adversary input commitments extractable. Thus,
it may seem that we have reached an impasse.

Leveled Rewinding Security to the Rescue. In order to break the symmetry between input
commitments of honest and adversarial parties, we use the following sequence of observations:

• The security of the honest party input commitments is only invoked when we switch from a
hybrid experiment (say) Hi to another experiment Hi+1 inside our security proof. In order to
argue indistinguishability of Hi and Hi+1 by contradiction, it suffices to build an adversary
that breaks the security of honest party input commitments with some noticeable probability
(as opposed to overwhelming probability).

• This means that the reduction only needs to generate the view of the adversary in hybrids
Hi and Hi+1 with some noticeable probability. This, in turn, means that the reduction only
needs to successfully extract the adversary’s inputs and trapdoor (for generating its view)
with noticeable probability.

• Now, recall that the trapdoor generation phase used in our promise ZK construction is secure
against one rewind. However, if we rewind two times, then we can extract the trapdoor with
noticeable probability.

• Now, suppose that we can construct an input commitment protocol that maintains hiding
property even if it is rewound two times, but guarantees extraction with noticeable probability
if it is rewound three times. Given such a commitment scheme, we resolve the above problem
as follows: the reduction rewinds the adversary three times, which ensures that with noticeable
probability, it can extract both the trapdoor and the inputs from the adversary. In the first

9Indeed, [ACJ17] implement such a strategy in their security proof by relying on sub-exponential hardness as-
sumptions.
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two rewound executions, the reduction generates the third round messages of the honest party
input commitments honestly. At this point, the reduction already has the trapdoor. Now, in
the third rewound execution, it generates random third messages in the honest party input
commitments and uses the knowledge of the trapdoor to cheat in the proof.

The above strategy allows us to extract the adversary’s inputs with noticeable probability while
still maintaining privacy of honest party inputs. To complete this idea, we construct a new ex-
tractable commitment scheme from injective one-way functions that achieves the desired “bounded-
rewinding” property.

Taking a step back, note that in order to implement the above strategy, we created two levels of
rewinding security: while the trapdoor generation phase is secure against one rewind (but insecure
against two rewinds), the input commitment protocol is secure against two rewinds (but insecure
against three rewinds). We refer to this technique as leveled rewinding security, and this is precisely
what allows us to avoid the use of leveled complexity leveraging used in [ACJ17].

A Double-Rewinding Strategy. Similar to [ACJ17], our final simulator also behaves honestly
in the first three rounds using random inputs for the honest parties. The role of promise ZK is to
help transition from honest behavior using real inputs to honest behavior using random inputs.

Unfortunately, it is not immediately clear how to implement the above idea in our setting. The
main issue arises due to the properties of the simulator of promise ZK: in order to facilitate switching
from using input (say) xi to input 0 for an honest party i on the main thread, we create rewound
execution threads where we behave honestly using input xi (this is required by the simulator of
promise ZK). This means that in our final simulation, we need to remove the use of input xi from
every execution thread and not just the main thread. However, for any such switch on any execution
thread, we need some execution threads where we behave honestly. So once again, it seems that
we have run into a circularity.

We resolve the above issue by using a double-rewinding strategy. Roughly, suppose we were
using t rewound execution threads to facilitate switching from input xi to input 0 on the main
thread. Then, we double the number of rewound execution threads to 2t. Now, we behave honestly
on the first t threads as usual, but on each thread t+ j, where 1 ≤ j ≤ t, we switch from input xi
to 0 one-by-one. To facilitate each of these transitions, we utilize the first t threads. Once we have
successfully made the switch on each thread t+ j, we simply “kill” the first t threads, and now we
are simply left with t rewound execution threads where we use input 0.

Other Issues. The above discussion ignores several important details. For one, so far we haven’t
addressed the case where the adversary aborts in the third round with overwhelming probability.
Note that in this case, we cannot rely upon promise ZK since there is no hope for extraction from
such an aborting adversary (which is necessary for simulating promise ZK).

Thus, we need a different mechanism in this case to allow us to transition from honest behavior
in the first three rounds using real inputs to honest behavior using random inputs. On the positive
side, in this case, we do not need any of our sub-protocols to be “rewinding secure” since there is
no rewinding happening at all in this case. For this reason, we are able to rely upon the techniques
from the recent work of Jain et al. [JKKR17] to address this specific case. We are able to adapt their
ideas for constructing three round strong WI arguments to our setting without much modifications;
however, as in their work, the proofs are quite delicate, and we refer the reader to the technical
sections for more details.

Finally, we note that since our partitioned simulation technique crucially relies upon identifying
whether an adversary is aborting or not, we have to take precaution during simulation to avoid
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the possibility of the simulator running in exponential time. For this reason, we use ideas first
developed in [GK96] and later used in many subsequent works, to ensure that the running time of
our simulator is expected polynomial-time.

2.3 List Coin-Tossing

We now describe the main ideas underlying our construction of three round multiparty list coin-
tossing. We start by describing the basic structure of our protocol:

• We start with a two-round semi-honest multiparty coin-tossing protocol based on injective
one-way functions. Such a protocol can be constructed as follows: in the first round, each
party i commits to a string ri chosen uniformly at random, using a non-interactive com-
mitment scheme. In the second round, each party reveals ri without the decommitment
information. The output is simply the XOR of all the ri values.

• To achieve malicious security, we “compile” the above semi-honest protocol with a (delayed-
input) distributional promise ZK protocol. Roughly speaking, in the third round, each party
i now proves that the value ri is the one it had committed earlier. By parallelizing the two
sub-protocols appropriately, we obtain a three round protocol.

We first note that as in the case of our four round MPC protocol, here also we need to “harden”
the promise ZK protocol with non-malleability properties. We do so by constructing a three-round
simulation-extractable promise ZK based on injective one-way functions and then using it in the
above compiler. Nevertheless, for simplicity of discussion, we do not dwell on this issue here, and
refer the reader to the technical sections for further details.

We now describe the main ideas underlying our simulation technique. As in the case of four
round MPC, we use partitioned simulation strategy to split the simulation into two cases, depending
upon whether the adversary aborts or not in the third round.

Aborting Case. If the adversary aborts in the third round, then the simulator simply behaves
honestly using a uniformly random string ri on behalf of each honest party i. Unlike the four round
MPC case, indistinguishability can be argued here in a straightforward manner since the simulated
transcript is identically distributed as a real transcript. The main reason why such a strategy
works is that since the parties do not have any input, there is no notion of “correct output” that
the simulator needs to enforce on the (aborting) adversary. This is also true for any randomized
inputless functionality, and indeed for this reason, our result extends to such functionalities. Note,
however, that this is not true for general functionalities where each party has an input.

Non-Aborting Case. We next consider the case where the adversary does not abort in the third
round with noticeable probability. Note that in this case, when one execution thread completes, the
simulator learns the random strings rj committed to by the adversarial parties by simply observing
the adversary’s message in the third round.

At this point, the simulator queries the ideal functionality to obtain the random output (say)
R and then attempts to “force” it on the adversary. This involves simulating the simulation-
extractable promise ZK and sending a “programmed” value r′i on behalf of one of the honest
parties so that it leads to the desired output R. Now, since the adversary does not abort in the
last round with noticeable probability, it would seem that after a polynomial number of trials, the
simulator should succeed in forcing the output. At this point, it seems that we have successfully
constructed a three round multiparty coin-tossing protocol, which contradicts the lower bound of
[GMPP16]!
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We now explain the flaw in the above argument. Note that an adversary’s aborting behavior
may depend upon the output it receives in the last round. For example, it may always choose to
abort if it receives an output that starts with 00. Thus, if the simulator attempts to repeatedly
force the same random output on the adversary, it may never succeed.

This is where list coin-tossing comes into the picture. In list coin-tossing, the simulator obtains
a polynomial number of random strings from the ideal functionality, as opposed to a single string
in regular coin-tossing. Our simulator attempts to force each of (polynomially many) random
strings one-by-one on the adversary, in the manner as explained above. Now, each of the trials are
independent, and therefore the simulator is guaranteed to succeed in forcing one of the random
strings after a polynomial number of attempts.

Organization. We define some preliminaries in Section 3 and some building blocks for our pro-
tocols in Section 4. In Section 5, we give the definition and construction of Promise ZK. This
is followed by the construction and proof of our four round maliciously secure MPC protocol in
Section 6.

Then, in Section 7, we give the definition and construction of Simulation Extractable Promise
ZK. This is followed by the definition, construction and proof of List Coin Tossing in Section 8.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. Throughout this
paper, we will use λ to denote the security parameter, and negl(λ) to denote any function that
is asymptotically smaller than 1

poly(λ) for any polynomial poly(·). We will use PPT to describe
a probabilistic polynomial time machine. We will also use the words “rounds” and “messages”
interchangeably, whenever clear from context.

3.1 Non-Malleable Commitments

We follow the definition of non-malleable commitments by Pass and Rosen [PR05] and further
refined by Lin et al [LPV08] and Goyal [Goy11]. (All of these definitions build upon the original
definition of Dwork et al. [DDN91]). Further, we consider delayed-input non malleable commit-
ments where the committer chooses his input only in the last round. In the real interaction, there
is a man-in-the-middle adversary MIM interacting with a committer C (where C commits to value
v) in the left session, and interacting with receiver R in the right session. Prior to the interaction,
the value v is given to C as local input. MIM receives an auxiliary input z, which might contain
a-priori information about v. Then the commit phase is executed. Let MIM〈C,R〉(val, z) denote a

random variable that describes the value ṽal committed by the MIM in the right session, jointly
with the view of the MIM in the full experiment. In the simulated experiment, a PPT simulator
S directly interacts with the MIM. Let Sim〈C,R〉(1

λ, z) denote the random variable describing the

value ṽal committed to by S and the output view of S. If the tags in the left and right interaction
are equal, the value ṽal committed in the right interaction, is defined to be ⊥ in both experiments.
Also, we only consider synchronizing man-in-the-middle adversaries.

Definition 1 (Non-malleable Commitments w.r.t. Commitment). A commitment scheme 〈C,R〉
is said to be non-malleable if for every PPT MIM, there exists a PPT simulator S such that the
following ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)}n∈N,v∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1λ, z)}n∈N,v∈{0,1}λ,z∈{0,1}∗
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Goyal et al.[GPR16] construct three-round non-malleable commitments from injective OWFs.
Also, in their construction, there exists a polynomial time extractor that extracts the value com-
mitted to by the MIM via a single rewind with noticeable probability, if MIM honestly completed
the main thread with noticeable probability. Since we require the existence of such an extrac-
tor, we cannot rely on the two-message protocols that achieve non-malleability with respect to
opening [GKS16].

3.2 Secure Multiparty Computation

As in [Gol04], we follow the real-ideal paradigm for defining secure multi-party computation. The
only difference is that our simulator can run in super-polynomial time. A formal definition can be
found in Appendix A.

Semi-malicious adversary: An adversary is said to be semi-malicious if it follows the protocol
correctly, but with potentially maliciously chosen randomness. We refer the reader to Appendix A
for more details.

4 Bulding Blocks

We now describe some of the building blocks we use in our constructions.

4.1 Trapdoor Generation Protocol

In this section, we define and construct a primitive called Trapdoor Generation Protocol. In such
a protocol, a sender S (a.k.a. trapdoor generator) communicates with a receiver R. The protocol
satisfies two properties: (i) Sender security, i.e., no cheating PPT receiver can learn the trapdoor,
and (ii) Extraction, i.e., there exists an expected PPT algorithm (a.k.a. extractor) that can extract
the trapdoor from an adversarial sender via rewinding.

Three-round trapdoor generation protocols are known in the literature based on various assump-
tions [PRS02, Ros04, COSV17a]. Here, we consider trapdoor generation protocols with a stronger
sender security requirement that we refer to as 1-rewinding security. Below, we formally define
this notion and then proceed to give a three-round construction for the same based on one-way
functions. Our construction is a minor variant of the trapdoor generation protocol from [COSV17a].

Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid)
is a 3 round protocol between two parties - a sender (trapdoor generator) S and receiver R that
proceeds as below. Additionally, the protocol also has an associated algorithm TDExt which helps
to extract a valid trapdoor from the protocol messages.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R1 ← TDGen1(rS) using a random string rS .

2. Round 2 - TDGen2(·):
R computes and sends tdR→S2 ← TDGen2(td

S→R
1 ) using randomness rR.

3. Round 3 - TDGen3(·):
S computes and sends tdS→R3 ← TDGen3(td

S→R
1 , tdR→S2 ; rS)
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4. Output - TDOut(·)
The receiver R outputs TDOut(tdS→R1 , tdR→S2 , tdS→R3 ).

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R1 ), output a single bit 0 or 1 that determines whether the value t is
a valid trapdoor corresponding to the message td1 sent in the first round of the trapdoor
generation protocol.

Note that the algorithm TDValid does not form a part of the interaction between the trapdoor
generator and the receiver. It is, in fact, a public algorithm that enables publication verification
of whether a value t is a valid trapdoor for a first round message td1 generated by the trapdoor
generator.

Extraction. There exists an expected PPT extractor TDExt that, given a set of values (td1, {tdi2, tdi3}3i=1)
such that TDOut(td1, td

i
2, td

i
3) = 1 for all i ∈ [3], outputs a trapdoor t such that TDValid(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trapdoor generation
protocol TDGen. Consider the following experiment between a sender S and a receiver R.

Experiment E:

• R interacts with S and completes one execution of the protocol TDGen. R receives values
(td1, td3) in rounds 1 and 3 respectively.

• Then, R rewinds S to the beginning of round 2.

• R sends S a new second round message td∗2 and receives a message td∗3 in the third round.

• At the end of the experiment, R outputs a value t∗.

Definition 2 (1-Rewinding Security). A trapdoor generation protocol TDGen = (TDGen1,TDGen2,
TDGen3,TDOut,TDValid) achieves 1-rewinding security if, for every non-uniform PPT receiver R∗

in the above experiment E,

Pr
[
TDValid(t∗, td1) = 1

]
≤ negl(λ),

where the probability is over the random coins of V . t∗ is the output of R∗ in the experiment E and
td1 is the message from S in round 1.

4.1.1 Construction

We now construct a three round trapdoor generation protocol assuming the existence of one way
functions.

Consider a sender S and a receiver R who wish to run the trapdoor generation protocol. Let
λ denote the security parameter. Let (Gen, Sign,Verify) be an unforgeable signature scheme based
on one-way functions.

Theorem 5. Assuming the existence of one way functions, the protocol πTD described in Figure 1
is a trapdoor generation protocol that satisfies the notion of 1-rewinding security.
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1. Round 1 - TDGen1(rS):
S does the following:

• Generate (sk, vk)← Gen(rS).

• Send tdS→R1 = (vk) to R.

2. Round 2 - TDGen2(td
S→R
1 ):

R sends a random string m as the message tdR→S2 to S.

3. Round 3 - TDGen3(td
S→R
1 , tdR→S2 ; rS):

S computes and sends tdS→R3 = Sign(sk,m; rm) where rm is randomly picked.

4. Output: - TDOut(tdS→R1 , tdR→S2 , tdS→R3 )
The receiver R outputs 1 if Verify(tdS→R1 ,m, tdS→R3 ) = 1.

5. Trapdoor Validation Algorithm - TDValid(t, td1):
Given input (t, td1), the algorithm does the following:

• Let t = (mi, σi)
3
i=1.

• Output 1 if Verify(td1,mi, σi) = 1 for all i ∈ [3].

Figure 1: Trapdoor Generation Protocol.

Proof. Suppose the protocol πTD is not 1-rewinding secure. That is, there exists a malicious receiver
R∗ that breaks the 1-rewinding security. We will use R∗ to design an adversary ASign that breaks
the unforgeability of the signature scheme. In the experiment E, ASign performs the role of S and
interacts with R∗. Also, ASign interacts with a challenger CSign and receives a verification key vk
which is set as td1 and sent to R∗ in round 1.

Now, on receiving a query td2 = m from R∗, ASign forwards this to CSign and receives a value
σm from CSign which it sends to R∗ as the message td3. Then, on receiving a query td∗2 = m∗ from
R∗ in the rewound execution, ASign once again does the same. That is, ASign forwards this to CSign
and receives a value σm∗ from CSign which it sends to R∗ as the message td∗3.

Then, since R∗ breaks the 1-rewinding security, it outputs a value t∗ in experiment E such that
TDValid(t∗, td1) = 1 with non-negligible probability p. Recall from the definition of the algorithm
TDValid, it must be the case that t∗ = {mi, σi}3i=1 such that Verify(vk,mi, σi) = 1 for all i. ASign

picks the value mi /∈ {m,m∗} and outputs (mi, σi) to the challenger CHid as a forgery.

Extractor TDExt(·). The extractor works as follows. It receives a verification key vk = td1,
and a set of values (mi, σi) for all i ∈ [3], such that Verify(vk,mi, σi) = 1. Then, TDExt outputs
t = (mi, σi)

3
i=1 as a valid trapdoor. Correctness of the extraction is easy to see by inspection.

4.2 WI with Bounded Rewinding Security

We define the notion of 3 round delayed input witness indistinguishable argument with “Bounded
Rewinding” security and construct such a primitive assuming the existence of injective one way
functions. Such a primitive has been implicitly constructed and used in literature previously. For
example, in Goyal et al. [GRRV14], they construct and use the notion of WI arguments with 1-
rewinding security based on injective one way functions. For the sake of completeness we formally
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define it here and briefly describe the construction in Appendix B. In our applications, we will
instantiate the rewinding parameter L with the value 5.

Definition 3 (3 Round Delayed Input WI with Bounded Rewinding Security). Fix a positive in-
teger L. A delayed input witness indistinguishable argument system RWI = (Prove,Valid) (a formal
definition of it can be found in [JKKR17]) is said to satisfy L-Rewinding Security if for every non-
uniform PPT verifier V ∗, there exists a simulator S such that the output of the experiments REAL
and IDEAL defined below are indistinguishable.

Experiment REAL:

1. V ∗ interacts with an honest prover P that has access to an efficiently sampleable distribution
of (instance, witness) pairs. V ∗ completes one execution of the protocol RWI and receives
values (rwi1, rwi3) in rounds 1 and 3 respectively.

2. Then, V ∗ rewinds P to the beginning of round 2 and sets a counter value to 0.

3. V ∗ sends P a new second round message rwi∗2 and receives a message rwi∗3 in the third round.

4. V ∗ updates the value of the counter. If counter < L, go back to step 2.

5. At the end of the experiment, V ∗ outputs some value.

Experiment IDEAL:

1. V ∗ interacts with a simulator Sim that is able to sample only instances using the same distri-
bution as the honest prover P . V ∗ completes one execution of the protocol RWI and receives
values (rwi1, rwi3) in rounds 1 and 3 respectively.

2. Then, V ∗ rewinds P to the beginning of round 2 and sets a counter value to 0.

3. V ∗ sends P a new second round message rwi∗2 and receives a message rwi∗3 in the third round.

4. V ∗ updates the value of the counter. If counter < L, go back to step 2.

5. At the end of the experiment, V ∗ outputs some value.

4.3 Extractable Commitment with Bounded Rewinding Security - BRew.ECom

In this section, we describe a three round delayed-input extractable commitment protocol that
achieves hiding property against an a priori bounded number of rewinds. Consider a committer C
with input x and a receiver R. We consider hiding of the commitment scheme against a malicious
receiver who can rewind the committer back to the start of the second round an a priori fixed
bounded number of times (K times as defined in the protocol) and the security property we require is
that the committed value still remains hidden. However, unlike the “1-rewinding security” property
of the trapdoor generation protocol, we don’t explicitly define or prove a K- rewinding security
property for this extractable commitment scheme. Instead, this is done inline in the application -
the four round MPC protocol (in Section 6) by opening up the details of the construction to make
the exposition easier. In our particular application, we set the value of the parameter K to be 4.
However, in general, K can be any polynomial in the security parameter λ.

In the next subsection, we use this primitive to build another extractable commitment scheme
which is then used in the construction of our 4 round MPC protocol.
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Construction. We use a non-interactive commitment scheme Com to build the scheme. The
protocol (BRew.ECom1,
BRew.ECom2,BRew.ECom3) is described in Figure 2. We also define a property called “well-
formedness” of the commitment scheme. Additionally, the scheme BRew.ECom has an associated
algorithm ExtBRew.ECom. The property we require from the extractor ExtBRew.ECom is that given a
set of (K + 1) “well-formed” executions of the commitment scheme using the same sender message
for the first round, the extractor successfully extracts the message inside the commitment except
with negligible probability. The description of the extractor ExtBRew.ECom follows after the scheme.

Sender S has input x.

Commitment Phase:

1. Round 1:
S does the following:
• Pick λ random degree K polynomials p1, . . . , pλ.

• Compute brew.ecS→R1,l = Com(pl) for all l ∈ [λ].

• Send brew.ecS→R1 = (brew.ecS→R1,1 , . . . , brew.ecS→R1,λ ) to R.

2. Round 2:
R does the following:

• Pick random values z1, . . . , zλ.

• Send brew.ecR→S2 = (z1, . . . , zλ) to S.

3. Round 3:
S does the following:

• Compute brew.ecS→R3,l = (x⊕ pl(0), pl(zl)) for all l ∈ [λ].

• Send brew.ecS→R3 = (brew.ecS→R3,1 , . . . , brew.ecS→R3,λ ) to R.

Decommitment Phase:

1. S outputs p1, . . . , pλ along with the randomness used in the first round commitments.

2. First, for each l, R verifies the commitment of pl given in round 1 and the correctness of
the value pl(zl) in round 3.

3. Then, for each l, R computes x using the message (x⊕ pl(0)) and outputs ⊥ if x is not the
same across all values of l.

Figure 2: Extractable Commitment Scheme BRew.ECom.

Well-formedness: The sender’s messages brew.ecS→R1 , brew.ecS→R3 are said to be well-formed
with respect to the receiver’s message brew.ecR→S2 if:
There exists x and a set A of size (λ− 1) such that for every l in this set, the following holds:

• brew.ecS→R1,l = Com(pl) (AND)

• brew.ecS→R3,l = (x⊕ pl(0), pl(zl)), where zl was received in round 2.
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Extractor ExtBRew.ECom: Recall that what we require from the extractor ExtBRew.ECom is that
given a set of (K + 1) “well-formed” executions of the commitment scheme using the same sender
message for the first round, the extractor successfully extracts the message inside the commitment
except with negligible probability. As in the case of the trapdoor generation protocol, note that in
reality, there is an expected PPT rewinding procedure to obtain these (K+ 1) “well-formed” tuples
from the malicious sender. The simulator in our applications does that and then feeds these tuples
to the extractor ExtBRew.ECom.

The extractor’s strategy is described in Figure 3.

Input: (brew.ec1, {brew.eci2, brew.eci3}K+1
i=1 ) where (brew.ec1, brew.ec

i
3) denote messages from the

sender and brew.eci2 denote the receiver’s messages. Also, for all i, (brew.ec1, brew.ec
i
2, brew.ec

i
3)

is “well-formed”.

1. For each j ∈ [λ], do:

• Using the set of values {zij , pj(zij)} for all i ∈ [K + 1], compute a degree K polynomial
pj .

• Let brew.eci3,j = (aij , b
i
j).

• If aij is equal for all i, compute xj = (aij ⊕ pj(0)).

• Else, set xj = ⊥.

2. Consider the set of values x1, . . . , xλ. If majority of these values is equal, output that value
x. Else, output ⊥.

Figure 3: Strategy of algorithm ExtBRew.ECom.

We now analyze why the extraction is successful. We know that for all i ∈ [K+1], the messages
(brew.ec1, brew.ec

i
2, brew.ec

i
3) form a “well-formed” commitment scheme. So, for each i, there exists

at most one j such that brew.eci3,j = (aij , b
i
j) was not computed honestly. That is, putting it

together, across all i ∈ [K + 1], there exists at most (K + 1) values of brew.eci3,j that were not

computed honestly. This implies that for atleast (λ−K− 1) values of j, the values brew.eci3,j were
computed correctly for all i and this completes the proof.

Claim 1. Assuming the hiding of the commitment scheme Com, the above scheme BRew.ECom is
hiding.

Proof. We will now prove this claim via a series of intermediate hybrids Hyb1 to Hyb4 where Hyb1
corresponds to using input x1 and Hyb4 corresponds to using input x2.

• Hyb1: This is the real experiment with sender input x1.

• Hyb2: In round 1, compute brew.ec1,l = Com(0) for all l.
This is indistinguishable from the previous hybrid by the hiding property of the scheme Com.

• Hyb3: For each l, pick a new degree K polynomial ql such that (x1 ⊕ pl(0)) = (x2 ⊕ ql(0)).
Compute brew.ec3,l as (x2 ⊕ ql(0), ql(zl)).
This hybrid is statistically indistinguishable from the previous hybrid.
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• Hyb4: In round 1, compute brew.ec1,l = Com(ql) for all l. This corresponds to the real
experiment with sender input x2.
This is indistinguishable from the previous hybrid by the hiding property of the scheme Com.

4.4 Extractable Commitment with Reusability - R.ECom

We use this primitive in the construction of our 4 round MPC protocol. Informally, this is a
3 round delayed input protocol that has some form of reusability property. That is, consider a
committer C with input m and a receiver R. Informally, the property we require is that for a fixed
input m and fixed messages for the first 2 rounds, the sender can generate several distinct third
round messages. Once again, we don’t explicitly define or prove the reusability property for this
extractable commitment scheme here. Instead, this is done inline in the application - the 4 round
MPC protocol by opening up the details of the construction to make the exposition easier. Also,
in the 4 round MPC protocol, when we invoke this scheme, we set the value of the parameter K to
be 4. However, in general, K can be any polynomial in the security parameter λ.

To build our scheme R.ECom, we use a pseudorandom function PRF and the above extractable
commitment scheme BRew.ECom = (BRew.ECom1,BRew.ECom2,BRew.ECom3,ExtBRew.ECom). The
protocol (R.ECom1,R.ECom2,R.ECom3) is described in Figure 4. As before, we also define a prop-
erty called “well-formedness” of the commitment scheme.

Additionally, the scheme R.ECom has an associated algorithm ExtR.ECom. Once again, the prop-
erty we require from the extractor ExtR.ECom is that given a set of (K+ 1) “well-formed” executions
of the commitment scheme using the same sender message for the first round, the extractor suc-
cessfully extracts the message inside the commitment except with negligible probability.

The description of the extractor ExtR.ECom follows after the scheme.

Well-formedness: The sender’s messages r.ecS→R1 , r.ecS→R3 are said to be well-formed with re-
spect to the receiver’s message r.ecR→S2 if the underlying messages (brew.ecS→R1 , brew.ecS→R3 ) are
well-formed for the scheme BRew.ECom with respect to the receiver’s message brew.ecR→S2 .

Extractor ExtR.ECom: Recall that what we require from the extractor ExtR.ECom is that given a
set of (K + 1) “well-formed” executions of the commitment scheme using the same sender message
for the first round, the extractor successfully extracts the message inside the commitment except
with negligible probability. Once again, note that in reality, there is an expected PPT rewinding
procedure to obtain these (K + 1) “well-formed” tuples from the malicious sender. The simulator
in our applications does that and then feeds these tuples to the extractor ExtR.ECom.

ExtR.ECom runs the extractor ExtBRew.ECom of the underlying extractable commitment scheme
BRew.ECom to recover r. Then, ExtR.ECom computes m = βS→R⊕PRF(r, αS→R). Since ExtBRew.ECom
is a successful PPT extractor given a set of (K + 1) executions of “well-formed” commitment
messages, the same applies to ExtR.ECom as well.

Claim 2. Assuming the security of the extractable commitment BRew.ECom and the pseudorandom
function PRF, the above scheme R.ECom is hiding.

Proof. We will now prove this claim via a series of intermediate hybrids Hyb1 to Hyb5 where Hyb1
corresponds to using input m1 and Hyb5 corresponds to using input m2.

• Hyb1: This is the real experiment with sender input m1.
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Sender S has input m.

Commitment Phase:

1. Round 1:
S does the following:

• Compute brew.ecS→R1 ← BRew.ECom1(rbrew.ec) using randomness rbrew.ec.

• Send r.ecS→R1 = brew.ecS→R1 to R.

2. Round 2:
R does the following:

• Compute brew.ecR→S2 ← BRew.ECom2(brew.ec
S→S
1 ) using some randomness.

• Send r.ecR→S2 = brew.ecR→S2 to S.

3. Round 3:
S does the following:

• Pick two random strings αS→R, r.

• Compute brew.ecS→R3 ← BRew.ECom3(r, brew.ec
S→R
1 , brew.ecR→S2 ; rbrew.ec).

• Compute βS→R = PRF(r, αS→R)⊕m.

• Send r.ecS→R3 = (αS→R, brew.ecS→R3 , βS→R) to R.

Decommitment Phase:

1. S outputs the decommitment of the underlying scheme BRew.ECom.

2. R runs the decommitment phase of BRew.ECom to recover r.

3. Then, R computes m = PRF(r, αS→R)⊕ βS→R.

Figure 4: Extractable Commitment Scheme R.ECom.

• Hyb2: In this hybrid, pick a random value γ and compute brew.ecS→R3 = BRew.ECom3(γ, brew.ec
S→R
1 ,

brew.ecR→S2 ; rbrew.ec).
This is indistinguishable from the previous hybrid by the hiding property of the underlying
extractable commitment scheme BRew.ECom.

• Hyb3: In this hybrid, compute βS→R uniformly at random.
This is indistinguishable from the previous hybrid by the security of the pseudorandom func-
tion PRF.

• Hyb4: In this hybrid, compute βS→R = PRF(r, αS→R)⊕m2.
This is indistinguishable from the previous hybrid by the security of the pseudorandom func-
tion PRF.

• Hyb5: In this hybrid, compute brew.ecS→R3 = BRew.ECom3(r, brew.ec
S→R
a,1 , brew.ecR→S2 ; rbrew.ec).

This corresponds to the real experiment with sender input m2.
This is indistinguishable from the previous hybrid by the hiding property of the underlying
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extractable commitment scheme BRew.ECom.

5 Promise Zero Knowledge

In this section, we introduce a new notion of promise zero knowledge interactive arguments. Unlike
the standard notion of zero knowledge interactive arguments that is defined in the unidirectional-
message model of communication, promise ZK is defined in the simultaneous-message model, where
in every round, both the prover and the verifier simultaneously send a message to each other.
Crucially, in promise ZK, the zero knowledge property is only required to hold against a specific
class of non-aborting verifiers.

We start by formalizing interactive arguments in the simultaneous-message model (Section 5.1).
We define our new notion of promise ZK (Section 5.2). Later, in Section 7, we define the notion of
simulation-extractable promise ZK.

5.1 Simultaneous-Message Interactive Arguments

We formalize the notion of interactive arguments in the simultaneous-message model, or simultaneous-
message interactive arguments in short. In fact, we will consider simultaneous-message interactive
arguments in the delayed-input setting where the parties receive their inputs in the last round of
the protocol.

Simultaneous-Message Interactive Protocols. In an interactive protocol in the simultaneous-
message model (or in short, a simultaneous-message interactive protocol), in every round (including
the last), both parties send a message simultaneously to each other. However, a rushing adversary,
who corrupts either prover or verifier, may wait to receive the message of the other party in a
round, before sending its own message in that round.

Delayed-Input Interactive Protocols. We will focus on simultaneous-message interactive pro-
tocols for deciding languages. We start by describing some notation and terminology. A proto-
col execution between a prover P and a verifier V with instance x and witness w is denoted as
〈P, V 〉(x,w). Whenever clear from context, we also use the same notation to denote the output of
V . We use (Prove,Verify) to denote the algorithms used by P and V respectively. Let Trans(P, V )
denote the transcript of the execution between the parties P and V .

An n-round delayed-input simultaneous-message interactive protocol (Prove,Verify) between P
and V for deciding a language L with associated relation RL proceeds in the following manner:

• At the beginning of the protocol, P and V receive the size of the instance and execute the
first (n− 2) rounds.

• At the start of the second last round, P receives an input (x = (x1, x2), w) ∈ RL and V
receives x1.

• In the last round, V receives the other part of the statement x2. Upon receiving the last
round message from P , V outputs 1 or 0.

Looking ahead, we consider such a notion of delayed-input because in both our applications (the
four round MPC protocol and the three round protocols), the statement is in fact split into two
parts - one decided in the second last round and the other part decided only in the last round.
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In the sequel, we will consider two kinds of adversaries for delayed-input protocols:

• Adaptive Provers: We will consider adaptive adversarial provers, who may choose the instance
in an adaptive manner, depending upon the partial transcript of the protocol.

• Non-adaptive Verifiers: We will consider adversarial verifiers who receive the instance in the
same manner as an honest verifier (i.e., they receive the first part of the statement in the
second last round and the second part of the statement in the last round). We refer to
such adversarial verifiers as non-adaptive. As we will see later, security against non-adaptive
verifiers suffices for our applications of promise zero-knowledge.

Delayed-Input Interactive Arguments. An n-round delayed-input simultaneous-message in-
teractive argument for a language L must satisfy the standard notion of completeness as well as
soundness against adaptive provers.

Definition 4 (Delayed-Input Simultaneous-Message Interactive Arguments). An n-round delayed-
input interactive protocol (Prove,Verify) between P and V in the simultaneous-message model for
deciding a language L is an argument system for L if it satisfies the following properties:

• Completeness: For every (x,w) ∈ RL,

Pr
[
〈P, V 〉(x,w) = 1

]
≥ 1− negl(λ),

where the probability is over the random coins of P and V .

• Adaptive Soundness: For every z ∈ {0, 1}∗, every PPT prover P ∗ that chooses x ∈ {0, 1}λ\
L adaptively,

Pr
[
〈P ∗(z), V 〉(x) = 1

]
≤ negl(λ),

where the probability is over the random coins of V .

We enhance the syntax for simultaneous-message interactive arguments to include an addi-
tional algorithm Valid. That is, a simultaneous-message interactive argument is now denoted as
(Prove,Verify,Valid). The notions of completeness and soundness remain intact as before. Looking
ahead, the intuition behind introducing the new algorithm is that we want to capture those verifiers
who send a “valid”, non-aborting message in every round (including the last round). We do this
by using the Valid algorithm. This algorithm may be different for each protocol. Looking ahead,
in our protocols, the prover, at the end of the execution can check whether the verifier sent “valid”
messages with noticeable probability and we will require simulation only in such scenarios.

5.2 Promise ZK Definition

We now proceed to describe our notion of promise zero knowledge. Roughly speaking, we define
promise ZK similarly to standard ZK, with two notable differences: first, promise ZK is defined in
the simultaneous-message model. Further, Zero knowledge is only defined w.r.t. a special class of
verifiers who promise to not abort with some noticeable probability.

Before describing the notion, we first define what it means for an algorithm pExtract to be
“Admissible”.
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5.2.1 Admissible pExtractc

Consider a delayed-input simultaneous message interactive argument system (Prove,Verify,Valid),
and consider any verifier V ∗. Let Prove = (P1, P2) where (msg, st) ← P1(1

λ), and P2(x,w, st)
continues the rest of the Prove algorithm with V ∗. Let Trans(P2(x,w, st), V

∗) denote the protocol
transcript between P2 and V ∗: that is, Trans(P, V ∗) = (msg,Trans(P2(x,w, st), V

∗)).

Let qmsg = Pr(x,w←X,W )[Valid(msg,Trans(P2(x,w, st), V
∗)) = 1|(msg, ·) ← P1(1

λ)] where the
probability is over the random choices of (x,w) and the coins of the parties P2, V

∗.

An oracle algorithm pExtractc is said to be admissible if the following is true for all malicious
verifiers V ∗ :

• If pExtractV
∗

c (msg, st) = 0, then qmsg < 2 · λ−c.

• Otherwise, if pExtractV
∗

c (msg, st) = p, then p ≥ λ−c and p
2 < qmsg < 2 · p.

5.2.2 Promise ZK

We now formalize our notion of promise ZK. We note that this only considers the delayed-input
distributional setting.

Definition 5 (Promise Zero Knowledge). An n-round distributional delayed-input simultaneous-
message interactive argument (Prove,Verify,Valid) where Prove = (P1, P2) for a language L is said
to be promise zero knowledge against non-adaptive verifiers if for every efficiently sampleable dis-
tribution (Xλ,Wλ) on RL, i.e., Supp(Xλ,Wλ) = {(x,w) : x ∈ L ∩ {0, 1}λ, w ∈ RL(x)},

every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, every c > 0, and all admissible pExtractc,
there exists a simulator S = (P1,S2) such that for every PPT distinguisher D:

Consider the experiments REAL and IDEAL defined below. Let ViewV ∗ [REAL] denote the output
of the experiment REAL and ViewV ∗ [IDEAL] denote the output of the experiment IDEAL. Then:

1. The running time of oracle algorithm S2 on input (z, x, st, p) is poly(λ) ·O(1p).

2. Then, ∣∣∣∣∣Pr
[
D(z,ViewV ∗ [REAL] = 1

]
− Pr

[
D(z,ViewV ∗ [IDEAL]) = 1

]∣∣∣∣∣ ≤ λ−c
where the probability is over the random coins of the parties in the below experiments.

Experiment REAL: .

• Compute (msg, st)← P1(1
λ). Output msg.

• Then, sample (x,w)← (Xλ,Wλ).

• Output 〈P2(x,w, st), V
∗〉.
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Experiment IDEAL: .

• Compute (msg, st)← P1(1
λ). Output msg.

• Let pExtractV
∗

c (msg, st) = p.

• If p = 0, sample (x,w)← (Xλ,Wλ) and output 〈P2(x,w, st), V
∗〉

• Else, sample x← (Xλ) and output SV ∗2 (z, x, st, p).

Going forward, we use promise ZK argument to refer to a delayed-input distributional promise
zero-knowledge simultaneous-message argument system against non-adaptive verifiers.

5.3 Construction

In this section, we construct a three round Promise ZK argument system for NP. Formally, we
prove the following theorem:

Theorem 6. Assuming the existence of polynomially secure injective one way functions, the pro-
tocol πPZK is a three round Promise ZK argument.

We start by describing some notation and cryptographic primitives that we use in our construc-
tion.

Building Blocks. Our construction relies on the following list of cryptographic primitives.

• TDGen = (TDGen1,TDGen2,TDGen3) is the three-message trapdoor generation protocol as
defined in Section 4. TDGen also has two associated PPT algorithms TDValid,TDExt.
Recall that the algorithm TDValid takes as input a tuple of 4 values : the first three being
outputs of the algorithms TDGen1,TDGen2,TDGen3 and outputs 1 if the fourth value is a
valid trapdoor with respect to these three.
The algorithm TDExt, as defined earlier, with overwhelming probability, outputs a valid
trapdoor given the transcript of 3 executions of the protocol.

• RWI = (RWI1,RWI2,RWI3,RWI4) is the three round delayed-input witness indistinguishable
argument with bounded rewinding security defined in Section 4. The fourth algorithm RWI4
is the final verification algorithm. We will set the rewinding security parameter L to be 5 in
all our applications.

• PZK.ECom = (PZK.ECom1,PZK.ECom2,PZK.ECom3) is any three-message delayed-input ex-
tractable commitment scheme in which the third round message is indistinguishable from a
random string when the input is ⊥. Further, let ExtPZK.ECom denote the polynomial time
extractor of this scheme. We require that given the transcript of 2 executions of the protocol,
ExtPZK.ECom can extract the value committed to inside the commitment with non-negligible
probability. The extractable commitment schemes defined in [PRS02, Ros04, ACJ17] are a
few examples of such a scheme that can be based on one way functions.
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NP Languages. Given any NP language L characterized by relation R, we define a new NP
language LRWI characterized by the following relation RRWI. This language will be used in our
construction in the next subsection.
Statement: stRWI = (x, c1, c2, c3, td1, td2, td3)
Witness: wRWI = (w, t, rc)
Relation: R(stRWI,wRWI) = 1 if and only if :

• R(x,w) = 1

(OR)

• TDValid(td1, td2, td3, t) = 1 AND

• c1 = PZK.ECom1(rc) AND

• c3 = PZK.ECom3(t, c1, c2; rc).

That is, either :

1. x is in the language L with witness w (OR)

2. (c1, c2, c3) form a non-malleable commitment to a value t that is a valid trapdoor for the
messages (td1, td2, td3) generated using the trapdoor generation algorithms.

5.3.1 The Protocol

Let P denote the prover and V denote the verifier. Let L be any NP language with an associated
relation RL. Let (Xλ,Wλ) be any efficiently sampleable distribution on RL.

We construct a three round protocol πPZK = (P, V,Valid) for L. The protocol is described in
Figure 5. We first describe the algorithms (P, V ) denoting the interaction between the prover and
verifier. The description of algorithm Valid is given at the end. We use the notation P → V in the
superscript to denote that the message was sent by P to V . The round number of any sub-protocol
being used (the trapdoor generation or the bounded rewinding secure WI argument) is written in
the subscript.

Completeness follows from the correctness of the bounded rewinding secure WI protocol de-
scribed in Section 4.

5.4 Security Proof

We will now describe the proof of Soundness and Distributional Promise ZK to complete the proof
of Theorem 6.

5.4.1 Soundness

We will prove this by contradiction. Assume that soundness doesn’t hold. That is, there exists a
cheating prover P ∗ such that for some statement x∗ /∈ L of its choice,

Pr
[
〈P ∗(z), V 〉(x) = 1

]
≥ p,

where p is a non-negligible function and the probability is over the random coins of V . Then,
assuming the soundness of the bounded rewinding secure WI argument system, we will use this
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Inputs: Prover P has input (Xλ,Wλ) - an efficiently sampleable distribution on RL.

1. Round 1:

• Prover message:
Compute and send (rwiP→V1 ) ← RWI1(1

λ), cP→V1 ← PZK.ECom1(rc) using a random
string rc.

• Verifier message:
Compute and send tdV→P1 ← TDGen1(rtd) using a random string rtd.

2. Round 2:

• Prover message:

– Sample (x = (x1, x2), w)← (Xλ,Wλ).

– Compute and send tdP→V2 ← TDGen2(td
P→V
1 ) along with x1.

• Verifier message:
Compute and send rwiV→P2 ← RWI2(wi

P→V
1 ), cV→P2 ← PZK.ECom2(c

P→V
1 ).

3. Round 3:

• Prover message:
– Compute cP→V3 ← PZK.ECom3(⊥, cP→V1 , cV→P2 ; rc).

– Generate rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→V1 , cV→P2 , cP→V3 , tdV→P1 , tdP→V2 , tdV→P3 ) using witness (w,⊥,⊥).

– Send (x2, c
P→V
3 , rwiP→V3 ).

• Verifier message:
Compute and send tdV→P3 ← TDGen3(td

V→P
1 , tdP→V2 ; rtd) using randomness rtd.

4. Verifier Output:
Output RWI4(rwi

P→V
1 , rwiV→P2 , rwiP→V3 , stRWI).

Valid(Trans):
Given the transcript of the protocol execution, output 1 if TDOut(tdV→P1 , tdP→V2 , tdV→P3 ) = 1.

Figure 5: 3 round Promise ZK argument.

adversary to design an adversary ATDGen that breaks the “1-rewinding security” of the trapdoor
generation protocol TDGen as defined in Section 4 with non-negligible probability.
ATDGen interacts with a challenger CTDGen and receives a first round message td1 corresponding

to the protocol TDGen. ATDGen performs the role of V and interacts with P ∗. Now, in round 1 of
protocol π, ATDGen sets tdV→P1 as td1 received from CTDGen. On receiving a value tdP→V2 from P ∗

in round 2, ATDGen forwards this message to CTDGen as its second round message for the protocol
TDGen. ATDGen receives td3 from CTDGen which is set as tdV→P3 in its interaction with P ∗. ATDGen

participates in the rest of the interaction as described in protocol πPZK. Then, ATDGen rewinds the
adversary P ∗ back to the beginning of round 2. That is, ATDGen creates a look-ahead thread that
runs only rounds 2 and 3 of protocol πPZK. As in the main thread, ATDGen forwards the adversary’s
message tdP→V2 from P ∗ in round 2 to CTDGen and receives td3 from CTDGen which is set as tdV→P3

in its interaction with P ∗.
Now, ATDGen runs the extractor ExtPZK.ECom of the extractable commitment scheme using the

messages in both the threads that correspond to the extractable commitment from P ∗ to the verifier.
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Let the output of ExtPZK.ECom be t∗. ATDGen outputs t∗ as a valid trapdoor to CTDGen.
Let’s analyze why this works. We know that the underlying bounded rewinding secure WI

protocol RWI is sound except with negligible probability ε. Therefore, since the verifier (in this
case ATDGen) accepts the argument given by P ∗ with non-negligible probability, from the soundness
of RWI and the fact that x∗ /∈ L, it must be the case that P ∗ used the alternate witness in the RWI
arguments produced in both the threads. Therefore, with non-negligible probability p2 · (1− ε), the
adversary P ∗, using the non-malleable commitment, commits to a valid trapdoor t∗ for the trapdoor
generation messages of the verifier TDGen. Let’s say the extractor ExtPZK.ECom is successful with
non-negligible probability q. Therefore, with non-negligible probability p2 ·q ·(1−ε), ATDGen outputs
t∗ as a valid trapdoor to CTDGen which breaks the 1-rewinding security of the trapdoor generation
protocol TDGen which is a contradiction.

5.4.2 Distributional Promise ZK

We now show that the above protocol satisfies the Distributional Promise ZK property against
non-adaptive malicious verifiers. In order to do that, we need to construct a simulator Sim =
(Sim1, Sim2) satisfying Definition 5 . Lets consider a malicious verifier V ∗. Let x denote the
external statement sample given as input to Sim without an accompanying witness.

Before we describe the details, lets recall the basic strategy followed by a rewinding simulator.
Sim creates a “main thread” of execution that will be actually output at the end of the simulation
and a set of “look-ahead” threads that will facilitate the extraction of the adversary’s trapdoor.
Each look-ahead thread created by Sim shares the first round with the main thread, but contains
different messages in the second and third rounds. Sim will use the adversary’s messages in the
third round of these look-ahead threads to extract the adversary’s trapdoor and then use this ap-
propriately in the main thread to simulate the adversary’s final view.

Running time of Sim2: The number of look-ahead threads created is (λ · 1p) where p is the value
that is given as input to Sim2. Hence, it is easy to see that the running time of Sim2 is indeed
poly(λ) ·O(1p).

To prevent a cluttered description, we overload notation when referring to the same object in
the main thread and the look-ahead threads. However, it will be clear from context which thread’s
object is being referred to.

The simulation strategy is described in Figure 6.

5.4.3 Hybrids

We now show that the above simulation strategy is successful. We will show this via a series of
computationally indistinguishable hybrids where the first hybrid Hyb0 corresponds to real world
where V ∗ interacts with an honest prover P and the last hybrid Hyb4 corresponds to the simulated
world where V ∗ interacts with the above simulator Sim.

First, assume by contradiction that there exists an adversary A that can distinguish the real
and ideal worlds with some probability greater than ε where ε > λ−c for some constant c > 0. Then
it must be the case that in the ideal world, p = pExtractV

∗
c (msg, st) 6= 0. This is because, when

p = 0, the real and ideal views are identical. Therefore, in the other case, we have qmsg > p > ε.

• Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
honest prover.
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Sim1(z):
Recall that by definition Sim1(z) = P1(1

λ). That is, it does the following:

• Compute and send (rwiP→V1 )← RWI1(1
λ), cP→V1 ← PZK.ECom1(rc) using a random string

rc. Note that this denotes the output msg with the associated state st being rc and the
randomness used to generate rwiP→V1 .

• Receive tdV→P1 from V ∗.

Sim2(z, x, st, p) :
Let p = pExtractV

∗
c (msg, st).

If p = 0, sample (x,w)← (Xλ,Wλ) and output 〈P2(x,w, st), V
∗〉.

Else:

1. Round 2:

• Create a set of (λ · 1p) look-ahead threads that run only rounds 2 and 3 of the protocol.

• In each look-ahead thread, sample (x = (x1, x2), w)← (Xλ,Wλ).

• Then, in each of the threads (main and look-ahead) :
– Compute and send tdP→V2 ← TDGen2(td

P→V
1 ) along with x1.

– Receive rwiV→P2 , cV→P2

2. Round 3:
In each look-ahead thread:

• Compute cP→V3 ← PZK.ECom3(⊥, cP→V1 , cV→P2 ; rc).

• Compute rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→V1 , cV→P2 , cP→V3 , tdV→P1 , tdP→V2 , tdV→P3 ) using witness (w,⊥,⊥).

• Send (x2, rwi
P→V
3 ).

• Receive tdV→P3 .

Input Extraction:

• Run the trapdoor extractor using the trapdoor generation messages of all the look-
ahead threads. That is, compute tV ← TDExt(tdV→P1 , {tdP→V2 , tdV→P3 }) where the set
denotes the pair of values from all the look-ahead threads.

• Output “Special Abort” if TDExt fails.

Main thread:

• Compute cP→V3 ← PZK.ECom3(tV , c
P→V
1 , cV→P2 ; rc).

• Compute rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→V1 , cV→P2 , cP→V3 , tdV→P1 , tdP→V2 , tdV→P3 ) using witness (⊥, tV , rc). Note that the
x here denotes the external sample given as input.

• Send (x2, rwi
P→V
3 ).

• Receive tdV→P3 .

Figure 6: Simulator’s description.

• Hyb1 - Extraction: In this hybrid, SimHyb first runs the protocol honestly λ · 1ε times (via
rewinding). If the number of executions in which adversary doesn’t abort at the end of
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the execution is less than λ, then SimHyb completes the main thread by running the honest
prover strategy exactly as in Hyb0 and stops here. Else, SimHyb rewinds back to the end of
round 1 and creates a fresh set of (λ · 1ε ) look-ahead threads. In all the look-ahead threads,
SimHyb performs just like the honest prover exactly as in Hyb0. Additionally, SimHyb also
runs the “Input Extraction” phase described in round 3 of the description of Sim to extract
the trapdoor tV . Finally, SimHyb completes the main thread by running the honest prover
strategy exactly as in Hyb0.

Observe that 1
ε = λc and hence the running time of SimHyb is poly(λ).

• Hyb2 - Changing Commitment: In the main thread, SimHyb does the following: in round
3, compute cP→V3 = PZK.ECom3(tV , c

P→V
1 , cV→P2 ; rP→Vc ).

• Hyb3 - Switching WI proofs: In the main thread, SimHyb does the following: in round 3,
compute rwiP→V3 ← RWI3(rwi

P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI = (x, cP→V1 ,

cV→P2 , cP→V3 , tdV→P1 , tdP→V2 , tdV→P3 ) using witness (⊥, tV , rc).

• Hyb4 - Using pExtractc: In this hybrid, the number of look-ahead threads created is (λ · 1p).
Also, SimHyb no longer samples (x,w) and instead uses the external input x. The description
of SimHyb in this hybrid matches the description of the simulator Sim. Now, the running time
of SimHyb = poly(λ) · 1p .

We now prove that every pair of consecutive hybrids is indistinguishable except with probability
at most ε

10 and this completes the proof.

Claim 3. Assuming the existence of the trapdoor extractor TDExt for the trapdoor generation
protocol TDGen, Hyb0 is computationally indistinguishable from Hyb1 except with probability atmost
ε
10 .

Proof. First, let’s non-uniformly fix a first round message msg from SimHyb. That is, this is the
first round message which maximizes the adversary’s probability of success.

Case 1: In Hyb1, qmsg <
ε
2 .

That is, the probability that the adversary doesn’t abort, conditioned on the first message is lesser
than ε

2 . Then in this case, by applying the Chernoff bound, the number of non-aborting executions
in the first step of Hyb1 is lesser than λ except with 2−ε probability in which case both hybrids
look identical as they just run the honest prover’s algorithm and stop at the end of the protocol.

Case 2: suppose qmsg > 2 · ε
Then, by the Chernoff bound, except with 2−ε probability, in this case, the number of non-aborting
transcripts is larger than λ and so SimHyb proceeds to the next step in Hyb1. In that case, the only
difference between the two hybrids now is that the simulator outputs “Special Abort” in the input
extraction phase in Hyb1. To prove that the two hybrids are indistinguishable, we will now show
that the Pr[ SimHyb outputs “Special Abort” ] ≤ ε

10 in Hyb1. SimHyb outputs “Special Abort” only
if the algorithm TDExt fails.

By the definition of the scheme TDGen, the algorithm TDExt is successful except with negligible
probability if given as input (td1, {tdi2, tdi3}3i=1) such that TDOut(td1, td

i
2, td

i
3) = 1 for all i. That

is, TDExt is successful except with negligible probability if given as input 3 valid executions of the
protocol TDGen.

Recall that Pr(x,w←X,W )[Valid(msg,Trans(P2(x,w, st), V
∗)) = 1|(msg, ·)← P1(1

λ)] = qmsg where
the probability is over the random choices of (x,w) and the coins of the parties P2, V

∗. Therefore,
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in each look-ahead thread, Pr[TDOut(tdV
∗→P

1 , tdP→V
∗

2 , tdV
∗→P

3 ) = 1] = qmsg. Note that this
condition holds even in each look-ahead thread because each look-ahead thread only performs an
honest execution of the protocol. Recall that qmsg > ε. Therefore, in (3ε ) expected number of
threads, the malicious verifier outputs 3 correct executions of the trapdoor generation protocol.
Hence, by using the Markov inequality, in (λ · 1ε ) threads, the extraction is successful except with
negligible probability and this completes the proof.

Case 3: suppose 2 · ε > qmsg >
ε
2

Now, suppose the number of non-aborting transcripts was lesser than λ. Then, the two hybrids
are indistinguishable as in case 1. Similarly, if the number of non-aborting transcripts was greater
than λ, the two hybrids are indistinguishable as in case 2.

Claim 4. Assuming the hiding property of the extractable commitment scheme PZK.ECom, Hyb1
is computationally indistinguishable from Hyb2 except with probability at most ε

10 .

Proof. The only difference between Hyb1 and Hyb2 is that in Hyb2, the simulator now computes the
extractable commitment using the adversary’s trapdoor value. Suppose there exists an adversary
V ∗ that can distinguish between the two hybrids with non-negligible probability greater than ε

10 .
We will use V ∗ to design an adversary AHid that breaks the hiding of the extractable commitment
scheme.
AHid interacts with a challenger CHid. AHid performs the role of SimHyb in its interaction with

V ∗ almost exactly as done in Hyb1. AHid interacts with a challenger CHid and receives a first
round message which is set as cP→V1 in its interaction with V ∗ in round 1 of protocol πPZK. AHid

receives a value cV→P2 in round 2 of protocol πPZK on the main thread, which it sends to CHid as
its second round message. Then, in each look-ahead thread, AHid performs round 3 exactly as in
Hyb1. In particular, AHid sends a random string as its message cP→V3 . From the properties of the
scheme PZK.ECom, recall that PZK.ECom3(⊥) is indistinguishable from a random string and so
AHid can generate this by picking a uniformly random string without knowing the randomness used
to generate cP→V1 .

Then, after extracting the trapdoor tV in the input extraction phase, AHid sends the pair of
values (⊥, tV ) to CHid. Recall that PZK.ECom is a delayed-input scheme. AHid receives a third
round message from CHid which is either a commitment to ⊥ or tV . This is sent to V ∗ as the value
cP→V3 in the main thread.

Observe that the first case corresponds to Hyb1 while the second case corresponds to Hyb2.
Therefore, if the adversary V ∗ can distinguish between these two hybrids with non-negligible prob-
ability greater than ε

10 , AHid will use the same guess to break the hiding of the extractable com-
mitment scheme PZK.ECom with non-negligible probability which is a contradiction.

Claim 5. Assuming RWI is a witness indistinguishable argument system with bounded-rewinding
security, Hyb2 is computationally indistinguishable from Hyb3 except with probability atmost ε

10 .

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, in the main thread, the simulator
now computes the bounded rewinding secure WI proof using a witness for the alternate statement.
Suppose there exists an adversary V ∗ that can distinguish between the two hybrids with non-
negligible probability greater than ε

10 . We will use V ∗ to design an adversary ARWI that breaks the
security of the bounded rewinding secure WI scheme.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

V ∗ almost exactly as done in Hyb2. From CRWI, ARWI receives a first round message rwi1 which is
set as rwiP→V1 in its interaction with V ∗ in round 1 of protocol πPZK. Then, ARWI creates a set of L
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look ahead threads (L being the parameter for the protocol RWI which is set to 5 here). For each
thread, on receiving rwiV→P2 in round 2, ARWI forwards this to CRWI as its second round message.

For each thread, ARWI sends the statement stRWI = (x, cP→V1 , cV→P2 , cP→V3 , tdV→P1 , tdP→V2 , tdV→P3 )
to CRWI where the other values are generated as in Hyb2. In each look-ahead thread, ARWI also
sends the witness (w,⊥,⊥) to CRWI. In the main thread, ARWI sends the pair of witnesses (w,⊥,⊥)
and (⊥, tV , rc) where tV is generated in the input extraction phase. Recall that RWI is a delayed-
input scheme. For each thread, ARWI receives a third round message rwi3 which is set as rwiP→V3

in its interaction with V ∗ in round 3 of protocol πPZK. The rest of protocol πPZK is performed
exactly as in Hyb2. Observe that on each thread, since V ∗ produces a non-aborting transcript with
non-negligible probability, ARWI (via the trapdoor extractor TDExt) extracts a valid trapdoor with
non-negligible probability.

Observe that the first case corresponds to Hyb2 while the second case corresponds to Hyb3.
Therefore, if the adversary V ∗ can distinguish between these two hybrids with non-negligible prob-
ability greater than ε

10 , ARWI will use the same guess to break the rewinding security of the scheme
RWI with non-negligible probability which is a contradiction.

Claim 6. Assuming the existence of the trapdoor extractor TDExt for the trapdoor generation
protocol TDGen, Hyb3 is computationally indistinguishable from Hyb4 except with probability at
most ε

10 .

Proof. First, let’s non-uniformly fix a first round message msg from SimHyb. That is, this is the
first round message which maximizes the adversary’s probability of success.

Case 1: suppose qmsg <
ε
2

Then, clearly the output of pExtract is 0 in Hyb4. That is, the probability that the adversary
doesn’t abort, conditioned on the first message is lesser than ε. Then clearly, in this case, except
with probability ≤ ε, both hybrids look identical as they just run the honest prover’s algorithm.

Case 2: suppose qmsg > 2 · ε
Then, in this case, the output of pExtract is not 0. Also, except with probability lesser than ε, in
this case, the number of non-aborting transcripts is larger than λ in Hyb3 and so SimHyb proceeds
to the next step in Hyb3.

Observe that the only difference between the two hybrids is that the simulator might output
“Special Abort” in the input extraction phase of Hyb4 which happens in Hyb3 only with negligible
probability. To prove that the two hybrids are indistinguishable, we will now show that the Pr[
SimHyb outputs “Special Abort” ] ≤ ε

10 in Hyb4. SimHyb outputs “Special Abort” only if the
algorithm TDExt fails.

By the definition of the scheme TDGen, the algorithm TDExt is successful except with negligible
probability if given as input (td1, {tdi2, tdi3}3i=1) such that TDOut(td1, td

i
2, td

i
3) = 1 for all i. That

is, TDExt is successful except with negligible probability if given as input 3 valid executions of the
protocol TDGen.

Recall that Pr(x,w←X,W )[Valid(msg,Trans(P2(x,w, st), V
∗)) = 1|(msg, ·)← P1(1

λ)] = qmsg where
the probability is over the random choices of (x,w) and the coins of the parties P2, V

∗. Therefore, in
each look-ahead thread, Pr[TDOut(tdV→P1 , tdP→V2 , tdV→P3 ) = 1] = qmsg. Note that this condition
holds even in each look-ahead thread because each look-ahead thread only performs an honest
execution of the protocol. Recall that qmsg > p. Therefore, in (3p) expected number of threads,
the malicious verifier outputs 3 correct executions of the trapdoor generation protocol. Hence, by
using the Markov inequality, in (λ · 1p) threads, the extraction is successful except with negligible
probability and this completes the proof.
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Case 3: suppose 2 · ε > qmsg > ε
This is similar to the proof of case 3 in Claim 3. That is, suppose pExtract outputs 0, then the two
hybrids output identical threads using the honest prover’s algorithm and hence are indistinguish-
able. On the other hand, if pExtract output some value p > ε, the extraction would succeed except
with negligible probability and hence the two hybrids would be indistinguishable.

6 Four Round Malicious Secure MPC

Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively who
wish to compute f on their joint inputs by running a secure multiparty computation (MPC) proto-
col. Let πSM be any 3 round protocol that runs without any setup for the above task and is secure
against adversaries that can be completely malicious in the first round, semi-malicious in the next
two rounds and can corrupt upto (n − 1) parties. In this section, we show how to generically
transform πSM into a 4 round protocol π without setup and secure against malicious adversaries
that can corrupt upto (n− 1) parties. Formally, we prove the following theorem:

Theorem 7. Based on the existence of polynomially secure:

• DDH/Quadratic Residuosity/N th Residuosity assumption AND

• a 3 round MPC protocol for any functionality f that is secure against malicious adversaries
in the first round and semi-malicious adversaries in the next two rounds,

the protocol π presented below is a 4 round MPC protocol for any functionality f , in the plain
model.

We can instantiate the underlying MPC protocol with the construction of Brakerski et al.[BHP17],
which satisfies our requirements. That is:

Imported Lemma 1. ([BHP17]): There exists a 3 round MPC protocol for any functionality
f based on the LWE assumption that is secure against malicious adversaries in the first round and
semi-malicious adversaries in the next 2 rounds.

Formally, we obtain the following corollary on instantiating the MPC protocol:

Corollary 8. Assuming the existence of polynomially secure :

• DDH/Quadratic Residuosity/N th Residuosity assumption AND

• LWE

the protocol π presented below is a 4 round MPC protocol for any functionality f , in the plain
model.

We first list some notation and the primitives used before describing the construction.

Primitives used:

• Let NCom be any non-interactive commitment scheme. We know that such a commitment
scheme can be built assuming injective one way functions.

33



• WZK = (WZK1,WZK2,WZK3,WZK4) is a three-message weak zero knowledge argument with
a delayed-input property: that is, the first round algorithm of the prover WZK1 does not take
the statement or witness as input. Jain et al.[JKKR17] constructed such a scheme based on
DDH/Quadratic Residuosity/N th Residuosity assumption.

• R.ECom = (R.ECom1,R.ECom2,R.ECom3) is the three-message extractable commitment scheme
defined in Section 4.4. The protocol has a delayed-input property: that is, the first round
algorithm of the committer R.ECom1 does not take the message to be committed as in-
put. Also, recall that the construction of R.ECom internally uses a standard non-interactive
commitment scheme - Com, a pseudorandom function PRF and an underlying extractable
commitment scheme BRew.ECom. In the construction, we use a parameter K which we set to
be 4 here.

Recall that we also define a property called “well-formedness” of the commitment scheme.
R.ECom has an associated PPT algorithm ExtR.ECom that, given 5 “well-formed” executions
of the R.ECom protocol, outputs the committed value with overwhelming probability.

• TDGen = (TDGen1,TDGen2,TDGen3,TDOut) is the three-message trapdoor generation pro-
tocol as defined in Section 4. The first 3 algorithms are used to generate the messages of the
protocol while TDOut checks that the execution was honest. TDGen also has two associated
PPT algorithms TDValid,TDExt.
Recall that the algorithm TDValid takes as input a tuple of 4 values : the first three being
outputs of the algorithms TDGen1,TDGen2,TDGen3 and outputs 1 if the fourth value is a
valid trapdoor with respect to these three.
The algorithm TDExt, as defined earlier, with overwhelming probability, outputs a valid trap-
door if given honestly generated messages of the trapdoor generator in 3 executions with a
common first round.

• WI = (WI1,WI2,WI3,WI4) is a three-message witness indistinguishable argument with a
delayed-input property: that is, the first round algorithm of the prover WI1 does not take the
statement or witness as input.

• RWI = (RWI1,RWI2,RWI3,RWI4) is the three round delayed-input witness indistinguishable
argument with bounded rewinding security defined in Section 4. The fourth algorithm RWI4
is the final verification algorithm. We will set the rewinding security parameter L to be 5 in
all our applications.

• NMCom = (NMCom1,NMCom2,NMCom3) is the three-message non-malleable commitment
scheme with respect to commitment defined in Goyal et al.[GPR16] that can be based on
injective one way functions. Recall that the protocol has a delayed-input property. Also,
note that in their protocol, the third round message is indistinguishable from a random string
when the input message is ⊥.

Let ExtNMCom denote the polynomial time extractor of this non-malleable commitment scheme.
Recall that in the scheme from [GPR16], given as input honestly generated messages from the
sender in 2 executions with a common first round, ExtNMCom can extract the value committed
to inside the non-malleable commitment with noticeable probability.

The NMCom we use is tagged. In the authenticated channels setting, the tag of each user
performing a non-malleable commitment can just be its identity. In the general setting, in
the first round, each party can choose a strong digital signature verification key VK and
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signing key, and then sign all its messages using this signature scheme for every message sent
in the protocol. This VK is then used as the tag for all non-malleable commitments. This
ensures that every adversarial party must choose a tag that is different from any tags chosen
by honest parties, otherwise the adversary will not be able to sign any of its messages by
the existential unforgeability property of the signature scheme. This is precisely the property
that is assumed when applying NMCom. For ease of notation, we suppress writing the tags
explicitly in our protocols below.

• πSM is a three-round MPC protocol that is secure against malicious adversaries in the first
round and semi-malicious adversaries in the next two rounds. Let (πSM1 , πSM2 , πSM3 ) denote the
algorithms used by any party to compute the messages in each of the three rounds and OUT
denotes the algorithm to compute the final output. Also, let Transi denote all the messages
sent in an execution of πSM up to round i. Protocol πSM runs over a broadcast channel.
Let S = (S1,S2,S3) denote the straight line simulator for this protocol - that is, Si is the
simulator’s algorithm to compute the ith round messages. Also, the protocol has the following
properties that are satisfied by the instantiations:

1. S1 and S2 run the honest party’s algorithms but using input 0 - in particular, they don’t
need the input, randomness and output of the malicious parties.

2. The algorithm πSM1 doesn’t depend on the input. Further, any party can generate round
2 messages by running the algorithm πSM2 even without running the first algorithm πSM1
itself.

3. The algorithm πSM3 doesn’t require any new input or randomness that was not already
used in the algorithms πSM1 , πSM2 . Looking ahead, this is used in our security proof when
we want to invoke the simulator of this protocol πSM, we need to be sure that we have fed
the correct input and randomness to the simulator. This is true for the instantiation we
consider, where the semi-malicious simulator requires only the secret keys of corrupted
parties (that are fixed in the second round) apart from the protocol transcript.

Remark: As mentioned in the introduction, we use the Promise ZK argument system in a non-
black box manner in the construction of our 4 round MPC protocol. Additionally, instead of
an extractable commitment as a building block in the Promise ZK construction, here, we use a
non-malleable commitment that has the same extraction properties.

In our construction, we use proofs for some NP languages that we elaborate on below.

NP language L1 is characterized by the following relation R1.
Statement : st = (nc)
Witness : w = (rnc)
R(st,w) = 1 if and only if :

• nc = Com(1; rnc)

In our protocol, when we use this language for proofs between parties Pi and Pj , where Pi is the

prover and Pj is the verifier. For better clarity, we denote this language by Li→j1 .
NP language L2 is characterized by the following relation R2.
Statement : st = (r.eca,1, r.eca,2, r.eca,3, r.ecb,1, r.ecb,2, r.ecb,3,msg2,Trans, c1, c2, c3, td1, nc)
Witness : w = (inp, r, ra,r.ec, rb,r.ec, t, rc, rnc)
R(st,w) = 1 if and only if :
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1. Either the messages (r.eca,1, r.eca,2, r.eca,3) or (r.ecb,1, r.ecb,2, r.ecb,3) form a well-formed ex-
tractable commitment of (inp, r) and msg2 is the second round message generated by running
protocol πSM using input inp, randomness r where the protocol transcript at the end of round
1 is Trans (OR)

2. (c1, c2, c3) form a non-malleable commitment to a value t that is a valid trapdoor for the
messages td1 generated by the trapdoor generator. (OR)

3. nc is a commitment to 0.

Formally, R(st,w) = 1 if and only if :

• r.eca,1 = R.ECom1(ra,r.ec) AND

• r.eca,3 = R.ECom3(inp, r, r.eca,1, r.eca,2; ra,r.ec) AND

• msg2 = πSM2 (inp,Trans; r) AND

• (r.eca,1, r.eca,2, r.eca,3) is “well-formed” as defined in Section 4.3.

(OR)

• r.ecb,1 = R.ECom1(rb,r.ec) AND

• r.ecb,3 = R.ECom3(inp, r, r.ecb,1, r.ecb,2; rb,r.ec) AND

• msg2 = πSM2 (inp,Trans; r) AND

• (r.ecb,1, r.ecb,2, r.ecb,3) is “well-formed” as defined in Section 4.3.

(OR)

• TDValid(td1, t) = 1 AND

• c1 = NMCom1(rc) AND

• c3 = NMCom3(t, c1, c2; rc).

(OR)

• nc = Com(0; rnc).

In our protocol, when we use this language for proofs between parties Pi and Pj , where Pi is
the prover and Pj is the verifier. For the trapdoor generation messages in the statement, Pj is the

trapdoor generator and Pi is the receiver. For better clarity, we denote this language by Li→j2 .
NP language L3 is characterized by the following relation R3.
Statement : st = (r.eca,1, r.eca,2, r.eca,3, r.ecb,1, r.ecb,2, r.ecb,3,msg3,Trans, c1, c2, c3, td1)
Witness : w = (inp, r, ra,r.ec, rb,r.ec, t, rc)
R(st,w) = 1 if and only if :

1. Either the messages (r.eca,1, r.eca,2, r.eca,3) or (r.ecb,1, r.ecb,2, r.ecb,3) form a well-formed ex-
tractable commitment of (inp, r) and msg2 is the second round message generated by running
protocol πSM using input inp, randomness r where the protocol transcript at the end of round
1 is Trans (OR)
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2. (c1, c2, c3) form a non-malleable commitment to a value t that is a valid trapdoor for the
message td1 generated by the trapdoor generator.

Formally, R(st,w) = 1 if and only if :

• r.eca,1 = R.ECom1(ra,r.ec) AND

• r.eca,3 = R.ECom3(inp, r, r.eca,1, r.eca,2; ra,r.ec) AND

• msg2 = πSM2 (inp,Trans; r) AND

• (r.eca,1, r.eca,2, r.eca,3) is “well-formed” as defined in Section 4.3.

(OR)

• r.ecb,1 = R.ECom1(rb,r.ec) AND

• r.ecb,3 = R.ECom3(inp, r, r.ecb,1, r.ecb,2; rb,r.ec) AND

• msg2 = πSM2 (inp,Trans; r) AND

• (r.ecb,1, r.ecb,2, r.ecb,3) is “well-formed” as defined in Section 4.3.

(OR)

• TDValid(td1, t) = 1 AND

• c1 = NMCom1(rc) AND

• c3 = NMCom3(t, c1, c2; rc).

In our protocol, when we use this language for proofs between parties Pi and Pj , where Pi is the
prover and Pj is the verifier. For the trapdoor generation messages in the statement, Pj is the

trapdoor generator and Pi is the receiver. For better clarity, we denote this language by Li→j3 .

Notation :

• We assume broadcast channels.

• λ denotes the security parameter.

• In the superscript, we use i→ j to denote that the message was sent by party Pi with intended
recipient as party Pj . (recall that all messages are broadcast).

• The round number of any sub-protocol being used (such as the non-malleable commitment,
bounded rewinding secure WI arguments etc.) is written in the subscript.

• We use two instantiations of the extractable commitment scheme R.ECom; we use (a, i), (b, i)
in the subscript to denote each of the instantiations (where i is the round number).
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6.1 Protocol

The description of protocol π is as follows:
Inputs: Each party Pi has input xi and uses randomness ri to compute the message in each

round of the protocol πSM. We now describe the messages sent by party Pi.

1. Round 1:
Pi does the following:

• Compute msg1,i ← πSM1 (xi, ; ri).

• For each j ∈ [n] with j 6= i, Pi does the following:

– Compute ci→j1 ← NMCom1(r
i→j
c ), r.eci→ja,1 ← R.ECom1(r

i→j
a,r.ec), r.ec

i→j
b,1 ← R.ECom1(r

i→j
b,r.ec)

using random strings ri→jc , ri→ja,r.ec and ri→jb,r.ec respectively.

– Compute tdi→j1 ← TDGen1(r
i→j
td ) using a random string ri→jtd .

– Generate (wii→j1 )←WI1(1
λ), (rwii→j1 )← RWI1(1

λ) and (wzki→j1 )←WZK1(1
λ).

• Broadcast (msg1,i, c
i→j
1 , r.eci→ja,1 , r.ec

i→j
b,1 , td

i→j
1 ,wii→j1 , rwii→j1 ,wzki→j1 ).

2. Round 2:
For each j ∈ [n] with j 6= i, Pi does the following:

• Compute ci→j2 ← NMCom2(c
j→i
1 ), r.eci→ja,2 ← R.ECom2(r.ec

j→i
a,1 ), r.eci→jb,2 ← R.ECom2(r.ec

j→i
b,1 )

and tdi→j2 ← TDGen2(td
j→i
1 ).

• Compute wii→j2 ←WI2(wi
j→i
1 ), rwii→j2 ← RWI2(rwi

j→i
1 ) and wzki→j2 ←WZK2(wzk

j→i
1 ).

• Broadcast (ci→j2 , r.eci→ja,2 , r.ec
i→j
b,2 , td

i→j
2 ,wii→j2 , rwii→j2 ,wzki→j2 ) for all j ∈ [n], j 6= i.

3. Round 3:
Let Trans1 denote the transcript after round 1 of protocol πSM. Pi does the following:

• Compute msg2,i ← πSM2 (xi,Trans1; ri).

• Compute nci ← NCom(1; rnc,i).

• For each j ∈ [n] with j 6= i, compute:

– ci→j3 ← NMCom3(⊥, ci→j1 , cj→i2 ; ri→jc ), r.eci→ja,3 ← R.ECom3(xi, ri, r.ec
i→j
a,1 , r.ec

j→i
a,2 ; ri→ja,r.ec),

r.eci→jb,3 ← R.ECom3(⊥, r.eci→jb,1 , r.ec
j→i
b,2 ; ri→jb,r.ec) using random strings ri→jc , ri→ja,r.ec and

ri→jb,r.ec.

– tdi→j3 ← TDGen3(td
i→j
1 , tdj→i2 ; ri→jtd ) using randomness ri→jtd .

– wzki→j3 ← WZK3(wzk
i→j
1 ,wzkj→i2 , sti→j1 ,wi→j1 ) for the statement sti→j1 = (nci→j1 ) ∈

Li→j1 using witness wi→j1 = (rnc,i).

– rwii→j3 ← RWI3(rwi
i→j
1 , rwij→i2 , sti→j2 ,wi→j2 ) for the statement sti→j2 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈

Li→j2 using witness wi→j2 = (xi, ri, r
i→j
a,r.ec,⊥,⊥,⊥,⊥).

• Broadcast (msg2,i, nci, c
i→j
3 , r.eci→ja,3 , r.ec

i→j
b,3 , td

i→j
3 , rwii→j3 ) for all j ∈ [n], j 6= i.

4. Round 4:
Let Trans2 denote the transcript after round 2 of protocol πSM. Pi does the following:

• For each j ∈ [n] with j 6= i, broadcast an abort signal to all the parties if
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– TDOut(tdj→i1 , tdi→j2 , tdj→i3 ) 6= 1 (OR)

– WZK4(wzk
j→i
1 ,wzki→j2 ,wzkj→i3 , stj→i1 ) 6= 1 where stj→i1 = (ncj→i1 ). (OR)

– RWI4(rwi
i→j
1 , rwii→j2 , rwij→i3 , stj→i2 ) 6= 1 where stj→i2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 ,

r.ecj→ib,2 , r.ec
i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci)

• Compute msg3,i ← πSM3 (xi,Trans2; ri).

• For each j ∈ [n] with j 6= i,
compute wii→j3 ←WI3(wi

i→j
1 ,wij→i2 , sti→j3 ,wi→j3 ) for the statement sti→j3 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg3,i,Trans2, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 ) ∈ Li→j3

using witness wi→j3 = (xi, ri, r
i→j
a,r.ec,⊥,⊥,⊥).

• Broadcast (msg3,i,wi
i→j
3 ) for all j ∈ [n], j 6= i.

5. Output Computation:
Let Trans3 denote the transcript of protocol πSM after round 3. Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– If WI4(wi
j→i
1 ,wii→j2 ,wij→i3 , stj→i3 ) 6= 1 where stj→i3 =

(r.ecj→ia,1 , r.ec
i→j
a,2 , r.ec

j→i
a,3 , r.ec

j→i
a,1 , r.ec

i→j
a,2 , r.ec

j→i
a,3 ,msg3,j ,Trans2, c

j→i
1 , ci→j2 , cj→i3 , tdi→j1 ),

broadcast an abort signal to all parties.

• Compute output yi ← OUT(xi,Trans3; ri).

The correctness of the protocol follows from the correctness of all the underlying protocols.

6.2 Security Proof

In this section, we formally prove Theorem 7.
Consider an adversary A who corrupts t parties where t < n. For each party Pi, let’s say that
the size of input and randomness used in the protocol πSM is p(λ) for some polynomial p. That
is, |(xi, ri)| = p(λ). The strategy of the simulator Sim against a malicious adversary A is described
below.

6.2.1 Description of Simulator

Before we describe the details, lets recall the basic strategy followed by a rewinding simulator. Sim
creates a “main thread” of execution that will be actually output at the end of the simulation and
a set of “look-ahead” threads that will facilitate the extraction of the adversary’s input as well as
some trapdoor information that is used to simulate the proofs sent by honest parties.

We construct a rewinding simulator Sim for protocol π. Simulator Sim rewinds an adversary in
the second and third round of π to create a look-ahead thread. In other words, each look-ahead
thread created by Sim shares the first round with the main thread, but contains different messages
in the second and third rounds. Further, each look-ahead thread is terminated at the end of the
third round. An important property of Sim is that it follows the honest party’s strategy in all of
the look ahead threads using input 0. Sim will use the adversary’s messages in the third round
of these look-ahead threads to extract the adversary’s inputs as well as trapdoor information and
then use them appropriately in the main thread to simulate the adversary’s final view.

Note that as discussed in the introduction, the simulator’s extraction strategy fails if the adver-
sary aborts in the third round. In this case, the simulator just follows the honest party’s strategy
using input 0.
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To prevent a cluttered description, we overload notation when referring to the same object in
the main thread and the look-ahead threads. However, it will be clear from context which thread’s
object is being referred to.

The simulator’s description now follows:
Step 1 - Check Abort:

1. Round 1:
For each honest party Pi, Sim does the following:

• Compute msg1,i ← S1(ri).
• For each j ∈ [n] with j 6= i, Sim does the following:

– Compute ci→j1 ← NMCom1(r
i→j
c ), r.eci→ja,1 ← R.ECom1(r

i→j
a,r.ec), r.ec

i→j
b,1 ← R.ECom1(r

i→j
b,r.ec)

using random strings ri→jc , ri→ja,r.ec and ri→jb,r.ec respectively.

– Compute tdi→j1 ← TDGen1(r
i→j
td ) using a random string ri→jtd .

– Generate (wii→j1 )←WI1(1
λ), (rwii→j1 )← RWI1(1

λ) and (wzki→j1 )←WZK1(1
λ).

• Broadcast (msg1,i, c
i→j
1 , r.eci→ja,1 , r.ec

i→j
b,1 , td

i→j
1 ,wii→j1 , rwii→j1 ,wzki→j1 ).

2. Round 2:
For each honest party Pi and for each j ∈ [n] with j 6= i, Sim does the following:

• Compute ci→j2 ← NMCom2(c
j→i
1 ), r.eci→ja,2 ← R.ECom2(r.ec

j→i
a,1 ), r.eci→jb,2 ← R.ECom2(r.ec

j→i
b,1 )

and tdi→j2 ← TDGen2(td
j→i
1 ).

• Compute wii→j2 ←WI2(wi
j→i
1 ), rwii→j2 ← RWI2(rwi

j→i
1 ) and wzki→j2 ←WZK2(wzk

j→i
1 ).

• Broadcast (ci→j2 , r.eci→ja,2 , r.ec
i→j
b,2 , td

i→j
2 ,wii→j2 , rwii→j2 ,wzki→j2 ) for all j.

3. Round 3:
Let Trans1 denote the transcript after round 1 of protocol πSM. For each honest Pi, Sim does
the following:

• Compute msg2,i ← S2(Trans2; ri).
• Compute nci ← Com(1; rnc,i).

• For each j ∈ [n] with j 6= i, compute:

– ci→j3 ← NMCom3(⊥, ci→j1 , cj→i2 ; ri→jc ), r.eci→ja,3 ← R.ECom3(0, ri, r.ec
i→j
a,1 , r.ec

j→i
a,2 ; ri→ja,r.ec),

r.eci→jb,3 ← R.ECom3(⊥, r.eci→jb,1 , r.ec
j→i
b,2 ; ri→jb,r.ec) using random strings ri→jc , ri→ja,r.ec and

ri→jb,r.ec.

– tdi→j3 ← TDGen3(td
i→j
1 , tdj→i2 ; ri→jtd ) using randomness ri→jtd .

– wzki→j3 ← WZK3(wzk
i→j
1 ,wzkj→i2 , sti→j1 ,wi→j1 ) for the statement sti→j1 = (nci→j1 ) ∈

Li→j1 using witness wi→j1 = (rnc,i).

– rwii→j3 ← RWI3(rwi
i→j
1 , rwij→i2 , sti→j2 ,wi→j2 ) for the statement sti→j2 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈

Li→j2 using witness wi→j2 = (0, ri, r
i→j
a,r.ec,⊥,⊥,⊥,⊥).

• Broadcast (msg2,i, nci, c
i→j
3 , r.eci→ja,3 , r.ec

i→j
b,3 , td

i→j
3 , rwii→j3 ) for all j ∈ [n], j 6= i.
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4. Abort Condition:
For each honest party Pi, Sim does the following:
Let Trans2 denote the transcript after round 2 of protocol πSM. For each j ∈ [n] with j 6= i,
Abort if

• TDOut(tdj→i1 , tdi→j2 , tdj→i3 ) 6= 1 (OR)

• WZK4(wzk
j→i
1 ,wzki→j2 ,wzkj→i3 , stj→i1 ) 6= 1 where stj→i1 = (ncj→i1 ). (OR)

• RWI4(rwi
i→j
1 , rwii→j2 , rwij→i3 , stj→i2 ) 6= 1 where stj→i2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 ,

r.ecj→ib,2 , r.ec
i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci)

If Sim doesn’t abort at this point, we will say that the “Check Abort” step succeeded.

Step 2 - Rewinding:

• Sim now rewinds back to the end of round 1 of the protocol. Then, Sim creates a set of
T (defined later) look-ahead threads that run only rounds 2 and 3 of the protocol in the
following manner:

5. Round 2:
In every look-ahead thread, for each honest party Pi and for each j ∈ [n] with j 6= i,
Sim does exactly as done in round 2 of step 1.

6. Round 3:
In every look-ahead thread, for each honest party Pi and for each j ∈ [n] with j 6= i,
Sim does exactly as done in round 3 of step 1.

• For each thread above, define it to be “Bad” if for any honest party Pi and any j ∈ [n] with
j 6= i:

– TDOut(tdj→i1 , tdi→j2 , tdj→i3 ) 6= 1 (OR)

– WZK4(wzk
j→i
1 ,wzki→j2 ,wzkj→i3 , stj→i1 ) 6= 1 where stj→i1 = (ncj→i1 ). (OR)

– RWI4(rwi
i→j
1 , rwii→j2 , rwij→i3 , stj→i2 ) 6= 1 where stj→i2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 ,

r.ecj→ib,2 , r.ec
i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci)

• The number of threads T created is such that at least (12 ·λ) “Good” threads exist. That is,
Sim keeps running till it receives (12 · λ) “Good” threads.

Step 3 - Input Extraction:
Sim does the following:

• Run the trapdoor extractor using the trapdoor generation messages of 3 “Good” threads to
extract a valid trapdoor. That is, compute tj ← TDExt(tdj→i1 , {tdi→j2 , tdj→i3 }) where the set
denotes the pair of values from all the threads.

• Run the extractor ExtR.ECom on the first extractable commitment messages using 5 “Good”
threads. That is, compute (xa,j , ra,j) ← ExtR.ECom(r.ecj→ia,1 , {r.ec

i→j
a,2 , r.ec

j→i
a,3 }) where the set

denotes the pair of values from all the threads. Similarly, using the second extractable
commitment, compute (xb,j , rb,j). Check which of them are consistent with the messages
msg1,j ,msg2,j in the underlying semi-malicious protocol and set that pair to be (xj , rj).

• Output “Special Abort” if any of the above two steps fail.
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Step 4 - Query to Ideal Functionality:

• Sim queries the ideal functionality with the set of values {xj} where xj is the input of the
each adversarial party Pj extracted in the previous step.

• Sim receives output y from the ideal functionality.

• Let R denote the set of all {xj , rj} extracted in the previous step.

Step 5 - Abort Probability Estimation:
Set ε′ = 12λ

T as the probability with which the adversary doesn’t abort.

Step 6 - Continuing Main Thread:
First, Sim sets a counter value to 0. Sim now rewinds back to the end of round 1 and continues
execution on the main thread. Note that this step also involves rewinding as elaborated below.

7. Round 2:
Run exactly as before - i.e as done in step 1 and in each of the look-ahead threads.

8. Round 3:
Now, the only difference from the look-ahead threads is that in the non-malleable commitment
execution between honest party i and adversarial party j, Sim commits to the trapdoor tj
(extracted above). Let Trans1 denote the transcript after round 1 of protocol πSM. For each
honest Pi, Sim does the following:

• Compute msg2,i ← S2(Trans1; ri).
• Compute nci ← Com(1; rnc,i).

• For each j ∈ [n] with j 6= i, compute:

– Compute ci→j3 ← NMCom3(tj , c
i→j
1 , cj→i2 ; ri→jc ), r.eci→ja,3 ← R.ECom3(0, ri, r.ec

i→j
a,1 , r.ec

j→i
a,2 ; ri→ja,r.ec),

r.eci→jb,3 ← R.ECom3(⊥, r.eci→jb,1 , r.ec
j→i
b,2 ; ri→jb,r.ec) using random strings ri→jc , ri→ja,r.ec and

ri→jb,r.ec.

– Compute tdi→j3 ← TDGen3(td
i→j
1 , tdj→i2 ; ri→jtd ) using randomness ri→jtd .

– wzki→j3 ← WZK3(wzk
i→j
1 ,wzkj→i2 , sti→j1 ,wi→j1 ) for the statement sti→j1 = (nci→j1 ) ∈

Li→j1 using witness wi→j1 = (rnc,i).

– rwii→j3 ← RWI3(rwi
i→j
1 , rwij→i2 , sti→j2 ,wi→j2 ) for the statement sti→j2 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈

Li→j2 using witness wi→j2 = (0, ri, r
i→j
a,r.ec,⊥,⊥,⊥,⊥).

• Broadcast (msg2,i, nci, c
i→j
3 , r.eci→ja,3 , r.ec

i→j
b,3 , td

i→j
3 , rwii→j3 ) for all j ∈ [n], j 6= i.

9. Abort Condition:
Let Trans2 denote the transcript after round 2 of protocol πSM. For each honest party Pi, Sim
does the following:

• For each j ∈ [n] with j 6= i, increase the counter value by 1 if

– TDOut(tdj→i1 , tdi→j2 , tdj→i3 ) 6= 1 (OR)

– WZK4(wzk
j→i
1 ,wzki→j2 ,wzkj→i3 , stj→i1 ) 6= 1 where stj→i1 = (ncj→i1 ). (OR)

– RWI4(rwi
i→j
1 , rwii→j2 , rwij→i3 , stj→i2 ) 6= 1 where stj→i2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 ,

r.ecj→ib,2 , r.ec
i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci)
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• If Sim’s running time equals 2λ, Abort.

• If the counter value was not increased in this round, (i.e, none of the abort conditions
were true), continue to Step 7.

• Else, if counter value less than λ2

ε′ , rewind back to the beginning of round 2 in this step
(step 6).

Step 7 - Continuing Main Thread:

9. Round 4:
Recall that Sim doesn’t continue the look-ahead threads (used in extraction) from this round.
Let Trans2 denote the transcript after round 2 of protocol πSM. In the main thread, for each
honest party Pi, Sim does the following:

• Compute msg3,i ← S3(y,R,Trans2, i).
• For each j ∈ [n] with j 6= i,

Compute wii→j3 ←WI3(wi
i→j
1 ,wij→i2 , sti→j3 ,wi→j3 ) for the statement sti→j3 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg3,i,Trans2, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 ) ∈ Li→j3

using witness wi→j3 = (⊥,⊥,⊥,⊥, tj , ri→jc ).

• Broadcast (msg3,i,wi
i→j
3 ) for all j.

10. Output Computation:
Let Trans3 denote the transcript of protocol πSM after round 3. In the main thread, for each
honest party Pi and every j ∈ [n] with j 6= i, Sim does the following:

• Abort if WI4(wi
j→i
1 ,wii→j2 ,wij→i3 , stj→i3 ) 6= 1 where stj→i3 =

(r.ecj→ia,1 , r.ec
i→j
a,2 , r.ec

j→i
a,3 , r.ec

j→i
a,1 , r.ec

i→j
a,2 , r.ec

j→i
a,3 ,msg3,j ,Trans2, c

j→i
1 , ci→j2 , cj→i3 , tdi→j1 ). In

particular, send a global abort signal to all parties so that everyone aborts.

Finally, instruct the ideal functionality to deliver output to the honest parties.

We now prove that the simulator is an expected PPT machine.

Claim 7. Simulator Sim runs in expected time that is polynomial in λ.

Proof. Let’s analyze the running time of each step of the simulation strategy. Clearly, step 1 takes
only poly(λ) time for some polynomial.

Let ε be the probability with which the adversary doesn’t abort. That is, Sim proceeds to step 2
only with probability ε. Now, since the probability of the adversary not aborting is ε, the expected
number of threads to be run by the simulator to get one non-aborting transcript is 1

ε . Therefore,

the expected total number of threads created in step 2 is 12·λ
ε and each thread takes only poly(λ)

time.
In step 3, the extractors TDExt and ExtR.ECom are PPT machines. Steps 4 and 5 are trivially

polynomial time.
As shown in [GK96, Lin17], the probability that the estimate ε′ computed in step 5 is not within

a factor of 2 of ε is at most 2λ. An exact computation of how to achieve this exact bound using
Chernoff bounds can be found in [HL10], Section 6.5.3. (which also explains why we chose to run
step 2 till we get 12 ·λ non-aborting transcripts). Therefore, the number of threads created in step

6 is at most λ2

ε (ignoring the constant factor). Note that step 6 might still take time 2λ but this
happens only when the estimate of ε′ is incorrect: that is, when ε′ is not within a constant factor
of ε and this happens only with probability 2−λ.

43



Finally, it is easy to see that step 7 runs in poly(λ).
Therefore, we can bound the overall running time by :

TSim = poly(λ) + poly(λ) · ε

(
12 · λ
ε

+
(

1− 1

2λ

)
· λ

2

ε
+
( 1

2λ

)
· 2λ
)

≤ poly(λ)

for some polynomial and this concludes the analysis.

6.2.2 Hybrids

We now show that the above simulation strategy is successful against all malicious PPT adversaries.
That is, the view of the adversary along with the output of the honest parties is computationally
indistinguishable in the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb0 corresponds to the real world and the last
hybrid Hyb11 corresponds to the ideal world.

First, assume by contradiction that there exists an adversary A that can distinguish the real
and ideal worlds with some non-negligible probability µ. We will use this value µ in the hybrids.

• Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties. This corresponds to the real world experiment.

• Hyb1 - Aborting Scenario: In this hybrid, SimHyb first runs the “Check Abort” step - that
is, step 1 in the description of Sim to check if the adversary aborts. That is, SimHyb performs
the first 3 rounds of the protocol using the honest parties’ strategy but using input 0.

Suppose the adversary doesn’t cause an abort - that is, the “Check Abort” step succeeded.
Then, SimHyb rewinds back to the end of round 1 of the protocol and performs exactly as
in Hyb0. In particular, SimHyb no longer uses input 0 in the main thread that was done
in the “Check Abort” step and instead continues using the honest parties’ actual inputs.
Additionally, if in the main thread, SimHyb receives an Abort at the end of round 3, it rewinds
back to the end of round 1 and runs the main thread again. This process happens 1

µ times.
Observe that SimHyb runs in polynomial time because, by assumption, µ was non-negligible.
The same argument holds for the subsequent hybrids as well.

• Hyb2 - Input Extraction: In this hybrid, suppose the “Check Abort” step succeeds, then,
SimHyb creates a set of look-ahead threads (or rewound threads) that run only rounds 2 and
3 of the protocol till it extracts 5 “Good” threads. In all the threads (main and look-aheads),
SimHyb plays the role of the honest parties exactly as in Hyb0. Additionally, SimHyb also runs
the “Input Extraction” phase and “Query to Ideal Functionality” phase described in steps 3
and 4 of the description of Sim. That is, it extracts the adversary’s input, randomness and
a set of valid trapdoors and also, queries the ideal functionality using the adversary’s inputs
to receive the protocol output. Note that in the main thread, SimHyb continues to perform
exactly as in Hyb1 by rewinding 1

µ times.

• Hyb3 - Changing NMCom: In the main thread, for each honest party Pi and every malicious
party Pj , SimHyb does the following: in round 3, compute ci→j3 = NMCom3(tj , c

i→j
1 , cj→i2 ; ri→jc )

where tj is a valid trapdoor extracted as in the previous hybrid.
That is, in the main thread, the simulator now commits to a valid trapdoor of the adversary’s
trapdoor generation messages, using the non-malleable commitment scheme.
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Note that this happens in each of the potentially rewound main threads till SimHyb receives a
non-aborting transcript after round 3 or the number of rewinds reaches 1

µ . Once again, recall
that these rewinds are different from the look-ahead threads that were created for extraction.
The same argument applies to each subsequent hybrid as well when we make changes on the
main thread.

• Hyb4 - Switching Rewinding WI proofs: In the main thread, for each honest party Pi
and every malicious party Pj , SimHyb does the following: in round 3, compute rwii→j2 ←
RWI2(rwi

j→i
1 , sti→j2 ,wi→j2 ) for the statement sti→j2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 ,

r.eci→jb,3 ,msg2,i,Trans1, c
i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈ Li→j2 using witness wi→j2 = (⊥,⊥,⊥,⊥, tj ,

ri→jc ,⊥).
That is, in the main thread, the simulator now uses the witness for the non-malleable com-
mitment to generate proofs in round 3.

• Hyb5 - Switching WI proofs: In the main thread, for each honest party Pi and every ma-
licious party Pj , SimHyb does the following: in round 4, compute wii→j3 ←WI3(wi

i→j
1 ,wij→i2 ,

sti→j3 ,wi→j3 ) for the statement sti→j3 = (r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg3,i,

Trans2, c
i→j
1 , cj→i2 , ci→j3 , tdj→i1 ) ∈ Li→j3 using witness wi→j3 = (⊥,⊥,⊥,⊥, tj , ri→jc ).

That is, in the main thread, the simulator now uses the witness for the non-malleable com-
mitment to generate proofs in rounds 4.

• Hyb6 - Changing ExtCom: In the main thread, for each honest party Pi, SimHyb does the

following: in round 3, compute r.eci→ja,3 = R.ECom3(0, ri, r.ec
i→j
a,1 , r.ec

j→i
a,2 ; ri→ja,r.ec).

That is, in the main thread, the simulator now commits to input 0 using the extractable
commitment scheme.

• Hyb7 - Simulate πSM: In the main thread, for each honest party Pi, SimHyb does the following:

– in round 1, compute msg1,i ← S1(ri). The description of SimHyb now corresponds to the
ideal world simulator Sim.

– In round 3, compute msg2,i ← S2(Trans1; ri) where y is the output from the ideal func-
tionality, R denotes the set of all {xj , rj} extracted and Trans2 denotes the transcript of
protocol πSM after round 2.

– in round 4, compute msg3,i ← S3(y,R,Trans2, i) where y is the output from the ideal
functionality, R denotes the set of all {xj , rj} extracted and Trans2 denotes the transcript
of protocol πSM after round 2.

• Hyb8 - Switching back Rewinding WI proofs: In the main thread, for each honest party
Pi and every malicious party Pj , SimHyb does the following: in round 3, compute rwii→j2 ←
RWI2(rwi

j→i
1 , sti→j2 ,wi→j2 ) for the statement sti→j2 = (r.eci→ja,1 , r.ec

j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 ,

r.eci→jb,3 ,msg2,i,Trans1, c
i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈ Li→j2 using witness wi→j2 = (0, ri, r

i→j
a,r.ec,⊥,

⊥,⊥,⊥).
That is, in the main thread, the simulator now uses the original witness to generate proofs in
rounds 3.

• Hyb9 - Extra look-ahead threads: In this hybrid, SimHyb creates another set of look-ahead
threads that once again, only run rounds 2 and 3 exactly as in the previous hybrid. For clarity
of exposition, let’s call the first set of look-ahead threads as T1 and the second set as T2. As
before, SimHyb extracts values {tj , xj , rj} using the first set of threads T1.
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SimHyb also runs the “input extraction phase” using this second set of look-ahead threads.
That is, SimHyb also extracts values {t∗j , x∗j , r∗j} using the second set of threads T2 and outputs
“Special Abort” if this extraction is not successful. Further, SimHyb outputs “Special Abort
2” if there ∃ j such that (xj , rj) 6= (x∗j , r

∗
j ) in any of the second set of look-ahead threads.

SimHyb continues to use the first set of extracted values in the rest of the protocol.

• Hyb10 - Changes to extra set: On each thread in T2, SimHyb performs the changes outlined
in hybrids 3 to 8. That is, the changes that were made to the main thread in hybrids 3 through
8 are now performed in each of these look-ahead threads in T2 one at a time. This hybrid
can be expanded into 6 hybrids for each thread in T2.

• Hyb11 - Stop set 1 of look-aheads: SimHyb now stops executing the first set of look-ahead
threads T1 and uses the extracted values {t∗j , x∗j , r∗j} from the second set. Therefore, at this
point, SimHyb only runs the main thread and the set T2 consisting of the look-ahead threads.

Additionally, at this point, SimHyb doesn’t rewind the main thread 1
µ times. Instead, SimHyb

first estimates the probability of the adversary not aborting - ε′ as done in step 5 in the
description of Sim and then runs the rewound main thread for max(2λ, λ

2

ε′ ) time as in the
ideal world. This hybrid exactly corresponds to the ideal world.

6.2.3 Indistinguishability of hybrids

Throughout the sequence of hybrids, starting with Hyb1, we will maintain the following invariant
which will be useful to argue the proof of indistinguishability.

Definition 6 (Invariant). Consider any malicious party Pj and any honest party Pi. tdi→j1 denotes
the first message of the trapdoor generation protocol with Pi as the trapdoor generator. The values
(cj→i1 , ci→j2 , cj→i3 ) denote the messages of the non-malleable commitment with Pj as the creator.

Consider the following event E which occurs if ∃(ti, rj→ic ) such that:

• cj→i1 = NMCom1(r
j→i
c ) (AND)

• cj→i3 = NMCom3(ti, c
j→i
1 , ci→j2 ; rj→ic ). (AND)

• TDValid(tdi→j1 , ti) = 1.

That is, the event E occurs if the adversary Pj, using the non-malleable commitment, commits to
a valid trapdoor ti for the trapdoor generation messages of the honest party Pi.

The invariant is : Pr[ Event E occurs in any thread ] ≤ negl(λ).

Claim 8. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and
the existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the
invariant holds in Hyb0.

Proof. We will prove this by contradiction. Assume that the invariant doesn’t hold in Hyb0. That
is, there exists an adversary A such that for some honest party P∗i and malicious party P∗j , A
causes event E to occur with non-negligible probability. We will use this adversary to design
an adversary ATDGen that breaks the “1-rewinding security” of the trapdoor generation protocol
TDGen as defined in Section 4 with non-negligible probability.
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ATDGen interacts with a challenger CTDGen and receives a first round message td1 corresponding
to the protocol TDGen. ATDGen performs the role of SimHyb in its interaction with A exactly as done
in Hyb0. SimHyb picks an honest party Pi uniformly at random and a malicious party Pj uniformly

at random. Now, in round 1 of protocol π, ATDGen sets tdi→j1 as td1 received from CTDGen. On

receiving a value tdj→i2 from A in round 2, ATDGen forwards this message to CTDGen as its second

round message for the protocol TDGen. ATDGen receives td3 from CTDGen which is set as tdi→j3

in its interaction with A. ATDGen continues with the rest of protocol π exactly as in Hyb0 upto
round 3. At this point, ATDGen rewinds the adversary A back to the beginning of round 2. To be
consistent with our earlier terminology, this can be interpreted as follows: in the security proof,
ATDGen creates a look-ahead thread that runs only rounds 2 and 3 of protocol π. Note that this
look-ahead thread exists only in the proof of the invariant and not in the description of Hyb0. As
in the main thread, ATDGen forwards the adversary’s message tdj→i2 from A in round 2 to CTDGen

and receives td3 from CTDGen which is set as tdi→j3 in its interaction with A. ATDGen continues with
the rest of protocol π exactly as in Hyb0.

Now, ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the
messages in both the threads that correspond to the non-malleable commitment from malicious
party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid
trapdoor to CTDGen.

Let’s analyze why this works. We know that the invariant doesn’t hold so there exists honest
party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j , using the
non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages
of the honest party P∗i with non-negligible probability ε. With probability 1

n2 where n is the total
number of parties, this corresponds to honest party Pi and malicious party Pj picked randomly by
ATDGen. Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the non-malleable
commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the honest
party Pi. Therefore, by definition, given the messages of the non-malleable commitment in 2
threads, the extractor ExtNMCom is successful with non-negligible probability ε′. Therefore, with
non-negligible probability ε∗ε′

n2 , ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks the
security of the trapdoor generation protocol TDGen. Thus, it must be the case that the invariant
holds in Hyb0.

Claim 9. If the “Check Abort” step succeeds, the invariant holds in Hyb1.

Proof. Since there is no difference in the main thread between Hyb0 and Hyb1 when the “Check
Abort” step succeeds, the invariant continues to hold true.

Claim 10. Assuming the hiding property of the commitment scheme Com, the weak ZK property
of the scheme WZK, the witness indistinguishability property of the scheme WI, the security of the
protocol πSM, Hyb0 is indistinguishable from Hyb1.

Proof. In Hyb0, SimHyb runs the protocol once using the honest strategy. In Hyb1, if the “Check
Abort” step succeeded, SimHyb runs the protocol using the honest strategy 1

µ times where µ is the
adversary’s distinguishing advantage in the overall experiment. Suppose the adversary doesn’t abort
with probability greater than 1

µ , then, by Markov’s inequality, except with negligible probability,
the adversary’s view in Hyb1 consists of a thread of execution identically distributed to Hyb0.

Therefore, the only difference between the two hybrids is if the adversary causes SimHyb to
abort at the end of round 3 with probability greater than 1

µ - that is, the “Check Abort” step
doesn’t succeed in Hyb1. In that case, in Hyb0, SimHyb uses the honest parties’ inputs to run the
protocol while in Hyb1, SimHyb runs the protocol using input 0 for every honest party. We show in
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Appendix C via a complicated sequence of sub-hybrids that these two hybrids are indistinguishable
even in this case.

We now get back to proving security of the main simulation.

Claim 11. If the “Check Abort” step succeeds, the invariant holds in Hyb2.

Proof. There is no difference in the main thread between Hyb1 and Hyb2 when the “Check Abort”
step succeeds. Also, each look-ahead thread is identical to the main thread and so the invariant
continues to hold true.

Claim 12. Assuming soundness of the argument systems WI,RWI and WZK, the existence of an
extractor Ext for the extractable commitment scheme R.ECom and the existence of the trapdoor
extractor TDExt for the trapdoor generation protocol TDGen, Hyb1 is indistinguishable from Hyb2.

Proof. Observe that the only difference between the two hybrids is that the simulator outputs
“Special Abort” in the input extraction phase in Hyb2. To prove that the two hybrids are indis-
tinguishable, we will now show that the Pr[ SimHyb outputs “Special Abort” ] ≤ negl(λ) in Hyb2.
SimHyb outputs “Special Abort” only if either of the algorithms TDExt or ExtR.ECom fail.

Recall that we denote by ε the probability with which the adversary causes the “Abort Check”
step to succeed.

Case 1: ε ≤ negl(λ)
In this case, with probability ≥ (1− negl(λ)), the adversary causes the “Abort Check” step to fail
and hence SimHyb outputs “Special Abort” only with probability negligible in λ.

Case 2: ε ≥ negl(λ) - i.e noticeable
Therefore now, in Hyb2, since each look-ahead thread is identical to the execution in the “Abort
Check” step, in each look-ahead thread, the probability with which the thread is “Good” is same as
ε. Therefore, each look-ahead thread, with noticeable probability, is a “Good” thread. Therefore,
even if we run 5 look-ahead threads, they are all “Good” with noticeable probability.

Now, let’s show that the algorithm ExtR.ECom successfully extracts with noticeable probability.
Notice that since the invariant holds in Hyb2, from the soundness of the schemes WI,RWI and WZK,
in each “Good” thread, for every malicious party Pj and honest party Pi, either the first or second
statements must hold true for the proofs given in round 3. That is, for every malicious party Pj and

honest party Pi, either the values (r.ecj→ia,1 , r.ec
i→j
a,2 , r.ec

j→i
a,3 ) or the values (r.ecj→ib,1 , r.ec

i→j
b,2 , r.ec

j→i
b,3 )

form a “well-formed” tuple of the scheme R.ECom as defined in Section 4.4.
By the definition of R.ECom, algorithm ExtR.ECom is successful except with negligible probabil-

ity if given as input (r.ec1, {r.eck2, r.eck3}5k=1) such that (r.ec1, r.ec
k
2, r.ec

k
3) constitute “well-formed”

extractable commitment messages for all k. Since the total number of “Good” look-ahead threads
is at least 5 with noticeable probability and all the extractable commitments are “well-formed”,
ExtR.ECom extracts successfully with noticeable probability.

By the definition of the scheme TDGen, the algorithm TDExt is successful except with negligible
probability if given as input (td1, {tdi2, tdi3}3i=1) where td1 is the first message of the protocol TDGen
and tdi2, td

i
3 denote the second and round messages of the ith execution of protocol TDGen using

the same first round message. Since the number of “Good” threads is larger than 2 with noticeable
probability, the extraction is successful with noticeable probability.

Since both TDExt and Ext are successful with noticeable probability, Pr[ SimHyb outputs “Spe-
cial Abort” ] ≤ negl(λ) in Hyb2 and this completes the proof.
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Remark: We will use the same argument in every subsequent hybrid when we argue that the
number of “Good” look-ahead threads is enough for the reduction to extract with noticeable prob-
ability.

Claim 13. If the “Check Abort” step succeeds, assuming NMCom is a secure non-malleable com-
mitment scheme, the invariant holds in Hyb3.

Proof. We know that the invariant holds in Hyb2. The only difference between Hyb2 and Hyb3 is
that in Hyb3, the simulator now computes the non-malleable commitment in the main thread using
the adversary’s trapdoor value. Assume for the sake of contradiction that the invariant doesn’t hold
in Hyb3. That is, there exists an adversary A such that for some honest party P∗i and malicious
party P∗j , A causes event E to occur in the main thread with non-negligible probability. We will
use A to design an adversary ANMCom that breaks the security of the non-malleable commitment
scheme.
ANMCom interacts with a challenger CNMCom. ANMCom performs the role of SimHyb in its inter-

action with A exactly as done in Hyb2. ANMCom picks an honest party Pi and a malicious party
Pj uniformly at random. ANMCom interacts with a challenger CNMCom and receives a first round

message cL1 on the left side which is set as ci→j1 in its interaction with A in round 1 of protocol π.

On receiving cj→i1 , ANMCom forwards this to CNMCom as its first round message on the right side.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread, ANMCom computes ci→j3 as a commitment to ⊥. Recall
from the definition of the scheme NMCom that ANMCom can do this even without knowing the
randomness used to generate ci→j1 . As in the proof of Claim 12, recall that using these 5 threads,
ANMCom can extract with noticeable probability and thus, successfully run the input extraction
phase.

Then, on the main thread, ANMCom receives a value cR2 from CNMCom as the second round
message on the right side which it sets as the value ci→j2 in round 2 of protocol π on the main

thread. Then, on receiving cj→i2 in the main thread, ANMCom sends this to CNMCom as its second
round message on the left side along with the pair of values (⊥, tj) where tj is generated in the
input extraction phase. Recall that NMCom is a delayed-input scheme.
ANMCom receives a third round message cL3 which is either a commitment to ⊥ or tj . This is

sent to A as the value ci→j3 in the main thread and the rest of protocol π is performed exactly as

in Hyb1. On receiving the value ci→j3 from A in the main thread, ANMCom sends it to CNMCom as
its third round message in the right thread. Note that in all the other look-ahead threads, ANMCom

continues to compute the non-malleable commitment using input ⊥ as done in Hyb1. Recall that
NMCom3(⊥) is indistinguishable from a random string and so ANMCom can generate this by picking
a uniformly random string without knowing the randomness used to generate ci→j1 .

Observe that the first case corresponds to Hyb2 while the second case corresponds to Hyb3. Now,
let’s analyze why ANMCom breaks the security of the scheme NMCom. We know that the invariant
doesn’t hold in Hyb3 so there exists honest party P∗i and malicious party P∗j such that event E doesn’t
hold. That is, the adversary P∗j , using the non-malleable commitment, commits to a valid trapdoor
t∗i for the trapdoor generation messages of the honest party P∗i with non-negligible probability ε.
With probability 1

n2 where n is the total number of parties, this corresponds to honest party Pi
and malicious party Pj picked randomly by ANMCom. Therefore, with non-negligible probability
ε
n2 , the adversary Pj , using the non-malleable commitment, commits to a valid trapdoor t∗i for
the trapdoor generation messages of the honest party Pi in Hyb3. Recall that this is same as the
messages sent by ANMCom to CNMCom as its commitment messages on the right side. In Hyb2, since
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the invariant holds, the adversary did not commit to a valid trapdoor from any malicious party Pj
to honest party Pi.

Therefore, when the value committed to by the honest party in the left execution changes, the
value committed to by the adversary in the right execution has also changed except with negligible
probability. This breaks the security of the scheme NMCom which is a contradiction. Thus, the
invariant must hold in Hyb2 as well.

Claim 14. Assuming the hiding property of the non-malleable commitment scheme NMCom, Hyb2
is computationally indistinguishable from Hyb3.

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, the simulator now computes the
non-malleable commitment using the adversary’s trapdoor value. Suppose there exists an adversary
A that can distinguish between the two hybrids. We can use A to design an adversary AHid that
breaks the hiding of the non-malleable commitment scheme. The rest of the proof is similar to the
proof of Claim 13 above.

Claim 15. If the “Check Abort” step succeeds, Assuming the bounded rewinding security of the
protocol RWI and the existence of an extractor ExtNMCom for the non-malleable commitment scheme
NMCom, the invariant holds in Hyb4.

Proof. We know that the invariant holds in Hyb3. The only difference between Hyb3 and Hyb4 is
that in Hyb4, in the main thread, the simulator now computes the rewinding secure WI using a
witness for the non-malleable commitment. Assume for the sake of contradiction that the invariant
doesn’t hold in Hyb4. That is, there exists an adversary A such that for some honest party P∗i and
malicious party P∗j , A causes event E to occur in the main thread with non-negligible probability.

We will use A to design an adversary ARWI that breaks the bounded security of the protocol
RWI.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

A exactly as done in Hyb2. ARWI picks an honest party Pi and a malicious party Pj uniformly

at random. Initially, it receives a message rwi1 from CRWI which it sets as the value rwii→j1 in its
interaction with A in round 1. Then, ARWI creates a set of 5 look-ahead threads. For each thread,
on receiving rwij→i2 in round 2, ARWI forwards this to CRWI as its second round message for that

look-ahead thread. For each thread, ARWI also sends the statement sti→j2 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈ Li→j2 where

the other values are generated as in Hyb3.
In the main thread, ARWI also sends the pair of witnesses (xi, ri, r

i→j
r.ec ,⊥,⊥,⊥,⊥) and (⊥,⊥,⊥,⊥, tj , ri→jc ,⊥)

where tj is generated in the input extraction phase. For each look-ahead thread, ARWI sends the

witness (xi, ri, r
i→j
r.ec ,⊥,⊥,⊥,⊥). For each thread, ARWI receives a message rwi3 which is set as rwii→j3

in its interaction with A in round 3 of protocol π. The rest of protocol π is performed exactly as in
Hyb3. In particular, recall from the proof of Claim 12 that each look-ahead thread is “Good” with
noticeable probability and hence ARWI can successfully run the input extraction phase.

Observe that the first case corresponds to Hyb3 while the second case corresponds to Hyb4.
Now, let’s see how ARWI breaks the security of the protocol RWI. Recall that RWI is secure

even in the presence of 6 rewound look-ahead threads (we set L to be 6). ARWI runs the extractor
ExtNMCom of the non-malleable commitment scheme using the messages in all the threads that
correspond to the non-malleable commitment from malicious party Pj to honest party Pi. Let the

output of ExtNMCom be t∗. If TDValid(tdi→j1 , t∗) = 1, then ARWI outputs case 2 indicating that the
WI was constructed using the second witness on the main thread. Else, it outputs case 1.
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Let’s analyze why this works. We know that the invariant doesn’t hold in Hyb4 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of the honest party P∗i with non-negligible probability ε. With probability 1

n2 where n
is the total number of parties, this corresponds to honest party Pi and malicious party Pj picked
randomly by ARWI. Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the
non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages
of the honest party Pi in Hyb3. Therefore, since the invariant holds in Hyb3 with non-negligible
probability, when the extractor ExtNMCom outputs a valid trapdoor t∗, it must be the case that
we are in Hyb4 with non-negligible probability. That is, when ExtNMCom outputs a valid trapdoor,
it corresponds to ARWI receiving a proof using the second (alternate) witness and otherwise, it
corresponds to ARWI receiving a proof using the first witness. Thus, ARWI breaks the bounded
rewinding security of the scheme RWI which is a contradiction. Hence, the invariant holds in Hyb4
as well.

Claim 16. Assuming the bounded rewinding security of the protocol RWI, Hyb3 is indistinguishable
from Hyb4.

Proof. The only difference between Hyb3 and Hyb4 is that in Hyb4, in the main thread, the simulator
now computes the rewinding secure WI using a witness for the alternate statement. Suppose there
exists an adversary A that can distinguish between the two hybrids, we can use A to design an
adversary ARWI that breaks the bounded rewinding security of the protocol RWI. The rest of the
proof is very similar to the proof of Claim 15 above.

Claim 17. If the “Check Abort” step succeeds, assuming WI is a secure delayed input witness
indistinguishable argument, the invariant holds in Hyb5.

Proof. Notice that the only difference between Hyb4 and Hyb5 is in the witness used in the WI
proof of the main thread that is completed in round 4 of the protocol. However, since WI is a
delayed-input scheme, there is no difference in the first 2 rounds. In other words, there is no
difference between Hyb4 and Hyb5 in the messages used in the first 3 rounds of the protocol. Since
the invariant depends only on the first 3 rounds, and since the invariant holds in Hyb4, it continues
to hold in Hyb5.

Claim 18. Assuming WI is a secure delayed input witness indistinguishable argument, Hyb4 is
indistinguishable from Hyb5.

Proof. This is very similar to the proof of Claim 16 with the only difference being the reduction
uses the external challenger’s messages only once - to generate the proof in the final round of the
main thread and not in each look-ahead thread. Therefore, we don’t need any rewinding security
for the scheme WI.

Claim 19. If the “Check Abort” step succeeds, assuming the bounded rewinding security of the RWI
, the hiding property of the underlying commitment scheme Com used in the construction of R.ECom
and the existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the
invariant holds in Hyb6.
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Proof. We know that the invariant holds in Hyb5. The only difference between Hyb5 and Hyb6 is
that in Hyb6, the simulator now computes the extractable commitment in the main thread for every
honest party Pi using input 0 whereas in Hyb5 it was computed using input (xi, ri).

First, throughout this proof, we drop the subscript “a” since it is clear from context that we
are referring only to the first invocation of the extractable commitment. The second invocation is
not used in the proof at all.

Let’s briefly recall the construction of the scheme R.ECom from Section 4.4 in the context of pro-
tocol π. Consider a party Pi as committer interacting with a party Pj as receiver using input message

m. In round 1, Pi computes r.eci→j1 = brew.eci→j1 where brew.eci→j1 = BRew.ECom1(r
i→j ; rbrew.ec)

using random strings ri→j , rbrew.ec. In round 2, Pj responds with r.ecj→i2 = brew.ecj→i2 where

brew.ecj→i2 = BRew.ECom2(brew.ec
i→j
1 ). Finally, in round 3, Pi computes r.eci→j3 as (αi→j , brew.eci→j3 , βi→j)

where brew.eci→j3 = BRew.ECom3(ri,j , brew.ec
i→j
1 , brew.ecj→i2 ; rbrew.ec), β

i→j
b = PRF(ri→j , αi→j)⊕m.

Now, Let’s zoom in and recall the construction of the scheme BRew.ECom from Section 4.3
in the context of protocol π. In round 1, Pi computes brew.eci→j1 = {brew.eci→j1,1 , . . . , brew.ec

i→j
1,λ }

where brew.eci→j1,l = Com(pi→jl ) where each pi→jl is a random polynomial of degree 4 (defined

in Section 4.3). In round 2, Pj generates brew.ecj→i2 = (zj→i1 , . . . , zj→iλ ) where each zj→il is a

random value. Then, in round 3, Pi outputs brew.eci→j3 = {brew.eci→j3,1 , . . . , brew.ec
i→j
3,λ } where

brew.eci→j3,l = (ri→j ⊕ pi→jl (0), pi→jl (zj→il )) for each l ∈ [λ].
We will design a set of intermediate hybrids Sub.Hyb1 to Sub.Hyb5 where Sub.Hyb1 denotes

Hyb5 and Sub.Hyb5 denotes Hyb6. We will then show that the invariant holds in every intermediate
hybrid to complete the proof.

• Sub.Hyb1: This is same as H5.

• Sub.Hyb2: In this hybrid, for every honest party Pi and malicious party Pj , only on the main

thread, compute brew.eci→j3 = BRew.ECom3(0, brew.ec
i→j
1 , brew.ecj→i2 ; rbrew.ec). Observe that

all the look-ahead threads continue committing to a random value ri→j .

• Sub.Hyb3: In this hybrid, for every honest party Pi and malicious party Pj , in the main
thread, compute βi→j uniformly at random.

• Sub.Hyb4: In this hybrid, for every honest party Pi and malicious party Pj , in the main
thread, compute βi→j = PRF(ri→j , αi→j)⊕ 0.

• Sub.Hyb5: In this hybrid, for every honest party Pi and malicious party Pj , compute brew.eci→j3 =

BRew.ECom3(r
i→j , brew.eci→j1 , brew.ecj→i2 ; rbrew.ec). This is same as H6.

Sub-Claim 1. Assuming the bounded rewinding security of the RWI, the hiding property of the
underlying commitment scheme Com used in the construction of BRew.ECom and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb2.

Proof. The only difference between the two hybrids is that in Sub.Hyb1, the underlying commitment
BRew.ECom is to ri→j while in Sub.Hyb2, it is to 0. We know that the invariant holds in Sub.Hyb1.

We will design a set of intermediate hybrids Sub.Hyb1,0 to Sub.Hyb1,λ where Sub.Hyb1,0 denotes
Sub.Hyb1 and Sub.Hyb1,λ denotes Sub.Hyb2. We will then show that the invariant holds in every
intermediate hybrid to complete the proof. Here, λ is the security parameter. For l = 1 . . . λ,

52



Sub.Hyb1,l: For every honest party Pi and malicious party Pj , do: (to ease the exposition, we will
skip the superscript i→ j).

• Pick a new degree 4 polynomial ql such that (r ⊕ pl(0)) = (0⊕ ql(0)).

• In round 1, compute brew.ec1,l = Com(ql).

• in the main thread, compute brew.ec3,l as (0⊕ ql(0), ql(zl)).

• In every look-ahead thread, compute brew.ec3,l as before, i.e using input r but using polynomial
ql.

That is, in Sub.Hyb1,l, we switch the lth index of the extractable commitment scheme from using
input (r) to using input 0.

Recall that the goal was to show that the invariant holds in every intermediate hybrid. Assume
for the sake of contradiction that there exists l such that the invariant doesn’t hold in Sub.Hyb1,l
but holds in Sub.Hyb1,0, . . . ,Sub.Hyb1,l−1. That is, there exists an adversary A such that for some
honest party P∗i and malicious party P∗j , A causes event E to occur with non-negligible probability
in Sub.Hyb1,l. We will use A to arrive at a contradiction.

We will again prove this using a series of intermediate hybrids. We know that the invariant
holds in Sub.Hyb1,l−1. Consider a set of hybrids H1, . . . ,H5 as follows where H1 corresponds to
Sub.Hyb1,l−1 and H5 corresponds to Sub.Hyb1,l.

• H2: In round 3 of every look-ahead thread, for every honest party Pi and malicious party
Pj , the algorithm RWI3 proves that the commitment (brew.ec1, brew.ec2, brew.ec3) is “well-
formed” using all indices from 1, . . . , λ except index l. Recall that proving well-formedness of
the commitment using the scheme R.ECom essentially boils down to proving well-formedness
of the underlying commitment using the scheme BRew.ECom.

• H3: In round 1, for every honest party Pi and malicious party Pj , compute brew.ec1,l =
Com(0).

• H4: For every honest party Pi and malicious party Pj :

– In the main thread, compute brew.ec3,l as (0⊕ ql(0), ql(zl)).

– In every look-ahead thread, compute brew.ec3,l as before but using polynomial ql.

• H5: In round 1, for every honest party Pi and malicious party Pj , compute brew.ec1,l =
Com(ql).

Note: as before, we drop the superscript i → j to ease the exposition. We will now show that
the invariant holds in H2, . . . ,H5 and this completes the proof.

Lemma 1. Invariant holds in H2.

Proof. We know that the invariant holds in H1. Suppose it doesn’t hold in H2. That is, there exists
an adversary A such that for some honest party P∗i and malicious party P∗j , A causes event E to
occur with non-negligible probability. The only difference between the two hybrids is in the witness
used to compute the WI in round 3 of protocol π for every look-ahead thread. We will use A to
design an adversary ARWI that breaks the bounded rewinding security of the scheme RWI.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

A exactly as done in H1. ARWI picks an honest party Pi, a malicious party Pj . Initially, it receives a
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message rwi1 from CRWI which it sets as the value rwii→j1 in its interaction with A in round 1. Then,

ARWI creates a set of 5 look-ahead threads. On receiving rwij→i2 in round 2 for each look-ahead
thread, ARWI forwards this to CRWI as its second round message for that look-ahead thread. ARWI

also sends the statement sti→j2 =(brew.eci→j1 , brew.ecj→i2 , brew.eci→j3 ,msg2,i,Trans1, c
i→j
1 , cj→i2 , ci→j3 ,

tdj→i1 , tdi→j2 , tdj→i3 ) ∈ Li→j2 where the other values are generated as in H1 along with the pair of
witnesses used in H1 and H2 respectively. Corresponding to each look-ahead thread, ARWI receives
a message rwi3 which is set as rwii→j3 in its interaction with A in round 3 of protocol π. The rest of
protocol π is performed exactly as in H1. In particular, recall from the proof of Claim 12 that each
look-ahead thread is “Good” with noticeable probability and hence ARWI can successfully run the
input extraction phase.

Observe that the first case corresponds to H1 while the second case corresponds to H2.
Now, let’s see how ARWI breaks the bounded rewinding security of the scheme RWI. ARWI runs

the extractor ExtNMCom of the non-malleable commitment scheme using the messages in all the
threads that correspond to the non-malleable commitment from malicious party Pj to honest party

Pi. Let the output of ExtNMCom be t∗. If TDValid(tdi→j1 , tdj→i2 , tdi→j3 , t∗) = 1, then ARWI outputs
case 2 indicating that the WI was constructed using the witness as in H2. Else, it outputs case 1.

Let’s analyze why this works. We know that the invariant doesn’t hold in H2 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of the honest party P∗i with non-negligible probability ε. With probability 1

n2 where n
is the total number of parties, this corresponds to honest party Pi and malicious party Pj picked
randomly by ARWI. Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the non-
malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the
honest party Pi in H2. Therefore, since the invariant holds in H1 with non-negligible probability,
when the extractor ExtNMCom outputs a valid trapdoor t∗, it must be the case that we are in H2

with non-negligible probability. Thus, ARWI breaks the bounded rewinding security of the scheme
RWI which is a contradiction. Hence, the invariant holds in H2 as well.

Lemma 2. Invariant holds in H3.

Proof. We know that the invariant holds in H2. The only difference between H2 and H3 is that
in H3, the simulator now computes the commitment brew.ec1,l in round 1 as brew.ec1,l = Com(0)
for every honest party Pi and malicious party Pj . Assume for the sake of contradiction that the
invariant doesn’t hold in H3. That is, there exists an adversary A such that for some honest party
P∗i and malicious party P∗j , A causes event E to occur with non-negligible probability. We will use
A to design an adversary ACom that breaks the hiding of the commitment scheme.
ACom interacts with a challenger CCom. ACom performs the role of SimHyb in its interaction with

A exactly as done in Hyb1. ANMCom picks an honest party Pi and a malicious party Pj uniformly
at random. ACom creates a set of 5 look-ahead threads. ACom interacts with a challenger CCom and
sends two strings: (pl) and (0). ACom receives a message c which is sent to A as the value brew.ec1,l
round 1 and the rest of protocol π is performed exactly as in H2. In particular, recall from the
proof of Claim 12 that each look-ahead thread is “Good” with noticeable probability and hence
ACom can successfully run the input extraction phase.

Observe that the first case corresponds to H2 while the second case corresponds to H3.
Now, let’s analyze why ACom breaks the hiding of the scheme Com. We know that the invariant

doesn’t hold in H3 so there exists honest party P∗i and malicious party P∗j such that event E doesn’t
hold. That is, the adversary P∗j , using the non-malleable commitment, commits to a valid trapdoor
t∗i for the trapdoor generation messages of the honest party P∗i with non-negligible probability ε.
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With probability 1
n2 where n is the total number of parties, this corresponds to honest party Pi

and malicious party Pj picked randomly by ACom. Therefore, with non-negligible probability ε
n2 ,

the adversary Pj , using the non-malleable commitment, commits to a valid trapdoor t∗i for the
trapdoor generation messages of the honest party Pi in H3. Therefore, since the invariant holds
in H2 with non-negligible probability, when the extractor ExtNMCom outputs a valid trapdoor t∗, it
must be the case that we are in H3 with non-negligible probability. Thus, ACom can use this to
break the hiding of the commitment scheme Com which is a contradiction. Hence, the invariant
holds in H3 as well.

Lemma 3. Invariant holds in H4.

Proof. We know that the invariant holds in H3. The difference between H3 and H4 is only a
statistical change and hence the invariant continues to hold in H4 as well.

Lemma 4. Invariant holds in H5.

Proof. This is same as the proof of Lemma 2.

This completes the proof of Sub-Claim 1.

Sub-Claim 2. Assuming the security of the pseudorandom function PRF and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb3.

Proof. The only difference between the two hybrids is that, in Sub.Hyb3, on the main thread, the
value βi→j is computed uniformly at random while in Sub.Hyb2, it was computed as PRF(ri→j , αi→j)⊕
xi. Therefore, if there exists an adversary A for which the invariant holds in Sub.Hyb2 but not
in Sub.Hyb3, we can use the extractor ExtNMCom to extract the value inside the adversary’s non-
malleable commitment and check whether the invariant holds or not. Thus, we can build a reduction
that breaks the security of the PRF.

Sub-Claim 3. Assuming the security of the pseudorandom function PRF and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb4.

Proof. This is identical to the previous proof.

Sub-Claim 4. Assuming the bounded rewinding security of the scheme RWI, the hiding property of
the underlying commitment scheme Com used in the construction of BRew.ECom and the existence
of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds
in Sub.Hyb5.

Proof. This is identical to the proof of Sub-Claim 1.

This completes the proof of Claim 19.

Claim 20. Assuming the bounded rewinding security of the scheme RWI and the hiding property
of the underlying commitment scheme Com used in the construction of R.ECom, Hyb5 is indistin-
guishable from Hyb6.

Proof. This is similar to the proof of Claim 19.
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Claim 21. If the “Check Abort” step succeeds, assuming the security of protocol πSM and the exis-
tence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant
holds in Hyb7.

Proof. We know that the invariant holds in Hyb6. The only difference between Hyb6 and Hyb7 is
that in Hyb7, in the main thread, the simulator now computes the messages of protocol πSM using
the simulated algorithms S1,S2,S3. Assume for the sake of contradiction that the invariant doesn’t
hold in Hyb6. That is, there exists an adversary A such that for some honest party P∗i and malicious
party P∗j , A causes event E to occur in the main thread with non-negligible probability. We will

use A to design an adversary AπSM that breaks the security of the protocol πSM.
AπSM performs the role of SimHyb in its interaction with A exactly as done in Hyb6. AπSM also

interacts with a challenger CπSM and corrupts the same parties as done by A. For every honest
party Pi, AπSM receives a first round message msg1,i which is sent to A in round 1 of protocol π on
the main thread. On receiving msg1,j for every malicious party Pj in round 1 of the main thread
from A, AπSM forwards this to CπSM as the first round messages of the malicious parties.
AπSM then creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread, ANMCom computes msgi2 using input 0. Recall from the
properties of the scheme πSM that AπSM can do this even without knowing the randomness used
to generate msgi1. As in the proof of Claim 12, recall that using these 5 threads, AπSM can extract
with noticeable probability and thus, successfully run the input extraction phase.

Then, on the main thread, as before, the messages msg2,i and msg2,j corresponding to every
honest party Pi and malicious party Pj are sent across between CπSM and A via AπSM in round 3
of protocol π on the main thread. AπSM also sends the values (y, {xj , rj}) (obtained in the input
extraction phase) to CπSM . Then, for every honest party Pi AπSM receives a third round message
msg3,i which is sent to A in round 4 of protocol π. On receiving msg3,j for every malicious party
Pj in round 3 from A, AπSM forwards this to CπSM as the third round messages of the malicious
parties. The rest of protocol π is performed exactly as in Hyb5. Observe that when CπSM computes
the messages of protocol πSM honestly, A’s view corresponds to Hyb5 and then CπSM computes
simulated messages, A’s view corresponds to Hyb7.

Now, let’s see how AπSM breaks the security of protocol πSM. For every honest party Pi and
malicious party Pj , AπSM runs the extractor ExtNMCom of the non-malleable commitment scheme
using the messages in all the “Good” threads that correspond to the non-malleable commitment
from Pj to Pi. Let the output of ExtNMCom be t∗i . If for some pair of parties, TDValid(tdi→j1 , t∗i ) = 1,
then AπSM outputs case 2 indicating that the messages sent by the challenger were simulated. Else,
it outputs case 1 indicating that the messages were generated honestly.

Let’s analyze why this works. We know that the invariant doesn’t hold in Hyb7 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of the honest party P∗i with non-negligible probability ε. Therefore, since the invariant
holds in Hyb6 with non-negligible probability, when the extractor ExtNMCom outputs a valid trapdoor
t∗i corresponding to this pair of parties, it must be the case that we are in Hyb6 with non-negligible
probability. That is, when ExtNMCom outputs a valid trapdoor, it corresponds to AπSM receiving
simulated messages and otherwise, it corresponds to AπSM receiving honestly generated messages.
Thus, AπSM breaks the security of the protocol πSM which is a contradiction. Hence, the invariant
holds in Hyb7 as well.

Claim 22. Assuming the security of protocol πSM, Hyb6 is indistinguishable from Hyb7.
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Proof. The only difference between Hyb6 and Hyb7 is that in Hyb7, in the main thread, the simulator
now computes the messages of protocol πSM using the simulated algorithms S1,S2,S3. If there exists
an adversary A that can distinguish between the two hybrids, we can use A to design an adversary
AπSM that breaks the security of the protocol πSM. The rest of the proof is similar to the proof of
Claim 21 above.

Claim 23. If the “Check Abort” step succeeds, assuming the bounded rewinding security of the
scheme RWI and the existence of an extractor ExtNMCom for the non-malleable commitment scheme
NMCom, the invariant holds in Hyb8.

Proof. This is same as the proof of Claim 15.

Claim 24. Assuming the bounded rewinding security of the scheme RWI, Hyb7 is indistinguishable
from Hyb8.

Proof. This is same as the proof of Claim 16.

Claim 25. If the “Check Abort” step succeeds, the invariant holds in Hyb9.

Proof. There is no difference in the main thread between Hyb8 and Hyb9. Also, the new look-ahead
threads are identical to Hyb8 and hence the invariant continues to hold true.

Claim 26. Assuming soundness of the argument systems WI,RWI and WZK, the existence of an
extractor Ext for the extractable commitment scheme R.ECom and the existence of the trapdoor
extractor TDExt for the trapdoor generation protocol TDGen, Hyb8 is indistinguishable from Hyb9.

Proof. Observe that the only difference between the two hybrids is that the simulator outputs
“Special Abort” in the input extraction phase in the second set of look-ahead threads in Hyb9 and
also outputs “Special Abort 2” in Hyb9.

The proof for the following statement follows exactly as in the proof of Claim 10 : Pr[ SimHyb

outputs “Special Abort” ] ≤ negl(λ) in the second set of look-ahead threads.
We now show that the Pr[ SimHyb outputs “Special Abort 2” ] ≤ negl(λ) in Hyb9. This happens

only if there ∃ j such that {xj , rj} 6= {x∗j , r∗j}. However, we already know that in each set of “Good”
look-ahead threads, the algorithm Ext succeeds with noticeable probability. Therefore, from the
correctness of Ext, it immediately follows that for all j, {xj , rj} = {x∗j , r∗j} and this completes the
proof.

Claim 27. Assuming the security of all the primitives used in the construction,

• If the “Check Abort” step succeeds, the invariant holds in Hyb10.

• Hyb9 is computationally indistinguishable from Hyb10.

Proof. This follows by a repeated application of the proofs of Claim 13, Claim 14, Claim 15,
Claim 16, Claim 17, Claim 18, Claim 19, Claim 20, Claim 21, Claim 22, Claim 23, Claim 24.

Claim 28. Hyb10 is computationally indistinguishable from Hyb11.
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Proof. We know that the adversary’s input values extracted by using the first set of look-ahead
threads is same as those extracted by using the second set of look-ahead threads. Therefore, the
only difference between Hyb10 and Hyb11 is that in Hyb10, after the input extraction, SimHyb rewinds
the main thread 1

µ times while in Hyb11, SimHyb first estimates the probability of not aborting to

be ε′ and then rewinds the main thread min(2λ, λ
2

ε′ ) times. The rest of the proof follows in a very
similar manner to the proof of claim 5.8 in [Lin17]. That is, we show that if the “Check Abort” step
succeeds, the simulator fails in Hyb11 only with negligible probability using the claim in [Lin17].
We already know that in Hyb10, if the “Check Abort” step succeeds, the simulation successfully
forces the output and hence, this completes the proof.

Observe that Hyb11 is the ideal world and this completes the proof of Theorem 7.

7 Simulation Extractable Promise ZK

In this section, we define the notion of Simulation Extractable Promise ZK and then give a 3 round
construction of it. Recall the notion of an algorithm pExtract being “Admissible” from Section 5.

An n-round delayed-input interactive argument (Prove,Verify,Valid) in the simultaneous mes-
sage setting is said to be a simulation-extractable promise ZK argument system if it additionally
satisfies the properties of simulation security and simulation-extractability defined below.

We consider a synchronous man-in-the-middle adversary, who completes each round in both the
left and right sessions before starting the next round in either session. Note that MIM could be
rushing but still has to complete one round in both sessions before proceeding to the next round
in either session.

Definition 7 (Simulation-Extractable Promise ZK). An n-round distributional delayed-input simultaneous-
message interactive argument (Prove,Verify,Valid) where Prove = (P1, P2) for a language L is said
to be simulation-extractble promise zero knowledge if, for every efficiently sampleable distribution
(Xλ,Wλ) on RL, i.e., Supp(Xλ,Wλ) = {(x,w) : x ∈ L ∩ {0, 1}λ, w ∈ RL(x)},

every non-uniform PPT MIM, every z ∈ {0, 1}∗, every c > 0, and all admissible pExtractc, there
exists an a simulator S = (S1,S2) such that:

Consider the experiments REAL and IDEAL defined below. Let ViewMIM[REAL] denote the output
of the experiment REAL and ViewMIM[IDEAL] denote the output of the experiment IDEAL. Then:

1. Simulation Security: For every PPT distinguisher D,

• The running time of oracle algorithm S2 on input (z, x, st, p) is poly(λ) ·O(1p).

• Let ε = λ−c. Then,∣∣∣∣∣Pr
[
D(z,ViewMIM[REAL] = 1

]
− Pr

[
D(z,ViewMIM[IDEAL]) = 1

]∣∣∣∣∣ ≤ ε
where the probability is over the random coins of the parties in the below experiments.

2. Simulation Extractability: For every x∗ ∈ {0, 1}λ chosen by MIM in the right session
adaptively depending upon the first (n− 2) rounds:

Pr

[
EMIM(z,Trans) = w ∧R(x∗, w) = 1

∣∣∣∣ 〈S(x, z),MIM(z)〉R = 1

]
≥ (1− negl(λ)),

where the probability is over the random coins of all the parties. 〈Sim(x, z),MIM(z)〉R denotes
the output of Sim in the right session.
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Experiment REAL: . A man-in-the-middle adversary MIM interacts with an honest prover P in
the left session and an honest verifier V in the right session. Prover P has input (Xλ,Wλ) - an
efficiently sampleable distribution on RL. Let z be the auxiliary input given to MIM and let (x,w)
be the instance-witness pair sampled by P in the interaction. The experiment proceeds as follows:

1. In the left session:

• Compute (msg, st)← P1(1
λ). Output msg.

• Then, sample (x,w)← (Xλ,Wλ).

• Output 〈P2(x,w, st),MIM〉.

2. In the right session, output 〈MIM, V (1λ)〉.

Experiment IDEAL: . A man-in-the-middle adversary MIM interacts with a simulator Sim in
both the left and right sessions. The simulator Sim = (P1,S2) has input (Xλ,Wλ) - an efficiently
sampleable distribution on RL. Additionally, Sim is given as input a statement x where (x,w) is
sampled from the distribution (Xλ,Wλ) but the corresponding witness w is not given to Sim. In this
interaction, let z be the auxiliary input given to MIM.

• Compute (msg, st)← P1(1
λ). Output msg.

• Let pExtractMIM
c (msg, st) = p.

• If p = 0, sample (x,w) ← (Xλ,Wλ) and output 〈P2(x,w, st),MIM〉 in the left session and
〈MIM, V (1λ)〉 in the right session.

• Else, sample x← (Xλ) and output SMIM
2 (z, x, st, p).

Remark: Note that the simulation security property implies the distributional promise ZK
property defined in the previous section. Similarly, simulation-extractability property implies
soundness.

7.1 Construction

In this section, we construct a three round simulation-extractable promise ZK argument system.
Formally, we prove the following theorem:

Theorem 9. Assuming the existence of polynomially secure injective one way functions, the pro-
tocol πSE−PZK is a three round simulation-extractable promise ZK argument.

We start by describing some notation and cryptographic primitives that we use in our construc-
tion

Building Blocks. Our construction relies on the following list of cryptographic primitives.

• TDGen = (TDGen1,TDGen2,TDGen3,TDOut) is the three-message trapdoor generation pro-
tocol as defined in Section 4. The first 3 algorithms are used to generate the messages of the
protocol while TDOut checks that the execution was honest. TDGen also has two associated
PPT algorithms TDValid,TDExt.
Recall that the algorithm TDValid takes as input a tuple of 4 values : the first three being
outputs of the algorithms TDGen1,TDGen2,TDGen3 and outputs 1 if the fourth value is a
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valid trapdoor with respect to these three.
The algorithm TDExt, as defined earlier, with overwhelming probability, outputs a valid trap-
door if given honestly generated messages of the trapdoor generator in 3 executions with a
common first round.

• RWI = (RWI1,RWI2,RWI3,RWI4) is the three round delayed-input witness indistinguishable
argument with bounded rewinding security defined in Section 4. The fourth algorithm RWI4
is the final verification algorithm. We will set the rewinding security parameter L to be 5 in
all our applications.

• NMCom = (NMCom1,NMCom2,NMCom3) is any three-message delayed-input non-malleable
commitment scheme with respect to commitment in which the third round message is indis-
tinguishable from a random string when the input is ⊥. Let ExtNMCom denote the polynomial
time extractor of this non-malleable commitment scheme. We require that given the tran-
script of 2 executions of the protocol, ExtNMCom can extract the value committed to inside
the commitment with non-negligible probability. Also, given the transcript of polynomial
many executions of the protocol, ExtNMCom can extract the value committed to inside the
commitment except with negligible probability.

The non-malleable commitment scheme defined in Goyal et al.[GPR16] is one such example
that can be based on injective one way functions.

Remark: The NMCom we use is tagged. In the authenticated channels setting, the tag of
each user performing a non-malleable commitment can just be its identity. In the general
setting, in the first round, each party can choose a strong digital signature verification key VK
and signing key, and then sign all its messages using this signature scheme for every message
sent in the protocol. This VK is then used as the tag. This ensures that every adversarial
party must choose a tag that is different from any tags chosen by honest parties, otherwise
the adversary will not be able to sign any of its messages by the existential unforgeability
property of the signature scheme. This is precisely the property that is assumed when applying
NMCom. For ease of notation, we suppress writing the tags explicitly in our protocols below.

NP Languages. In our construction, to decide any NP language L characterized by relation R,
we define a new NP language LRWI characterized by the following relation RRWI.
Statement: stRWI = (x, ca,1, ca,2, ca,3, cb,1, cb,2, cb,3, ct,1, ct,2, ct,3, td1, td2, td3)
Witness: wRWI = (w, ra, rb, t, rt)
Relation: R(stRWI,wRWI) = 1 if and only if :

• ca,1 = NMCom1(ra) AND

• ca,3 = NMCom3(w, ca,1, ca,2; ra) AND

• R(x,w) = 1

(OR)

• cb,1 = NMCom1(rb) AND

• cb,3 = NMCom3(w, cb,1, cb,2; rb) AND

• R(x,w) = 1

(OR)
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• TDValid(td1, td2, td3, t) = 1 AND

• ct,1 = BRew.ECom1(rt) AND

• ct,3 = BRew.ECom3(t, ct,1, ct,2; rt).

That is, either :

1. x is in the language L with witness w that is committed to using the first non-malleable
commitment (ca,1, ca,2, ca,3) (OR)

2. x is in the language L with witness w that is committed to using the second non-malleable
commitment (cb,1, cb,2, cb,3) (OR)

3. the third non-malleable commitment (ct,1, ct,2, ct,3) is to a value t that is a valid trapdoor for
the messages (td1, td2, td3) generated using the trapdoor generation algorithms.

7.1.1 The Protocol

Let P and V denote the prover and verifier, respectively. Let L be any NP language with an
associated relation RL. Let (Xλ,Wλ) be any efficiently sampleable distribution on RL.

We construct a three round protocol πSE−PZK = (P, V,Valid) for L. The protocol is described
in Figure Figure 7. We first describe the algorithms (P, V ) denoting the interaction between the
prover and verifier. The description of algorithm Valid is given at the end. We use the notation
P → V in the superscript to denote that the message was sent by P to V . The round number of
any sub-protocol being used is written in the subscript. We use three instantiations of the non-
malleable commitment scheme NMCom; we use (a, i), (b, i), (t, i) in the subscript to denote each of
the instantiations (where i is the round number).

Completeness follows from the correctness of the underlying primitives used. We will now
describe the security proof.

7.2 Security Proof

We first give a description of the simulator Sim = (Sim1,Sim2) only in the interaction with the
adversary MIM in the left session. We then augment Sim with the honest verifier’s strategy for the
right session to construct the final simulator SimSE. That is, our ideal world simulator SimSE, in
the left session, performs exactly as done by Sim and in the right session, performs the role of an
honest verifier.

Before we describe the details, lets recall the basic strategy followed by a rewinding simulator.
Sim creates a “main thread” of execution that will be actually output at the end of the simulation
and three “look-ahead” threads that will facilitate the extraction of the adversary’s trapdoor. Each
look-ahead thread created by Sim shares the first round with the main thread, but contains different
messages in the second and third rounds. Sim will use the adversary’s messages in the third round
of these look-ahead threads to extract the adversary’s trapdoor and then use this appropriately in
the main thread to simulate the adversary’s final view. Note that in the final simulation, for each
look-ahead thread, SimSE plays the role of the honest verifier in the right session.

Running time of Sim2: The number of look-ahead threads created is (λ · 1p) where p is the value
that is given as input to Sim2. Hence, it is easy to see that the running time of Sim2 is indeed
poly(λ) ·O(1p).
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Inputs: Prover P has input (Xλ,Wλ) - an efficiently sampleable distribution on RL.

1. Round 1:

• Prover message:
Compute and send (rwiP→V1 ) ← RWI1(1

λ), cP→Va,1 ← NMCom1(ra), cP→Vb,1 ←
NMCom1(rb) and cP→Vt,1 ← NMCom1(rt) using random strings ra, rb, rt.

• Verifier message:
Compute and send tdV→P1 ← TDGen1(rtd) using a random string rtd.

2. Round 2:

• Prover message:

– Sample (x = (x1, x2), w)← (Xλ,Wλ).

– Compute and send tdP→V2 ← TDGen2(td
P→V
1 ) along with x1.

• Verifier message:
Compute and send rwiV→P2 ← RWI2(wi

P→V
1 ), cV→Pa,2 ← NMCom2(c

P→V
a,1 ), cV→Pb,2 ←

NMCom2(c
P→V
b,1 ), cV→Pt,2 ← NMCom2(c

P→V
t,1 ).

3. Round 3:

• Prover message:
– Compute cP→Va,3 ← NMCom3(w, c

P→V
a,1 , cV→Pa,2 ; ra), c

P→V
b,3 ← NMCom3(⊥, cP→Vb,1 ,

cV→Pb,2 ; rb) and cP→Vt,3 ← NMCom3(⊥, cP→Vt,1 , cV→Pt,2 ; rt).

– Generate rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 , tdP→V2 ,

tdV→P3 ) using witness (w, ra,⊥,⊥,⊥).

– Send (x2, c
P→V
a,3 , cP→Vb,3 , cP→Vt,3 , rwiP→V3 ).

• Verifier message:
Compute and send tdV→P3 ← TDGen3(td

V→P
1 , tdP→V2 ; rtd) using randomness rtd.

4. Verifier Output:
Output RWI4(rwi

P→V
1 , rwiV→P2 , rwiP→V3 , stRWI).

Valid(Trans):
Given the transcript of the protocol execution, output 1 if TDOut(tdV→P1 , tdP→V2 , tdV→P3 ) = 1.

Figure 7: Three round Simulation-Extractable Promise ZK argument.

To prevent a cluttered description, we overload notation when referring to the same object in
the main thread and the look-ahead threads. However, it will be clear from context which thread’s
object is being referred to.

The description of Sim is given in Figure 8.

7.2.1 Hybrids

We will now prove both the security properties by using a sequence of hybrids. The first hybrid
Hyb0 will correspond to the real world experiment where the adversary MIM interacts with an
honest prover P on the left and honest verifier V on the right. The last hybrid Hyb5 corresponds to
the ideal world where MIM interacts with the simulator SimSE. Additionally, we will also maintain
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Sim1(z): Recall that by definition Sim1(z) = P1(1
λ). That is, it does the following:

• Compute and send (rwiP→V1 ) ← RWI1(1
λ), cP→Va,1 ← NMCom1(ra), cP→Vb,1 ← NMCom1(rb)

and cP→Vt,1 ← NMCom1(rt) using random strings ra, rb, rt. Note that this denotes the out-
put msg with the associated state st being (ra, rb, rt) and the randomness used to generate
rwiP→V1 .

• Receive tdV→P1 from V ∗.

Sim2(z, x, st, p) :
Let p = pExtractMIM

c (msg, st). If p = 0, sample (x,w)← (Xλ,Wλ) and output 〈P2(x,w, st),MIM〉.
Else:

1. Round 2:

• Create a set of (λ · 1p) look-ahead threads that run only rounds 2 and 3 of the protocol.

• In each look-ahead thread, sample (x = (x1, x2), w)← (Xλ,Wλ).

• Then, in each of the threads (main and look-ahead) :

– Compute and send tdP→V2 ← TDGen2(td
P→V
1 ) along with x1.

– Receive rwiV→P2 , cV→Pa,2 , cV→Pb,2 and cV→Pt,2 .

2. Round 3:
In each look-ahead thread:

• Compute cP→Va,3 ← NMCom3(⊥, cP→Va,1 , cV→Pa,2 ; ra),

cP→Vb,3 ← NMCom3(w, c
P→V
b,1 , cV→Pb,2 ; rb) and cP→Vt,3 ← NMCom3(⊥, cP→Vt,1 , cV→Pt,2 ; rt).

• Generate rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 , tdP→V2 ,

tdV→P3 ) using witness (w,⊥, rb,⊥,⊥).

• Send (x2, rwi
P→V
3 ) and receive tdV→P3 .

Input Extraction:

• Run the trapdoor extractor using the trapdoor generation messages of all the look-
ahead threads. That is, compute tV ← TDExt(tdV→P1 , {tdP→V2 , tdV→P3 }) where the set
denotes the pair of values from all the look-ahead threads.

• Output “Special Abort” if TDExt fails.

Main thread:

• Compute cP→Va,3 ← NMCom3(⊥, cP→Va,1 , cV→Pa,2 ; ra),

cP→Vb,3 ← NMCom3(⊥, cP→Vb,1 , cV→Pb,2 ; rb) and cP→Vt,3 ← NMCom3(tV , c
P→V
t,1 , cV→Pt,2 ; rt).

• Generate rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI) for the statement stRWI =

(x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 , tdP→V2 , tdV→P3 )
using witness (⊥,⊥,⊥, tV , rt).
• Send (x2, rwi

P→V
3 ) and receive tdV→P3 .

Figure 8: Simulator’s description.

a couple of invariants that will be useful in the proof.

• Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
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honest prover on the left session and an honest verifier on the right session.

• Hyb1 - Extraction: In this hybrid, SimHyb first runs the protocol honestly. If the adversary
aborts at the end of the execution, then SimHyb stops here. Else, SimHyb rewinds back to the
end of round 1 on the left session and creates a fresh set of (λ · 1ε ) look-ahead threads on
the left session. In all the look-ahead threads, SimHyb performs exactly as described in Hyb1.
Additionally, using the messages in the left session, SimHyb also runs the “Input Extraction”
phase described in round 3 of the description of Sim to extract the trapdoor tV . Finally,
SimHyb completes the main thread on the left session by running the honest prover strategy
exactly as in Hyb0.

• Hyb2 - Changing Commitment to Trapdoor: In the main thread, on the left session,
SimHyb does the following: in round 3, compute cP→Vt,3 ← NMCom3(tV , c

P→V
t,1 , cV→Pt,2 ; rc).

• Hyb3 - Switching bounded rewinding secure WI proofs: In the main thread, on the
left session, SimHyb does the following: rwiP→V3 ← RWI3(rwi

P→V
1 , rwiV→P2 , stRWI,wRWI) for the

statement stRWI = (x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 ,

tdP→V2 , tdV→P3 ) using witness (⊥,⊥,⊥, tV , rt).

• Hyb4 - Changing Commitment to Witness: In the main thread, on the left session,
SimHyb does the following: in round 3, compute cP→Va,3 ← NMCom3(⊥, cP→Va,1 , cV→Pa,2 ; ra).

• Hyb5 - Using pExtractc: In this hybrid, the number of look-ahead threads created is (λ · 1p).
Also, on the left session, SimHyb no longer samples (x,w) in round 3 and instead uses the
external input x. The description of SimHyb in this hybrid matches the description of the
simulator SimSE.

7.2.2 Invariants

We now describe the two invariants.

Definition 8 (Invariant T). Consider the right session between MIM and SimHyb. tdV→P1 denotes
the first message of the trapdoor generation protocol with SimHyb as the trapdoor generator. The
values (cP→Vt,1 , cV→Pt,2 , cP→Vt,3 ) denote the messages of the non-malleable commitment with MIM as
the creator.
Consider the following event Et which occurs if ∃(ti, rt) such that:

• cP→Vt,1 = NMCom1(rt) (AND)

• cP→Vt,3 = NMCom3(ti, c
P→V
t,1 , cV→Pt,2 ; rt). (AND)

• TDValid(tdV→P1 , ti) = 1.

That is, the event Et occurs if, in the right session, the adversary MIM, using the non-malleable
commitment, commits to a valid trapdoor ti for the trapdoor generation messages of SimHyb.

The invariant is : Pr[ Event Et occurs ] ≤ negl(λ).

Definition 9 (Invariant W). Consider the right session between MIM and SimHyb. The values
(cP→Va,1 , cV→Pa,2 , cP→Va,3 ) and (cP→Vb,1 , cV→Pb,2 , cP→Vb,3 ) denote the messages of the two non-malleable com-
mitments with MIM as the creator. Let x be the statement output by MIM in the last round.
Consider the following event Ew which occurs if ∃(w, rw) such that:
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• cP→Va,1 = NMCom1(rw) (AND)

• cP→Va,3 = NMCom3(w, c
P→V
a,1 , cV→Pa,2 ; rw). (AND)

• R(x,w) = 1.

(OR)

• cP→Vb,1 = NMCom1(rw) (AND)

• cP→Vb,3 = NMCom3(w, c
P→V
b,1 , cV→Pb,2 ; rw). (AND)

• R(x,w) = 1.

That is, the event Ew occurs if, in the right session, the adversary MIM, using either of the first
two non-malleable commitments, commits to a witness w for the statement x.

The invariant is : Pr[〈Sim(x, z),MIM(z)〉R = 1∧ Event Ew does not occur ] ≤ negl(λ).

That is, if the MIM produces an accepting proof in the right session, then Event Ew must occur
except with negligible probability.

7.2.3 Simulation Security

In this section, we will show that Hyb0 is computationally indistinguishable from Hyb5 thus proving
the Simulation Security property. Along the way, we will also prove that the two invariants hold in
each hybrid. This will help us in proving the Simulation Extractability property in the next hybrid.

First, assume by contradiction that there exists an adversary A that can distinguish the real
and ideal worlds with some probability greater than ε where ε > λ−c for some constant c > 0. Then
it must be the case that in the ideal world, p = pExtractMIM

c (msg, st) 6= 0. This is because, when
p = 0, the real and ideal views are identical. Therefore, in the other case, we have qmsg > p > ε.

We now prove that every pair of consecutive hybrids is indistinguishable except with probability
at most ε

10 and this completes the proof.

Claim 29. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and the
existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, Invariant
T holds in Hyb0.

Proof. We will prove this by contradiction. Assume that the invariant doesn’t hold in Hyb0. That is,
there exists an adversary MIM such that it causes event Et to occur with non-negligible probability
p. We will use this adversary to design an adversary ATDGen that breaks the “1-rewinding security”
of the trapdoor generation protocol TDGen as defined in Section 4 with non-negligible probability.
ATDGen interacts with a challenger CTDGen and receives a first round message td1 corresponding

to the protocol TDGen. ATDGen performs the role of SimHyb in its interaction with MIM exactly
as done in Hyb0. Now, in round 1 of the right session, ATDGen sets tdV→P1 as td1 received from
CTDGen. On receiving a value tdP→V2 from MIM in round 2 of the right session, ATDGen forwards
this message to CTDGen as its second round message for the protocol TDGen. ATDGen receives td3
from CTDGen which is set as tdV→P3 in its interaction with MIM. ATDGen continues with the rest
of protocol exactly as in Hyb0. Then, ATDGen rewinds the adversary MIM back to the beginning
of round 2. To be consistent with our earlier terminology, this can be interpreted as follows: in
the security proof, ATDGen creates a look-ahead thread that runs only rounds 2 and 3 of protocol
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πSE−PZK. Note that this look-ahead thread exists only in the proof of the invariant and not in the
description of Hyb0. As in the main thread, ATDGen forwards the adversary’s message tdP→V2 from
MIM in round 2 to CTDGen and receives td3 from CTDGen which is set as tdV→P3 in its interaction
with MIM. ATDGen continues with the rest of protocol πSE−PZK exactly as in Hyb0.

Now, ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the
messages in both the threads that correspond to the non-malleable commitment from MIM in the
right session. Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid trapdoor to CTDGen.

Let’s analyze why this works. We know that event Et doesn’t hold. That is, the adversary MIM,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of SimHyb in the right session with non-negligible probability p. Let’s say the extractor
ExtNMCom is successful with non-negligible probability p′. Therefore, with non-negligible probability
p · p′, ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks the security of the trapdoor
generation protocol TDGen. Thus, it must be the case that the invariant holds in Hyb0.

Claim 30. Assuming the soundness of the bounded rewinding secure WI argument system, Invari-
ant W holds in Hyb0.

Proof. We already know that Invariant T holds in Hyb0. Suppose Invariant W doesn’t hold. That
is, there exists an adversary MIM such that, with non-negligible probability p in the right session,
it produces an accepting SWI argument without committing to a valid witness for the statement in
either of the first two non-malleable commitments. We will use MIM to design an adversary ARWI

that breaks the soundness of the SWI argument system with non-negligible probability.
ARWI performs the role of SimHyb in its interaction with MIM exactly as done in Hyb0. ARWI

also interacts with a challenger CRWI (who is an honest verifier) in the soundness experiment for
the SWI argument system. ARWI forwards every message from MIM in the right session to CRWI

and vice versa.
Now, ARWI has broken the soundness of the SWI system with non-negligible probability p. Let’s

analyze why. In the right session, since invariant T holds, there doesn’t exist a valid witness for the
last statement (using the trapdoor as witness) to generate an accepting argument. Further, since
Invariant W is assumed to not hold, MIM doesn’t commit to a value w in either of the first two non-
malleable commitments such that R(x,w) = 1. Therefore, there doesn’t a valid witness for the first
two statements either to generate an accepting argument. However, MIM produces an accepting
argument. Thus, since ARWI exactly forwards the messages of MIM, with non-negligible probability
p, ARWI has produces an accepting argument for a false statement breaking the Soundness of RWI
which is a contradiction. Therefore, Invariant W holds in Hyb0.

Claim 31. Invariant T holds in Hyb1.

Proof. Since there is no difference in the main thread between Hyb0 and Hyb1, the invariant con-
tinues to hold true.

Claim 32. Invariant W holds in Hyb1.

Proof. Since there is no difference in the main thread between Hyb0 and Hyb1, the invariant con-
tinues to hold true.

Claim 33. Assuming the existence of the trapdoor extractor TDExt for the trapdoor generation
protocol TDGen, hiding of the non-malleable commitment scheme NMCom and the witness indis-
tinguishability property of the scheme RWI, Hyb0 is computationally indistinguishable from Hyb1
except with probability atmost ε

10 .
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Proof. First, let’s non-uniformly fix a first round message msg from SimHyb. That is, this is the
first round message which maximizes the adversary’s probability of success.

Case 1: In Hyb1, qmsg <
ε
2 .

That is, the probability that the adversary doesn’t abort, conditioned on the first message is lesser
than ε

2 . Then in this case, by applying the Chernoff bound, the number of non-aborting executions
in the first step of Hyb1 is lesser than λ except with 2ε probability in which case both hybrids look
identical as they just run the honest prover’s algorithm and stop at the end of the protocol.

Case 2: suppose 2 · ε > qmsg >
ε
2

This is handled using case 1 and case 3 the same way as done in Section 5.4.2.
Case 3: suppose qmsg > 2 · ε

Then, by the Chernoff bound, except with 2−λ probability, in this case, the number of non-aborting
transcripts is larger than λ and so SimHyb proceeds to the next step in Hyb1. In that case, the only
difference between the two hybrids is that in the left session, the simulator outputs “Special Abort”
in the input extraction phase in Hyb1. To prove that the two hybrids are indistinguishable, we will
now show that the Pr[ SimHyb outputs “Special Abort” ] ≤ ε

10 in Hyb1. SimHyb outputs “Special
Abort” only if the algorithm TDExt fails.

By the definition of the scheme TDGen, the algorithm TDExt is successful except with negligible
probability ε if given as input (td1, {tdi2, tdi3}3i=1) such that TDOut(td1, td

i
2, td

i
3) = 1 for all i. That

is, TDExt is successful except with negligible probability ε if given as input 3 executions of the
protocol TDGen.

Recall that in the left session, Pr(x,w←X,W )[Valid(msg,Trans(P2(x,w, st),MIM)) = 1|(msg, ·) ←
P1(1

λ)] = qmsg where the probability is over the random choices of (x,w) and the coins of the par-
ties P2,MIM. However, since each look-ahead thread in the left session is not identical to the main
thread, we first need to argue that each look-ahead thread is indistinguishable from the main thread
in the left session. If that is true, then, in each look-ahead thread, Pr[TDOut(tdMIM→P

1 , tdP→MIM
2 , tdMIM→P

3 ) =
1] = qmsg. Note that this condition holds even in each look-ahead thread because each look-ahead
thread only performs an honest execution of the protocol. Recall that qmsg > ε. Therefore, in (3ε )
expected number of threads, the malicious verifier outputs 3 correct executions of the trapdoor
generation protocol. Hence, by using the Markov inequality, in (λ · 1ε ) threads, the extraction is
successful except with negligible probability.

Therefore, the only remaining part of the proof is to show that every look-ahead thread in the
left session is computationally indistinguishable from the main thread in the left session. Consider
a series of hybrids described below where Hybint,0 denotes the main thread of execution in the left
session and Hybint,3 denotes a look-ahead in the left session. We then show that every pair of con-
secutive hybrids is computationally indistinguishable thus proving that Hybint,0 is computationally
indistinguishable from Hybint,3 which completes the proof.

• Hybint,0 - Main Thread: In this hybrid, consider a simulator SimHyb
int that plays the role of

the honest prover in the left session. This is the main thread. Note that SimHyb
int continues

to play the role of an honest verifier in the right session.

• Hybint,1 - Changing 2nd Commitment: In this hybrid, SimHyb
int does the following: in

round 3 of the left session, compute cP→Vb,3 ← NMCom3(w, c
P→V
b,1 , cV→Pb,2 ; rb).

• Hybint,2 - Switching Bounded Rewinding Secure WI proofs: In this hybrid, SimHyb
int

does the following: in round 3 of the left session, compute rwiP→V3 ← RWI3(rwi
P→V
1 , rwiV→P2 , stRWI,wRWI)
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for the statement stRWI = (x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 ,

tdP→V2 , tdV→P3 ) using witness (w,⊥, rb,⊥,⊥).

• Hybint,3 - Changing 1st Commitment: In this hybrid, SimHyb
int does the following: in

round 3 of the left session, compute cP→Va,3 ← NMCom3(⊥, cP→Va,1 , cV→Pa,2 ; ra). This hybrid now
corresponds to the look-ahead thread.

Lemma 5. Assuming the hiding property of the non-malleable commitment scheme NMCom,
Hybint,0 is computationally indistinguishable from Hybint,1.

Proof. The only difference between Hybint,0 and Hybint,1 is that in Hybint,1, the simulator now
computes the second non-malleable commitment using input w in the left session. Suppose there
exists an adversary V ∗ that can distinguish between the two hybrids with non-negligible probability.
We will use V ∗ to design an adversary AHid that breaks the hiding of the non-malleable commitment
scheme.
AHid interacts with a challenger CHid. AHid performs the role of SimHyb

int in its interaction with
V ∗ almost exactly as done in Hybint,0. AHid interacts with a challenger CHid and receives a first

round message which is set as cP→Vb,1 in its interaction with V ∗ in round 1 of protocol πSE−PZK

in the left session. AHid receives a value cV→Pb,2 in round 2 of protocol πSE−PZK in the left session
which it sends to CHid as its second round message. Then, AHid sends the pair of values (⊥, w) to
CHid. Recall that NMCom is a delayed-input scheme. AHid receives a third round message from CHid

which is either a commitment to ⊥ or w. This is sent to V ∗ as the value cP→Vb,3 in round 3 in the
left session. The rest of the protocol is performed exactly as in Hybint,0.

Observe that the first case corresponds to Hybint,0 while the second case corresponds to Hybint,1.
Therefore, if the adversary V ∗ can distinguish between these two hybrids with non-negligible prob-
ability, AHid will use the same guess to break the hiding of the non-malleable commitment scheme
NMCom with non-negligible probability which is a contradiction.

Claim 34. Assuming the witness indistinguishability property of the scheme RWI, Hybint,1 is com-
putationally indistinguishable from Hybint,2.

Proof. Note: We don’t need the bounded rewinding property of the WI scheme in this proof. That
is, here, we rely only on standard witness indistinguishability.

The only difference between Hybint,1 and Hybint,2 is that in Hybint,2, the simulator now computes
the bounded rewinding secure WI proof using a different witness in the left session. Suppose there
exists an adversary V ∗ that can distinguish between the two hybrids with non-negligible probability.
We will use V ∗ to design an adversary ARWI that breaks the security of the bounded rewinding
secure WI scheme with non-negligible probability.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

V ∗ almost exactly as done in Hybint,1. From CRWI, ARWI receives a first round message rwi1 which

is set as rwiP→V1 in its interaction with V ∗ in round 1 of protocol πSE−PZK in the left session. On
receiving rwiV→P2 in round 2 in the left session, ARWI forwards this to CRWI as its second round mes-
sage. Then, ARWI sends the statement stRWI = (x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 ,

cV→Pt,2 , cP→Vt,3 , tdV→P1 , tdP→V2 , tdV→P3 ) to CRWI where the other values are generated as in Hybint,1.
ARWI also sends the pair of witnesses (w, ra,⊥,⊥,⊥) and (w,⊥, rb,⊥,⊥). Recall that RWI is a
delayed-input scheme. ARWI receives a third round message rwi3 which is set as rwiP→V3 in its in-
teraction with V ∗ in round 3 of protocol πSE−PZK in the left session. The rest of protocol πSE−PZK

is performed exactly as in Hybint,1.
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Observe that the first case corresponds to Hybint,1 while the second case corresponds to Hybint,2.
Therefore, if the adversary V ∗ can distinguish between these two hybrids with non-negligible proba-
bility, ARWI will use the same guess to break the witness indistinguishability property of the scheme
RWI with non-negligible probability which is a contradiction.

Lemma 6. Assuming the hiding property of the non-malleable commitment scheme NMCom,
Hybint,2 is computationally indistinguishable from Hybint,3.

Proof. This proof is identical to the proof of Lemma 5 described above.

This completes the proof of Claim 33.

Claim 35. Assuming NMCom is a secure non-malleable commitment scheme, Invariant T holds
in Hyb2.

Proof. We know that Invariant T holds in Hyb1. The only difference between Hyb1 and Hyb2 is
that in Hyb2, the simulator now computes the non-malleable commitment in the main thread of
the left session using the adversary’s trapdoor value. Assume for the sake of contradiction that
Invariant T doesn’t hold in Hyb2. That is, there exists an adversary MIM such that it causes event
Et to occur with non-negligible probability. We will use A to design an adversary ANMCom that
breaks the security of the non-malleable commitment scheme.
ANMCom interacts with a challenger CNMCom. ANMCom performs the role of SimHyb in its interac-

tion with MIM exactly as done in Hyb1. ANMCom receives a first round message cL1 on the left side
from CNMCom which is set as cP→V1 in its interaction with A in round 1 of protocol πSE−PZK in the
left session. On receiving cP→V1 from MIM in the right session, ANMCom forwards this to CNMCom

as its first round message on the right side.
ANMCom receives a value cR2 from CNMCom as the second round message on the right side which

it sets as the value cV→P2 in the right session in round 2 of protocol πSE−PZK on the main thread.
Then, on receiving cV→Pt,2 in the main thread in the left session, ANMCom sends this to CNMCom as
its second round message on the left side. ANMCom generates the messages in the other look-ahead
threads on its own. Then, after the input extraction phase, ANMCom sends the pair of values (⊥, tV )
to CNMCom. Recall that NMCom is a delayed-input scheme.
ANMCom receives a third round message cL3 on the left side from CNMCom which is either a

commitment to ⊥ or tV . This is sent to MIM as the value cP→V3 in the main thread on the left
session. The rest of protocol πSE−PZK is performed exactly as in Hyb1. On receiving the value cP→V3

from MIM in the main thread on the right session, ANMCom sends it to CNMCom as its third round
message in the right side. Note that in all the other look-ahead threads, in the left session, ANMCom

continues to compute the non-malleable commitment using input ⊥ as done in Hyb1. Recall that
NMCom3(⊥) is indistinguishable from a random string and so ANMCom can generate this by picking
a uniformly random string without knowing the randomness used to generate cP→V1 .

Observe that the first case corresponds to Hyb1 while the second case corresponds to Hyb2.
Now, let’s analyze why ANMCom breaks the security of the scheme NMCom. We know that event Et
doesn’t hold in Hyb2. That is, the adversary MIM, in the right session of the main thread, using the
non-malleable commitment, commits to a valid trapdoor t∗ for the trapdoor generation messages of
SimHyb with non-negligible probability ε. Recall that this is same as the messages sent by ANMCom

to CNMCom as its commitment messages on the right side. In Hyb1, since the invariant holds, the
adversary did not commit to a valid trapdoor.

Therefore, when the value committed to by the honest party in the left execution changes, the
value committed to by the adversary in the right execution has also changed except with negligible
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probability. This breaks the security of the scheme NMCom which is a contradiction. Thus, the
invariant must hold in Hyb2 as well.

Claim 36. Assuming the soundness of the bounded rewinding secure WI argument system, Invari-
ant W holds in Hyb2.

Proof. This is identical to the proof of Claim 30.

Claim 37. Assuming the hiding property of the non-malleable commitment scheme NMCom, Hyb1
is computationally indistinguishable from Hyb2 except with probability at most ε

10 .

Proof. The only difference between Hyb1 and Hyb2 is that in Hyb2, the simulator now computes
the non-malleable commitment using the adversary’s trapdoor value in the left session. Suppose
there exists an adversary V ∗ that can distinguish between the two hybrids with non-negligible
probability greater than ε

10 , we can use V ∗ to design an adversary AHid that breaks the hiding of
the non-malleable commitment scheme. The rest of the proof is similar to the proof of Claim 35.

Claim 38. Assuming RWI is a bounded rewinding secure witness indistinguishable argument and the
existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, Invariant
T holds in Hyb3.

Proof. We know that the invariant holds in Hyb2. The only difference between Hyb2 and Hyb3
is that in Hyb3, in the main thread of the left session, the simulator now computes the bounded
rewinding secure WI proof using a different witness. Assume for the sake of contradiction that
Invariant T doesn’t hold in Hyb3. That is, there exists an adversary MIM such that that causes
event Et to occur with non-negligible probability.

We will use A to design an adversary ARWI that breaks the security of the bounded rewinding
secure WI scheme.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

MIM exactly as done in Hyb2. From CRWI, ARWI receives a first round message rwi1 which is set as
rwiP→V1 in its interaction with MIM in round 1 of protocol πSE−PZK in the left session. Then, ARWI

creates a set of L look ahead threads (L being the parameter for the protocol RWI which is set to 5
here). For each thread, on receiving rwiV→P2 in round 2 from MIM in the left session, ARWI forwards
this to CRWI as its second round message. For each thread, ARWI also sends the statement stRWI =
(x, cP→Va,1 , cV→Pa,2 , cP→Va,3 , cP→Vb,1 , cV→Pb,2 , cP→Vb,3 , cP→Vt,1 , cV→Pt,2 , cP→Vt,3 , tdV→P1 , tdP→V2 , tdV→P3 ) where the
other values are generated as in Hyb2.

In the main thread, ARWI also sends the pair of witnesses (w, ra,⊥,⊥,⊥) and (⊥,⊥,⊥, tV , rt)
where tV is computed in the input extraction phase. For each look-ahead thread, ARWI sends the
witness (w,⊥, rb,⊥,⊥). Recall that RWI is a delayed-input scheme. For each thread, ARWI receives
a third round message rwi3 which is set as rwiP→V3 in its interaction with MIM in round 3 of protocol
πSE−PZK in the left session. The rest of protocol πSE−PZK is performed exactly as in Hyb2. Observe
that on each thread, since V ∗ produces a non-aborting transcript with non-negligible probability,
ARWI (via the trapdoor extractor TDExt) extracts a valid trapdoor with non-negligible probability.

Observe that the first case corresponds to Hyb2 while the second case corresponds to Hyb3.
Now, let’s see how ARWI breaks the bounded rewinding security of the WI scheme. ARWI runs

the extractor ExtNMCom of the non-malleable commitment scheme using the messages in all the
threads in the right session that correspond to the non-malleable commitment from MIM. Let the
output of ExtNMCom be t∗. If TDValid(tdV→P1 , t∗) = 1, where tdV→P1 is the message sent by SimHyb
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in the right session, then ARWI outputs case 2 indicating that the bounded rewinding secure WI
was constructed using the second witness. Else, it outputs case 1.

Let’s analyze why this works. We know that event Et doesn’t hold in Hyb3. That is, the adver-
sary MIM, using the non-malleable commitment, commits to a valid trapdoor t∗ for the trapdoor
generation messages of SimHyb in the right session with non-negligible probability ε. Therefore,
since the invariant holds in Hyb2 with non-negligible probability, when the extractor ExtNMCom

outputs a valid trapdoor t∗, it must be the case that we are in Hyb3 with non-negligible probability.
That is, when ExtNMCom outputs a valid trapdoor, it corresponds to ARWI receiving a proof using
the second witness and otherwise, it corresponds to ARWI receiving a proof using the first witness.
Thus, ARWI breaks the security of the scheme RWI which is a contradiction. Hence, the invariant
holds in Hyb3 as well.

Claim 39. Assuming the soundness of the bounded rewinding secure WI argument system, Invari-
ant W holds in Hyb3.

Proof. This is identical to the proof of Claim 30.

Claim 40. Assuming RWI is a bounded rewinding secure witness indistinguishable argument, Hyb2
is computationally indistinguishable from Hyb3 except with probability at most ε

10 .

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, in the main thread in the
left session, the simulator now computes the bounded rewinding secure WI proof using a different
witness. Suppose there exists an adversary V ∗ that can distinguish between the two hybrids with
non-negligible probability greater than ε

10 . We can use V ∗ to design an adversary ARWI that breaks
the bounded rewinding security of the WI scheme with non-negligible probability. The rest of the
proof is similar to the proof of Claim 38.

Claim 41. Assuming NMCom is a secure non-malleable commitment scheme, Invariant T holds
in Hyb4.

Proof. This is identical to the proof of Claim 35.

Claim 42. Assuming the soundness of the bounded rewinding secure WI argument system, Invari-
ant W holds in Hyb4.

Proof. This is identical to the proof of Claim 30.

Claim 43. Assuming the hiding property of the non-malleable commitment scheme NMCom, Hyb3
is computationally indistinguishable from Hyb4 except with probability at most ε

10 .

Proof. This is identical to the proof of Claim 37.

Claim 44. Invariant T holds in Hyb5.

Proof. Since Hyb4 and Hyb5 are identical, the invariant continues to hold true.

Claim 45. Invariant W holds in Hyb5.

Proof. Since Hyb4 and Hyb5 are identical, the invariant continues to hold true.

Claim 46. Assuming the existence of the trapdoor extractor TDExt for the trapdoor generation
protocol TDGen, Hyb4 is computationally indistinguishable from Hyb5 except with probability at
most ε

10 .
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Proof. This is similar to the proof of Claim 6 in Section 5.4.2.

This completes the proof of the Simulation Security property.

Remark: In the entire proof, note that it is actually sufficient to use an extractable commitment
scheme secure against 1-rewinding in place of each of the first two non-malleable commitments -
that is, the ones used to commit to the actual witness for the instance.

7.2.4 Simulation Extractability

In this section, we will prove that the Simulation Extractability property holds in Hyb5 - the ideal
world.

The description of the extractor E is given in Figure 9.

The extractor E does the following:

1. Run the extractor ExtNMCom of the scheme NMCom using the non-malleable commitment
messages in the right session for index a and compute w1. Note that ExtNMCom internally
rewinds MIM several (polynomially many) times on the right session to extract the value.

2. Similarly, compute w2 = ExtNMCom(cP→Vb,1 , {cV→Pb,2 , cP→Vb,3 }).

3. If R(x∗, w1) = 1, output w1.

4. Else, if R(x∗, w2) = 1, output w2.

5. Else, output Abort.

Figure 9: Description of Extractor

We now show that

Pr

[
EMIM(z,Trans) = w ∧R(x∗, w) = 1

∣∣∣∣ 〈SimSE(x, z),MIM(z)〉R = 1

]
≥ (1− negl(λ)),

where x is the statement used by SimSE in the left session and x∗ is the statement used by MIM in
the right session.

Now, in the ideal world Hyb5, (which corresponds to the interaction of MIM with SimSE),
suppose SimSE(x, z),MIM(z)〉R = 1. That is, suppose MIM produces an accepting argument on
the right session. Since Invariant W holds, we know that, using either the first or the second non-
malleable commitment, MIM commits to a valid witness w such that R(x∗, w) = 1. Therefore, since
the extractor of the non-malleable commitment scheme ExtNMCom is successful except with non-
negligible probability given the transcript of all the executions, the extractor E outputs a witness
w such that R(x∗, w) = 1 successfully except with negligible probability. This completes the proof
of the Simulation Extractability property.

Here, note that though the extractor ExtNMCom might over-extract, that doesn’t affect our
proof. That is, since the invariant W holds, we know that the non-malleable commitment is indeed
well-formed and so the extractor doesn’t over-extract.
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8 Three Round List Coin Tossing

We first define the notion of list coin tossing.

Definition 10. An n party protocol π in the simultaneous message setting is a list coin tossing
protocol if for every PPT adversary A corrupting at most (n1) parties, there exists an expected
PPT simulator S and a polynomial p such that the output of the experiments REAL and IDEAL
defined below are indistinguishable. In the real world, we denote the result of running protocol π
with adversary A as a pair (c, viewA) where c ∈ {0, 1}l∪{⊥} is the output of the protocol and viewA
is the view of the adversary A. Similarly, we use the pair (c̃, viewS) in the ideal world.

We use l to denote the output length of the protocol.

REAL(1λ, 1l) IDEAL(1λ, 1l)

(c, viewA)← REALπ,A(1λ, 1l) (c1, . . . , cp(λ))← {0, 1}l·p(λ) where p is some polynomial.

(c̃, viewS)← SA(c1, . . . , cp(λ), 1
λ, 1l)

Output (c, viewA) If c̃ ∈ {c1, . . . , cp(λ)}, then output (c̃, viewS)

Else, output fail.

Table 1: List Coin Tossing

8.1 Construction

Consider n parties P1, . . . ,Pn who wish to evaluate the List Coin Tossing functionality. In this
section, we construct a protocol for computing the List Coin Tossing functionality using the Sim-
ulation Extractable Promise ZK argument system from the previous section. Formally, we prove
the following theorem:

Theorem 10. Assuming the existence of polynomially secure injective one way functions, the
protocol πCT presented below is a 3 round protocol for the list Coin Tossing functionality in the
plain model secure against any adversary that corrupts up to (n− 1) parties.

As mentioned earlier, we note that by applying the transformation10 of [GMPP16] on the
protocol from Theorem 3 for the two-party case, we can obtain a four round two-party list coin-
tossing protocol in the unidirectional-message model. This result overcomes the barrier of five
rounds for standard two-party coin-tossing established by [KO04].

Corollary 11 (Informal). Assuming the existence of polynomially secure injective one-way func-
tions, there exists a four round two-party list coin-tossing protocol in the unidirectional-message
model with black-box simulation.

We first list some notation and the primitives used before describing the construction.

Primitives Used.

• Let Com be any non-interactive commitment scheme. We know that such a commitment
scheme can be built assuming injective one way functions.

10The work of Garg et al. [GMPP16] establishes an impossibility result for three round multiparty coin-tossing by
transforming any three round two-party coin-tossing protocol in the simultaneous-message model into a four round
two-party coin-tossing protocol in the unidirectional-message model, and then invoking the impossibility of [KO04].
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• πSE−PZK = (Prove,Verify,Valid) is the 3 round Simulation Extractable Promise ZK argument
system from Section 7. Recall that this protocol has a delayed-input property. Let E denote
the polynomial time extractor of this protocol as constructed in Section 7.2.

For all i ∈ [3], let’s use Provei to denote the algorithm used by the prover P and Verifyi to
denote the algorithm used by the verifier V to compute the ith round messages. Further, let
Verify4 denote the algorithm used by the verifier V to compute the output bit 0 or 1.

NP Languages. In our construction, we use proofs for NP language L characterized by the
following relation R.
Statement : st = (c, r)
Witness : w = (s)
R(st,w) = 1 if and only if c = Com(r; s).

Notation :

• We assume broadcast channels.

• λ denotes the security parameter.

• In the superscript, we use i→ j to denote that the message was sent by party Pi with intended
recipient as party Pj . (recall that all messages are broadcast).

• The round number of the sub-protocol πSE−PZK being used is written in the subscript.

The protocol πCT for coin tossing in three rounds is described in Figure 10.

8.2 Security Proof

In this section, we formally prove Theorem 10.
Before that, we list 2 crucial properties of the simulation extractable promise ZK argument

system from Section 7 that we use in the proof:

• Recall that the first round message of the simulator is identical to the first round message of
an honest party. That is, Sim1(z) = P1(1

λ).

• Recall that the simulator Sim2 has to rewind and create a set of look-ahead threads. However,
for a fixed first round message sent by Sim1, using just 1 set of look-ahead threads, the
simulator can create several simulated arguments.

Consider an adversary A who corrupts t parties where t < n. Let SimSE denote the simulator of
the Simulation Extractable Promise ZK system as defined in Section 7.2.

8.2.1 Description of Simulator

We first informally discuss the strategy followed by the simulator Sim. First, Sim runs the protocol
to completion honestly to check if the adversary A aborts. If so, Sim aborts. If not, Sim now knows
that the probability that A doesn’t abort is at least 1

poly(λ) for some polynomial. Sim now estimates
this probability p by rewinding the adversary several times and behaving honestly in each rewound
thread as done in [GK96, Lin17].

After estimating p, Sim rewinds the adversary back to the beginning and performs a fresh
execution but this time it produces simulated arguments for the protocol πSE−PZK and additionally
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1. Round 1: ∀j ∈ [n] with j 6= i, Pi does the following:

• Generate (provei→j1 )← Prove1(1
λ) and (veri→j1 )← Verify1(1

λ).

• Broadcast (provei→j1 , veri→j1 ).

2. Round 2: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ i→j1 denote the transcript of protocol πSE−PZK after round 1 with prover Pi
and verifier Pj . That is, τ i→j1 = (provei→j1 , verj→i1 ).

– Similarly, let τ j→i1 denote the transcript of protocol πSE−PZK after round 1 with
prover Pj and verifier Pi.

– Generate (provei→j2 )← Prove2(τ
i→j
1 ) and (veri→j2 )← Verify2(τ

j→i
1 ).

• Compute ci = Com(ri; si) using random strings (ri, si). Here, the length of ri is l which
is the output length of the coin tossing protocol.

• Broadcast (ci, {provei→j2 , veri→j2 }j 6=i).
3. Round 3: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ i→j2 denote the transcript of protocol πSE−PZK after round 2 with prover Pi
and verifier Pj .

– Similarly, let τ j→i2 denote the transcript of protocol πSE−PZK after round 2 with
prover Pj and verifier Pi.

– Generate (provei→j3 ) ← Prove3(τ
i→j
2 , sti→j ,wi→j) for the statement sti→j =

(ci, ri) ∈ L using witness wi→j = si.

– Generate (veri→j3 )← Verify3(τ
j→i
2 ).

• Broadcast (ri, {provei→j3 , veri→j3 }j 6=i).
4. Output Computation: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ j→i3 denote the transcript of protocol πSE−PZK after round 3 with prover Pj
and verifier Pi.

– Abort if Verify4(τ
j→i
3 , stj→i) 6= 1 where stj→i = (cj , rj). In particular, send a global

abort signal to all parties so that everyone aborts.

• Else, compute output yi =
⊕

i∈[n] ri.

Figure 10: 3 round malicious secure protocol πCT for list coin tossing.

doesn’t open the values ri correctly. If the adversary aborts, Sim rewinds back to the beginning
again and repeats a fresh execution until the adversary doesn’t abort. Since the probability of not
aborting is p, we know that this step takes an expected number of 1

p executions. Essentially, the
point of this step is to extract the adversary’s r values.

After this, Sim rewinds A back to the end of the 2nd round. Now, for each output c from the
ideal functionality, Sim tries to force this value in the 3rd round. Once again, notice that A may
abort. Sim rewinds and repeats this round using a fresh output from the ideal functionality each
time till the adversary doesn’t abort. We know that this step too takes an expected number of 1

p
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executions.
The strategy of the simulator Sim against a malicious adversary A now follows:

Step 1 - Check Abort:

1. For each honest party Pi, Sim runs an honest execution of the protocol πCT with A.

2. Sim outputs Abort if the protocol aborts. Else, proceeds to the next step.

Step 2 - Abort Probability Estimation:

1. Sim now rewinds back to the end of round 1 of the protocol. Then, Sim creates a set of
look-ahead threads that run only rounds 2 and 3 of the protocol honestly exactly as done in
Step 1.

2. The above procedure happens till Sim receives non-aborting transcripts in (12 · λ) threads.
Let the total number of look-ahead threads created to achieve this be T .

3. Set ε′ = 12λ
T as the probability with which the adversary doesn’t abort.

Step 3 - Query to Ideal Functionality: Sim does the following:

1. Set K = λ2

ε′ .

2. If K ≥ 2λ, Abort.

3. Else, output K to the ideal functionality and receives a set of outputs (ans1, . . . ansK).

Step 4 - Learning Adversary’s Randomness:
Sim rewinds A back to the end of round 1 of the protocol and does the following. Note that this
step also involves rewinding as elaborated below. Further, here we crucially use the two properties
of the simulation extractable promise ZK argument mentioned at the beginning of the section.
First, Sim sets the counter value as 0. Also, Sim invokes the simulator Sim2 of πSE−PZK with the
probability of not abort - p = ε′

λ . We denote the simulator Sim2 of the argument πSE−PZK by SimSE.

1. Round 2: For every honest party Pi:

• For each j ∈ [n] with j 6= i, do:

– Let τ1 denote the protocol transcript so far.

– Generate (provei→j2 )← SimSE(τ1) and (veri→j2 )← SimSE(τ1).

• Compute ci = Com(0; si) using a random string (si). Also, pick a random string ri to be
used in round 3.

• Broadcast (ci, {provei→j2 ,wii→j2 }j 6=i).
2. Round 3: For every honest party Pi, do the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ2 denote the protocol transcript so far.

– Generate (provei→j3 )← SimSE(τ) for the statement sti→j = (ci, ri) ∈ L.

– Generate (veri→j3 )← SimSE(τ2).

• Broadcast (ri, {provei→j3 ,wii→j3 }j 6=i).

3. Output Computation: Sim does the following:

76



• For every honest party Pi and each j ∈ [n] with j 6= i, do:

– Let τ j→i3 denote the transcript of protocol πSE−PZK after round 3 with prover Pj
and verifier Pi.

– If Verify4(τ
j→i
3 , stj→i) = 1 where stj→i = (cj , rj), proceed to the next step.

– If Sim’s running time equals 2λ, Abort.

– Else, increase the counter value by 1 and if counter value less than λ2

ε′ , rewind back
to the beginning of round 2 in this step (step 4).

Step 5 - Extracting Randomness:
Sim does the following:

1. For every malicious party Pj , set r∗j = rj where rj is the value sent by Pj in round 3.

2. Also, run the extractor E of the simulation extractable promise ZK, to extract the witness s∗j
used by the adversary Pj in the arguments given in round 3 and check that cj = Com(r∗j ; s

∗
j ).

Else, output “Special Abort 1”.

3. Store the pair of values (r∗j , s
∗
j ) for each malicious party Pj .

4. compute rA =
⊕

j r
∗
j .

Step 6 - Forcing Output:
Sim sets k = 1 and does the following: (k denotes which output is being used).

1. If k > K, output Abort. (That is, if the number of rewinds exceeds all the answers from the
ideal functionality).

2. Rewind A back to the beginning of round 3 in the protocol.

3. Let the number of honest parties be l. Without loss of generality, let them be P1, . . . ,Pl.

4. Secret share ansk into l parts (r1, . . . , rl) such that
⊕

i∈[l] ri = (rA ⊕ ansk).

5. For every honest party Pi, broadcast ri.

6. Then, for all i ∈ [l] and for each j ∈ [n] with j 6= i, do:

• Let τ2 denote the protocol transcript so far.

• Continue simulating the ZK arguments as in Step 4. That is, generate (provei→j3 ) ←
SimSE(τ) for the statement sti→j = (ci, ri) ∈ L.

• Generate (veri→j3 )← SimSE(τ2).

• Broadcast ({provei→j3 , veri→j3 }j 6=i).
• Then, after receiving A’s messages in round 3, let τ j→i3 denote the transcript of protocol
πSE−PZK after round 3 with prover Pj and verifier Pi.

• If Verify4(τ
j→i
3 , stj→i) 6= 1 where stj→i = (cj , rj), set k = k+ 1 and rewind A back to the

beginning of Step 5.

7. If all the arguments from the malicious parties verified correctly above, for each i ∈ [l] and
for each j ∈ [n] with j 6= i, run the extractor E of the simulation extractable promise ZK, to
extract the witness sj used by the adversary Pj in the above argument. Let rj be the value
output in round 3. Check that cj = Com(rj ; sj). Else, output “Special Abort 2”.
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8. If (rj , sj) 6= (r∗j , s
∗
j ) for any malicious party Pj , output “Special Abort 3”.

9. Instruct the ideal functionality to output ansk to the honest parties.

We now prove that the simulator is an expected PPT machine.

Claim 47. Simulator Sim runs in expected time that is polynomial in λ.

Proof. Let’s analyze the running time of each step of the simulation strategy. Clearly, step 1 takes
only poly(λ) time for some polynomial.

Let ε be the probability with which the adversary doesn’t abort. That is, Sim proceeds to step 2
only with probability ε. Now, since the probability of the adversary not aborting is ε, the expected
number of threads to be run by the simulator to get one non-aborting transcript is 1

ε . Therefore,

the expected total number of threads created in step 2 is 12·λ
ε and each thread takes only poly(λ)

time.
Step 3 is trivially polynomial time.
As shown in [GK96, Lin17], the probability that the estimate ε′ computed in step 2 is not within

a factor of 2 of ε is at most 2λ. An exact computation of how to achieve this exact bound using
Chernoff bounds can be found in [HL10], Section 6.5.3. (which also explains why we chose to run
step 2 till we get 12 ·λ non-aborting transcripts). Therefore, the number of threads created in step

4 is at most λ2

ε (ignoring the constant factor). Note that step 4 might still take time 2λ but this
happens only when the estimate of ε′ is incorrect: that is, when ε′ is not within a constant factor
of ε and this happens only with probability 2−λ. Further, in step 4, the simulator of the argument
system πSE−PZK is called with the polynomial λ

ε′ . Recall that the simulator SimSE creates only 1

set of look-ahead threads and the number of look-ahead threads created is λ · 1p where p = ε′

λ here.
Step 5 is trivially polynomial time.
Finally, in step 6, Sim tries to force the output at most λ2

ε′ times and each attempt at forcing is
clearly in polynomial time.

Therefore, we can bound the overall running time by :

TSim = poly(λ) + poly(λ) · ε

(
12 · λ
ε

+
(

1− 1

2λ

)
·
[λ2
ε

+
λ2

ε
+
λ2

ε

]
+
( 1

2λ

)
· 2λ
)

≤ poly(λ)

for some polynomial and this concludes the analysis.

8.2.2 Hybrids

We now show that the above simulation strategy is successful. We will show this via a series of
computationally indistinguishable hybrids where the first hybrid Hyb0 corresponds to the real world
and the last hybrid Hyb5 corresponds to the ideal world.

First, assume by contradiction that there exists an adversary A that can distinguish the real and
ideal worlds with some non-negligible probability 1000 · µ. We will use this value µ in the hybrids.
We will show that each pair of consecutive hybrids is indistinguishable except with probability at
most 100 · µ and this completes the proof.

• Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties.
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• Hyb1 - Extracting Randomness: In this hybrid, SimHyb first runs the “Check Abort” step
using the honest parties’ strategy - that is, step 1 in the description of Sim to check if the
adversary aborts.

Suppose the adversary doesn’t cause an abort - that is, the “Check Abort” step succeeded.
Then, SimHyb rewinds back to the end of round 1 of the protocol and performs exactly as in
Hyb0 using the honest parties’ strategy. If SimHyb now receives an Abort at the end of round
3, it rewinds back to the end of round 1 and runs the main thread again using the honest
parties’ strategy. This process happens 1

µ times. SimHyb then runs step 5 in the description
of Sim to store the adversary’s randomness.

Observe that SimHyb runs in polynomial time because, by assumption, µ was non-negligible.
The same argument holds for the subsequent hybrids as well.

• Hyb2 - Simulate ZK: In this hybrid, in each of the 1
µ rewound executions of the main thread,

SimHyb computes a simulated ZK argument. Further, the simulator SimSE of the argument
system πSE−PZK is invoked with the value µ as the probability of not abort.

• Hyb3 - Switching Commitment: In this hybrid, in round 2 of each of the 1
µ rewound

executions of the main thread, SimHyb computes ci = Com(0; si) for each honest party Pi.

• Hyb4 - Abort Probability Estimation: In this hybrid, SimHyb now does exactly as done
by Sim in steps 1-5. In particular, SimHyb no longer runs the rewound executions of the main

thread 1
µ times and instead, it is executed λ2

ε′ times as in the description of Sim where ε′ is
estimated in step 2. SimHyb also queries the ideal functionality in this hybrid to receive the
list of outputs (ans1, . . . , ansK).

• Hyb5 - Output Forcing: SimHyb now also runs step 6 of the ideal world simulator Sim to
force an output. This hybrid corresponds to the ideal world.

8.2.3 Indistinguishabilty of hybrids

Claim 48. Assuming the Simulation Extractability property of the argument system πSE−PZK, Hyb0
is computationally indistinguishable from Hyb1 except with probability at most µ.

Proof. In Hyb0, SimHyb runs the protocol once using the honest strategy. In Hyb1, if the “Check
Abort” step succeeded, SimHyb runs the protocol using the honest strategy 1

µ times where µ is the
adversary’s distinguishing advantage in the overall experiment.

First, suppose the adversary aborts with probability greater than µ. Then, both hybrids output
identical threads except with probability at most µ.

Suppose the adversary doesn’t abort with probability greater than
mu, then, by Markov’s inequality, except with probability µ, the adversary’s view in Hyb1 consists
of a thread of execution identically distributed to Hyb0.

Therefore, now the only remaining difference between the two hybrids is that in Hyb1, SimHyb

may output “Special Abort 1” which doesn’t happen in Hyb0. We will now show that Pr[ SimHyb

outputs “Special Abort 1” ] ≤ µ in Hyb1 and this completes the proof of indistinguishability between
the two hybrids. Recall that in this case, ε ≥ µ. Therefore now, in Hyb2, since each look-ahead
thread is identical to the execution in the “Abort Check” step, in each look-ahead thread, the
probability with which the transcript is non-aborting is same as ε. Therefore, each look-ahead
thread, with noticeable probability, produces non-aborting transcripts. Recall from the construct
of the extractor E that E internally runs the extractor ExtNMCom and is successful if ExtNMCom
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is successful. From the properties of the non-malleable commitment scheme NMCom used in the
construction of πSE−PZK, recall that ExtNMCom successfully extracts with noticeable probability
given the transcript of 2 non-aborting executions. Since each look-ahead thread produces a non-
aborting transcript with noticeable probability at least µ and we run 1

µ look-ahead threads, clearly,
ExtNMCom successfully extracts with noticeable probability. Hence, the extractor E of the simulation
extractable promise ZK argument system successfully extracts with noticeable probability and thus,
in this case too, SimHyb outputs “Special Abort 1” only with probability at most µ. This completes
the proof.

Claim 49. Assuming the Simulation Security property of the Simulation Extractable Promise ZK
argument πSE−PZK, Hyb1 is computationally indistinguishable from Hyb2 except with probability at
most 100 · µ.

Proof. The only difference between the two hybrids is that in each thread, in Hyb1, the arguments of
the protocol πSE−PZK are computed honestly while in Hyb2, they are computed using the simulator
SimSE for the protocol πSE−PZK.

Suppose there exists an adversary that can distinguish between these two hybrids with non-
negligible probability greater than 100 · µ.

Recall that we denote by ε the probability with which the adversary causes the “Abort Check”
step to succeed. Suppose ε ≤ 100 · µ. Then, with probability ≥ (1− 100 · µ), the adversary causes
the “Abort Check” step to fail in both the hybrids which contradicts our assumption that there
exists an adversary A that can distinguish the two hybrids with some non-negligible probability
100 · µ.

Therefore, it must be the case that ε ≥ 100 · µ. In other words, the probability with which the
adversary doesn’t abort - ε is clearly greater than the value µ with which the simulator SimSE is
invoked in Hyb2. Therefore, from the simulation security property of the protocol πSE−PZK, except
with probability at most 100 · µ, the two hybrids are indistinguishable.

This contradicts our assumption and hence completes the proof.

Claim 50. Assuming the hiding of the commitment scheme Com, Hyb2 is computationally indis-
tinguishable from Hyb3 except with probability at most µ.

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, in each thread, for every honest
party Pi, the simulator now computes the commitment using input 0 while in Hyb2, it was computed
using the randomness ri. Suppose there exists an adversary A that can distinguish between the two
hybrids with non-negligible probability µ. We will use A to design an adversary AHid that breaks
the hiding of the commitment scheme Com.
AHid interacts with a challenger CHid. AHid performs the role of SimHyb in its interaction with

A almost exactly as done in Hyb2. Then, for each thread and every honest party Pi, AHid picks a
random string ri and sends (ri, 0) to a challenger CHid. AHid receives a value c from CHid which is
either a commitment of ri or a commitment of 0. AHid sets this value c to be the value ci in round
2 in its interaction with the adversary A. The rest of the interaction with A is performed exactly
as in Hyb2.

Observe that the first case corresponds to Hyb2 while the second case corresponds to Hyb3.
Therefore, if the adversary A can distinguish between these two hybrids with non-negligible prob-
ability p, AHid will use the same guess to break the hiding of the commitment scheme Com with
non-negligible probability µ which is a contradiction.

Claim 51. Hyb3 is computationally indistinguishable from Hyb4 except with probability at most µ.
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Proof. As in the proof of the 4 round MPC protocol, the only difference between the two hybrids
is that in Hyb3, SimHyb rewinds the main thread 1

µ times while in Hyb4, SimHyb first estimates the

probability of not aborting to be ε′ and then rewinds the main thread min(2λ, λ
2

ε′ ) times. The rest
of the proof follows in a very similar manner to the proof of claim 5.8 in [Lin17]. That is, we show
that if the “Check Abort” step succeeds, the simulator fails in Hyb4 only with negligible probability
using the claim in [Lin17]. We already know that in Hyb10, if the “Check Abort” step succeeds,
the simulation successfully completes the execution except with negligible probability and hence,
this completes the proof.

Claim 52. Assuming the Simulation Extractability property of the argument system πSE−PZK and
the binding of the commitment scheme Com, Hyb4 is computationally indistinguishable from Hyb5
except with probability at most µ.

Proof. First, let’s show that suppose SimHyb doesn’t output “Special Abort 2” or “Special Abort
3” in Hyb5, then the two hybrids are identical.

Recall that we denote by ε the probability with which the adversary causes the “Abort Check”
step to succeed. Suppose ε ≤ µ. Then, with probability ≥ (1 − µ), the adversary causes the
“Abort Check” step to fail in both hybrids and they are identical. Now consider the case where
ε ≥ µ. Then, in Hyb4, where SimHyb runs the rewound execution of the main thread K times (recall

K = λ2

ε′ ) using random values ri for each honest party till in one transcript, the adversary doesn’t
abort in at least one of them with probability close to 1. Similarly, in Hyb5, in one of the rewound
executions of step 6, the adversary doesn’t abort. In these rewound executions, each honest party’s
value ri still appears uniformly random and hence the two hybrids are identical.

Therefore, we now have to show that in Hyb5:

• Pr[ SimHyb outputs “Special Abort 2” ] ≤ µ

• Pr[ SimHyb outputs “Special Abort 3” ] ≤ µ

The proof of the first claim - that is, Pr[ SimHyb outputs “Special Abort 2” ] ≤ µ follows from
the Simulation Extractability property of the argument system πSE−PZK exactly as in the proof of
Claim 48.

We will now show that Pr[ SimHyb outputs “Special Abort 3” ] ≤ µ. Observe that “Special Abort
3” occurs only if for some malicious party Pj , (rj , sj) 6= (r∗j , s

∗
j ). However, since neither “Special

Abort 1” nor “Special Abort 2” has occurred at this point, it must be the case that cj = Com(r∗j , s
∗
j )

and cj = Com(rj , sj). However, this would then break the binding property of the commitment
scheme Com. Formally, if there exists an adversary A that causes SimHyb to output “Special Abort
3” in Hyb5 with non-negligible probability µ, then we can construct a reduction as follows. The
reduction interacts with A exactly as done by SimHyb in Hyb5 and when SimHyb outputs “Special
Abort 3”, the reduction outputs the two pairs of values (rj , sj) and (r∗j , s

∗
j ) to the challenger of the

commitment scheme thus breaking the binding property with probability at least µ. This completes
the proof.

9 Three Round Secure Computation of Input-less Randomized
Functionalities

In this section, we generalize the results from the previous section to the setting of any input-
less randomized functionality. That is, similar to coin tossing, we first define the notion of “List
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Computation” for input-less randomized functionalities and then show how to securely achieve it
in three rounds.

Definition 11. An n party protocol πf for any input-less randomized functionality f in the si-
multaneous message setting is said to “List Compute” f securely if for every PPT adversary A
corrupting at most (n1) parties, there exists an expected PPT simulator S and a polynomial p such
that the output of the experiments REAL and IDEAL defined below are indistinguishable. In the
real world, we denote the result of running protocol π with adversary A as a pair (c, viewA) where
c ∈ {0, 1}l ∪ {⊥} is the output of the protocol and viewA is the view of the adversary A. Similarly,
we use the pair (c̃, viewS) in the ideal world.

We use l to denote the output length of the protocol.

REAL(1λ, 1l) IDEAL(1λ, 1l)

(c, viewA)← REALπf ,A(1λ, 1l) Pick (c1, . . . , cp(λ)) randomly from the output distribution of f .

(c̃, viewS)← SA(c1, . . . , cp(λ), 1
λ, 1l)

Output (c, viewA) If c̃ ∈ {c1, . . . , cp(λ)}, then output (c̃, viewS)

Else, output fail.

Table 2: List Computation of any Input-less Randomized Functionalitt f

9.1 Construction

The construction is very similar to the one for List Coin Tossing with the only difference being
that instead of each party committing to its randomness ri in the second round and opening it in
the third round, we now run a 3 round semi-malicious secure MPC protocol (that is secure against
malicious adversaries in the first round) for the input-less randomized functionality f . Recall that
such a protocol exists assuming polynomially secure LWE [BHP17]. We describe the protocol in
Figure 11 for the case of completeness.

Consider n parties P1, . . . ,Pn who wish to “List Compute” an input-less randomized function-
ality f . In this section, we prove the following theorem:

Theorem 12. Assuming the existence of polynomially secure LWE, the protocol πRF presented in
Figure 11 is a 3 round protocol that “List Computes” any input-less randomized functionality f in
the plain model secure against any adversary that corrupts up to (n− 1) parties.

NP Languages. In our construction, we use proofs for NP language L characterized by the fol-
lowing relation R.
Statement : st = (msg2,Trans1,msg3,Trans2)
Witness : w = (s)
R(st,w) = 1 if and only if: The messages (msg2,msg3) are generated by running protocol πSM using
randomness s where the protocol transcript at the end of round 1 is Trans1 and after round 2 is
Trans2.

Formally, R(st,w) = 1 if and only if :

• msg2 = πSM2 (⊥,Trans1; s) AND

• msg3 = πSM3 (⊥,Trans2; s)
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1. Round 1: Pi does the following:

• For each j ∈ [n] with j 6= i, generate (provei→j1 ) ← Prove1(1
λ) and (veri→j1 ) ←

Verify1(1
λ).

• Compute msg1,i ← πSM1 (⊥; si) where si is picked randomly.

• Broadcast (msg1,i, {prove
i→j
1 , veri→j1 }j 6=i).

2. Round 2: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ i→j1 denote the transcript of protocol πSE−PZK after round 1 with prover Pi
and verifier Pj . That is, τ i→j1 = (provei→j1 , verj→i1 ).

– Similarly, let τ j→i1 denote the transcript of protocol πSE−PZK after round 1 with
prover Pj and verifier Pi.

– Generate (provei→j2 )← Prove2(τ
i→j
1 ) and (veri→j2 )← Verify2(τ

j→i
1 ).

• Let Trans1 denote the transcript of protocol πSM after round 1. Compute msg2,i ←
πSM2 (⊥,Trans1; si).
• Broadcast (msg2,i, {prove

i→j
2 , veri→j2 }j 6=i).

3. Round 3: Pi does the following:

• Let Trans2 denote the transcript of protocol πSM after round 2. Compute msg3,i ←
πSM2 (⊥,Trans2; si).
• For each j ∈ [n] with j 6= i, do:

– Let τ i→j2 denote the transcript of protocol πSE−PZK after round 2 with prover Pi
and verifier Pj .

– Similarly, let τ j→i2 denote the transcript of protocol πSE−PZK after round 2 with
prover Pj and verifier Pi.

– Generate (provei→j3 ) ← Prove3(τ
i→j
2 , sti→j ,wi→j) for the statement sti→j =

(msg2,i,Trans1,msg3,i,Trans2) ∈ L using witness wi→j = si.

– Generate (veri→j3 )← Verify3(τ
j→i
2 ).

• Broadcast (msg3,i, {prove
i→j
3 , veri→j3 }j 6=i).

4. Output Computation: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Let τ j→i3 denote the transcript of protocol πSE−PZK after round 3 with prover Pj
and verifier Pi.

– Abort if Verify4(τ
j→i
3 , stj→i) 6= 1 where stj→i = (msg2,j ,Trans1,msg3,j ,Trans2). In

particular, send a global abort signal to all parties so that everyone aborts.

• Else, compute output yi ← OUT(⊥,Trans3; si) where Trans3 is the transcript of protocol
πSM after round 3.

Figure 11: 3 round malicious secure protocol πRF.
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9.2 Security Proof

The proof of security is very similar to the “List Coin Tossing” security proof in Section 8.2. The
only difference is that instead of relying on the hiding of the non-interactive commitment scheme
(which was the case in the List Coin Tossing proof), we will now rely on the security of the 3 round
semi-malicious secure protocol πSM. That is, in the proof from Section 8.2, in Hyb3, instead of
switching the commitment to using input 0, we will switch the messages of protocol πSM to the
simulated messages. Similarly, the outputs forced in the final hybrid will now be from the output
distribution of f (obtained from the ideal functionality).
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A Secure Multiparty Computation

Parts of this section have been taken verbatim from [Gol04].
A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs

of outputs (one for each party). We refer to such a process as a functionality. The security of a pro-
tocol is defined with respect to a functionality f . In particular, let n denote the number of parties.
A non-reactive n-party functionality f is a (possibly randomized) mapping of n inputs to n outputs.
A multiparty protocol with security parameter λ for computing a non-reactive functionality f is
a protocol running in time poly(λ) and satisfying the following correctness requirement: if parties
P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an honest execution of the protocol, then
the joint distribution of the outputs y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed
in a stateful fashion in a series of phases. Let xji denote the input of Pi in phase j, and let sj denote
the state of the computation after phase j. Computation of f proceeds by setting s0 equal to
the empty string and then computing (yj1, . . . , y

j
n, sj) ← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji

denotes the output of Pi at the end of phase j. A multi-party protocol computing f also runs
in ` phases, at the beginning of which each party holds an input and at the end of which each
party obtains an output. (Note that parties may wait to decide on their phase-j input until the
beginning of that phase.) Parties maintain state throughout the entire execution. The correctness
requirement is that, in an honest execution of the protocol, the joint distribution of all the outputs
{yj1, . . . , y

j
n}`j=1 of all the phases is statistically close to the joint distribution of all the outputs of

all the phases in a computation of f on the same inputs used by the parties.

Defining Security. We assume that readers are familiar with standard simulation-based defi-
nitions of secure multi-party computation in the standalone setting. We provide a self-contained
definition for completeness and refer to [Gol04] for a more complete description. The security of a
protocol (with respect to a functionality f) is defined by comparing the real-world execution of the
protocol with an ideal-world evaluation of f by a trusted party. More concretely, it is required that
for every adversary A, which attacks the real execution of the protocol, there exist an adversary
Sim, also referred to as a simulator, which can achieve the same effect in the ideal-world. Let’s
denote x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the

88



corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(k,x) whose value
is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well
as the outputs of the uncorrupted parties. We let REALπ,A(z),I denote the distribution ensemble
{REALπ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

The ideal execution – security with abort . In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. In this case, an ideal execution for a function f proceeds
as follows:

• Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest adversary we
require x′i = xi for all i ∈ I.

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trust party to abort or continue: This is formalized by having
the adversary send either a continue or abort message to the trusted party. (A semi-honest
adversary never aborts.) In the latter case, the trusted party sends to each uncorrupted party
Pi its output value yi. In the former case, the trusted party sends the special symbol ⊥ to
each uncorrupted party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,A(z)(k,x) as
above,and we let {IDEALf⊥,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ where the subscript ”⊥” indicates that the
adversary can abort computation of f .

Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 12. Let k be the security parameter. Let f be an n-party randomized functionality, and
π be an n-party protocol for n ∈ N.

1. We say that π t-securely computes f in the presence of malicious (resp., semi-honest) ad-
versaries if for every PPT adversary (resp., semi-honest adversary) A there exists a PPT
adversary (resp., semi-honest adversary) Sim such that for any I ⊂ [n] with |I| ≤ t the
following quantity is negligible:

|Pr[REALπ,A(z),I(k,x) = 1]− Pr[IDEALf,A(z),I(k,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

2. Similarly, π t-securely computes f with abort in the presence of malicious adversaries if for
every PPT adversary A there exists a polynomial time adversary Sim such that for any I ⊂ [n]
with |I| ≤ t the following quantity is negligible:

|Pr[REALπ,A(z),I(k,x) = 1]− Pr[IDEALf⊥,A(z),I(k,x) = 1]|.
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Security Against Semi-Malicious Adversaries We take this definition almost verbatim from
[AJL+12]. We define a notion of a semi-malicious adversary that is stronger than the standard
notion of semi-honest adversary and formalize security against semi-malicious adversaries. A semi-
malicious adversary is modeled as an interactive Turing machine (ITM) which, in addition to
the standard tapes, has a special witness tape. In each round of the protocol, whenever the
adversary produces a new protocol message msg on behalf of some party Pk, it must also write to
its special witness tape some pair (x, r) of input x and randomness r that explains its behavior.
More specifically, all of the protocol messages sent by the adversary on behalf of Pk up to that
point, including the new message m, must exactly match the honest protocol specification for Pk
when executed with input x and randomness r. Note that the witnesses given in different rounds
need not be consistent. Also, we assume that the attacker is rushing and hence may choose the
message m and the witness (x, r) in each round adaptively, after seeing the protocol messages of
the honest parties in that round (and all prior rounds). Lastly, the adversary may also choose to
abort the execution on behalf of Pk in any step of the interaction.

Definition 13. We say that a protocol π securely realizes f for semi-malicious adversaries if it
satisfies Definition 12 when we only quantify over all semi-malicious adversaries A.

B WI with Bounded Rewinding Security

In this section, for any constant L > 0, assuming the existence of injective one way functions, we
construct a 3 round delayed-input witness indistinguishable argument with L-rewinding security as
defined in Section 4.

High Level Overview. At a very high level, the protocol consists of combining the 3 round
delayed input WI protocol in [LS90] with the bounded rewinding secure 3 round “MPC in the
head” based 3 round ZK protocol of [IKOS07]. The main idea being that in the WI protocol, when
the challenge is 0, we will respond by invoking the ZK protocol that has rewinding security and
when the challenge is 1, we respond as in the WI protocol itself. Now note that to recover the
entire witness, you need to learn the full outputs of both challenges. However, for the challenge 0
case, even with a bounded number of rewinds, from the security of the ZK protocol, the witness is
computationally hidden.

Construction. The protocol RWI consists of 4 algorithm (RWI1,RWI2,RWI3,RWI4) where the
first 3 denote the algorithms used by the prover and verifier to send their messages and the last
one is the final verification algorithm. We use two building blocks. The first being a 3 round
delayed input witness indistinguishable argument WI = (WI1,WI2,WI3,WI4) from the work of
Lapidot and Shamir [LS90] that is based on injective one way functions. We will open up this
construction for ease of exposition. The second being a 3 round zero knowledge protocol with
constant soundness error using the “MPC in the Head” approach in the paper of Ishai et al.
[IKOS07] which is once again based on injective one way functions. We refer to this protocol as
Head.ZK = (Head.ZK1,Head.ZK2,Head.ZK3,Head.ZK4). Recall from [IKOS07] that the prover runs
a t-private MPC protocol amongst n parties and the verifier asks for 2 views. That is, the protocol
is sound even if the verifier opens only 2 views and even given k-views, a malicious verifier can’t
distinguish honestly generated views of the other honest parties from simulated ones. We will
invoke the ZK protocol with t ≥ 2 · L.

We will construct the protocol RWI with constant soundness error. for the Graph Hamiltonicity
problem. This is described formally in Figure 12. Ofcourse, for any NP Language L, we can get
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a proof by applying a Karp reduction to this problem. Also, we know that WI arguments can
be composed to decrease the soundness error probability to negligible and the same works for our
setting too.

Inputs: Prover P has input an efficiently sampleable distribution of graphs G (the statement)
and their corresponding hamiltonian cycles (which form the witness).

1. Round 1: Prover message:

• Pick a random cyclic graph H and compute c = Com(H; r) using a non-interactive
commitment. That is, this is a commitment to the adjacency matrix of H.

• Compute hzkP→V1 ← Head.ZK1(1
λ) and send (c, proveP→V1 ) to V .

2. Round 2: Verifier message:

• Pick a random bit b.

• If b = 0, compute ← hzkV→P2 ← Head.ZK2(hzk
P→V
1 ) and send (0, hzkV→P2 ) to V .

• If b = 1, send (1,⊥) to V .

3. Round 3: Prover message:

• Sample a graph G and an associated hamiltonian cycle on it from the efficiently sam-
pleable distribution. Send G to V .

• If b = 0, compute and send hzkP→V3 ← Head.ZK3(hzk
P→V
1 , hzkV→P1 , st = (c), w =

(H, r)) where the statement st = (c) is in the language if there exists a witness w =
(H, r) such that H is a cyclic graph and c = Com(H; r).

• If b = 1, compute and send a permutation π that maps H onto the hamiltonian cycle
of G. Also, decommit to the set of non-edges in the adjacency graph of H.

4. Verifier Output:
If b = 0, run the algorithm Head.ZK4 and output whatever it outputs. If b = 1, check that
the output corresponds to a valid set of non-edges in H and that exactly n of them are not
opened where n is the number of vertices. (that is, essentially run the algorithm WI4 for the
b = 1 case alone.)

Figure 12: 3 round Bounded Rewinding Secure WI

Proof Sketch. We now briefly describe the proof of security.

Soundness:
Follows from the soundness of the 3 round witness indistinguishable protocol WI and the soundness
of the zero knowledge protocol Head.ZK.

Bounded Rewinding Security:
Note that each query of the malicious verifier V ∗ can be split into two parts - the first is a bit b
that is either 0 or 1 and if b = 0, the second part consists of 2 views. The simulator, guesses the set
of queries made across all the L-rewinds in advance and then just runs the underlying simulators
of the protocols WI and Head.ZK appropriately in each query depending on whether the query was
for b = 0 or b = 1.
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C MPC - Proof of Aborting Case

Recall that the only difference between the two hybrids is if the adversary causes SimHyb to abort at
the end of round 3 - that is, the “Check Abort” step doesn’t succeed in Hyb1. In that case, in Hyb0,
SimHyb uses the honest parties’ inputs to run the protocol while in Hyb1, SimHyb runs the protocol
using input 0 for every honest party. We will now show that these two hybrids are indistinguishable
via a sequence of intermediate hybrids H0 to H12. Here, H0 will correspond to Hyb0 and H12 will
correspond to Hyb1.

• H0 : This is same as Hyb0.

• H1 - Simulate Weak ZK: In this hybrid, SimHyb creates two sets of look-ahead threads that
run only round 3 of the protocol. The first set is identical to the main thread in Hyb0. The
second set is identical to the main thread in Hyb1 (same as H12) - that is, it computes an
extractable commitment using input 0 and the messages for the underlying semi-malicious
MPC protocol πSM using input 0.

These look-ahead threads are used to simulate the Weak ZK argument WZK. Using all these
look-ahead threads, SimHyb runs the algorithm SimWZK of the weak ZK protocol to simulate
the weak ZK argument given by every honest party in round 3 of the main thread. Note that
in the look-ahead threads, the weak ZK is computed honestly.

Recall from [JKKR17] that SimWZK is a distinguish dependent simulator that uses the distin-
guisher’s response on all these look-ahead threads to simulate the weak ZK. Note that these
look-ahead threads that are created here are local to this proof and have nothing to do with
the look-ahead threads that are created by the actual simulator Sim for the overall protocol.
In particular, these local look-ahead threads are not created by Sim in the overall proof. As
a result, though SimWZK depends on the distinguisher, we use it only in the underlying re-
ductions here and not in the overall simulation and hence our overall simulator Sim is not
distinguisher dependent.

• H2 - Change Second ExtCom: In the main thread, for each honest party Pi, SimHyb does

the following: in round 3, compute r.eci→jb,3 = R.ECom3(xi, ri, r.ec
i→j
b,1 , r.ec

j→i
b,2 ; ri→jb,r.ec). That

is, in the main thread, the simulator now commits to the input in the second extractable
commitment scheme too.

Further, SimHyb also changes the look-ahead threads. In the first set of look-ahead threads,

the second extractable commitment is computed as in the main thread: that is, r.eci→jb,3 =

R.ECom3(xi, ri, r.ec
i→j
b,1 , r.ec

j→i
b,2 ; ri→jb,r.ec). In the second set of look-aheads, the second extractable

commitment is computed using input 0: that is, r.eci→jb,3 = R.ECom3(0, ri, r.ec
i→j
b,1 , r.ec

j→i
b,2 ; ri→jb,r.ec)

where ri is sampled fresh in each look-ahead thread.

• H3 - Switch WI: In every thread (main and look-aheads), in round 3, SimHyb computes the
rewinding secure WI from each honest party Pi to malicious party Pj using the witness for
the second statement: that is, using the second extractable commitment.

• H4 - Switch Commitment: In the main thread, in round 3, SimHyb computes nci ←
NCom(0; rnc,i). Note that in the look ahead threads, nci continues to be computed as a
commitment to 1 so that the weak ZK arguments in the look-ahead threads can be honestly
generated.
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• H5 - Switch WI: In the main thread, in round 3, SimHyb computes the rewinding secure WI
from each honest party Pi to malicious party Pj using the witness for the fourth statement:
that is, using the commitment nci to input 0.

• H6 - Change First ExtCom: In the main thread, for each honest party Pi, SimHyb does the

following: in round 3, compute r.eci→ja,3 = R.ECom3(0, ri, r.ec
i→j
a,1 , r.ec

j→i
a,2 ; ri→ja,r.ec). That is, in

the main thread, the simulator now commits to input 0 in the first extractable commitment
scheme.

• H7 - Change πSM: In the main thread, for every honest party Pi, SimHyb compute msg2,i ←
S2(Trans2; ri). Note that this is same as computing msg2,i ← πSM2 (0,Trans1; ri).

• H8 - Switch WI: In every thread (main and look-aheads), in round 3, SimHyb computes the
rewinding secure WI from each honest party Pi to malicious party Pj using the witness for
the first statement: that is, using the first extractable commitment.

• H9 - Change Second ExtCom: In every thread (main and look-aheads), for each honest
party Pi, SimHyb does the following: in round 3, compute r.eci→jb,3 = R.ECom3(⊥, r.eci→jb,1 , r.ec

j→i
b,2 ; ri→jb,r.ec).

That is, the simulator now commits to bot in the second extractable commitment scheme.

• H10 - Switch WI: In the main thread, in round 3, SimHyb computes the rewinding secure
WI from each honest party Pi to malicious party Pj using the witness for the first statement:
that is, using the first extractable commitment.

• H11 - Switch Commitment: In the main thread, in round 3, SimHyb computes nci ←
NCom(1; rnc,i).

• H12 - Stop Simulating Weak ZK: In this hybrid, SimHyb stops the two sets of look-ahead
threads and computes the Weak ZK argument honestly. This hybrid exactly corresponds to
Hyb1.

We now show that each pair of successive hybrids in the above list is computationally indistin-
guishable and that completes the proof of Claim 10.

Sub-Claim 5. Assuming the Weak Zero Knowledge property of the argument system WZK, H0 is
computationally indistinguishable from H1.

Proof. The only difference between the two hybrids is that in H0, the Weak ZK argument is com-
puted honestly while in H1, the Weak ZK argument on the main thread is computed using the
simulator SimWZK from [JKKR17]. The proof of indistinguishability of the two hybrids directly
follows from the security of the Weak ZK argument system constructed in [JKKR17].

Here, note that for the second set of look-ahead threads, we can generate the extractable
commitment using input 0 even though the first 2 rounds are already fixed because the scheme
is delayed input and allows sampling a fresh value α for each third round message. That is, in
round 3 of each look-ahead thread in the second set, corresponding to the commitment from every
honest party Pi to malicious party Pj , SimHyb computes r.eci→jb,3 as (αi→j , brew.eci→jb,3 , β

i→j) where

brew.eci→jb,3 = BRew.ECom3(ri,j , brew.ec
i→j
b,1 , brew.ec

j→i
b,2 ; rb,brew.ec), β

i→j = PRF(ri,j , α
i→j) ⊕ 0 and

ri,j , rb,brew.ec are the values picked uniformly at random common with the main thread. Note that
only αi→j is sampled afresh in each thread. Also, note that the second round message of protocol
πSM can also be generated using input 0 in the second set of look-ahead threads because the first
round message doesn’t depend on the input at all.
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Sub-Claim 6. Assuming the security of the extractable commitment BRew.ECom and the pseu-
dorandom function PRF used inside the scheme R.ECom, H1 is computationally indistinguishable
from H2.

Proof. Recall from the construction of the scheme R.ECom, that for every honest party Pi and
malicious party Pj , in each thread, in H1, r.eci→jb,3 consists of (αi→jb , brew.eci→jb,3 , β

i→j
b ) where all

3 are picked uniformly at random and in H2, r.eci→jb,3 consists of (αi→jb , brew.eci→jb,3 , β
i→j
b ) where

brew.eci→jb,3 = BRew.ECom3(r
i→j
b , brew.eci→jb,1 , brew.ec

j→i
b,2 ; rb,brew.ec), β

i→j
b = PRF(ri→jb , αi→jb )⊕ xi and

ri→jb , rb,brew.ec are picked uniformly at random. Note that only αi→jb is sampled afresh in each thread.
We will now prove this subclaim via a series of intermediate sub-hybrids Sub.Hyb1 to Sub.Hyb3

where Sub.Hyb1 corresponds to H1 and Sub.Hyb3 corresponds to H2.

• Sub.Hyb1: This is same as H1.

• Sub.Hyb2: In this hybrid, for every honest party Pi and malicious party Pj , pick a random

value ri→jb and compute brew.eci→jb,3 = BRew.ECom3(r
i→j
b , brew.eci→jb,1 , brew.ec

j→i
b,2 ; rb,brew.ec).

Observe that this is the same across all the threads.
This is indistinguishable from the previous sub-hybrid by the hiding property of the under-
lying extractable commitment scheme BRew.ECom.

• Sub.Hyb3: In this hybrid, for every honest party Pi and malicious party Pj , in each thread,

compute βi→jb = PRF(ri→jb , αi→jb )⊕ xi. This is same as H2.
This is indistinguishable from the previous sub-hybrid by the security of the pseudorandom
function PRF.

Sub-Claim 7. Assuming the bounded rewinding security of the scheme RWI, H2 is computationally
indistinguishable from H3.

Proof. The only difference between H2 and H3 is that in H3, in every thread, the simulator now
computes the WI using a witness for the second statement. Suppose there exists an adversary A
that can distinguish between the two hybrids. We will use A to design an adversary ARWI that
breaks the bounded rewinding security of the scheme RWI.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

A exactly as done in H2. ARWI picks an honest party Pi and a malicious party Pj uniformly at

random. Initially, it receives a message rwi1 from CRWI which it sets as the value rwii→j1 in its
interaction with A in round 1. Then, ARWI creates two sets of 3 look-ahead threads each. For each
thread, on receiving rwij→i2 in round 2, ARWI forwards this to CRWI as its first round message. For

each thread, ARWI also sends the statement sti→j2 =

(r.eci→ja,1 , r.ec
j→i
a,2 , r.ec

i→j
a,3 , r.ec

i→j
b,1 , r.ec

j→i
b,2 , r.ec

i→j
b,3 ,msg2,i,Trans1, c

i→j
1 , cj→i2 , ci→j3 , tdj→i1 , nci) ∈ Li→j2 where

the other values are generated as in H2.
ARWI also sends the pair of witnesses (xi, ri, r

i→j
a,r.ec,⊥,⊥,⊥,⊥) and (xi, ri,⊥, ri→jb,r.ec,⊥,⊥,⊥) for

the main thread and each of the first set of look-ahead threads. For each look-ahead thread in the
second set, ARWI sends the pair of witnesses (0, ri, r

i→j
a,r.ec,⊥,⊥,⊥,⊥) and (0, ri,⊥, ri→jb,r.ec,⊥,⊥,⊥) For

each thread, ARWI receives a third round message rwi3 which is set as rwii→j3 in its interaction with
A in round 3 of protocol π. The rest of protocol π is performed exactly as in H2. Observe that
similar to the proof of Claim 12, given just 3 look-ahead threads in each set, we will still be able
to simulate the weak ZK with noticeable probability.
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Observe that the first case corresponds to H2 while the second case corresponds to H3. Therefore,
if the adversary A can distinguish between these two hybrids, ARWI will use the same guess to break
the rewinding security of the scheme RWI which is a contradiction because we assumed that RWI
is secure even in the presence of 6 rewound look-ahead threads (we set L to be 6).

Sub-Claim 8. Assuming the hiding property of the non-interactive commitment scheme NCom,
H3 is computationally indistinguishable from H3.

Proof. The only difference between the two hybrids is that in H3, for every honest party Pi, nci is
computed as a commitment of 1 in the main thread while in H4 it is computed as a commitment of
0. Note that in both hybrids, there is no change on any of the look-ahead threads. Thus, if there
exists an adversary that can distinguish between the two hybrids, there exists a reduction that can
break the hiding property of the commitment scheme.

Sub-Claim 9. Assuming the bounded rewinding security of the scheme RWI, H4 is computationally
indistinguishable from H5.

Proof. The proof is very similar to the proof of Sub-Claim 7. The only difference being that here,
the witness is changed only in the main thread and not in all the threads.

Sub-Claim 10. Assuming the security of the extractable commitment BRew.ECom and the pseu-
dorandom function PRF used inside the scheme R.ECom, H5 is computationally indistinguishable
from H6.

Proof. The proof is similar to the proof of Sub-Claim 6.

Sub-Claim 11. Assuming the security of the semi-malicious MPC protocol πSM, H6 is computa-
tionally indistinguishable from H7.

Proof. The only difference between H6 and H7 is that in H7, in the main thread, the simulator
now computes the second message of protocol πSM using the simulated algorithms S2. Assume for
the sake of contradiction that there exists an adversary A that can distinguish between the two
hybrids. We will use A to design an adversary AπSM that breaks the security of the protocol πSM.
AπSM performs the role of SimHyb in its interaction with A exactly as done in H6. AπSM also

interacts with a challenger CπSM and corrupts the same parties as done by A. For every honest
party Pi, AπSM receives a first round message msg1,i which is sent to A in round 1 of protocol π on
the main thread. On receiving msg1,j for every malicious party Pj in round 1 of the main thread
from A, AπSM forwards this to CπSM as the first round messages of the malicious parties. Similarly,
the messages msg2,i and msg2,j corresponding to every honest party Pi and malicious party Pj are
sent across between CπSM and A via AπSM in round 3 of protocol π on the main thread. The rest
of protocol π is performed exactly as in H6. In particular, AπSM generates the messages of protocol
πSM in the look-ahead threads on its own even though the first message of the protocol was received
externally from CπSM . Recall that this follows from a property of the protocol πSM that the first
round message is independent of the input and doesn’t have any secret information used to generate
the second round messages.

Observe that when CπSM computes the messages of protocol πSM honestly, A’s view corresponds
to H6 and when CπSM computes simulated messages, A’s view corresponds to H7. Therefore, if A
can distinguish between these two hybrids, AπSM will use the same distinguishing guess to break
the security of protocol πSM.
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Sub-Claim 12. Assuming the bounded rewinding security of the scheme RWI, H7 is computation-
ally indistinguishable from H8.

Proof. The proof is same as the proof of Sub-Claim 7 discussed above.

Sub-Claim 13. Assuming the security of the extractable commitment BRew.ECom and the pseu-
dorandom function PRF used inside the scheme R.ECom, H8 is computationally indistinguishable
from H9.

Proof. The proof is same as the proof of Sub-Claim 6 discussed above.

Sub-Claim 14. Assuming the bounded rewinding security of the scheme RWI, H9 is computation-
ally indistinguishable from H10.

Proof. The proof is same as the proof of Sub-Claim 9 discussed above.

Sub-Claim 15. Assuming the hiding property of the non-interactive commitment scheme NCom,
H10 is computationally indistinguishable from H11.

Proof. The proof is same as the proof of Sub-Claim 8 discussed above.

Sub-Claim 16. Assuming the Weak Zero Knowledge property of the argument system WZK, H11

is computationally indistinguishable from H12.

Proof. The proof is same as the proof of Sub-Claim 5 discussed above.
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