
Promise Zero Knowledge and its Applications to

Round Optimal MPC

Saikrishna Badrinarayanan
UCLA

saikrishna@cs.ucla.edu

Vipul Goyal
CMU

goyal@cs.cmu.edu

Abhishek Jain
JHU

abhishek@cs.jhu.edu

Yael Tauman Kalai
Microsoft Research, MIT

yael@microsoft.com

Dakshita Khurana
UCLA

dakshita@cs.ucla.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

Abstract

We devise a new partitioned simulation technique for MPC where the simulator uses different
strategies for simulating the view of aborting adversaries and non-aborting adversaries. The
protagonist of this technique is a new notion of promise zero knowledge (ZK) where the ZK
property only holds against non-aborting verifiers. We show how to realize promise ZK in three
rounds in the simultaneous-message model assuming injective one way functions.

We demonstrate the following applications of our new technique:

• We construct the first round-optimal (i.e., four round) MPC protocol for general functions
based on polynomially hard DDH (or QR or Nth-Residuosity).

• We further show how to overcome the four-round barrier for MPC by constructing a three-
round protocol for “list coin-tossing” – a slight relaxation of coin-tossing that suffices for
most conceivable applications – based on polynomially hard injective one-way functions.
This result generalizes to randomized input-less functionalities also assuming DDH (or QR
or Nth-Residuosity).

Previously, four round MPC protocols required sub-exponential-time hardness assumptions
and no multi-party three-round protocols were known for any relaxed security notions with
polynomial-time simulation against malicious adversaries.

In order to base security on polynomial-time standard assumptions, we also rely upon a
leveled rewinding security technique that can be viewed as a polynomial-time alternative to
leveled complexity leveraging for achieving “non-malleability” across different primitives.

Contents

1 Introduction 3
1.1 Our Results . 5
1.2 Related Work . 6

2 Technical Overview 7
2.1 Promise Zero Knowledge . 7
2.2 Four Round Secure Multiparty Computation . 9
2.3 List Coin-Tossing . 12

3 Preliminaries 13
3.1 Secure Multiparty Computation . 13
3.2 Delayed-Input Interactive Arguments . 14
3.3 Extractable Commitments . 14
3.4 Non-Malleable Commitments . 15

4 Building Blocks 16
4.1 Trapdoor Generation Protocol . 16
4.2 WI with Bounded Rewinding Security . 19

5 Promise Zero Knowledge 19
5.1 Definitions . 20
5.2 Constructing Simulation Sound Promise ZK . 24
5.3 Security Proof . 25

6 Three Round List Coin Tossing 32
6.1 Our List Coin Tossing Protocol . 33
6.2 Security Proof . 34

7 Four Round Malicious Secure MPC 38
7.1 Building Block: Extractable Commitments with Additional Properties 38
7.2 The MPC Protocol . 41
7.3 The Protocol . 44
7.4 Security Proof . 46

References 67

A WI with Bounded Rewinding Security 70

B MPC - Proof of Aborting Case 72

C Non-adaptive Bounded Rewinding WI with Reusability Security 76
C.1 Construction . 77
C.2 Overview of Security . 78

2

1 Introduction

Provably secure protocols lie at the heart of the theory of cryptography. How can we design
protocols, not only so that we cannot devise attacks against them, but so that we can prove that
no such attacks exist (under well-studied complexity assumptions)? The goal of achieving a proof
of security has presented many challenges and apparent trade-offs in secure protocol design. This
is especially true with regards to the goal of minimizing rounds of interaction, which has been a
long-standing driver of innovation in theoretical cryptography. We begin by focusing on one such
challenge and apparent trade-off in the context of zero-knowledge (ZK) protocols [GMR89], one of
the most fascinating and broadly applicable notions in cryptography.

Recall that in a ZK protocol, a prover should convince a verifier that some statement is true,
without revealing to the verifier anything beyond the validity of the statement being proven. It is
known that achieving zero knowledge with black-box simulation1 is impossible with three or fewer
rounds of simultaneous message exchange [GK96, GMPP16]. A curious fact emerges, however,
when we take a closer look at the proof of this impossibility result. It turns out that three-round
ZK is impossible when considering verifiers that essentially behave completely honestly, but that
sometimes probabilistically refuse to finish the protocol. This is bizarre: ZK protocols are supposed
to prevent the verifier from learning information from the prover; how can behaving honestly but
aborting the protocol early possibly help the verifier learn additional information? Indeed, one
might think that we can prove that such behavior cannot possibly help the verifier learn additional
information. Counter-intuitively, however, it turns out that such early aborts are critical to the
impossibility proofs of [GK96, GMPP16]. This observation is the starting point for our work; now
that we have identified a key (but counter-intuitive) reason behind the impossibility results, we
want to leverage this understanding to bypass the impossibility result in a new and useful way.

Promise Zero Knowledge. Our main idea is to consider adversarial verifiers that promise not
to abort the protocol early with noticeable probability. However, we do not limit ourselves only to
adversarial verifiers that behave honestly; we consider adversarial verifiers that may deviate from
the prescribed protocol arbitrarily, as long as this deviation does not cause the protocol to abort.
A promise zero-knowledge protocol is one that satisfies the correctness and soundness guarantees
of ordinary zero-knowledge protocols, but only satisfies the zero knowledge guarantee against ad-
versarial verifiers that “promise” not to abort with noticeable probability. The centerpiece of our
work is a construction of three-round promise zero-knowledge protocol, in the simultaneous mes-
sage model, for proving statements where the statement need not be decided until the last (third)
round, but where such statements should come from a distribution such that both a statement and
a witness for that statement can be sampled in the last round. We call this primitive a distributional
delayed-input promise zero-knowledge argument. Our construction requires only the existence of
injective one-way functions. Interestingly, in our construction, we rely upon information learned
from the verifier in the third round, to simulate its view in the third round!

Partitioned Simulation, and Applications to MPC. But why should we care about promise
ZK? Actual adversaries will not make any promise regarding what specific types of adversarial
behavior they will or will not engage in. However, recall our initial insight – early aborting by an
adversary should, generally speaking, only hurt the adversary, not help it. We know due to the

1In this work, we focus on black-box simulation. However, no solutions for three-round ZK from standard as-
sumptions with non-black-box simulation [Bar01] are presently known either. [BKP17] showed how to construct 3
round ZK using non-black-box simulation from the non-standard assumption that keyless multi-collision resistant
hash functions exist.

3

impossibility results of [GK96, GMPP16], that we cannot leverage this insight to achieve three-
round standard ZK (with black-box simulation). Our goal instead, then, is to use our insight
to replace ZK with promise ZK for the construction of other secure protocols. Specifically, we
consider the most general goal of secure protocol design: secure multi-party computation (MPC),
as we discuss further below.

To do so, we devise a novel partitioned simulation strategy for leveraging promise ZK. At
a high-level, we split the simulation into two disjoint cases, depending upon whether or not the
adversary is an aborting adversary (i.e., one who aborts with high probability). In one case, we
will exploit promise ZK. In the other, we exploit the intuition that early aborting should only harm
the adversary, to devise alternate simulation strategies that bypass the need for ZK altogether,
and instead essentially rely on a weaker notion called strong witness indistinguishability, that was
recently constructed in three rounds (in the “delayed-input” setting) in [JKKR17].

Secure Multi-Party Computation. The notion of secure multiparty computation (MPC)
[Yao82, GMW87] is a unifying framework for general secure protocols. MPC allows mutually
distrusting parties to jointly evaluate any efficiently computable function on their private inputs in
such a manner that each party does not learn anything beyond the output of the function.

The round complexity of MPC has been extensively studied over the last three decades in a
long sequence of works [GMW87, BMR90, KOS03, KO04, Pas04, PW10, Wee10, Goy11, GMPP16,
ACJ17, BHP17, COSV17a, COSV17b]. In this work, we study the problem of round-optimal MPC
against malicious adversaries who may corrupt an arbitrary subset of parties, in the plain model
without any trust assumptions. The state-of-the-art results on round-optimal MPC for general
functions are due to Ananth et al. [ACJ17] and Brakerski et al. [BHP17], both of which rely on
sub-exponential-time hardness assumptions. (See Section 1.2 for a more elaborate discussion on
related works.) Our goal, instead is to base security on standard, polynomial-time assumptions.

We now highlight the main challenge in basing security on polynomial-time assumptions. In
the setting of four round protocols in the simultaneous-message model, a rushing adversary may
always choose to abort after receiving the honest party messages in the last round. At this point, the
adversary has already received enough information to obtain the purported output of the function
being computed. This suggests that we must enforce “honest behavior” on the parties within the
first three rounds in order to achieve security against malicious adversaries. As discussed above,
three-round zero knowledge is impossible, and this is precisely why we look to our new notion of
promise ZK and partitioned simulation to resolve this challenge.

However, this challenge is exacerbated in the setting of MPC as we must not only enforce
honest behavior but also ensure non-malleability across different cryptographic primitives that are
being executed in parallel within the first three rounds. We show how to combine our notions of
promise ZK with new simulation ideas to overcome these challenges, relying only on polynomial-
time assumptions.

Coin Tossing. Coin-tossing allows two or more participants to agree on an unbiased coin (or a
sequence of unbiased coins). Fair multiparty coin-tossing is known to be impossible in the dishonest
majority setting [Cle86]. Therefore, while current notions of secure coin-tossing require that the
protocol have a (pseudo)-random outcome, the adversary is additionally allowed to abort depending
on the outcome of the toss.

Presently, secure multiparty coin-tossing is known to require at least four rounds w.r.t. black-
box simulation [GMPP16, KO04]. In this work, we seek to overcome this barrier.

Towards this, our key observation is that coin-tossing is perfectly suited for application of

4

partitioned simulation. The definition of secure coin-tossing roughly requires the existence of a
simulator that successfully forces externally sampled random coin, and produces a distribution
over adversary’s views that is indistinguishable from a real execution. To account for the adversary
aborting or misbehaving based on the outcome, the simulator is allowed to either force an external
coin, or force an abort as long as the simulated distribution remains indistinguishable from the real
one. Crucially, in the case of an adversary that always aborts before the end of the protocol, the
prescribed output of any secure coin-tossing protocol is also abort: therefore, the simulator never
needs to force any external coin against such an adversary! Simulating the view of such adversaries
that always abort is thus completely trivial. This leaves the case of non-aborting adversaries, which
is exactly the setting that promise ZK was designed for.

Using promise ZK, we design a three-round protocol for “list coin-tossing” – a notion that is
slightly weaker that regular coin-tossing, but nevertheless, suffices for nearly all important applica-
tions of coin-tossing (see below for a discussion). Therefore, promise ZK gives us a way to overcome
the four-round barrier for secure coin-tossing [GMPP16, KO04].

1.1 Our Results

We introduce the notion of promise ZK proof systems and devise a new partitioned simulation
strategy for round-efficient MPC protocols. Our first result is a three-round distributional delayed-
input promise ZK argument system based on injective one-way functions.

Theorem 1 (Informal). Assuming injective one-way functions, there exists a three round distribu-
tional delayed-input promise ZK argument system in the simultaneous-message model.

Round-Optimal MPC. We present two applications of partitioned simulation to round-optimal
MPC. We first devise a general compiler that converts any three-round semi-malicious MPC pro-
tocol, where the first round is public-coin (i.e., the honest parties simply send random strings in
the first round), into a four-round malicious secure MPC protocol. Our compiler can be instanti-
ated with standard assumptions such as DDH or Quadratic Residuosity or Nth-Residuosity. The
resulting protocol is optimal in the number of rounds w.r.t. black-box simulation [GMPP16]. A
three round semi-malicious protocol with the aforementioned property can be obtained based on
DDH/QR/Nth Residuosity [GS18, BL18].

Theorem 2 (Informal). Assuming DDH/QR/Nth-Residuosity, there exists a four round MPC
protocol for general functions with black-box simulation.

List Coin-Tossing. We also study the feasibility of multiparty coin-tossing in only three rounds.
While three round coin-tossing is known to be impossible [GMPP16], somewhat surprisingly, we
show that a slightly relaxed variant that we refer to as list coin-tossing is, in fact, possible in only
three rounds.

Very briefly, in list coin-tossing, the simulator is allowed to receive polynomially many random
string samples from the ideal functionality (where the exact polynomial may depend upon the
adversary), and it may choose any one of them as its output. It is not difficult to see that this
notion already suffices for most conceivable applications of coin-tossing, such as implementing a
common random string setup. For example, consider the setting where we want to generate a CRS
in the setup algorithm of a non-interactive zero knowledge (NIZK) argument system. Now, in the
ideal world, instead of running a simulator which “forces” one particular random string given by
the ideal functionality, we can substitute it with the simulator of a list coin tossing protocol that

5

receives polynomially many random strings from the ideal functionality and “forces” one of them
as the CRS. This would still suffice for the NIZK argument system.

We achieve the following result:

Theorem 3 (Informal). Assuming injective one-way functions, there exists a three round mul-
tiparty list coin-tossing protocol with black-box simulation. With the additional assumption of
DDH/QR/Nth-Residuosity, this can be generalized to randomized inputless functionalities where
security is defined analogously to list coin-tossing.

Finally, we note that by applying the transformation2 of [GMPP16] on the protocol from The-
orem 3 for the two-party case, we can obtain a four round two-party list coin-tossing protocol in
the unidirectional-message model. This result overcomes the barrier of five rounds for standard
two-party coin-tossing established by [KO04].

Corollary 4 (Informal). Assuming injective one-way functions, there exists a four round two-party
list coin-tossing protocol in the unidirectional-message model with black-box simulation.

Leveled Rewinding Security. While promise ZK addresses the issue of proving honest behav-
ior within three rounds, it does not address non-malleability issues that typically plague security
proofs of constant-round protocols in the simultaneous-message model. In particular, when multi-
ple primitives are being executed in parallel, we need to ensure that they are non-malleable w.r.t.
each other. For example, we may require that a primitive A remains “secure” while the simulator
(or a reduction) is (say) trying to extract adversary’s input from primitive B via rewinding.

In the works of [ACJ17, BHP17], such issues are addressed by using complexity leveraging.
In particular, they rely upon multiple levels of complexity leveraging to establish non-malleability
relationships across primitives, e.g., by setting the security parameters such that primitive X is more
secure than primitive Y that is more secure than primitive Z, and so on. Such a use a complexity
leveraging is, in fact, quite common in the setting of limited rounds (see, e.g., [COSV16]).

We instead rely upon a leveled rewinding security technique to avoid the use of complexity lever-
aging and base security on polynomial-time assumptions. Roughly, in our constructions, primitives
have various levels of “bounded rewinding” security that are carefully crafted so that they enable
non-malleability relationships across primitives, while still enabling rewinding-based simulation and
reductions. E.g., a primitive X may be insecure w.h.p. against 1 rewind, however, another primitive
Y may be secure against 1 rewind but insecure against 2 rewinds. Yet another primitive Z may
be secure against 2 rewinds but insecure against 3 rewinds, and so on. We remark that leveled
rewinding security with a “single level” was previously used in [GRRV14]; here we extend this idea
to “multiple levels”.

1.2 Related Work

Concurrent Work. In a concurrent and independent work, Halevi et al. [HHPV17] construct
a four round MPC protocol against malicious adversaries in the plain model based on different
assumptions than ours. In particular, they rely upon enhanced trapdoor permutations and public-
key encryption schemes that admit affine homomorphisms with equivocation (which in turn can be
based on LWE/DDH/QR; see [HHPV17]). They do not consider the problems of promise ZK and
list coin-tossing.

2The work of Garg et al. [GMPP16] establishes an impossibility result for three round multiparty coin-tossing
by transforming any three round two-party coin-tossing protocol in the simultaneous-message model into a four
round two-party coin-tossing protocol in the unidirectional-message model, and then invoking [KO04] who proved
the impossibility of four round two-party coin-tossing.

6

Round Complexity of MPC. The study of constant-round protocols for MPC was initiated
by Beaver et al. [BMR90]. They constructed constant-round MPC protocols in the presence
of honest majority. Subsequently, a long sequence of works constructed constant-round MPC
protocols against dishonest majority based on a variety of assumptions and techniques (see, e.g.,
[KOS03, Pas04, PW10, Wee10, Goy11]).

Garg et al. [GMPP16] initiated the study of the exact round complexity of MPC. They con-
structed five (resp., six) round MPC using indistinguishability obfuscation (resp., LWE) and three-
round robust non-malleable commitments. Recently, in concurrent works, Ananth et al. [ACJ17]
and Brakerski et al. [BHP17] constructed four round MPC protocol based on sub-exponential-time
hardness assumptions. While [BHP17] require sub-exponential LWE and adaptive commitments
[PPV08], the work of [ACJ17] relied on sub-exponential DDH. Furthermore, [ACJ17] also con-
structed a five round MPC protocol based on polynomially hard DDH. Recently, concurrent to our
work, Benhamouda and Lin [BL18] constructed five round MPC based on any five round OT.3

Ciampi et al. [COSV17a] constructed four-round multiparty coin-tossing from polynomial-
time assumptions. The same authors also construct four-round two-party computation in the
simultaneous-message model from polynomial-time assumptions [COSV17b]. However, their results
do not extend to general multiparty functionalities, which is the focus of our work.

In the setting of super-polynomial-time simulation, [BGI+17, JKKR17] construct two round
two-party computation from sub-exponential DDH. In the multi-party setting, [KS17] construct
coin-flipping and [BGJ+17] extend this result to input-less randomized functionalities, again in two
rounds with super-polynomial simulation. Garg et al. [GKP17] construct five round concurrent
two-party computation from quasi-poly hard assumptions and [BGJ+17] construct three round
concurrent MPC from sub-exponential LWE.

All of the above results are in the plain model where no trusted setup assumptions are available.
Asharov et. al. [AJL+12] constructed three round semi-malicious MPC protocols in the CRS model.
Subsequently, two-round semi-malicious MPC protocols in the CRS model were constructed by
Garg et al. [GGHR14] using indistinguishability obfuscation, and by Mukherjee and Wichs [MW16]
using LWE assumption. Recently, concurrent to our work, two-round semi-malicious protocols in
the plain model were constructed by Garg and Srinivasan [GS17, GS18] and Benhamouda and Lin
[BL18] from two-round (semi-malicious) OT. All of these results can be transformed to malicious
secure protocols in the CRS model using NIZKs.

2 Technical Overview

In this section, we provide an overview of the main ideas underlying our results.

2.1 Promise Zero Knowledge

Recall that the notion of promise ZK is defined in the simultaneous-message model, where in every
round, both the prover and the verifier send a message simultaneously.4 Crucially, the ZK property
is only defined w.r.t. a set of admissible verifiers that promise to send a “valid” non-aborting
message in the last round with some noticeable probability.

We construct a three round distributional promise ZK protocol with black-box simulation based
on injective one-way functions. We work in the delayed-input setting where the statement being

3Benhamouda and Lin [BL18], in fact, give a more general transformation from any k-round OT to k-round MPC,
for k ≥ 5.

4An adversarial prover or verifier can be rushing, i.e., it may wait to receive a message from the honest party in
any round before sending its own message in that round.

7

proven is revealed to the (adversarial) verifier only in the last round.5 Further, we work in the
distributional setting, where statements being proven are sampled from an efficiently sampleable
public distribution, i.e., it is possible to efficiently sample a statement together with a witness.

For simplicity of presentation, here we describe our construction using an additional assumption
of two-round WI proofs, a.k.a. Zaps [DN00]. In our actual construction of promise ZK, we replace
the Zaps with three round delayed-input WI proofs with some additional security guarantees that
we construct based on injective one-way functions.6

Our construction of promise ZK roughly follows the FLS paradigm [FLS90] for ZK:

• First, the prover and the verifier engage in a three round “trapdoor generation phase” that
determines a secret “trapdoor” that is known to the verifier but not the prover.

• Next, in a proof phase, the prover commits to 0 in a (three round) delayed-input extractable
commitment and proves via a Zap that either the purported statement is true or that it
committed to the trapdoor (instead of 0).

By appropriately parallelizing both of these phases, we obtain a three round protocol in the
simultaneous-message model. Below, we discuss the challenges in proving soundness and promise
ZK properties.

Proving Soundness. In order to argue soundness, a natural strategy is to rewind the cheating
prover in the second and third round to extract the value it has committed in the extractable
commitment. If this value is the trapdoor, then we can (hopefully) break the hiding property of
the trapdoor generation phase to obtain a contradiction. Unfortunately, this strategy doesn’t work
as is since the trapdoor generation phase is parallelized with the extractable commitment. Thus,
while extracting from the extractable commitment, we may inadvertently also break the security
of the trapdoor generation phase! Indeed, this is the key problem that arises in the construction
of non-malleable protocols.

To address this, we observe that in order to prove soundness, it suffices to extract the trapdoor
from the cheating prover with some noticeable probability (as opposed to overwhelming probability).
Now, suppose that the extractable commitment scheme is such that it is possible to extract the
committed value via k rewinds (for some small integer k) if the “main thread” of execution is non-
aborting with noticeable probability. Then, we can still argue soundness if the trapdoor generation
has a stronger hiding property, namely, security under k rewinds (but is insecure under more than k
rewinds to enable simulation; see below). This is an example of leveled rewinding security technique
with a single level; later we discuss its application with multiple levels.

We note that standard extractable commitment schemes such as [PRS02, Ros04] (as well as
their delayed-input variants) achieve the above extraction property for k = 1. This means that we
only require the trapdoor generation phase to maintain hiding property under 1 rewinding. Such
a scheme can be easily constructed from one-way functions.

Proving Promise ZK. In order to prove the promise ZK property, we construct a simulator
that learns information from the verifier in the third round, in order to simulate its view in the
third round! Roughly, our simulator first creates multiple “look-ahead” execution threads7 with

5In our actual construction, we consider a slightly more general setting where a statement x has two parts
(x1, x2): the first part x1 is revealed in the second round while the second part x2 is revealed in the third round.
This generalization is used in our applications of promise ZK, but we ignore it here for simplicity of presentation.

6In particular, replacing Zaps with delayed-input WI proofs relies on leveled rewinding security technique with
multiple levels that we describe in Section 2.2. We do not discuss it here to avoid repetition.

7Throughout, whenever the simulator rewinds, we call each rewound execution a look-ahead thread. The messages
that are eventually output by the simulator constitute the main thread.

8

the adversarial verifier in order to extract the trapdoor from the trapdoor generation phase. Note
that unlike typical ZK protocols where such a look-ahead thread only consists of partial protocol
transcript, in our case, each look-ahead thread must contain a full protocol execution since the
trapdoor generation phase completes in the third round.

Now, since the adversarial verifier may be rushing, the simulator must first provide its third
round message (namely, the second message of Zap) on each look-ahead thread in order to learn the
verifier’s third round message. Since the simulator does not have a trapdoor yet, the only possibility
for the simulator to prepare a valid third round message is by behaving honestly. However, the
simulator does not have a witness for the statement proven by the honest prover. Thus, it may
seem that we have run into a circularity.

This is where the distributional aspect of our notion comes to the rescue. Specifically, on
the look-ahead execution threads, the simulator simply samples a fresh statement together with a
witness from the distribution and proves the validity of the statement like an honest prover. Once it
has extracted the trapdoor, it uses its knowledge to cheat (only) on the main thread (but continues
to behave honestly on each look-ahead thread).8

2.2 Four Round Secure Multiparty Computation

We now describe the main ideas underlying our compiler from any three round semi-malicious MPC
protocol Π (where the first round is public coin) to a four round malicious-secure MPC protocol Σ.
For simplicity of presentation, in the discussion below, we ignore the first round of Π, and simply
treat it as a two round protocol.

Starting Ideas. Similar to several previous works, our starting idea is to follow the GMW
paradigm [GMW87] for malicious security. This entails two main steps: (1) Enabling extraction of
adversary’s inputs, and (2) Forcing honest behavior on the adversary in each round of Π. A natural
idea to implement the first step is to require each party to commit to its input and randomness via
a three round extractable commitment protocol. To force honest behavior, we require each party to
give a delayed-input ZK proof together with every message of Π to establish that it is “consistent”
with the input and randomness committed in the extractable commitment.

In order to obtain a four-round protocol Σ, we need to parallelize all of these sub-protocols
appropriately. This means that while the proof for the second message of Π can be given via a
four round (delayed-input) regular ZK proof, we need a three round proof system to prove the
well-formedness of the first message of Π. However, as discussed earlier, three-round ZK proofs are
known to be impossible w.r.t. black-box simulation [GK96, GMPP16] and even with non-black box
simulation, are not known from standard assumptions.

Promise ZK and Partitioned Simulation. While [ACJ17, BHP17] tackled this issue by using
sub-exponential hardness, we address it via partitioned simulation to base security on polynomial-
time assumptions. Specifically, we use different mechanisms for proving honest behavior depending
upon whether or not the adversary is aborting in the third round. For now, let us focus on the case
where the adversary does not abort in the third round of Σ; later we discuss the aborting adversary
case.

For the non-aborting case, we rely upon a three-round (delayed-input) distributional promise
ZK to prove well-formedness of the first message of Π. As we discuss below, however, integrating

8The idea of using a witness to continue simulation is an old one [BS05]. Most recently, [JKKR17] used this idea
in the distributional setting.

9

promise ZK in our construction involves overcoming several technical challenges due to specific prop-
erties of the promise ZK simulator (in particular, its requirement to behave honestly in look-ahead
threads).9 We also remark that in our actual construction, to address non-malleability concerns
[DDN91], the promise ZK and the standard ZK protocols that we use are suitably “hardened” using
three-round non-malleable commitments [GPR16, Khu17] to achieve simulation soundness [Sah99]
in order to ensure that the proofs given by the adversarial parties remain sound even when the
proofs given by honest parties are simulated. For simplicity of discussion, however, here we largely
ignore this point, and instead focus on the technical ideas that are more unique to our construction.

We now proceed to discuss the main technical challenges underlying our construction and its
proof of security.

How to do “Non-Malleable” Input Extraction? Let us start with the issue of extraction
of adversary’s input and trapdoors (for simulation of ZK proofs). In the aforementioned protocol
design, in order to extract adversary’s input and trapdoors, the simulator rewinds the second and
third rounds. Note, however, that this process also rewinds the input commitments of the honest
parties since they are executed in parallel. This poses the following fundamental challenge: we
must somehow maintain privacy of honest party’s inputs even under rewinds, while still extracting
the inputs of the adversarial parties.

A plausible strategy to address this issue is to cheat in the rewound executions by sending
random third round messages in the input commitment protocol on behalf of each honest party.
This effectively nullifies the effect of rewinding on the honest party input commitments. However,
in order to implement such a strategy, we need the ability to cheat in the ZK proofs since they are
proving “well-formedness” of the input commitments.10

Unfortunately, such a strategy is not viable in our setting. As discussed in the previous subsec-
tion, in order to simulate the promise ZK on the main thread, the simulator must behave “honestly”
on the rewound execution threads. This suggests that we cannot simply “sidestep” the issue of
rewinding and instead must somehow make the honest party input commitments immune to rewind-
ing. Yet, we must do this while still keeping the adversary input commitments extractable. Thus,
it may seem that we have reached an impasse.

Leveled Rewinding Security to the Rescue. In order to break the symmetry between input
commitments of honest and adversarial parties, we use the following sequence of observations:

• The security of the honest party input commitments is only invoked when we switch from a
hybrid experiment (say) Hi to another experiment Hi+1 inside our security proof. In order to
argue indistinguishability of Hi and Hi+1 by contradiction, it suffices to build an adversary
that breaks the security of honest party input commitments with some noticeable probability
(as opposed to overwhelming probability).

• This means that the reduction only needs to generate the view of the adversary in hybrids
Hi and Hi+1 with some noticeable probability. This, in turn, means that the reduction only
needs to successfully extract the adversary’s inputs and trapdoor (for generating its view)
with noticeable probability.

• Now, recall that the trapdoor generation phase used in our promise ZK construction is secure
against one rewind. However, if we rewind two times, then we can extract the trapdoor with

9Our construction of four round MPC, in fact, uses promise ZK in a non-black-box manner for technical reasons.
We ignore this point here as it is not important to the discussion.

10Indeed, [ACJ17] implement such a strategy in their security proof by relying on sub-exponential hardness as-
sumptions.

10

noticeable probability.

• Now, suppose that we can construct an input commitment protocol that maintains hiding
property even if it is rewound two times, but guarantees extraction with noticeable probability
if it is rewound three times. Given such a commitment scheme, we resolve the above problem
as follows: the reduction rewinds the adversary three times, which ensures that with noticeable
probability, it can extract both the trapdoor and the inputs from the adversary. In the first
two rewound executions, the reduction generates the third round messages of the honest party
input commitments honestly. At this point, the reduction already has the trapdoor. Now, in
the third rewound execution, it generates random third messages in the honest party input
commitments and uses the knowledge of the trapdoor to cheat in the proof.

The above strategy allows us to extract the adversary’s inputs with noticeable probability while still
maintaining privacy of honest party inputs. To complete this idea, we construct a new extractable
commitment scheme from injective one-way functions that achieves the desired “bounded-rewinding
security” property.

Taking a step back, note that in order to implement the above strategy, we created two levels of
rewinding security: while the trapdoor generation phase is secure against one rewind (but insecure
against two rewinds), the input commitment protocol is secure against two rewinds (but insecure
against three rewinds). We refer to this technique as leveled rewinding security with multiple levels,
and this is precisely what allows us to avoid the use of leveled complexity leveraging.

Using Promise ZK. In the works of [ACJ17, BHP17], the simulator behaves honestly in the first
three rounds using random inputs for the honest parties. We depart from this proof strategy, and
instead, require our simulator to cheat even in the first three rounds on the main thread.11 Indeed,
such a simulation strategy seems necessary for our case since the recent two-round semi-malicious
MPC protocols of [GS18, BL18] – which we use to instantiate our compiler – require a cheating
simulation strategy even in the first round.

To implement this proof strategy, we turn to promise ZK. However, recall that promise ZK
simulator works by behaving honestly in the look-ahead threads. When applied to our MPC
construction, this means that we must find a way to behave honestly on the look-ahead threads
that are used for extracting inputs and trapdoors from the adversary. However, at first it is not
immediately clear how to implement such a strategy. Clearly, our final simulator cannot use honest
party inputs on the look-ahead threads to behave honestly.

Instead, our simulator uses random inputs to behave honestly on the look-ahead threads. The
main challenge then is to argue that when we switch from using real honest inputs (in an intermedi-
ate hybrid) to random inputs on the look-ahead threads, the probability of extraction of adversary’s
inputs and trapdoors remains unchanged. Crucially, here, we do not need to consider a joint view
across all the look-ahead threads, and instead, it suffices to argue the indistinguishability of adver-
sary’s view on each look-ahead thread (when we switch from real input to random input) one at a
time. We rely upon techniques from the work of Jain et al. [JKKR17] for this indistinguishability
argument. The same proof technique is also used to argue security in the case when the adversary
aborts in the third round with overwhelming probability. We discuss this next.

Aborting Adversary Case. In the case where the adversary aborts in the third round with
overwhelming probability, we cannot rely upon promise ZK since there is no hope for extraction
from such an aborting adversary (which is necessary for simulating promise ZK). Therefore, in

11We emphasize that this strategy is only used in the case where the adversary does not abort in the third round.
As we discuss below, we use a different strategy in the aborting adversary case.

11

this case, the simulator simply behave honestly on the main thread using random inputs (as in
[ACJ17, BHP17]). The main challenge then is to switch in an indistinguishable manner from
honest behavior in the first three rounds using real inputs to honest behavior using random inputs,
while relying only on polynomial-time assumptions.

We address this case by relying upon techniques from [JKKR17]. We remark that we cannot
directly use the three-round strong WI argument system of [JKKR17] since it requires the instance
being proven to be disclosed to the verifier only in the third round of the protocol. This is not
true in our case, since the instance also consists of the transcript of the three-round extractable
commitment (and other sub-protocols like the trapdoor generation). Nevertheless, we are able to
use ideas from [JKKR17] in a non-black-box manner to enable our security proof; we refer the
reader to the technical sections for more details.

Other Issues. We note that since our partitioned simulation technique crucially relies upon
identifying whether an adversary is aborting or not, we have to take precaution during simulation
to avoid the possibility of the simulator running in exponential time. For this reason, we use ideas
first developed in [GK96] and later used in many subsequent works, to ensure that the running
time of our simulator is expected polynomial-time.

Finally, we note that the above discussion is oversimplified, and omits several technical points.
We refer the reader to the technical sections for full details.

2.3 List Coin-Tossing

We now describe the main ideas underlying our construction of three round multiparty list coin-
tossing. We start by describing the basic structure of our protocol:

• We start with a two-round semi-honest multiparty coin-tossing protocol based on injective
one-way functions. Such a protocol can be constructed as follows: In the first round, each
party i commits to a string ri chosen uniformly at random, using a non-interactive com-
mitment scheme. In the second round, each party reveals ri without the decommitment
information. The output is simply the XOR of all the ri values.

• To achieve malicious security, we “compile” the above semi-honest protocol with a (delayed-
input) distributional promise ZK protocol. Roughly speaking, in the third round, each party
i now proves that the value ri is the one it had committed earlier. By parallelizing the two
sub-protocols appropriately, we obtain a three round protocol.

We first note that as in the case of our four round MPC protocol, here also we need to “harden”
the promise ZK protocol with non-malleability properties. We do so by constructing a three-round
simulation-extractable promise ZK based on injective one-way functions and then using it in the
above compiler. Nevertheless, for simplicity of discussion, we do not dwell on this issue here, and
refer the reader to the technical sections for further details.

We now describe the main ideas underlying our simulation technique. As in the case of four
round MPC, we use partitioned simulation strategy to split the simulation into two cases, depend-
ing upon whether the adversary aborts or not in the third round.

Aborting Case. If the adversary aborts in the third round, then the simulator simply behaves
honestly using a uniformly random string ri on behalf of each honest party i. Unlike the four
round MPC case, indistinguishability can be argued here in a straightforward manner since the
simulated transcript is identically distributed as a real transcript. The main reason why such a
strategy works is that since the parties do not have any input, there is no notion of “correct out-

12

put” that the simulator needs to enforce on the (aborting) adversary. This is also true for any
randomized inputless functionality, and indeed for this reason, our result extends to such function-
alities. Note, however, that this is not true for general functionalities where each party has an input.

Non-Aborting Case. We next consider the case where the adversary does not abort in the third
round with noticeable probability. Note that in this case, when one execution thread completes, the
simulator learns the random strings rj committed to by the adversarial parties by simply observing
the adversary’s message in the third round.

At this point, the simulator queries the ideal functionality to obtain the random output (say)
R and then attempts to “force” it on the adversary. This involves simulating the simulation-
extractable promise ZK and sending a “programmed” value r′i on behalf of one of the honest
parties so that it leads to the desired output R. Now, since the adversary does not abort in the
last round with noticeable probability, it would seem that after a polynomial number of trials, the
simulator should succeed in forcing the output. At this point, it may seem that we have successfully
constructed a three round multiparty coin-tossing protocol, which would contradict the lower bound
of [GMPP16]!

We now explain the flaw in the above argument. As is typical to security with abort, an
adversary’s aborting behavior may depend upon the output it receives in the last round. For
example, it may always choose to abort if it receives an output that starts with 00. Thus, if the
simulator attempts to repeatedly force the same random output on the adversary, it may never
succeed.

This is where list coin-tossing comes into the picture. In list coin-tossing, the simulator obtains
a polynomial number of random strings from the ideal functionality, as opposed to a single string in
regular coin-tossing. Our simulator attempts to force each of (polynomially many) random strings
one-by-one on the adversary, in the manner as explained above. Now, each of the trials are inde-
pendent, and therefore the simulator is guaranteed to succeed in forcing one of the random strings
after a polynomial number of attempts.

Organization. We define some preliminaries in Section 3 and some building blocks for our proto-
cols in Section 4. In Section 5, we define and construct Simulation-Extractable Promise ZK. Our
three round List Coin Tossing protocol is described in Appendix ??. Finally, the construction of
our four round maliciously secure MPC protocol is in Appendix ??.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. Throughout this
paper, we will use λ to denote the security parameter, and negl(λ) to denote any function that
is asymptotically smaller than 1

poly(λ) for any polynomial poly(·). We will use PPT to describe
a probabilistic polynomial time machine. We will also use the words “rounds” and “messages”
interchangeably, whenever clear from context.

3.1 Secure Multiparty Computation

In this work we follow the standard real/ideal world paradigm for defining secure multi-party
computation. We refer the reader to [Gol04] for the precise definition.

Semi-malicious adversary. An adversary is said to be semi-malicious if it follows the protocol
correctly, but with potentially maliciously chosen randomness.

13

3.2 Delayed-Input Interactive Arguments

In this section, we describe delayed-input interactive arguments.

Definition 1 (Delayed-Input Interactive Arguments). An n-round delayed-input interactive pro-
tocol (P, V) for deciding a language L is an argument system for L that satisfies the following
properties:

• Delayed-Input Completeness. For every security parameter λ ∈ N, and any (x,w) ∈ RL
such that |x| ≤ 2λ,

Pr[(P, V)(1λ, x, w) = 1] = 1− negl(λ).

where the probability is over the randomness of P and V . Moreover, the prover’s algorithm
initially takes as input only 1λ, and the pair (x,w) is given to P only in the beginning of the
n’th round.

• Delayed-Input Soundness. For any PPT cheating prover P ∗ that chooses x∗ (adaptively)
after the first n− 1 messages, it holds that if x∗ /∈ L then

Pr[(P ∗, V)(1λ, x∗) = 1] = negl(λ).

where the probability is over the random coins of V .

Remark 1. We note that in a delayed-input interactive argument satisfying Definition 1, complete-
ness and soundness also hold when (part of) the instance is available in the first (n− 1) rounds.

We will also consider delayed-input interactive arguments in the simultaneous-message setting,
that satisfy soundness against rushing adversaries.

3.3 Extractable Commitments

Here onwards until Section 5, we will discuss protocols where only one party sends a message in
any round.

Definition 2 (Extractable Commitments). Consider any statistically binding, computationally hid-
ing commitment scheme 〈C,R〉. Let Trans〈C(m, rC), R(rR)〉 denote a commitment transcript with
committer input m, committer randomness rC and receiver randomness rR, and let Decom(τ,m, rC)
denote the algorithm that on input a commitment transcript τ , committer message m and random-
ness rC outputs 1 or 0 to denote whether or not the decommitment was accepted (we explicitly
require the decommitment phase to not require receiver randomness rR).

Then 〈C,R〉 is said to be extractable if there exists an expected PPT oracle algorithm E, such that
for any PPT cheating committer C∗ the following holds. Let Trans〈C∗, R(rR)〉 denote a transcript
of the interaction between C∗ and R. Then EC∗(Trans〈C∗, R(rR)〉) outputs m, rC such that over
the randomness of E and of sampling Trans〈C∗, R(rR)〉:

Pr[(∃m̃ 6= m, r̃C) such that Decom(τ, m̃, r̃C) = 1] = negl(λ)

Remark 2. The notion of extraction described in Definition 2 is often referred to as over-extraction.
This is because the extractor E is allowed to output any arbitrary value if Trans〈C∗, R(rR)〉 does
not contain a commitment to any valid message. On the other hand, if Trans〈C∗, R(rR)〉 is a valid
commitment to some message m, E must output the correct committed message m.

14

Definition 3 (k-Extractable Commitments). An extractable commitment satisfying Definition 2 is
said to be k-extractable if there exists a polynomial p(·) such that the extractor EC∗(Trans〈C∗, R(rR)〉)
with k − 1 queries to C∗, outputs m, rC such that over the randomness of E and of sampling
Trans〈C∗, R(rR)〉:

Pr[Decom(τ,m, rC) = 1] ≥ p(λ)

Delayed-Input Extractable Commitments. We say that an extractable commitment is delayed-
input if the committer uses the input message m only in the last round of the protocol.

Theorem 5. [PRS02, Ros04] For any constant K > 0, assuming injective one-way functions,
there exists a three round delayed-input K-extractable commitment scheme satisfying Definition 3.

3.4 Non-Malleable Commitments

We start with the definition of non-malleable commitments by Pass and Rosen [PR05] and further
refined by Lin et al [LPV08] and Goyal [Goy11]. (All of these definitions build upon the original
definition of Dwork et al. [DDN91]).

In the real experiment, a man-in-the-middle adversary MIM interacts with a committer C in
the left session, and with a receiver R in the right session. Without loss of generality, we assume
that each session has identities or tags, and require non-malleability only when the tag for the left
session is different from the tag for the right session.

At the start of the experiment, the committer C receives an input val and MIM receives an
auxiliary input z, which might contain a priori information about val. Let MIM〈C,R〉(val, z) be a

random variable that describes the value ṽal committed by MIM in the right session, jointly with
the view of MIM in the real experiment.

In the ideal experiment, a PPT simulator S directly interacts with MIM. Let Sim〈C,R〉(1
λ, z)

denote the random variable describing the value ṽal committed to by S and the output view of S.
In either of the two experiments, if the tags in the left and right interaction are equal, then the

value ṽal committed in the right interaction, is defined to be ⊥.
We define a strengthened version of non-malleable commitments for use in this paper.

Definition 4 (Special Non-malleable Commitments). A three round commitment scheme 〈C,R〉
is said to be special non-malleable if:

• For every synchronizing12 PPT MIM, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1
λ, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗

• 〈C,R〉 is delayed-input, that is, correctness holds even when the committer obtains his input
only in the last round.

• 〈C,R〉 satisfies last-message pseudorandomness, that is, for every non-uniform PPT receiver
R∗, it holds that {REALR

∗
0 (1λ)}λ and {REALR

∗
1 (1λ)}λ are computationally indistinguishable,

where for b ∈ {0, 1}, the random variable REALR
∗

b (1λ) is defined via the following experiment.

1. Run C(1λ) and denote its output by (com1, σ), where σ is its secret state, and com1 is
the message to be sent to the receiver.

12A synchronizing adversary is one that sends its message for every round before obtaining the honest party’s
message for the next round.

15

2. Run the receiver R∗(1λ, com1), who outputs a message com2.

3. If b = 0, run C(σ, com2) and send its message com3 to R∗. Otherwise, if b = 1, compute

com3
$←{0, 1}m and send it to R∗. Here m = m(λ) denotes |com3|.

4. The output of the experiment is the output of R∗.

• 〈C,R〉 satisfies 2-extractability according to Definition 3.

Goyal et al. [GPR16] construct three-round special non-malleable commitments satisfying Def-
inition 4 based on injective OWFs.

Imported Theorem 1 ([GPR16]). Assuming injective one-way functions, there exists a three
round non-malleable commitment satisfying Definition 4.

4 Building Blocks

We now describe some of the building blocks we use in our constructions.

4.1 Trapdoor Generation Protocol

In this section, we define and construct a primitive called Trapdoor Generation Protocol. In such
a protocol, a sender S (a.k.a. trapdoor generator) communicates with a receiver R. The protocol
satisfies two properties: (i) Sender security, i.e., no cheating PPT receiver can learn a valid trapdoor,
and (ii) Extraction, i.e., there exists an expected PPT algorithm (a.k.a. extractor) that can extract
a trapdoor from an adversarial sender via rewinding.

We construct a three-round trapdoor generation protocol where the first message sent by the
sender determines the set of valid trapdoors, and in the next two rounds the sender proves that
indeed it knows a valid trapdoor. Such schemes are known in the literature based on various
assumptions [PRS02, Ros04, COSV17a]. Here, we consider trapdoor generation protocols with a
stronger sender security requirement that we refer to as 1-rewinding security. Below, we formally
define this notion and then proceed to give a three-round construction based on one-way functions.
Our construction is a minor variant of the trapdoor generation protocol from [COSV17a].

Syntax. A trapdoor generation protocol

TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt)

is a three round protocol between two parties - a sender (trapdoor generator) S and receiver R
that proceeds as below.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R1 ← TDGen1(rS) using a random string rS .

2. Round 2 - TDGen2(·):
R computes and sends tdR→S2 ← TDGen2(tdS→R1 ; rR) using randomness rR.

3. Round 3 - TDGen3(·):
S computes and sends tdS→R3 ← TDGen3(tdR→S2 ; rS)

4. Output - TDOut(·)
The receiver R outputs TDOut(tdS→R1 , tdR→S2 , tdS→R3).

16

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R1), output a single bit 0 or 1 that determines whether the value t is
a valid trapdoor corresponding to the message td1 sent in the first round of the trapdoor
generation protocol.

In what follows, for brevity, we set td1 to be tdS→R1 . Similarly we use td2 and td3 instead
of tdR→S2 and tdS→R3 , respectively. Note that the algorithm TDValid does not form a part of the
interaction between the trapdoor generator and the receiver. It is, in fact, a public algorithm that
enables public verification of whether a value t is a valid trapdoor for a first round message td1.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values13 (td1, {tdi2, tdi3}3i=1)
such that td1

2, td2
2, td3

2 are distinct and TDOut(td1, tdi2, tdi3) = 1 for all i ∈ [3], outputs a trapdoor t
such that TDValid(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trapdoor generation
protocol TDGen. Consider the following experiment between a sender S and any (possibly cheating)
receiver R∗.

Experiment E:

• R∗ interacts with S and completes one execution of the protocol TDGen. R∗ receives values
(td1, td3) in rounds 1 and 3 respectively.

• Then, R∗ rewinds S to the beginning of round 2.

• R∗ sends S a new second round message td∗2 and receives a message td∗3 in the third round.

• At the end of the experiment, R∗ outputs a value t∗.

Definition 5 (1-Rewinding Security). A trapdoor generation protocol TDGen = (TDGen1,TDGen2,
TDGen3,TDOut,TDValid) achieves 1-rewinding security if, for every non-uniform PPT receiver R∗

in the above experiment E,

Pr
[
TDValid(t∗, td1) = 1

]
= negl(λ),

where the probability is over the random coins of S, and where t∗ is the output of R∗ in the
experiment E, and td1 is the message from S in round 1.

4.1.1 Construction

We now describe a three round trapdoor generation protocol based on one way functions.
Let S and R denote the sender and the receiver, respectively. Let λ denote the security pa-

rameter. Let (Gen, Sign,Verify) be a signature scheme that is existentially unforgeable against
chosen-message attacks. Such schemes are known based on one-way functions [GMR88].

Theorem 6. Assuming the existence of one way functions, the protocol ΠTD described in Figure 1
is a 1-rewinding secure trapdoor generation protocol.

13These values can be obtained from the malicious sender via an expected PPT rewinding procedure. The expected
PPT simulator in our applications performs the necessary rewindings and then feeds these values to the extractor
TDExt.

17

1. Round 1 - TDGen1(rS):
S does the following:

• Generate (sk, vk)← Gen(rS).

• Send tdS→R1 = vk to R.

2. Round 2 - TDGen2(tdS→R1):
R sends a random string m as the message tdR→S2 to S.

3. Round 3 - TDGen3(tdS→R1 , tdR→S2 ; rS):
S computes and sends tdS→R3 = Sign(sk,m; rm) where rm is randomly chosen.

4. Output: - TDOut(tdS→R1 , tdR→S2 , tdS→R3)
The receiver R outputs 1 if Verify(tdS→R1 ,m, tdS→R3) = 1.

5. Trapdoor Validation Algorithm - TDValid(t, td1):
Given input (t, td1), the algorithm does the following:

• Let t = {mi, σi}3i=1.

• Output 1 if m1,m2,m3 are distinct and V (td1,mi, σi) = 1 for all i ∈ [3].

Figure 1: Trapdoor Generation Protocol ΠTD.

Proof. Suppose the protocol ΠTD is not 1-rewinding secure. That is, there exists a malicious
receiver R∗ that breaks the 1-rewinding security. We will use R∗ to design an adversary ASign that
breaks the unforgeability of the signature scheme. ASign, and upon receiving a verification key vk,
it interacts with CSign and with R∗, as follows: First, it sets td1 = vk and sends td1 to R∗ in round
1. Upon receiving a query td2 = m from R∗, ASign forwards this to CSign and receives a value σm
from CSign which it sends to R∗ as the message td3. Then, upon receiving a query td∗2 = m∗ from
R∗ in the rewound execution, ASign once again does the same. That is, ASign forwards this to CSign
and receives a value σm∗ from CSign which it sends to R∗ as the message td∗3.

Then, since R∗ breaks the 1-rewinding security, it outputs a value t∗ in experiment E such
that TDValid(t∗, td1) = 1 with non-negligible probability p. Recall from the definition of the
algorithm TDValid, it must be the case that t∗ = {mi, σi}3i=1 such that m1,m2,m3 are distinct and
V (vk,mi, σi) = 1 for all i. ASign picks the value mi /∈ {m,m∗} and outputs (mi, σi) as a forgery.

Extractor TDExt(·). The extractor works as follows. It receives a verification key vk = td1, and
a set of values {mi, σi}3i=1 such that mi are all distinct and Verify(vk,mi, σi) = 1 for every i ∈ [3].
Then, TDExt outputs t = {mi, σi}3i=1 as a valid trapdoor. Correctness of the extraction is easy to
see by inspection.

Remark: In the application to our MPC protocol, one party is the sender and sends the first
round message td1. Each of the other (n − 1) parties send a second round message td2,i and
the sender now sets the concatenation of all of them as the second round message td2 - that is,
td2 = (td2,1|| . . . ||td2,n−1). The sender then computes td3 as before.

18

4.2 WI with Bounded Rewinding Security

We define the notion of three-round delayed-input witness indistinguishable (WI) argument with
“bounded-rewinding security,” and construct such a primitive assuming the existence of injective
one-way functions. Such a primitive has been implicitly constructed and used in the literature
previously in the non-delayed-input setting. For example, Goyal et al. [GRRV14] construct and use
the notion of WI arguments with 1-rewinding security based on injective one-way functions.

We formally define three-round delayed-input WI with bounded-rewinding security here. In
appendix Appendix A, we describe a construction for the same which is obtained by combining a
delayed-input WI [LS90] that is not rewinding secure with a non-delayed-input WI that is bounded-
rewinding secure [IKOS07]. For our applications, we instantiate the rewinding parameter B with
the value 5.

Definition 6 (3-Round Delayed-Input WI with Bounded Rewinding Security). Fix a positive
integer B. A delayed-input 3-round interactive argument (as defined in Definition 1) for an NP
language L, with an NP relation RL is said to be WI with B-Rewinding Security if for every non-
uniform PPT interactive Turing Machine V ∗, it holds that {REALV

∗
0 (1λ)}λ and {REALV

∗
1 (1λ)}λ are

computationally indistinguishable, where for b ∈ {0, 1} the random variable REALV
∗

b (1λ) is defined
via the following experiment. In what follows we denote by P1 the prover’s algorithm in the first
round, and similarly we denote by P3 his algorithm in the third round.

Experiment REALV
∗

b (1λ):

1. Run P1(1
λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the

message to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs (x,w0, w1) and a message rwi2.

3. Run P3(σ, rwi2, x, wb), where P3 is the (honest) prover’s algorithm for generating the third
message of the WI protocol, and send its message rwi3 to V ∗.

4. Set a counter i = 0.

5. If i < B, then set i = i+ 1, and V ∗ (given all the information so far) generates another tuple
(x,w0, w1) and message rwii2, and receives the (honest) prover’s message P3(σ, rwii2, x, wb).
Repeat this step until i = B.

6. The output of the experiment is the output of V ∗.

In Appendix A, we prove the following theorem:

Theorem 7. Assuming injective one-way functions, there exists a three round delayed-input witness-
indistinguishable argument system with (B = 5)-rewinding security.

5 Promise Zero Knowledge

In this section, we introduce our new notion of promise zero knowledge interactive arguments. Un-
like the standard notion of zero knowledge interactive arguments that is defined in the unidirectional-
message model of communication, promise ZK is defined in the simultaneous-message model, where
in every round, both the prover and the verifier simultaneously send a message to each other. Cru-
cially, in promise ZK, the zero knowledge property is only required to hold against a specific class
of “valid” verifiers (that do not send invalid messages).

19

Validity Check. Before defining promise ZK, we enhance the syntax for simultaneous-message
interactive arguments to include an additional algorithm Valid. That is, a simultaneous-message
interactive argument is denoted by (P, V,Valid). The notions of completeness and soundness remain
intact as before. Looking ahead, the intuition behind introducing the new algorithm is that we want
to capture those verifiers who send a “valid” message in every round (including the last round).
We do this by using the Valid algorithm.

This algorithm Valid is protocol specific. For example, if the honest verifier is instructed to
prove knowledge of a trapdoor that he generated, and the proof fails, then his messages are not
valid. Importantly, even if only the verifier’s last message is invalid, and even though the prover
does not need to explicitly respond to this message14 we refer to this transcript as invalid. We
denote by Valid the (public verification) algorithm which checks whether the transcript, including
the verifier’s last message, is valid or not, that is,

Valid(Trans(P (x,w), V ∗)) = 1

if and only if all the messages sent by V ∗ appear to be valid, given the transcript. The correctness
requirement of this algorithm is that if the verifier’s messages are generated honestly according to
the protocol, then

Pr[Valid(Trans(P (x,w), V)) = 1] = 1.

Looking ahead, in our protocols, at the end of each execution of the ZK protocol, the prover will
check whether the verifier sent “valid” messages, and if not, the prover will abort.

5.1 Definitions

We now proceed to describe our notion of promise zero knowledge. Roughly speaking, we define
promise ZK similarly to standard ZK, with two notable differences: First, promise ZK is defined
in the simultaneous-message model. Second, the zero knowledge property is only defined w.r.t. a
special class of verifiers who generate a valid transcript, with some noticeable probability. In order
to define this notion, we need to have an estimation of the probability that the cheating verifier
sends an invalid message throughout the protocol.

Validity Approximation. Consider a delayed-input simultaneous message interactive argument
system (P, V,Valid). Consider any verifier V ∗, and any efficiently sampleable distributionD = {Dλ},
where Dλ samples pairs (x,w) such that x ∈ {0, 1}λ and (x,w) ∈ RL

In what follows we denote by P = (P1, P2), a prover that is split into two parts. First,
(viewV ∗,1, st) ← P1(1

λ) is obtained, and then P2(x,w, st) continues the rest of the P algorithm
with V ∗. This is done primarily because we would like to approximate the the validity probability
of V ∗ conditioned on viewV ∗,1.

Let Trans(P2(x,w, st), V ∗) denote the protocol transcript between P2 and V ∗: that is, Trans(P, V ∗) =
(viewV ∗,1,Trans(P2(x,w, st), V ∗)). Let

qviewV ∗,1 = Pr[Valid(viewV ∗,1,Trans(P2(x,w, st), V ∗)) = 1|(viewV ∗,1, st)← P1(1
λ)]

where the probability is over the generation of (x,w)← Dλ and the coins of P2. We emphasize that
qviewV ∗,1 depends on D and on V ∗, we omit this dependence from the notation to avoid cluttering.

14We use this promise ZK protocol as a building block in our MPC protocols, and in these protocols, the party
acting as prover does indeed read this last ZK message sent by the verifier, and based on its validity decides whether
to abort the MPC protocol. See, for example, Section 6.

20

Definition 7. For any constant c ∈ N, a PPT oracle algorithm pExtractc is said to be a validity
approximation algorithm, if the following holds for all malicious verifiers V ∗ and for all efficiently
sampleable distributions D = {Dλ}:

• If pExtractV
∗,D

c (viewV ∗,1, st) = 0, then qviewV ∗,1 < 2 · λ−c.

• Otherwise, if pExtractV
∗,D

c (viewV ∗,1, st) = p, then p ≥ λ−c and p
2 < qviewV ∗,1 < 2 · p.

We now formalize our notion of promise ZK. We note that this only considers the delayed-input
distributional setting. For simplicity of exposition, we restrict ourselves to 3-round protocols since
this work is only concerned with constructions and applications of 3-round promise zero-knowledge.
We note that this definition can be extended naturally to any number of rounds.

Definition 8 (Promise Zero Knowledge). A 3-round distributional delayed-input simultaneous-
message interactive argument (P, V,Valid) for a language L is said to be promise zero knowledge
against delayed-input verifiers if there exists an oracle machine Sim = (Sim1, Sim2, Sim3) such that
for every constant c ∈ N, and any validity approximation algorithm pExtractc, for every polynomials
ν = ν(λ) and ν̃ = ν̃(λ), for every efficiently sampleable distribution D = {Dλ} such that Supp(Dλ) =
{(x,w) : x ∈ L ∩ {0, 1}λ, w ∈ RL(x) where x = (x2, x3), w = (w2, w3)}, for any delayed-input PPT
verifier V ∗ that obtains xi in round i and any z ∈ {0, 1}poly(λ), conditions 1 and 2 (defined below)
hold for REALV ∗ and IDEALV ∗ (defined below).

• REALV ∗ is computed as follows:

– Sample (viewV ∗,1, st)← P1(1
λ).

– Sample (x,w)← Dλ where x = (x2, x3).

– Execute the interaction (viewV ∗,1, 〈P2(x,w, st), V ∗(viewV ∗,1)〉), where V ∗ obtains xi in
round i.

– The output of the experiment is the view of V ∗ in the execution (x, 〈P (x,w), V ∗(viewV ∗,1)〉).

• IDEALV ∗ is computed as follows:

– Sample (viewV ∗,1, st)← P1(1
λ).

– Compute p = pExtractV
∗

c (viewV ∗,1, st).

– Sample (x,w)← Dλ where x = (x2, x3).

– If p = 0,

∗ Execute the interaction (viewV ∗,1, 〈P2(x,w, st), V ∗(viewV ∗,1)〉), where V ∗ obtains xi
in round i.

∗ The output of the experiment is (x, 〈P (x,w), V ∗(viewV ∗,1)〉).
– Else, execute SimV ∗(x, viewV ∗,1, st, p)→ (viewV ∗,2, viewV ∗,3), which operates as follows:

∗ Compute SimV ∗
1 (viewV ∗,1, st, p)→ st1.

∗ Then compute SimV ∗
2 (x2, viewV ∗,1, st1)→ (viewV ∗,2, st2).

∗ Finally, compute SimV ∗
3 (x3, viewV ∗,1, viewV ∗,2, st2) to output (viewV ∗,3).

Conditions 1 and 2 are defined as follows:

1. No PPT distinguisher can distinguish REALV ∗ from IDEALV ∗ with advantage greater than
λ−c.

21

2. For any input x = (x2, x3), the running time of SimV ∗
1 (viewMIM,1, st, p) is polynomial in λ and

linear in 1
p , and the running times of SimV ∗

2 (x2, viewV ∗,1, st) and SimV ∗
3 (x3, viewV ∗,1, viewV ∗,2, st2)

are polynomial in λ and independent of p.

Going forward, we use promise ZK argument to refer to a distributional promise zero-knowledge
simultaneous-message argument system, satisfying delayed-input completeness and soundness, as
well as zero-knowledge against delayed-input verifiers according to Definition 8.

Defining Simulation-Sound Promise ZK in the multi-party setting. We now consider
a man-in-the-middle adversary that interacts in promise zero-knowledge protocols as follows: It
opens polynomially many sessions where it plays the role of the verifier interacting with an honest
prover; these are called “left” sessions, and we denote by ν the number of such left sessions. We note
that in all left sessions, the honest prover proves the same statement with the same witness. It can
simultaneously initiate polynomially many sessions where it plays the role of the prover interacting
with an honest verifier: these are called “right” sessions, and we denote by ν̃ the number of such
right sessions. We restrict ourselves to synchronous (rushing) adversaries, that for each round j,
send all their j’th round messages (in all sessions), before observing any of the honest parties
messages for the next round of the protocol.

We formalize the notion of simulation-soundness against a rushing man-in-the-middle adversary
below, where we use ã to denote any random variable a that corresponds to a right session.

Redefining Validity Approximation. Similarly to before, we need to approximate the prob-
ability that the messages sent by a man-in-the-middle adversary in the left execution are valid,
conditioned on all messages in the first round of the protocol. We consider ν “left” sessions and
ν̃ “right” sessions. Similar to the setting of promise ZK, we denote by P = (P1, P2), an honest
prover for the “left” sessions that is split into two parts, P1 generates the first round message,
and P2 generates the messages of the second and third rounds. Below, we abuse notation and
use P, P1, P2 not only to denote the interaction of the honest prover in a single session, but also
to denote the interaction of the honest prover in all ν left sessions, using independent random-
ness for each such execution. Let Transleft(P2(x,w, viewMIM,1, st),MIM) denote all the transcripts in
the “left” sessions between P2(x,w, viewMIM,1, st) and MIM, which can be decomposed as follows:
Transleft(P,MIM) = (viewMIM,1,Transleft(P2(x,w, viewMIM,1, st),MIM)). For any viewMIM,1 sampled
according to honest prover and verifier strategy as described above, let

qviewMIM,1
= Pr[Valid(viewMIM,1,Transleft(P2(x,w, viewMIM,1, st),MIM)) = 1|(viewMIM,1, st)← P1(1

λ)]

where Valid above refers to the AND of all the validity tests for each of the ν left sessions, and
the probability is over the generation of (x,w)← Dλ and the coins of each of the ν instantiations
of P2. We emphasize that qviewMIM,1

depends on D and on MIM, we omit this dependence from
the notation to avoid cluttering. We re-define the algorithm pExtractc from Definition 8 to depend
additionally on the honest verifier first messages in the right sessions.

Definition 9. For any constant c ∈ N, a PPT oracle algorithm pExtractc is said to be a valid-
ity approximation algorithm, if the following holds for all MIM and for all efficiently sampleable
distributions D = {Dλ}, with probability at least 1 − 2−λ over the coins of the algorithm, we have
that:

• If pExtractMIM,D
c (viewMIM,1, st) = 0, then qviewMIM,1

< 2 · λ−c.

• Else, if pExtractMIM,D
c (viewMIM,1, st) = p, then p ≥ λ−c and p

2 < qviewMIM,1
< 2 · p.

22

Remark 3. We briefly describe a canonical polynomial-time validity approximation algorithm for
any constant c ∈ N:

1. pExtractMIM,D
c (viewMIM,1, st) executes λ2 · λc independent executions of all sessions with MIM,

using freshly sampled instance-witness pairs from the distribution Dλ to complete the left
executions in the role of the honest provers, and acting as honest verifiers in the right sessions.

2. Let ρ be the number of these executions that resulted in all left executions begin valid. We call
such executions successful trials.

3. If ρ < λ2, output 0.

4. Otherwise, output ρ/(λ2 · λc).

We now informally analyze this algorithm:

• Observe that if pExtractMIM,D
c (viewMIM,1, st) outputs zero, this means that fewer than λ2 trials

succeeded. On the other hand, if qviewMIM,1
≥ 2 · λ−c, then the expected number of successful

trials is at least 2λ2. By a Chernoff bound, except with probability at most 2−λ, at least λ2

trials must succeed if qviewMIM,1
≥ 2 · λ−c. Thus, the first condition is satisfied.

• Observe that if pExtractMIM,D
c (viewMIM,1, st) outputs a nonzero value, then this value must be at

least λ−c by construction. And again, the required condition on qviewMIM,1
follows immediately

from a Chernoff bound.

For simplicity, we restrict ourselves to 3 rounds in the definition below. This suffices for our
construction and applications.

Definition 10 (Simulation-Sound Promise Zero Knowledge). A 3-round publicly-verifiable promise
zero-knowledge argument against delayed-input verifiers (P, V,Valid) is said to be simulation-sound
if there exists an oracle machine Sim = (Sim1,Sim2, Sim3) such that, for every constant c ∈ N, and
any validity approximation algorithm pExtractc, for every polynomials ν = ν(λ) and ν̃ = ν̃(λ), for
every efficiently sampleable distribution D = {(Xλ,Wλ)} such that Supp((X ,W)λ) = {(x,w) : x ∈
L ∩ {0, 1}λ, w ∈ RL(x) where x = (x2, x3)}, and every distribution X ′λ such that Xλ and X ′λ are
computationally indistinguishable, for any PPT synchronous MIM that initiates ν “left” sessions
and ν̃ “right” sessions, we require the following to hold. Let

SimMIM(x′, viewMIM,1, st, p)→ (viewMIM,2, viewMIM,3, {x̃i}i∈[ν̃])

where viewMIM,1 are all the messages sent in the first round (both left and right executions) with MIM,
and st denotes all the corresponding secret states of the honest parties, and p = pExtractMIM,D

c (viewMIM,1, st).

• For any input x′ = (x′2, x
′
3), we have that SimMIM(x′, viewMIM,1, st, p) operates by first comput-

ing
SimMIM

1 (viewMIM,1, st, p)→ st1

then computing
SimMIM

2 (x′2, viewMIM,1, st1)→ (viewMIM,2, st2)

and then computing

SimMIM
3 (x′2, x

′
3, viewMIM,1, viewMIM,2, st2) = (viewMIM,3, {x̃i}i∈[ν̃]).

23

Here, viewMIM,2 and viewMIM,3 denotes the set of all messages sent in the second and third
round (respectively) of the multi-party execution with MIM. We require that {x̃i} (which is
part of the output of SimMIM) is consistent15 with (viewMIM,2, viewMIM,3).

• For any input x′ = (x′2, x
′
3), we require that the running time of SimMIM

1 (viewMIM,1, st, p) is
polynomial in λ and linear in 1

p , while the running times of SimMIM
2 (x′2, viewMIM,1, st1) and

SimMIM
3 (x′2, x

′
3, viewMIM,1, viewMIM,2, st2) are polynomial in λ, independent of p.

• If Pr
[
pExtractMIM

c (viewMIM,1, st) ≥ λ−c
]
≥ λ−c, then we have:(

x′, viewMIM,1, IDEALMIM(x′, viewMIM,1, st)
∣∣∣ pExtractMIM

c (viewMIM,1, st) ≥ λ−c
)
≈(

x, viewMIM,1,REALMIM(x,w, viewMIM,1, st)
∣∣∣ pExtractMIM

c (viewMIM,1, st) ≥ λ−c
)

where (x,w) ← (X ,W)λ, x′ ← X ′λ, and (viewMIM,1, st) is generated by simulating all the
messages sent in the first round of the execution with MIM,16 where viewMIM,1 denotes all the
simulated messages and st denotes the secret states of all the honest parties, and

IDEALMIM(x′, viewMIM,1, st) = (viewMIM,1, viewMIM,2, viewMIM,3),

where the variables (viewMIM,2, viewMIM,3) are computed by running SimMIM(x′, viewMIM,1, st, p)
for p = pExtractMIM,D

c (viewMIM,1, st). The experiment REALMIM(x,w, viewMIM,1) is computed
by running a real world execution with MIM, where the provers in the “left” sessions uses the
input (x,w) and where the first round messages are viewMIM,1, and by Valid(Transleft(P2(x,w, st)))
we mean that all left sessions in the execution of REALMIM are valid.

• Over the randomness of Sim, of generating (viewMIM,1, st) and over x′ ← X ′λ,

Pr

[∨
i∈[ν̃]

(
Acc(T̃ransi) = 0

)∨∧
i∈[ν̃]

x̃i ∈ L

] ≥ 1− λ−c,

where {T̃ransi} is the transcript of the i’th right execution when (viewMIM,1, viewMIM,2, viewMIM,3)

are computed in IDEALMIM(x′, viewMIM,1, st) as above, and Acc(T̃ransi) = 0 denotes the event

that the (publicly verifiable) transcript T̃ransi causes an honest verifier to reject.

5.2 Constructing Simulation Sound Promise ZK

In this section, we describe our construction of Simulation Sound Promise ZK. Formally, we prove
the following theorem:

Theorem 8. Assuming the existence of polynomially secure injective one way functions, there
exists a three round simulation-sound promise ZK argument according to Definition 10.

5.2.1 The Protocol

Let P and V denote the prover and verifier, respectively. Let L be any NP language with an
associated relation RL. Let Dλ = (Xλ,Wλ) be any efficiently sampleable distribution on RL.

15Note that (viewMIM,2, viewMIM,3) includes the instances {x̃i}, and we add the instances explicitly to the output
of SimMIM only so that we will be able to refer to it later.

16Note that this can be simulated easily since the protocol is delayed-input which means that the parties do not
use their private inputs to compute their first round message.

24

Building Blocks. Our construction relies on the following cryptographic primitives.

• TDGen = (TDGen1,TDGen2,TDGen3,TDOut) is the three-message trapdoor generation pro-
tocol from Section 4, that is 3-extractable according to Definition 3, with corresponding
extractor TDExt.

• RWI = (RWI1,RWI2,RWI3,RWI4) is the three round delayed-input witness indistinguishable
argument with bounded rewinding security for L = 5 from Definition 6. The fourth algorithm
RWI4 is the final verification algorithm.

• NMCom = (NMCom1,NMCom2,NMCom3) denotes a special non-malleable commitment ac-
cording to Definition 4.

NP Languages. We define the following relation R′ that will be useful in our construction. Parse
instance st = (x, c, td1), where c = (c1, c2, c3). Parse witness w = (w, t, r). Then, R′(st,w) = 1 if
and only if :(

R(x,w) = 1

)∨(
TDValid(td1, t) = 1 ∧ c1 = NMCom1(r) ∧ c3 = NMCom3(t, c1, c2; r)

)
. We

denote the corresponding language by L′.

That is, either :

1. x is in the language L with witness w, OR,

2. the third non-malleable commitment (c1, c2, c3) is to a value t that is a valid trapdoor for the
message td1 generated using the trapdoor generation algorithms.

We construct a three round protocol πSE−PZK = (P, V,Valid) for L in Figure 2. The completeness
of this protocol follows from the correctness of the underlying primitives.

5.3 Security Proof

We describe the simulator Sim = (Sim1,Sim2,Sim3) in Figure 3. We will denote messages generated
in right sessions by ã, while corresponding messages in left sessions will be denoted by a. In Figure 3
we only describe a simulator in the one-one setting, this generalizes to the many-many setting of
Definition 10 by a direct hybrid argument.

5.3.1 Analysis of the Simulator: Hybrids

Suppose that there exists a constant c > 0 and a distinguisher that distinguishes between the real
and ideal games (with parameter c) with noticeable probability ε. We will now prove indistinguisha-
bility of real and ideal games by using a sequence of hybrids. We will also maintain an invariant
that will help us prove the (main) simulation-extraction property.

The first hybrid Hyb0 will correspond to the real world experiment where the adversary MIM
interacts with an honest prover P on the left and honest verifier V on the right. The last hybrid
Hyb4 corresponds to the ideal world where MIM interacts with the simulator Sim.

• Hyb0 - Real World: In this hybrid, the first round messages are all honestly executed with
the adversary MIM. Then pExtractc is called on this view, and it produces an output p. If
p = 0, the experiment aborts and outputs ⊥. If not, the challenger plays the role of the
honest prover on the left session and honest verifier on the right session.

25

Inputs: Prover P with tag tag obtains input (x = (x2, x3), w)← (X ,W) in the second round.

1. Round 1:

• Prover message:

– Compute rwi1 = RWI1(1
λ, r̂).

– Sample r ← {0, 1}∗.
– Compute c1 ← NMCom1(r) using NMCom with tag tag and uniform randomnessa.

– Send (rwi1, c1).

• Verifier message:

Sample rtd
$←{0, 1}∗, then compute and send td1 ← TDGen1(rtd).

2. Round 2:

• Prover message:

– Obtain input (x = (x2, x3), w) which is a randomly chosen sample from (Xλ,Wλ).
Send x2 to V .

– Compute and send td2 ← TDGen2(td1).

• Verifier message:
Compute and send rwi2 ← RWI2(rwi1) and c2 ← NMCom2(c1).

3. Round 3:

• Prover message:
– Compute c3 ← {0, 1}m and let c = (c1, c2, c3).

– Set x′ = (x, c, td1) and w′ = (w,⊥,⊥). Compute rwi3 ← RWI3(rwi1, rwi2, x
′, w′) for

R′(x′, w′) = 1 for R′ defined above.

– Send (x3, c3, rwi3).

• Verifier message:
Sample and send td3 ← TDGen3(td1, td2, rtd) using uniform randomness.

4. Verifier Output:
Output RWI4(rwi1, rwi2, rwi3, st).

Valid(Trans):
Given the transcript of the protocol execution, output 1 if TDOut(td1, td2, td3) = 1.

aWe omit explicit dependence of the algorithm on tag to avoid cluttering.

Figure 2: Three round Simulation-Sound Promise ZK argument.

• Hyb1 - Trapdoor Extraction: In this hybrid, if the value p > 0, then the challenger C creates
a fresh set of (λ · 1p) look-ahead threads on the left session. In all the look-ahead threads,
C performs each thread exactly as described in Hyb0 using fresh randomness. Additionally,
using the messages in the look-ahead threads, C also runs the “Trapdoor Extraction” phase
described in Step 5 of the description of Sim to extract the trapdoor tV . It outputs “Special
Abort” if trapdoor extraction fails. Finally, C completes the main thread on the left session
by running the honest prover strategy exactly as in Hyb0.

Remark 4. Looking ahead, we will maintain the invariant that the MIM will not be able
to commit to the trapdoor of the honest verifier in the right session, except with negligible

26

The simulator Sim := (Sim1, Sim2, Sim3) generates all verifier messages for the right session ac-
cording to honest verifier strategy. For the left session, Sim1 generates messages as follows:

1. Round 1:

• Sample r
$←{0, 1}∗, compute rwi1 ← RWI1(1

λ), and c1 ← NMCom1(r).

• Send msg = (rwi1, c1) together with honest verifier message for the right session, and
store the randomness used to generate it as st.

• Obtain message td1 from MIM for the left session.

2. Look-ahead threads:

• Let p = pExtractMIM
c (msg, st). If p = 0, output ⊥.

• Else, create a set of (λ · 1p) look-ahead threads as follows, with Round 1 fixed as above.

3. Round 2: In thread i for i ∈ [λ/p],

• Sample independently (xi = (x2,i, x3,i), wi)← Dλ.

• Sample independently td2,i ← TDGen2(td1), send (td2,i, x2,i).

• Receive rwi2,i and c2,i.

4. Round 3: In thread i for i ∈ [λ/p],

• Compute c3,i
$← {0, 1}m and set x′i = (xi, ci, tdi), w′i = (rb,i,⊥,⊥), where ci =

(c1, c2,i, c3,i), tdi = (td1, td2,i, td3,i).

• Generate rwi3,i ← RWI3(rwi1, rwi2, x
′
i, w
′
i).

• Send (x3,i, rwi3,i) and receive td3,i (which may or may not be Valid).

5. Trapdoor Extraction:

• Extract trapdoor from look-aheads by computing tV = TDExt(td1, {td2,i, td3,i}i∈[λ/p]).
• Output tV , st and “Special Abort” if TDExt fails.

6. For left session, Sim2(x2) samples td2 ← TDGen2(td1), sends (td2, x2) and receives rwi2, c2.

7. For left session, Sim3(x3, tV , st) does the following: Compute c3 ← NMCom3(c1, c2, tV) and
rwi3 ← RWI3(rwi1, rwi2, x

′, w′), where x′ = (x, c, td), w′ = (⊥, tV , r), c = (c1, c2, c3), td =
(td1, td2, td3). Send (x3, c3, rwi3) and output the view of the MIM.

Figure 3: Simulator algorithm Sim.

probability. This will follow by various arguments, leveraging non-malleability of the NMCom
commitment (for Hyb2 below), bounded-rewinding security of the WI arguments (for Hyb3

below), and an extractability argument for the NMCom commitment (for Hyb4) below.

• Hyb2 - Changing Commitment to Trapdoor in Main Thread: In the main thread, on
the left sessions, C generates the NMCom commitment message ct,3 to commit to the extracted
trapdoor tV .

• Hyb3 - Switching bounded-rewinding secure WI arguments in Main Thread: In

27

the main thread, on the left sessions, C uses the witness tV committed in ct in the bounded-
rewinding secure WI arguments.

• Hyb4 - Switching instances in Main Thread: In the main thread, on the left sessions,
SimHyb on the main thread, obtains input an instance x′ sampled from the distribution X ′λ.
The description of C in this hybrid matches the description of the simulator Sim.

5.3.2 Invariant

We now describe the invariant.

Definition 11 (Invariant T). Consider a right session between MIM and verifier V . Here, td1

denotes the first message of the trapdoor generation protocol with V as the trapdoor generator. The
values (c̃t,1, c̃t,2, c̃t,3) denote the messages of the non-malleable commitment generated by the MIM
in the right session. We say that the event Et occurs if ∃(̃t, r̃t, r̃) such that:(

c̃t,1 = NMCom1(̃rt; r̃)
)
∧
(
c̃t,3 = NMCom3(̃t; r̃t)

)
∧
(
TDValid(t̃d1, t̃) = 1

)
.

That is, the event Et occurs if, in the right session, the adversary MIM, using the non-malleable
commitment, commits to a valid trapdoor t̃ for the trapdoor generation messages of V .

The invariant is : Pr[Event Et occurs] ≤ negl(λ).

5.3.3 Hybrid Security Argument

In this section, we will establish simulation soundness by analyzing the hybrids presented above.
First, recall that we suppose that there exists a constant c > 0 for which an adversary A distin-
guishes between the real and ideal games (with parameter c) with noticeable probability. Moreover,
since all hybrids are identical when pExtractc = 0, note that A must distinguish conditioned on
pExtractMIM

c (viewMIM,1, st) ≥ λ−c.
We now prove that every pair of consecutive hybrids conditioned on pExtractMIM

c (viewMIM,1, st) ≥
λ−c is indistinguishable, and this completes the proof.

Claim 1. Assuming “1-rewinding security” of the trapdoor generation protocol TDGen and the
existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, Invariant
T holds in Hyb0.

Proof. We will prove this by contradiction. Assume that the invariant does not hold in Hyb0.
That is, there exists an MIM such that it causes event Et to occur with non-negligible probability
q(λ) = 1

poly(λ) for some polynomial poly(·). We will use this adversary to design an adversary ATDGen

that breaks the “1-rewinding security” of the trapdoor generation protocol TDGen as defined in
Section 4. Before describing ATDGen, we recall from Imported Theorem 1 that the NMCom satisfies
the 2-extractability property from Definition 3, and we denote the extraction algorithm that on
input two transcripts outputs the extracted value with probability 1

p(λ) for some polynomial p(·),
by NMExt. The adversary ATDGen behaves as follows.

• Obtain input first round message t1 corresponding to the protocol TDGen.

• Interact with the MIM emulating the role of challenger C in Hyb0. Set the verifier first message
for right interaction to t̃d1, generate all other messages according to Hyb0 for rounds 1 and 2.

28

• On obtaining the MIM’s second round message, parse it to obtain value t̃d2. Forward t̃d2 as
the second message of TDGen.

• On input t3, set the third TDGen message of the verifier for the right session t̃d3 = t3.
Generate all other messages for this round according to Hyb0, and record the non-malleable
commitment c̃t,1, c̃t,2, c̃t,3 of the MIM.

• Rewind MIM back to the end of round 1 (note that no rewinding occurs in the actual Hyb0,
we only rewind for the purpose of the reduction).

• Generate fresh messages for round 2 according to the strategy in Hyb0.

• As in the main thread, on obtaining the MIM’s second round message, parse it to obtain value

t̃d
′
2. Forward t̃d

′
2 as the (rewinding) second message of TDGen.

• On input t′3, set the third trapdoor generation message of the verifier for the right session

t̃d
′
3 = t′3. Generate all other messages for this round according to Hyb0, and record the

non-malleable commitment c̃t,1, c̃
′
t,2, c̃

′
t,3 of the MIM.

• Run NMExtract(c̃t,1, c̃t,2, c̃t,3, c̃
′
t,2, c̃

′
t,3) and output the message m extracted from both (which

could be ⊥).

By the 2-extractability property, there exists a polynomial p̃(·), such that in this experiment, if
the MIM committed to the trapdoor in t1 with probability q, ATDGen outputs t1 with probability
at least p̃ · q. On the other hand, the 1-rewinding security of TDGen implies that no adversary has
advantage greater than negl(λ) in guessing t1: this gives a contradiction and completes the proof
of the claim.

Claim 2. Assuming Claim 1, invariant T holds in Hyb1.

Proof. Since the main threads in Hyb0 and Hyb1 are identically distributed, the invariant continues
to hold in Hyb1.

Claim 3. Hyb0 ≈c Hyb1.

Proof. The only difference between Hyb0 and Hyb1 is statistical: the challenger outputs an ad-
ditional “Special Abort” in Hyb1 if trapdoor extraction fails in Step 5. By Definition 10, the
adversary is promised to output valid transcripts in the left session with probability at least p

2 .

Thus, given λ
p rewinding executions, the adversary outputs at least 2 valid transcripts with proba-

bility 1− (1− p
2)

λ
p ≥ 1− exp−λ. This means that Hyb0 and Hyb1 are at most negl(λ)-apart, proving

the claim.

Claim 4. Assuming NMCom is a special non-malleable commitment scheme according to Defini-
tion 4, invariant T holds in Hyb2.

Proof. The only difference between Hyb1 and Hyb2 is that in Hyb2, the simulator computes the
non-malleable commitment in the main thread of the left session using the adversary’s trapdoor.
Assume for the sake of contradiction that there exists a MIM that causes event Et to occur with
probability q = 1

poly(·) in Hyb2 for some polynomial poly(·). We will use MIM to design an adversary
ANMCom that breaks the security of the non-malleable commitment scheme. ANMCom performs the
role of C in its interaction with MIM and behaves as follows.

29

• Obtain input the first round message of the left NMCom, and set ct,1 to this message. Generate
all other messages for the first round same as Hyb1, using honest prover and verifier strategy.

• Start creating lookahead threads exactly as in Hyb1. Note that in each lookahead thread, the
third message of NMCom for the left session is sampled uniformly at random and independent
of the first two messages.

• Extract trapdoor tV according to Step 5 from the look-ahead threads.

• Run the second round of the main thread exactly as in Hyb1, and output the MIM’s second
round challenge ct,2.

• Sample r uniformly at random and output (tV , r) to the NMCom challenger.

• On input the third message ct,3 of NMCom, generate the third round of the protocol using
ct,3 in the left non-malleable commitment and generating other messages according to Hyb1.

By the non-malleability of NMCom, the joint distribution of the view and value committed by
the MIM remains indistinguishable between Hyb1 and Hyb2. Thus, invariant T holds in Hyb2.

Claim 5. Hyb1 ≈c Hyb2.

Proof. The main difference between Hyb1 and Hyb2 is that in Hyb2, the simulator computes the
non-malleable commitment using the adversary’s trapdoor value in the left session. Suppose there
exists an adversary V ∗ that can distinguish the two hybrids with noticeable probability, we can use
V ∗ to design an adversary AHid (identical to ANMCom in Claim 4 above) that breaks the hiding of
the non-malleable commitment scheme.

Claim 6. Assuming RWI is bounded rewinding witness indistinguishable according to Definition 6,
TDGen is 3-extractable according to Definition 3, and the special non-malleable commitment NMCom
is 2-extractable according to Definition 4, invariant T holds in Hyb3.

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, in the main thread of the left
session, the simulator computes the WI proof using the trapdoor witness. Assume for the sake of
contradiction that there exists an MIM adversary that causes event Et to occur with probability q
in Hyb3, where q = 1

poly(·) for some polynomial poly(·). We will use A to design an adversary ARWI

that breaks the security of the bounded rewinding secure WI scheme.
ARWI interacts with the MIM as challenger, behaving as follows:

• Obtain input the first message rwi1 of the bounded rewinding WI argument. Send this as the
first round message on behalf of honest prover, and generate all other first round messages
according to Hyb2.

• Instead of executing λ/p lookahead threads, execute exactly 2 look-ahead threads. For both
threads, obtain RWI messages externally using witness (w,⊥,⊥).

• Set all the values {ct,2,j , ct,3,j}j∈[3,λ/p] to ⊥, and run TDGen(ct,1, {ct,2,j , ct,3,j}j∈[λ/p]) to output
tV (which may be ⊥).

• If tV = ⊥, abort, else generate rounds 2 and 3 for the main thread according to Hyb2 using tV .
Obtain the RWI message for use in the left execution, externally, to use witness (w,⊥,⊥) or
(⊥, tV , rt) depending on the verifier challenge. Record the MIM’s non-malleable commitment
(c̃t,1, c̃t,2, c̃t,3).

30

• Next, rewind to the end of round 1 and again generate rounds 2 and 3 (with fresh uniform
randomness) according to Hyb2 using tV . Obtain the RWI message for use in the left execution,
externally, to use witness (w,⊥,⊥) or (⊥, tV , rt) depending on the verifier challenge. Record
the MIM’s non-malleable commitment (c̃t,1, c̃

′
t,2, c̃

′
t,3).

• Output NMExtract(c̃t,1, c̃t,2, c̃t,3, c̃
′
t,2, c̃

′
t,3) (which may be ⊥).

By assumption on Hyb3, by 2-extractability of NMCom and 3-extractability of the extractable
commitment, when RWI uses witness (⊥, tV , rt) in the main threads, we have that ARWI outputs the
honest party trapdoor t with probability q

poly(λ) for some polynomial poly(·). On the other hand,

by Claim 4 for Hyb2, ARWI outputs the honest party trapdoor t with probability negl(λ) when RWI
uses witness (w,⊥,⊥) in the main threads. This contradicts the bounded rewinding security of WI
according to Definition 6.

Claim 7. Hyb2 ≈c Hyb3.

Proof. The main difference between Hyb2 and Hyb3 is that in Hyb2, the simulator computes the
bounded rewinding WI argument using the adversary’s trapdoor value in the left session. Suppose
there exists an adversary V ∗ that can distinguish the two hybrids with noticeable probability, we
can use V ∗ to design an adversary AWI (identical to ARWI in Claim 6 above except that it does not
perform the last step) that breaks the bounded rewinding security of the WI.

Claim 8. Assuming 2-extractability of the NMCom according to Definition 4, invariant T holds in
Hyb4.

Proof. The only difference between Hyb3 and Hyb4 is that in Hyb4, in the main thread of the left

session, the simulator uses instance x′
$←X ′ instead of x

$←X . Assume for the sake of contradiction
that there exists an MIM adversary that causes event Et to occur with probability q in Hyb4, where
q = 1

poly(·) for some polynomial poly(·). We will use A to design an adversary Ax that breaks the

indistinguishability between distributions X and X ′.
ARWI interacts with the MIM as challenger, behaving as follows:

• Obtain input x (that is sampled from one out of X or X ′).

• Generate lookahead threads according to Hyb3, and obtain trapdoor tV .

• Just as in Hyb3, if tV = ⊥, abort, else generate rounds 2 and 3 for the main thread according
to Hyb3 using tV for instance x.

• Next, rewind to the end of round 1 and again generate rounds 2 and 3 (with fresh uniform
randomness) according to Hyb2 using tV , and using instance x. Record the MIM’s non-
malleable commitment (c̃t,1, c̃

′
t,2, c̃

′
t,3).

• Output NMExtract(c̃t,1, c̃t,2, c̃t,3, c̃
′
t,2, c̃

′
t,3) (which may be ⊥).

By assumption on Hyb4, by 2-extractability of NMCom, when RWI uses witness (⊥, tV , rt) in
the main threads, we have that Ax outputs the honest party trapdoor t with probability q

poly(λ) for

some polynomial poly(·). On the other hand, by Claim 6 for Hyb3, Ax outputs the honest party
trapdoor t with probability negl(λ). This contradicts the indistinguishability of distributions X
and X ′.

Claim 9. Hyb3 ≈c Hyb4.

31

Proof. The only difference between these hybrids is whether the simulator obtains x← X or x′ ←
X ′. By indistinguishability of the distributions X and X ′, the two hybrids are indistinguishable.

This proves that the real and ideal distributions remain indistinguishable. Moreover, by Claim 8
and by soundness of WI, it holds that the MIM can only output accepting proofs for x ∈ L in the
right session. This completes the proof of simulation soundness.

6 Three Round List Coin Tossing

We first define the notion of list coin tossing.

Definition 12. An n-party protocol π in the simultaneous message setting is a secure list coin
tossing protocol if for every PPT adversary A corrupting at most n − 1 parties, there exists an
expected PPT simulator S such that the output of the experiments REALA and IDEALS , defined
below, are computationally indistinguishable. In the real world, we denote by (c, viewA) the pair,
where viewA is the view of the adversary A interacting with honest parties in the protocol π, and
c ∈ {0, 1}` ∪ {⊥} is the output of the honest parties in this protocol execution. Similarly, we use
the pair (c̃, viewS) in the ideal world, defined in Figure 1 below.

We use ` to denote the length of each (honest) party’s output after the running the protocol
(assuming the parity did not output the abort symbol ⊥).

REALA(1λ, 1`) IDEALS(1λ, 1`)

(c, viewA)← REALA(1λ, 1`) 1k ← S(1λ, 1`)
(c1, . . . , ck)← {0, 1}`·k

(c̃, viewS)← S(c1, . . . , ck, 1
λ, 1`)

Output (c, viewA) If c̃ ∈ {c1, . . . , ck,⊥}, then output (c̃, viewS)
Else, output fail.

Table 1: List Coin Tossing

Definition 13. We say that an n-party protocol π is a secure list coin tossing protocol in the
simultaneous message setting with black-box simulation if there exists a (universal) expected PPT
oracle machine S such that for every PPT adversary A corrupting at most n − 1 parties, the
simulator SA satisfies that

REALA(1λ, 1`) ≈ IDEALSA(1λ, 1`)

where REALA(1λ, 1`) and IDEALSA(1λ, 1`) are defined as in Definition 12.

Theorem 9. There exists a 3-round secure multi-party list coin tossing protocol π in the simulta-
neous message setting with black-box simulation, assuming the existence of a simulation extractable
promise ZK scheme for NP.

This, together with Theorem 8, implies the following corollary.

Corollary 10. There exists a 3-round secure multi-party list coin tossing protocol π in the si-
multaneous message setting with black-box simulation, assuming the existence of injective one-way
functions.

32

As mentioned earlier, by applying the transformation of [GMPP16]17 to the protocol from
Corollary 10 for the 2-party case, we can obtain a 4-round 2-party list coin-tossing protocol in the
unidirectional-message model. This result overcomes the barrier of five rounds for standard 2-party
coin-tossing established by [KO04].

Corollary 11 (Informal). Assuming the existence of injective one-way functions, there exists a
4-round 2-party secure list coin-tossing protocol in the unidirectional-message model (with black-box
simulation).

The rest of this section is devoted to proving Theorem 9. We provide the construction of our
list coin-tossing protocol in Section 6.1, and provide the security proof in Section 6.2.

6.1 Our List Coin Tossing Protocol

Consider n parties P1, . . . ,Pn who wish to evaluate the List Coin Tossing functionality. In this sec-
tion, we construct a protocol for computing the List Coin Tossing functionality using any simulation
extractable promise ZK argument system (see Section 5).

We first list some notation and building blocks that we use use in our protocol.

Building Blocks

• Let Com be any non-interactive commitment scheme. We know that such a commitment
scheme can be built assuming injective one way functions.

• πSE−PZK = (PZK, VZK,Valid, E) any 3-round simulation-extractable delayed-input distribu-
tional promise ZK argument system (such as the one constructed in Section 5).

For all i ∈ [3], we use PZKi to denote the algorithm used by the prover P to compute the ith

round messages, and we use VZKi to denote the algorithm used by the verifier V to compute
the ith round messages. Further, let VZK4 denote the algorithm used by the verifier V to
compute the output bit 0 or 1.

NP Languages. In our construction, we use proofs for the NP language L characterized by the
following relation R.
Statement : x = (c, r)
Witness : w = s
R(x,w) = 1 if and only if c = Com(r; s).

Notation :

• We assume broadcast channels.

• λ denotes the security parameter.

• In the superscript, we use i→ j to denote that the message was sent by party Pi to party Pj ,
where party Pi is taking the role of the prover in the underlying promise-ZK protocol and Pj
is taking the role of the verifier. We use j ← i to denote that the message was sent by party
Pi to party Pj , where party Pi is taking the role of the verifier in the underlying promise-ZK
protocol and Pj is taking the role of the prover. (Recall that all messages are broadcast).

17The work of Garg et al. [GMPP16] establishes an impossibility result for 3-round multi-party coin-tossing by
transforming any 3-round two-party coin-tossing protocol in the simultaneous-message model into a 4-round two-party
coin-tossing protocol in the unidirectional-message model, and then invoking the impossibility of [KO04].

33

• The round number of the sub-protocol πSE−PZK being used is written in the subscript.

Our 3-round list coin tossing protocol πCT is described in Figure 4.

1. Round 1: ∀j ∈ [n] with j 6= i, Pi does the following:

• Choose random strings ri→j , rj←i ← {0, 1}λ and compute provei→j1 = PZK1(1
λ, ri→j)

and verj←i1 ← VZK1(1
λ, rj←i).

• Broadcast
{

provei→j1 , verj←i1

}
j 6=i

.

For every i 6= j, let viewi�j
1 , (provei→j1 , veri←j1).

2. Round 2: Pi does the following for each j ∈ [n] with j 6= i:

• Compute provei→j2 = PZK2(viewi�j
1 ; ri→j) and verj←i2 = VZK2(viewi�j

1 ; rj←i).

• Choose a random string ri ← {0, 1}` and a random string si ← {0, 1}λ, and compute
ci = Com(ri; si).

• Broadcast

(
ci,
{

provei→j2 , verj←i2

}
j 6=i

)
.

For every i 6= j, let viewi�j
2 , (provei→j2 , veri←j2).

3. Round 3: Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Generate provei→j3 = PZK3(viewi�j
1 , viewi�j

2 , (ci, ri, si); r
i→j), for the statement

(ci, ri) ∈ L using the witness si.

– Generate verj←i3 ← VZK3(viewi�j
1 , viewi�j

2 ; rj←i).

• Broadcast

(
ri,
{

provei→j3 , verj←i3

}
j 6=i

)
.

For every i 6= j, let viewi�j
3 , (provei→j3 , veri←j3).

4. Output Computation: Each party checks if there exists i 6= j such that

Valid
(

viewi�j
1 , viewi�j

2 , viewi�j
3 , (ci, ri)

)
= 0.

If so, output ⊥, and otherwise, output r =
⊕

i∈[n] ri.

Figure 4: 3-round secure protocol πCT for list coin tossing.

6.2 Security Proof

In this section, we prove Theorem 9.

Proof. Fix any adversary A who corrupts at most n − 1 parties in the protocol πCT. Assume
without loss of generality that A corrupts exactly n− 1 parties. This is without loss of generality

34

since in the case of input-less functionalities allowing the adversary to corrupt more parties strictly
makes the result stronger. Assume without loss of generality that party P1 is the only honest
party. Moreover, assume without loss of generality that A is deterministic. This is without loss
of generality since we can think of the coins of A as being fixed and hardwired. Let E denote the
simulator (and extractor) of the simulation extractable promise ZK system as defined in Section 5
(see Definition 10). We construct a simulator S for the ideal world, that has oracle access to A, as
follows:

Description of the simulator SA(1λ, 1`).

1. First Round Simulation: Simulate all the messages sent in the first round, by simulating
the messages of honest party honestly, and using the oracle access to A to simulate the
messages sent by the corrupted parties. Denote all these messages by viewA,1, and denote
the secret state of the honest party by st. (This state will be needed to continue with the
simulation.)

2. Check if Abort: Continue to run the protocol πCT to completion, while continuing to
simulate the honest party using the secret state st, and using oracle access to A to simulate
the messages sent by corrupted parties. If at the end of this execution the honest parties
output ⊥, then S outputs (⊥, viewA) where viewA consists of all the messages exchanged in
the simulated protocol. Otherwise, continue.

3. Validity Approximation: Estimate the probability that all the zero-knowledge proofs are
valid, conditioned on the first round messages being viewA,1. This is done by creating a
set of look-ahead threads that run only the second and third rounds of πCT, until receiving
non-aborting transcripts in λ threads. Formally, this is done as follows.

(a) Set counters i = 0 and T = 0.

(b) Set T = T + 1.

(c) Use st to simulate the protocol πCT to completion, while conditioning on the messages
of the first round being viewA,1.

(d) If the honest parties output ⊥ in this execution, then set i = i+ 1.

(e) If i = λ then output p , λ
T . Otherwise, go back to Item (b).

4. Learning the Adversary’s Randomness: Denote by viewpartial
A,1 only the messages in

viewA,1, sent between parties P1 and Pj (recall that we assume that P1 is the only honest
party). SA(1λ, 1`, viewA,1) does the following:

Generate a valid look ahead thread using the extractor E = (E1, E2, E3) from Definition 10, as
follows.

(a) Run EA1 (viewpartial
A,1 , st, p) = s̃t1.

(b) Choose at random r1 ← {0, 1}` and s← {0, 1}λ, and let c1 = Com(r1; s).

(c) Run EA2 (c1, viewpartial
A,1 , s̃t1) = (viewpartial

A,2 , s̃t2), where the oracle is w.r.t. A = A(viewA,1).

(d) Let viewA,2 denote the unique extension of viewpartial
A,2 that is consistent with (viewA,1, viewpartial

A,2).

Note that the only messages in viewA,2 that are not in viewpartial
A,2 are messages sent

between malicious players, and since we assume (without loss of generality) that A is

deterministic, viewA,2 is a deterministic function of (viewA,1, viewpartial
A,2).

35

(e) Run EA3 (r1, viewpartial
A,1 , viewpartial

A,2 , s̃t2), where the oracle is w.r.t. A = A(viewA,1, viewA,2).

(f) Let viewA,3 denote the unique extension of viewpartial
A,3 that is consistent with

(viewA,1, viewA,2, viewpartial
A,3).

(g) If Valid(viewA,1, viewA,2, viewA,3) = 0, then goto Step (4b). Otherwise, viewA,2 includes
commitments {cj}j∈[n], and viewA,3 includes the (supposedly) committed values {rj}j∈[n].

(h) Output {rj}j∈[n].

5. Second Validity Approximation: Estimate the probability that the continuation of
(viewA,1, viewA,2) by E3 is valid. This is done by creating a set of look-ahead threads that run
only the third round of πCT, until it receives non-aborting transcripts in λ threads. Formally,

(a) Set counters i = 0 and T = 0.

(b) Set T = T + 1.

(c) Run EA3 (r1, viewpartial
A,1 , viewpartial

A,2 , s̃t2) = viewA,3, where the oracle is w.r.t.A = A(viewA,1, viewA,2).

(d) Valid(viewA,1, viewA,2, viewA,3) = 1 then set i = i+ 1.

(e) If i = λ then output q , λ
T . Otherwise, go back to Item (b).

6. Query to Ideal Functionality: Set k = dλq e, and send 1k to the ideal functionality, and
receive k random strings {ans1, . . . , ansk}, each of length `.

7. Forcing the Output: SA(1λ, 1`, viewA,1, viewA,2, s̃t) does the following:

(a) Set counter i = 1.

(b) If i > k then output ⊥ and abort.

(c) Otherwise, set r∗1 = ansi
⊕(⊕n

j=2 rj
)

.

(d) Run EA3 (r∗1, viewA,1, viewA,2, s̃t, p) = (viewA,3, {w̃j})
(e) If Valid(viewA,1, viewA,2, viewA,3) = 0 then set i = i+ 1 and goto Item (b).

(f) Otherwise, output (ansi, viewA,1, viewA,2, viewA,3).

We next prove that the simulator is an expected PPT machine.

Claim 10. Simulator S runs in expected polynomial time in λ.

Proof. We analyze the runtime of each step of the simulation separately. Clearly, steps 1 and 2
takes only poly(λ) time. Denote by ε the probability with which the adversary A does not abort.
Namely, ε is the probability that SA proceeds to Step 3, and the expected runtime of Step 3 (given

that it is executed) is poly(λ)
ε . Thus, on average, this contributes another poly(λ) to the simulator’s

runtime.
We next argue that the expected runtime of Step 4 (given that it is executed) is poly(λ)/ε.

Note that this step consists of running algorithm E1A once, and then repeatedly running EA2 and

EA3 . Recall that the runtime of EA1 is poly(λ)
p , whereas the runtime of EA2 and EA3 is poly(λ). Note

that E[p] = ε. Thus, it suffices to prove that on expectation, the number of times that EA2 and EA3
are run (in Step 4) is O(1/ε). This follows from the fact that conditioned on (viewA,1, st) generated
in Steps 1 and 2, the probability that E generates a valid transcript is Ω(ε). This is the case since
otherwise, it would contradict the zero-knowledge property of Definition 10.

36

We next analyze the expected runtime of Step 5 (given that it is executed). For each message
(viewA,2, s̃t2) there is a different probability that the continuation will be valid. If for a given
message (viewA,2, s̃t2) this probability is q, then the expected runtime of Step 5 is poly(λ)/q. Since

E[q] = E[p] = ε, we conclude that the expected runtime of Step 5 is poly(λ)/ε, as desired.
The observation that E[q] = ε, immediately implies that Step 6 runs in expected λ

ε time. It thus
remains to notice that Step 7 takes time k · poly(λ), which together with the observation above,

implies that the expected runtime is poly(λ)
ε , as desired.

We conclude that altogether, the expected runtime of Steps 3-7 is poly(λ)
ε . This, together with

the fact that these steps are invoked with probability ε, implies that the overall expected runtime
of S is ε · poly(λ)ε = poly(λ), as desired.

We also note that by Definition 10, on completion of Step 4, the simulator correctly learns
the adversary’s randomness r. Definition 10 also guarantees that the adversary uses the same
randomness when the simulator forces the output in Step 7, implying correctness of forced output.

Claim 11. The ensembles {REALA(1λ, 1`)}λ∈N and {IDEALSA(1λ, 1`)}λ∈N are computationally in-
distinguishable.

Proof. Suppose for contradiction that there exists a PPT distinguisher D and there exists a constant
c ∈ N such that for infinitely many security parameters λ,∣∣∣Pr[D(REALA(1λ, 1`)) = 1]− Pr[D(IDEALSA(1λ, 1`)) = 1]

∣∣∣ ≥ λ−c.
In what follows we get a contradiction, by considering a series of hybrids where the first hybrid
Hyb0 corresponds to the ideal world and the last hybrid Hyb4 corresponds to the real world. We
reach a contradiction by proving that

|Pr[D(Hyb4) = 1]− Pr[D(Hyb0) = 1]| < λ−c. (1)

• Hyb0 - Ideal World: This hybrid is identical to the ideal world simulation SA(1λ, 1`)

• Hyb1: This hybrid is similar to Hyb0 except that in Step 4b, we choose c1 = Com(0; s) (rather
than choosing it with a random r1), and yet Step 4e is executed w.r.t. a random r1 ← {0, 1}`.

• Hyb2: This hybrid executes Hyb1 until the end of Step 4, and outputs the view of A in this
simulation.

• Hyb3: This hybrid is similar to Hyb2, except that rather than choosing p as in Step 3, it sets
p , pExtractA2c, with respect to the distribution of instances (c, r), generated by sampling at
random r ← {0, 1}` and random s← {0, 1}λ and setting c = Com(r; s). If p = 0 then simply
output ⊥. Otherwise, execute Step 4 with this new value of p.

• Hyb4 - Real World: In this hybrid, the simulator plays the role of the honest party (honestly)
and emulates the malicious parties as instructed by A. It outputs the view of A.

We prove Equation 1, via the following sequence of claims.

Claim 12.
Hyb0 ≈ Hyb1.

This claim follows immediately from the hiding property of the commitment scheme Com.

37

Claim 13.
Hyb1 ≡ Hyb2.

This claim follows from the observation that Hyb2 aborts in Step 7 only with negligible proba-
bility, and these hybrids are identical conditioned on the event that Hyb2 does not abort in Step 7.

Claim 14. For every PPT distinguisher D,

|Pr[D(Hyb2) = 1]− Pr[D(Hyb3) = 1]| ≤ 2λ−2c + negl(λ).

This claim follows from the observation that if pExtractA2c = 0 then the probability that these
hybrids abort immediately after Step 2 is at least 1 − 2λ−2c. Moreover, if pExtractA2c > 0, then
by Definition 10, together with the fact that Step 3 (the validity approximation step) is a good
approximation for the validity.

Claim 15.
Hyb3 ≈ Hyb4.

This claim follows immediately from Definition 10.

7 Four Round Malicious Secure MPC

7.1 Building Block: Extractable Commitments with Additional Properties

In this section, we describe a three round extractable commitment protocol ECom = (S,R). While
several constructions of three round extractable commitment schemes are known in the literature
(see, e.g., [PRS02, Ros04]), the commitment scheme we describe here achieves some stronger secu-
rity properties that we describe below:

• Bounded-Rewinding Security: The commitment scheme satisfies a “bounded-rewinding secu-
rity” property, which roughly means that the value committed by a sender in an execution of
the commitment protocol remains hidden even if a malicious receiver can rewind the sender
back to the start of the second round of the protocol an a priori bounded B number of times.
In our application, we set B = 4; however, our construction also supports larger values of B.

• Reusability: The commitment scheme also satisfies a “reusability” property, which roughly
means that the values committed by a sender in polynomially many executions of the commit-
ment protocol remain hidden even if all of the executions share the same first two messages.

For technical reasons, we don’t define or prove B-rewinding security property and reusability prop-
erty for our extractable commitment protocol. Instead, this is done inline in the application - the
four round MPC protocol in the next subsection.

Construction. Let Com denote a non-interactive perfectly binding commitment scheme based
on injective one-way functions. Let N and B be positive integers such that N − B − 1 ≥ N

2 + 1.
For B = 4, it suffices to set N = 12.

The three round extractable commitment protocol ECom is described in Figure 5.

38

Sender S has input x.

Commitment Phase:

1. Round 1:
S does the following:
• Pick N random degree B polynomials p1, . . . , pN over Zq, where q is a prime larger

than 2λ.

• Compute EComS→R
1,` ← Com(p`; r`) using a random string r`, for every ` ∈ [N].

• Send EComS→R
1 = (EComS→R

1,1 , . . . ,EComS→R
1,N) to R.

2. Round 2:
R does the following:

• Pick random values z`
$← Zq for every ` ∈ [N].

• Send EComR→S
2 = (z1, . . . , zN) to S.

3. Round 3:
S does the following:

• Sample a PRF key k and a random string s.

• Compute EComS→R
3,` ← (k ⊕ p`(0), p`(z`)) for all ` ∈ [N].

• Set EComS→R
3,N+1 = s and compute EComS→R

3,N+2 ← PRF(k, s)⊕ x.

• Send EComS→R
3 = (EComS→R

3,1 , . . . ,EComS→R
3,N+2) to R.

Decommitment Phase:

1. S outputs p1, . . . , pN together with the randomness r1, . . . , rN used in the first round com-
mitments.

2. R first verifies the following:

• For each ` ∈ [N], EComS→R
1,` = Com(p`; r`).

• Parse EComS→R
3,` = (α`, β`). Verify that β` = p`(z`).

• For each ` ∈ [N], compute k` = p`(0)⊕ α`. Verify that all the k` values are equal.

If any of the above verifications fail, R outputs ⊥. Otherwise, R computes x ←
PRF(k,ECom3,N+1)⊕ ECom3,N+2.

Figure 5: Extractable Commitment Scheme ECom.

Well-Formedness of ECom Transcripts. We now define a “well-formedness” property of an
execution transcript of ECom. Roughly, we say that a transcript (EComS→R

1 ,EComR→S
2 ,EComS→R

3)
is well-formed w.r.t. an input x and randomness r if:

• N − 1 out of the N tuples EComS→R
3,` = (α`, β`) (where ` ∈ [N]) are “honestly” computed

using randomness r =
(
k, {pi}Ni=1, {ri}Ni=1

)
in the sense that: each α` is a one-time pad of k

w.r.t. the key p`(0) where p` is a polynomial committed (using randomness r`) in the first
round message EComS→R

1 , and each β` is a correct evaluation of the polynomial p` over the
“challenge” value z` contained in EComR→S

2 .

39

• EComS→R
3,N+2 is a one-time pad of x w.r.t. the key PRF(k,ECom3,N+1).

We now proceed to formally define the well-formedness property. For any set T , let T [i] denote
the ith element of T .

Definition 14 (Well-Formed Transcripts). An execution transcript (EComS→R
1 ,EComR→S

2 ,EComS→R
3)

of ECom is said to be well-formed with respect to an input x and randomness r =
(
k, {pi}Ni=1, {ri}Ni=1

)
if there exists an index set I of size N − 1 such that the following holds:

• For every j ∈ |I|, EComS→R
1,I[j] = Com(pI[j]; rI[j]) (AND)

• For every j ∈ |I|, EComS→R
3,I[j] = (k ⊕ pI[j](0), pI[j](zI[j])), where EComR→S

2 = (z1, . . . , zN)
(AND)

• x = PRF(k,ECom3,N+1)⊕ ECom3,N+2.

We remark that the above well-formedness property is “weak” in the sense that we only require
N − 1 out of the N tuples EComS→R

3,` = (α`, β`) to be honestly generated (instead of requiring that
all N tuples are honestly generated). This relaxation is crucial to establishing the B-rewinding-
security property for ECom. In fact, a slightly “trimmed” version of our construction where we do
not use a PRF in the third round already suffices for achieving B-rewinding-security property. We
use a PRF in the third round to achieve reusability property, in a similar manner to [JKKR17].

We now define an “admissibility” property for any input to the extractor.

Definition 15 (Admissible Inputs). An input set (ECom1, {EComi
2,EComi

3}B+1
i=1) is said to be ad-

missible if for every i, j ∈ [B + 1] s.t. i 6= j and every ` ∈ [N], we have that zi` 6= zj`, where
EComt

2 = (zt1, . . . , z
t
N).

Extractor ExtECom. The extractor algorithm ExtECom is described in Figure 6.18

Lemma 1. There exists a PPT extractor algorithm ExtECom such that, given a set of (B + 1)
“well-formed” and “admissible” execution transcripts of ECom where each transcript consists of the
same first round sender message, the extractor successfully extracts the value committed in each
transcript, except with negligible probability.

Proof. We now analyze the extraction algorithm. Recall that for every i ∈ [B + 1], the transcript
(ECom1,EComi

2,EComi
3) is well-formed w.r.t. some value xi. By the definition of well-formedness,

we have that for every i, there exists at most one j ∈ [N] such that EComi
3,j was not computed

correctly and consistently with the other EComi
3,j′ . This means that overall, across all i ∈ [B + 1]

execution transcripts, there exists at most (B + 1) values of EComi
3,j that were not computed

correctly. This implies that for at least (N −B− 1) values of j, the values EComi
3,j were computed

correctly in all B + 1 transcripts. This means that for every i ∈ [B + 1], (N − B − 1) out of N
values {ki1, . . . , kiN} computed by the extractor are the same. Then, since N −B − 1 ≥ N

2 + 1, we
have that the extractor computes the correct values ki and xi for every i ∈ [B].

18An admissible input set consisting of (B + 1) “well-formed” execution transcripts of ECom that share the same
first round sender message can be obtained from a malicious sender via an expected PPT rewinding procedure. The
expected PPT simulator in our application performs the necessary rewindings to obtain such transcripts and then
feeds them to the extractor ExtECom.

40

Input: An admissible set (ECom1, {EComi
2,EComi

3}B+1
i=1) where ∀i, (ECom1,EComi

2,EComi
3) is

well-formed w.r.t. some value xi.

1. For every i ∈ [B + 1], parse EComi
2 = (zi1, . . . , z

i
N) and EComi

3 = (EComi
3,1, . . . ,EComi

3,N+2).

2. For each ` ∈ [N]:

• Parse EComi
3,` = (αi`, β

i
`).

• Using polynomial interpolation, compute a degree B polynomial p` over Zq such that
on point zi`, p`(zi`) = βi`.

• Compute ki` = (αi` ⊕ p`(0)).

3. For every i ∈ [B], let ki be the value that equals a majority of the values in the set
{ki1, . . . , kiN}, and compute xi = PRF(ki,EComi

3,N+1) ⊕ EComi
3,N+2. If no such ki value

exists, set xi = ⊥.

4. Output (x1, . . . , xB).

Figure 6: Strategy of algorithm ExtECom.

7.2 The MPC Protocol

In this section, we describe our four round MPC protocol that achieves security against any ma-
licious PPT adversary that corrupts a dishonest majority of parties. We obtain our result by
“compiling” any three-round semi-malicious MPC protocol in which the first message of the pro-
tocol is public-coin (i.e., an honest party simply samples a random string and sends it as the first
message) into a four round maliciously secure protocol.

Formally, we prove the following theorem.

Theorem 12. Assuming polynomially secure:

• DDH or Quadratic Residuosity or N th Residuosity, AND

• a three round semi-malicious MPC protocol πSM for any functionality f secure against a
dishonest majority and the first round is public coin,

the protocol π presented below is a four round MPC protocol for f secure against a dishonest
majority.

[BHP17, GS18, BL18]19 construct such three round semi-malicious protocols. Instantiating the
above theorem with the constructions of [GS18, BL18], we get the following corollary.

Corollary 13. Assuming polynomially secure:

• DDH or Quadratic Residuosity or N th Residuosity,

the protocol π presented below is a four round MPC protocol for any functionality f .

Below, we first list the ingredients used in our construction, followed by some relevant notation.
We formally describe our MPC protocol in Section 7.3.

19Note that [GS18, BL18] construct two round semi-malicious MPC protocols and hence they are trivially three
round with the first round being public coin.

41

Ingredients. We list all the cryptographic ingredients that are used in our MPC protocol. As
mentioned in the introduction, our construction uses a Promise ZK argument system in a non-
black-box manner, and therefore we list all of its ingredients separately.

• NCom is a non-interactive commitment scheme based on injective one way functions.

• WZK = (WZK1,WZK2,WZK3,WZK4) is a three-message delayed-input distributional weak
zero-knowledge argument system, where the algorithm WZK4 is used to compute the decision
of the verifier. Such a scheme was constructed by Jain et al.[JKKR17] based on DDH or
Quadratic Residuosity or N th Residuosity assumption.

• ECom = (ECom1,ECom2,ECom3,ExtECom) is the three-message delayed-input extractable
commitment scheme described in Section 7.1 based on injective one way functions. We set
the rewinding parameter B associated with ECom to be 4. Here ExtECom is the extractor
algorithm associated with ECom s.t. given an admissible input set consisting of 5 well-formed
execution transcripts of the ECom protocol that share the same first round message, ExtECom
outputs all of the committed values with overwhelming probability.

• TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt) is a three-message trapdoor
generation protocol as defined in Section 4 based on one way functions. The first three
algorithms are used to generate the messages of the protocol while TDOut computes the
receiver’s output. Algorithm TDValid determines whether an input trapdoor value is valid
w.r.t. the first message of a protocol transcript. Algorithm TDExt computes a valid trapdoor
given three protocol transcripts that share the same first round message.

• WI = (WI1,WI2,WI3,WI4) is a three-message delayed-input witness-indistinguishable argu-
ment system, where WI4 is used to compute the decision of the verifier. Such schemes are
known from injective one-way functions [LS90].

• RWI = (RWI1,RWI2,RWI3,RWI4) is a three round delayed-input witness-indistinguishable
argument with non-adaptive B-rewinding security (for B = 6) as well as reusability security
(see Definition 19 and 18 in Appendix C). Informally, by non-adaptive rewinding security,
we mean that the verifier challenges are non-adaptive, that is - the second round message
of the verifier in all the threads (main and rewound) are committed in advance before the
challenger responds to any of them in the third round. This means that the verifier generates
each second round query independent of the third round response to the previous query. This
rewinding security property suffices for our MPC construction.

We describe how to construct the protocol RWI in Appendix C based on DDH or Quadratic
Residuosity or N th Residuosity assumption. Briefly, we consider protocol 6 of [JKKR17]
that is non-adaptive unbounded rewinding and reusable secure and instead instantiate the
ZAP in that protocol with our bounded rewinding secure WI from Appendix A to achieve
only non-adaptive bounded rewinding and reusability security. We elaborate more on it in
Appendix C.

• NMCom = (NMCom1,NMCom2,NMCom3) is the three-message special non-malleable com-
mitment scheme of Goyal et al. [GPR16] satisfying Definition 4. It is based on injective one
way functions. Let ExtNMCom denote the PPT extractor associated with the 2-extraction
property satisfied by NMCom.

42

• πSM is a three-round semi-malicious MPC protocol with the first round being public coin.
Let (πSM1 , πSM2 , πSM3) denote the algorithms used by any party to compute the messages in
each of the three rounds and OUT denotes the algorithm to compute the final output. Also,
let Transi denote all the messages sent in an execution of πSM up to the completion of round
i. Let S = (S1,S2,S3) denote the straight line simulator for this protocol, where Si is the
simulator’s algorithm to compute the ith round messages.

Notation. Let P1, . . . ,Pn denote the n parties, and let λ denote the security parameter. For
simplicity, without loss of generality, we assume that n is at most λ. We consider communication
in the broadcast model where all of the protocol messages are sent over a broadcast channel. Below,
we describe some additional notation:

• We augment our notation with i → j in the superscript to denote that a message is being
sent by party Pi with party Pj as the intended recipient.

• The round number of any sub-protocol (such as the non-malleable commitment, bounded
rewinding secure WI arguments etc.) is written in the subscript.

• We use two instantiations of the extractable commitment scheme ECom in our construction.
We use a and b in the subscript to differentiate between the two.

NP Languages. In our construction, we use proofs for the following NP languages:

• Language L1 is characterized by the following relation R1:
Statement : st = nc
Witness : w = rnc
R1(st,w) = 1 if and only if nc = NCom(1; rnc)

In our protocol, we use this language for delayed-input distributional WZK proofs. When
restricting our attention to such proofs between parties Pi and Pj , where Pi is the prover and

Pj is the verifier, we denote the corresponding language by Li→j1 .

• Language L2 is characterized by the following relation R2:
Statement : st =

(
{ecoma,i}3i=1, {ecomb,i}3i=1,msg2,Trans1, {nmcomi}3i=1, td1, nc

)
Witness : w = (inp, r, ra,ecom, rb,ecom, t, rnmcom, rnc)
R2(st,w) = 1 if and only if :

1. Either (ecoma,1, ecoma,2, ecoma,3) or (ecomb,1, ecomb,2, ecomb,3) is a well-formed tran-
script of ECom w.r.t. input (inp, r) and randomness ra,ecom (see Definition 14), and
msg2 is an honestly computed second round message in protocol πSM w.r.t. input inp
and randomness r and round 1 protocol transcript Trans1 (OR)

2. (nmcom1, nmcom2, nmcom3) is a transcript of a non-malleable commitment to a value t
that is a valid trapdoor w.r.t. td1. (OR)

3. nc is a commitment to 0.

Formally, R2(st,w) = 1 if and only if :

– ecoma,1 = ECom1(ra,ecom) AND

– ecoma,3 = ECom3(inp, r, ecoma,1, ecoma,2; ra,ecom) AND

– msg2 = πSM2 (inp,Trans; r) AND

43

– (ecoma,1, ecoma,2, ecoma,3) is well-formed w.r.t. input (inp, r) and randomness ra,ecom

(OR)

– ecomb,1 = ECom1(rb,ecom) AND

– ecomb,3 = ECom3(inp, r, ecomb,1, ecomb,2; rb,ecom) AND

– msg2 = πSM2 (inp,Trans1; r) AND

– (ecomb,1, ecomb,2, ecomb,3) is well-formed w.r.t. committed value (inp, r) and randomness
rb,ecom.

(OR)

– TDValid(td1, t) = 1 AND

– nmcom1 = NMCom1(rnmcom) AND

– nmcom3 = NMCom3(t, nmcom1, nmcom2; rnmcom).

(OR)

– nc = NCom(0; rnc).

In our protocol, we use language L2 for bounded-rewinding secure delayed-input RWI proofs.
When restricting our attention to such proofs between parties Pi and Pj , where Pi is the

prover and Pj is the verifier, we denote the corresponding language by Li→j2 .

• Language L3 is characterized by the following relation R3:
Statement : st =

(
{ecoma,i}3i=1, {ecomb,i}3i=1,msg3,Trans2, {nmcomi}3i=1, td1

)
Witness : w = (inp, r, ra,ecom, rb,ecom, t, rnmcom)
R3(st,w) = 1 if and only if :

1. Either (ecoma,1, ecoma,2, ecoma,3) or (ecomb,1, ecomb,2, ecomb,3) is a well-formed tran-
script of ECom w.r.t. input (inp, r) and randomness ra,ecom (see Definition 14), and
msg3 is an honestly computed third round message in protocol πSM w.r.t. input inp and
randomness r and round 2 protocol transcript Trans2 (OR)

2. (nmcom1, nmcom2, nmcom3) is a transcript of a non-malleable commitment to a value t
that is a valid trapdoor w.r.t. td1.

The formal description of R3 is similar to R2; we skip the details to avoid repetition.

In our protocol, we use language L3 for delayed-input WI proofs between parties. When
restricting our attention to such proofs between parties Pi and Pj , where Pi is the prover and

Pj is the verifier, we denote the corresponding language by Li→j3 .

7.3 The Protocol

We now proceed to formally describe our four round protocol π between n parties P1, . . . ,Pn. The
input of party Pi is denoted as xi.

44

Round 1: Pi does the following:

• Compute msg1,i ← πSM1 (ri). Recall that πSM is public-coin in the first round; thus, msg1,i is
a random string.

• Compute td1,i ← TDGen1(rtd,i) using a random string rtd,i.

• Compute the first message of each of the three round delayed-input subprotocols. That is,
for each j ∈ [n] with j 6= i, Pi does the following:

– Compute ecomi→j
a,1 ← ECom1(ri→ja,ecom), ecomi→j

b,1 ← ECom1(ri→jb,ecom), and nmcomi→j
1 ←

NMCom1(ri→jnmcom) using random strings ri→ja,ecom, ri→jb,ecom and ri→jnmcom, respectively.

– Compute wii→j1 ←WI1(1
λ), rwii→j1 ← RWI1(1

λ) and wzki→j1 ←WZK1(1
λ).

• Broadcast (msg1,i, ecomi→j
a,1 , ecomi→j

b,1 , nmcomi→j
1 , td1,i,wii→j1 , rwii→j1 ,wzki→j1).

Note that round 1 does not require the use of private input xi.

Round 2: Pi now generates the second message of each of the three round delayed-input subpro-
tocols. In more detail, for each j ∈ [n] with j 6= i, Pi does the following:

• Compute ecomi→j
a,2 ← ECom2(ecomj→i

a,1), ecomi→j
b,2 ← ECom2(ecomj→i

b,1), and nmcomi→j
2 ←

NMCom2(nmcomj→i
1)

• Compute tdi→j2 ← TDGen2(td1,j).

• Compute wii→j2 ←WI2(wij→i1), rwii→j2 ← RWI2(rwij→i1) and wzki→j2 ←WZK2(wzkj→i1).

• Broadcast (ecomi→j
a,2 , ecomi→j

b,2 , nmcomi→j
2 , tdi→j2 ,wii→j2 , rwii→j2 ,wzki→j2).

Similar to round 1, round 2 also does not require the use of private input xi.

Round 3: Pi does the following:

• Compute msg2,i ← πSM2 (xi,Trans1; ri), where Trans1 denotes the round 1 transcript of πSM.
(This is the first step where Pi uses its private input xi.)

• Let td2,i = (td1→i
2 || . . . ||tdn→i2) with tdi→i2 = ⊥.20 Compute the third message of the trapdoor

generation protocol, i.e., td3,i ← TDGen3(td1,i, td2,i; rtd,i) using randomness rtd,i.

• Compute nci ← NCom(1; rnc,i).

• For each j ∈ [n] with j 6= i, compute the following:

– The third messages of the two extractable commitment schemes corresponding to in-
puts (xi, ri) and ⊥, respectively, and third message of the non-malleable commitment
corresponding to input ⊥. That is,

ecomi→j
a,3 ← ECom3((xi, ri), ecomi→j

a,1 , ecomj→i
a,2 ; ri→ja,ecom),

20From Section 4, note that this concatenation still defines valid second round message of the trapdoor generation
protocol because that just requires a string to be signed. We do this to establish a single global trapdoor for each
party instead of pairwise trapdoors between every two parties.

45

ecomi→j
b,3 ← ECom3(⊥, ecomi→j

b,1 , ecomj→i
b,2 ; ri→jb,ecom),

nmcomi→j
3 ← NMCom3(⊥, nmcomi→j

1 , nmcomj→i
2 ; ri→jnmcom),

using random strings ri→ja,ecom, ri→jb,ecom, and ri→jnmcom, respectively.

– The third message of RWI, i.e., rwii→j3 ← RWI3(rwii→j1 , rwij→i2 , sti→j2 ,wi→j
2) for the state-

ment

sti→j2 =
(
{ecomi→j

a,` }
3
`=1, {ecomi→j

b,` }
3
`=1,msg2,i,Trans1, {nmcomi→j

` }3`=1, td1,j , nci
)
∈ Li→j2

using witness wi→j
2 = (xi, ri, r

i→j
a,ecom,⊥,⊥,⊥,⊥).

– The third message of the weak zero-knowledge protocol proving that nci is a commitment
to 1. That is, wzki→j3 ← WZK3(wzki→j1 ,wzkj→i2 , sti→j1 ,wi→j

1) for the statement sti→j1 =

nci→j1 ∈ Li→j1 using witness wi→j
1 = rnc,i.

• Broadcast (msg2,i, nci, ecomi→j
a,3 , ecomi→j

b,3 , nmcomi→j
3 , td3,i, rwii→j3 ,wzki→j3).

Round 4: Pi does the following:

• Abort if for any j ∈ [n] s.t. j 6= i:

– TDOut(td1,j , td2,j , td3,j) 6= 1 where td2,j is computed as in round 3. (OR)

– WZK4(wzkj→i1 ,wzki→j2 ,wzkj→i3 , stj→i1) 6= 1 where stj→i1 is as defined above. (OR)

– RWI4(rwij→i1 , rwii→j2 , rwij→i3 , stj→i2) 6= 1 where stj→i2 is as defined above.

• Compute msg3,i ← πSM3 (xi,Trans2; ri), where Trans2 denotes the round 2 transcript of πSM.

• For each j ∈ [n] with j 6= i, compute wii→j3 ←WI3(wii→j1 ,wij→i2 , sti→j3 ,wi→j
3) for the statement

sti→j3 = ({ecomi→j
a,` }

3
`=1, {ecomi→j

b,` }
3
`=1,msg3,i,Trans2, {nmcomi→j

` }3`=1, td1,j) ∈ Li→j3

using witness wi→j
3 = (xi, ri, r

i→j
a,ecom,⊥,⊥,⊥).

• Broadcast (msg3,i,wii→j3).

Output Computation: Pi does the following:

• Abort if for any j ∈ [n] s.t. j 6= i:

– WI4(wij→i1 ,wii→j2 ,wij→i3 , stj→i3) 6= 1 where stj→i3 is as defined above.

• Compute output yi ← OUT(xi,Trans3; ri), where Trans3 denotes the round 3 transcript of
πSM.

This completes the description of protocol π.

7.4 Security Proof

In this section, we formally prove Theorem 12. Consider a malicious non-uniform PPT adversary
A who corrupts t < n parties. Let p be a polynomial such that p(λ) denotes the total length of
the input and randomness of each party Pi in protocol πSM, i.e., |(xi, ri)| = p(λ). We start by
constructing an expected PPT black-box simulator Sim that simulates the view of A.

46

7.4.1 Description of Simulator

Let us first recall the basic strategy followed by any black-box simulator who rewinds the adversary
in order to simulate its view. Such a simulator creates a “main thread” of execution and a set
of “look-ahead” threads. The main thread is the execution thread that is output at the end of
the simulation, while the look-ahead threads facilitate the extraction of the adversary’s inputs and
some additional trapdoor information that is used to simulate the adversary’s view on the main
thread.

We construct an expected PPT black-box simulator Sim for protocol π. At a high-level, Sim
works in the following two modes:

• Case 1: Adversary does not abort in third round. Suppose that the adversary does not
cause all the honest parties to abort after the third round of π. In this case, Sim rewinds the
adversary in the second and third round of π to create look-ahead threads. Thus, each look-
ahead thread created by Sim shares the first round with the main thread, but contains different
messages in the second and third rounds. Further, each look-ahead thread is terminated at
the end of the third round. An important property of Sim is that it follows the honest party’s
strategy in all of the look ahead threads using input 0 for each honest party. Sim uses the
adversary’s messages in the third round of these look-ahead threads to extract the adversary’s
inputs as well as trapdoor information and then use them to simulate the main thread.

• Case 2: Adversary aborts in third round. In this case, Sim simply follows the honest
party’s strategy using input 0 on the main thread. It does not create any look-ahead threads.

To prevent a cluttered description, we overload notation when referring to the same object in
the main thread and the look-ahead threads. However, it will be clear from context which thread’s
object is being referred to.

Simulator Sim. The simulator’s description now follows:

Step 1 - Check Abort:

1. Round 1:
For each honest party Pi, Sim follows the honest party algorithm in the first round. In more
detail:

• Compute msg1,i ← S1(ri). Recall that similar to the honest party algorithm, this step
simply consists of sampling a random string.

• Compute td1,i ← TDGen1(rtd,i) using a random string rtd,i.

• For each j ∈ [n] with j 6= i, Sim does the following:

– Compute ecomi→j
a,1 ← ECom1(ri→ja,ecom), ecomi→j

b,1 ← ECom1(ri→jb,ecom), and nmcomi→j
1 ←

NMCom1(ri→jnmcom) using random strings ri→ja,ecom, ri→jb,ecom and ri→jnmcom, respectively.

– Generate (wii→j1)←WI1(1
λ), (rwii→j1)← RWI1(1

λ) and (wzki→j1)←WZK1(1
λ).

• Send (msg1,i, ecomi→j
a,1 , ecomi→j

b,1 , nmcomi→j
1 , td1,i,wii→j1 , rwii→j1 ,wzki→j1) to A.

2. Round 2:
The simulator continues to follow the honest party algorithm in the second round. That is,
for each honest party Pi and for each j ∈ [n] with j 6= i, Sim does the following:

47

• Compute ecomi→j
a,2 ← ECom2(ecomj→i

a,1), ecomi→j
b,2 ← ECom2(ecomj→i

b,1) and nmcomi→j
2 ←

NMCom2(nmcomj→i
1).

• Compute tdi→j2 ← TDGen2(td1,i).

• Compute wii→j2 ←WI2(wij→i1), rwii→j2 ← RWI2(rwij→i1) and wzki→j2 ←WZK2(wzkj→i1).

• Send (ecomi→j
a,2 , ecomi→j

b,2 , nmcomi→j
2 , tdi→j2 ,wii→j2 , rwii→j2 ,wzki→j2) to A.

3. Round 3:
For each honest party Pi, Sim does the following:

• Compute msg2,i by executing the honest party algorithm with private input set to 0 and
randomness ria.

• Compute nci ← Com(1; rnc,i).

• Let td2,i = (td1→i
2 || . . . ||tdn→i2) with tdi→i2 = ⊥. Compute the third message of the

trapdoor generation protocol, i.e., td3,i ← TDGen3(td1,i, td2,i; rtd,i) using randomness
rtd,i.

• For each j ∈ [n] with j 6= i, compute:

– ecomi→j
a,3 ← ECom3(0, ri, ecomi→j

a,1 , ecomj→i
a,2 ; ri→ja,ecom), ecomi→j

b,3 ← ECom3(⊥, ecomi→j
b,1 ,

ecomj→i
b,2 ; ri→jb,ecom), and nmcomi→j

3 ← NMCom3(⊥, nmcomi→j
1 , nmcomj→i

2 ; ri→jnmcom) us-

ing random strings ri→ja,ecom, ri→jb,ecom and ri→jnmcom, respectively.

– rwii→j3 ← RWI3(rwii→j1 , rwij→i2 , sti→j2 ,wi→j
2) for the statement

sti→j2 =
(
{ecomi→j

a,` }
3
`=1, {ecomi→j

b,` }
3
`=1,msg2,i,Trans1, {nmcomi→j

` }3`=1, td1,j , nci
)
∈ Li→j2

using witness wi→j
2 = (0, ri, r

i→j
a,ecom,⊥,⊥,⊥,⊥).

– wzki→j3 ← WZK3(wzki→j1 ,wzkj→i2 , sti→j1 ,wi→j
1) for the statement sti→j1 = nci→j1 ∈

Li→j1 using witness wi→j
1 = (rnc,i).

• Send (msg2,i, nci, ecomi→j
a,3 , ecomi→j

b,3 , nmcomi→j
3 , td3,i, rwii→j3 ,wzki→j3) to A.

4. Check Abort Condition:
Simulator now checks whether A aborted in the third round. That is, Sim sets flag = abort

if: for every honest party Pi, there exists a malicious party Pj such that,

• TDOut(td1,j , td2,j , td3,j) 6= 1 where td2,j is computed as in round 3. (OR)

• WZK4(wzkj→i1 ,wzki→j2 ,wzkj→i3 , stj→i1) 6= 1 where stj→i1 = ncj→i1 . (OR)

• RWI4(rwii→j1 , rwii→j2 , rwij→i3 , stj→i2) 6= 1 where stj→i2 is as defined above.

If flag = abort, then Sim outputs the partial view generated so far and stops. Otherwise, we will
say that the “Check Abort” step succeeded. In this case, Sim proceeds to the next step.

Step 2 - Rewinding:

• Sim now rewinds A to the end of round 1 and freezes the main thread at this point. Then,
Sim creates a set of T (defined later) look-ahead threads, where on each thread, only rounds
2 and 3 of the protocol are executed in the following manner:

48

5. Round 2:
In every look-ahead thread, for each honest party Pi and for each j ∈ [n] with j 6= i,
Sim executes the same strategy as in round 2 of step 1, using fresh randomness.

6. Round 3:
In every look-ahead thread, for each honest party Pi and for each j ∈ [n] with j 6= i,
Sim executes the same strategy as in round 3 of step 1, using fresh randomness.

• For each thread above, define it to be Bad if the “Check Abort” step fails (otherwise, we
call it Good). That is, a thread is called Bad if for every honest party Pi, there exists a
malicious party Pj such that:

– TDOut(td1,j , td2,j , td3,j) 6= 1 where td2,j is computed as in round 3. (OR)

– WZK4(wzkj→i1 ,wzki→j2 ,wzkj→i3 , stj→i1) 6= 1 where stj→i1 = ncj→i1 . (OR)

– RWI4(rwii→j1 , rwii→j2 , rwij→i3 , stj→i2) 6= 1 where stj→i2 is as defined earlier.

• Alternately, a thread is defined to be “GOOD with respect to Pi∗” if, for all malicious parties
Pj :

– TDOut(td1,j , td2,j , td3,j) = 1 where td2,j is computed as in round 3. (AND)

– WZK4(wzkj→i
∗

1 ,wzki
∗→j
2 ,wzkj→i

∗

3 , stj→i
∗

1) = 1 where stj→i
∗

1 = ncj→i
∗

1 . (AND)

– RWI4(rwii
∗→j
1 , rwii

∗→j
2 , rwij→i

∗

3 , stj→i
∗

2) = 1 where stj→i
∗

2 is as defined earlier.

• The number of threads T created is such that at least (12 · λ) Good threads exist. That is,
Sim keeps running till it obtains (12 · λ) Good threads.

Step 3 - Input and Trapdoor Extraction:
Sim does the following:

• Select 5 threads that are “Good with respect to Pi∗” for some honest party Pi∗ . That is, in
each GOOD thread, we know that ∃ an honest party Pi such that for all malicious parties Pj ,
the adversary does not cause Pi to abort. Since (12 · λ) > (5 · n), (without loss of generality,
assuming the number of parties n = λ), there must exist one honest party P∗i corresponding
to a set of 5 Good threads.

• Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running the
trapdoor extractor TDExt on input the transcripts of the trapdoor generation protocol with
Pj playing the role of sender, a.k.a. trapdoor generator from any 3 Good threads. That is,

compute tj ← TDExt
(

td1,j , {td2,j , td3,j}3`=1

)
, where (td1,j , td2,j , td3,j) denotes the transcript

of the trapdoor generation protocol with Pj as the sender on the `th Good thread.

• Input Extraction: For every corrupted party Pj , extract an input and randomness pair
(xa,j , ra,j) by running the extractor ExtECom on input the transcripts of the first extractable
commitment protocol between Pj and Pi∗ from the 5 Good threads picked above. That is,
compute:

(xa,j , ra,j)← ExtECom

(
ecomj→i∗

a,1 , {ecomi∗→j
a,2,` , ecomj→i∗

a,3,` }
5
`=1

)
,

where (ecomj→i∗
a,1 , ecomi∗→j

a,2,` , ecomj→i∗
a,3,`) denotes the transcript of the first extractable commit-

ment protocol between Pj and Pi∗ on the `th Good thread. Similarly, compute (xb,j , rb,j)

49

by running the extractor ExtECom on input the transcripts of the second extractable commit-
ment protocol between Pj and Pi∗ from those 5 Good threads. Check which of (xa,j , ra,j) and
(xb,j , rb,j) are consistent with the (partial) transcript of πSM and set that pair to be (xj , rj).
Let R denote the set of all {xj , rj} pairs extracted.

• Output “Special Abort” if any of the above two steps fail.

Step 4 - Query to Ideal Functionality:

• Sim queries the ideal functionality with the set of values {xj} where xj is the input of adver-
sarial party Pj that was extracted in the previous step.

• Sim receives output y from the ideal functionality.

Step 5 - Abort Probability Estimation:
Set ε′ = 12λ

T as the probability with which the adversary doesn’t abort (Recall that T is the number
of threads created in Step 2).

Step 6 - Resampling the Main Thread:
First, Sim sets a counter value to 0. Sim now continues the main thread from the end of round 1.
(Note that this step also involves rewinding of its own as elaborated below.)

7. Round 2:
Run exactly as before - i.e. as done in Step 1.

8. Round 3:
Now, there are two key differences from the threads generated in previous steps:

• The first is that in the non-malleable commitment execution between honest party i and
adversarial party j, Sim commits to the trapdoor tj→i (extracted above).

• The second is that the Simulator invokes the semi-malicious simulator of the protocol
to generate messages on behalf of honest parties, instead of committing to 0s.

In more detail, for each honest Pi, Sim does the following:

• Compute msg2,i ← S2(Trans1; ri), where Trans1 is the round 1 transcript of πSM.

• Let td2,i = (td1→i
2 || . . . ||tdn→i2) with tdi→i2 = 0. Compute the third message of the

trapdoor generation protocol, i.e., td3,i ← TDGen3(td1,i, td2,i; rtd,i) using randomness
rtd,i.

• Compute nci ← Com(1; rnc,i).

• For each j ∈ [n] with j 6= i, compute:

– Compute ecomi→j
a,3 ← ECom3(0, ri, ecomi→j

a,1 , ecomj→i
a,2 ; ri→ja,ecom), ecomi→j

b,3 ← ECom3(⊥,
ecomi→j

b,1 , ecomj→i
b,2 ; ri→jb,ecom), and nmcomi→j

3 ← NMCom3(tj , nmcomi→j
1 , nmcomj→i

2 ; ri→jnmcom)

using random strings ri→ja,ecom, ri→jb,ecom and ri→jnmcom, respectively.

– wzki→j3 ← WZK3(wzki→j1 ,wzkj→i2 , sti→j1 ,wi→j
1) for the statement sti→j1 = nci→j1 ∈

Li→j1 using witness wi→j
1 = (rnc,i).

– rwii→j3 ← RWI3(rwii→j1 , rwij→i2 , sti→j2 ,wi→j
2) for the statement sti→j2 as defined earlier,

using witness wi→j
2 = (⊥,⊥,⊥,⊥, tj , ri→jnmcom,⊥).

50

• Send (msg2,i, nci, ecomi→j
a,3 , ecomi→j

b,3 , nmcomi→j
3 , td3,i, rwii→j3) to A.

9. Abort Condition:
For each honest party Pi, Sim does the following:

• For each j ∈ [n] with j 6= i, increase the counter value by 1 if

– TDOut(td1,j , td2,j , td3,j) 6= 1 where td2,j is computed as in round 3. (OR)

– WZK4(wzkj→i1 ,wzki→j2 ,wzkj→i3 , stj→i1) 6= 1 where stj→i1 = ncj→i1 . (OR)

– RWI4(rwii→j1 , rwii→j2 , rwij→i3 , stj→i2) 6= 1 where stj→i2 is as defined earlier.

• If Sim’s running time equals 2λ, Abort.

• If the counter value was not increased, continue to Step 7.

• Else, if counter value is less than λ2

ε′ , rewind back to the beginning of round 2 in Step 6
and resample the main thread. Abort otherwise.

Step 7 - Finishing the Main Thread:

10. Round 4:
In the main thread, for each honest party Pi, Sim does the following:

• Compute msg3,i ← S3(y,R,Trans2, i), where Trans2 denotes the round 2 transcript of

protocol πSM.

• For each j ∈ [n] with j 6= i,
Compute wii→j3 ←WI3(wii→j1 ,wij→i2 , sti→j3 ,wi→j

3) for the statement

sti→j3 = ({ecomi→j
a,` }

3
`=1, {ecomi→j

b,` }
3
`=1,msg3,i,Trans2, {nmcomi→j

` }3`=1, td1,j) ∈ Li→j3

using witness wi→j
3 = (⊥,⊥,⊥,⊥, tj , ri→jnmcom).

• Send (msg3,i,wii→j3) to A.

11. Output Computation:
Let Trans3 denote the transcript of protocol πSM after round 3. In the main thread, for each
honest party Pi and every j ∈ [n] with j 6= i, Sim does the following:

• Abort if WI4(wij→i1 ,wii→j2 ,wij→i3 , stj→i3) 6= 1 where stj→i3 is as defined above. Also abort
if any adversarial party aborted in the 4th round.

In case of no abort, instruct the ideal functionality to deliver output to the honest parties.

Running Time. We now prove that the simulator is an expected PPT machine.

Claim 16. Simulator Sim runs in expected time that is polynomial in λ.

Proof. We analyze the running time of each step performed by Sim:

• It is easy to see that Step 1 (“Check Abort”) takes only poly(λ) time for some polynomial.

• Let ε be the probability with which “Check Abort” step succeeds. That is, Sim proceeds to
Step 2 only with probability ε. Now, since the probability of the adversary not aborting is ε,
the expected number of threads to be run by the simulator to get one non-aborting transcript
is 1

ε . Therefore, the expected total number of threads created in Step 2 is 12·λ
ε and each thread

takes only poly(λ) time.

51

• In Step 3, Sim simply runs the extractors TDExt and ExtECom that are both PPT machines.

• Steps 4 and 5 are trivially polynomial time.

• As shown in [GK96, Lin17], the probability that the estimate ε′ computed in Step 5 is not
within a factor of 2 of ε is at most 2λ. An exact computation of how to achieve this exact
bound using Chernoff bounds can be found in [HL10], Section 6.5.3. (which also explains why
we chose to run Step 2 till we get 12 · λ non-aborting transcripts). Therefore, the number of

threads created in step 6 is at most λ2

ε (ignoring the constant factor). Note that Step 6 might
still take time 2λ but this happens only when the estimate of ε′ is incorrect: that is, when ε′

is not within a constant factor of ε and this happens only with probability 2−λ.

• Finally, it is easy to see that Step 7 runs in poly(λ).

Therefore, we can bound the overall running time by :

TSim = poly(λ) + poly(λ) · ε

(
12 · λ
ε

+
(

1− 1

2λ

)
· λ

2

ε
+
(1

2λ

)
· 2λ
)

≤ poly(λ).

This concludes the analysis.

7.4.2 Hybrids

We now show that the above simulation strategy is successful against all malicious PPT adversaries.
That is, the view of the adversary along with the output of the honest parties is computationally
indistinguishable in the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid HybReal corresponds to the real world and the last
hybrid HybIdeal corresponds to the ideal world.

First, assume by contradiction that there exists an adversary A that can distinguish the real
and ideal worlds with some non-negligible probability µ. We will use this value µ in the hybrids.

• HybReal - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties. This corresponds to the real world experiment.

• Hyb0 - Determining Abort in 3rd Round and Extraction:

In this hybrid, SimHyb does the following:

1. First runs the “Check Abort” step (Step 1 in the description of Sim) to check if the
adversary aborts. That is, SimHyb executes the first 3 rounds of the protocol using
the honest parties’ strategy. If the adversary does cause an abort, then SimHyb simply
outputs the view of the adversary and stops. In this case, the rest of the hybrids are
skipped.

2. Otherwise, if the adversary doesn’t cause an abort (i.e., the “Check Abort” step suc-
ceeded), then, SimHyb rewinds back to the end of round 1 of the protocol and freezes the
main thread. Then, SimHyb creates a set of 5·n·λ

µ look-ahead threads in a similar manner
as described in Step 2 of Sim. In all the threads, SimHyb plays the role of the honest
parties exactly as in HybReal.

52

3. SimHyb also runs the “Input and Trapdoor Extraction” phase and “Query to Ideal Func-
tionality” phase described in steps 3 and 4 of the description of Sim using the first 5
look-ahead threads that are “GOOD with respect to Pi∗” for some honest party Pi∗ .
That is, it extracts the adversary’s input, randomness and a set of valid trapdoors and
also, queries the ideal functionality using the adversary’s inputs to receive the function
output.

4. SimHyb outputs “Special Abort” if the above step fails.

5. Then, SimHyb continues executing the main thread from the end of round 1 of the protocol
and plays the role of the honest parties exactly as in HybReal. If the adversary causes an
abort, SimHyb goes back to the end of round 1 and resamples the main thread exactly
as in the last sentence (playing the role of the honest parties). This process is repeated
at most λ

µ times.

Observe that SimHyb runs in polynomial time because, by assumption, µ was non-negligible.
(The same argument will hold in the subsequent hybrids as well.)

The remaining hybrids are only considered if the “Check Abort” step succeeded.

• Hyb1 - Using input 0 in the Aborting Step: In this hybrid, SimHyb runs the “Check
Abort” step using the honest parties’ strategy but using input 0. If the adversary does cause
an abort, then SimHyb simply outputs the view of the adversary and stops.

Otherwise, if the adversary doesn’t cause an abort (i.e., the “Check Abort” step succeeded),
then, SimHyb proceeds as in Hyb0.

Once again, the remaining hybrids are only considered if the “Check Abort” step succeeded.

• Hyb2 - Using input 0 in the look-ahead threads: In this hybrid, in each look-ahead
thread, SimHyb runs the honest parties’ strategy but using input 0.

• Hyb3 - Changing NMCom on main thread: In the main thread, for each honest party Pi
and every malicious party Pj , SimHyb does the following: in round 3, compute nmcomi→j

3 ←
NMCom3(tj , nmcomi→j

1 , nmcomj→i
2 ; ri→jnmcom) where tj is a valid trapdoor extracted as in the

previous hybrid. That is, the simulator now commits to a trapdoor tj in the non-malleable
commitment between Pi (committer) and Pj (receiver).

Note: The above change happens in each of the “resamples” to generate the main thread till
SimHyb receives a non-aborting transcript after round 3 or the number of resamples reaches
λ
µ .

• Hyb4 - Switching RWI proofs on main thread: In the main thread, for each honest
party Pi and every malicious party Pj , SimHyb does the following: in round 3, compute

rwii→j2 ← RWI2(rwij→i1 , sti→j2 ,wi→j
2) for the statement

sti→j2 =
(
{ecomi→j

a,` }
3
`=1, {ecomi→j

b,` }
3
`=1,msg2,i,Trans1, {nmcomi→j

` }3`=1, td1,j , nci
)
∈ Li→j2

using witness wi→j
2 = (⊥,⊥,⊥,⊥, tj , ri→jnmcom,⊥).

That is, in the main thread, the simulator now uses the “trapdoor” witness (which establishes
that it committed to a valid trapdoor in the non-malleable commitment) to compute the last
message of each RWI proof where an honest party plays the role of the prover.

53

• Hyb5 - Switching WI proofs on main thread: In the main thread, for each honest
party Pi and every malicious party Pj , SimHyb does the following: in round 4, compute

wii→j3 ←WI3(wii→j1 ,wij→i2 , sti→j3 ,wi→j
3) for the statement

sti→j3 = ({ecomi→j
a,` }

3
`=1, {ecomi→j

b,` }
3
`=1,msg3,i,Trans2, {nmcomi→j

` }3`=1, td1,j) ∈ Li→j3

using witness wi→j
3 = (⊥,⊥,⊥,⊥, tj , ri→jnmcom).

That is, in the main thread, the simulator now uses the “trapdoor” witness (which establishes
that it committed to a valid trapdoor in the non-malleable commitment) to compute the last
message of each WI proof where an honest party plays the role of the prover.

• Hyb6 - Changing EComs on main thread: In the main thread, for each honest party
Pi and every malicious party Pj , SimHyb does the following: in round 3, compute ecomi→j

a,3 =

ECom3(0, ri, ecomi→j
a,1 , ecomj→i

a,2 ; ri→ja,ecom).
That is, in the main thread, the simulator now commits to input 0 in the extractable com-
mitment scheme.

• Hyb7 - Simulate πSM on main thread: In the main thread, for each honest party Pi,
SimHyb does the following:

– in round 1, compute msg1,i ← S1(ri). The description of SimHyb now corresponds to the
ideal world simulator Sim.

– In round 3, compute msg2,i ← S2(Trans1; ri) where Trans1 denotes the transcript of

protocol πSM after round 1.

– in round 4, compute msg3,i ← S3(y,R,Trans2, i) where y is the output from the ideal
functionality, R denotes the set of all {xj , rj} extracted and Trans2 denotes the transcript
of protocol πSM after round 2.

• HybIdeal - Run the actual probability estimation: In this hybrid, the number of look-
ahead threads is increased from 5·n·λ

µ to as many as needed to estimate the probability of the

adversary not aborting - ε′.

Additionally, at this point, SimHyb doesn’t resample the main thread λ
µ times. Instead, SimHyb

resamples the main thread for min(2λ, λ
2

ε′) times as in the ideal world. This hybrid corresponds
exactly to the ideal world.

7.4.3 Indistinguishability of hybrids

Throughout the sequence of hybrids, starting with HybReal, we will maintain the following invariant
which will be useful to argue the proof of indistinguishability.

Definition 16 (Invariant). Consider any malicious party Pj and any honest party Pi. td1,i denotes
the first message of the trapdoor generation protocol with Pi as the trapdoor generator. The tuple
(nmcomj→i

1 , nmcomi→j
2 , nmcomj→i

3) denote the messages of the non-malleable commitment with Pj
as the committer.
Consider the following event E which occurs if ∃(j, i, ti, rj→inmcom) such that:

• nmcomj→i
1 = NMCom1(rj→inmcom) (AND)

54

• nmcomj→i
3 = NMCom3(ti, nmcomj→i

1 , nmcomi→j
2 ; rj→inmcom). (AND)

• TDValid(td1,i, ti) = 1.

That is, the event E occurs if any corrupted party Pj commits to a valid trapdoor ti (corresponding
to the trapdoor generation protocol where Pi was the trapdoor generator) in the non-malleable com-
mitment protocol with Pi.

The invariant is : Pr[Event E occurs] ≤ negl(λ).

Claim 17. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and
the existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the
invariant holds in HybReal.

Proof. We will prove this by contradiction. Assume that the invariant doesn’t hold in HybReal.
That is, there exists an adversary A such that for some honest party P∗i and malicious party P∗j ,
A causes event E to occur with non-negligible probability. We will use this adversary to design
an adversary ATDGen that breaks the “1-rewinding security” of the trapdoor generation protocol
TDGen as defined in Section 4 with non-negligible probability.
ATDGen interacts with a challenger CTDGen and receives a first round message td1 corresponding

to the protocol TDGen. ATDGen performs the role of SimHyb in its interaction with A exactly as
done in HybReal. SimHyb picks an honest party Pi uniformly at random and a malicious party Pj
uniformly at random. Now, in round 1 of protocol π, ATDGen sets td1,i as td1 received from CTDGen.

On receiving all the values td1→i
2 . . . , tdn→i2 including the value tdj→i2 from A in round 2, ATDGen

sets td2,i = (td1→i
2 || . . . ||tdn→i2) and forwards this message to CTDGen as its second round message

for the protocol TDGen. ATDGen receives td3 from CTDGen which is set as td3,i in its interaction
with A. ATDGen continues with the rest of protocol π exactly as in Hyb0 up to round 3. At this
point, ATDGen rewinds the adversary A back to the beginning of round 2. To be consistent with
our earlier terminology, this can be interpreted as follows: ATDGen creates a look-ahead thread that
runs only rounds 2 and 3 of protocol π.21 As in the main thread, ATDGen forwards the message td2,i

from A in round 2 to CTDGen and receives td3 from CTDGen which is set as td3,i in its interaction
with A. ATDGen continues with the rest of protocol π exactly as in HybReal.

Now, ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the
messages in both the threads that correspond to the non-malleable commitment from malicious
party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid
trapdoor to CTDGen.

Since the invariant doesn’t hold by our assumption, the adversary P∗j , using the non-malleable
commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the honest
party P∗i with non-negligible probability ε. With probability 1

n2 , where n is the total number of
parties, this corresponds to honest party Pi and malicious party Pj picked randomly by ATDGen.
Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the non-malleable commit-
ment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the honest party Pi.
Now, by the 2-extractability property, given the messages of the non-malleable commitment in 2
threads, the extractor ExtNMCom is successful with some non-negligible probability ε′. Therefore,
with non-negligible probability ε·ε′

n2 , ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks
the 1-rewinding security of the trapdoor generation protocol TDGen. Thus, it must be the case
that the invariant holds in HybReal.

21Note that this look-ahead thread exists only in the proof of the invariant and not in the description of HybReal.

55

Claim 18. The invariant holds in Hyb0.

Proof. Since there is no difference in the main thread in the first 3 rounds between HybReal and
Hyb0 , the invariant continues to hold true.

Claim 19. Hyb0 is indistinguishable from HybReal except with probability atmost µ
4 + negl(λ).

Proof. We argue the proof via the following two cases.
Case 1: Pr[not abort] ≥ µ

4 :
Suppose the adversary doesn’t cause an abort with probability greater than µ

4 . First, lets analyze
the probability that SimHyb outputs “Special Abort” in Hyb0 in the extraction phase. By Chernoff’s
bound, in Hyb0, except with negligible probability, in the set of 5·n·λ

µ threads, there will be at least 5
“GOOD threads with respect to Pi∗” for some honest party Pi∗ . Now, we show that the algorithms
ExtECom and TDExt successfully extract except with negligible probability.

By the definition of ECom, algorithm ExtECom is successful except with negligible probabil-
ity if given as input (ecom1, {ecomk

2, ecomk
3}5k=1) such that (ecom1, ecomk

2, ecomk
3) constitute “well-

formed” and “admissible” extractable commitment messages for all k. “Admissibility” follows
trivially since SimHyb picks random challenges z for the extractable commitment. Now, notice that
since the invariant holds in Hyb0, from the soundness of the schemes WI,RWI and WZK, in each
“Good thread with respect to Pi∗” for some honest party Pi∗ , for every malicious party Pj , either
the first or second statements must hold true for the proofs given in round 3. That is, for every
malicious party Pj and honest party Pi, either the values (ecomj→i

a,1 , ecomi→j
a,2 , ecomj→i

a,3) or the values

(ecomj→i
b,1 , ecomi→j

b,2 , ecomj→i
b,3) form a “well-formed” tuple of the scheme ECom as defined in Section

7.1. Hence, ExtECom is successful except with negligible probability.
By the definition of the scheme TDGen, the algorithm TDExt is successful except with negligible

probability if given as input (td1, {tdi2, tdi3}3i=1) where td1 is the first message of the protocol TDGen
and tdi2, tdi3 denote the second and round messages of the ith execution of protocol TDGen using
the same first round message. Since we have 5 “GOOD” threads, we can extract every malicious
party’s trapdoor except with negligible probability.

Finally, again by Chernoff bound, in the set of λ
µ resampled main threads, there will be at least

one completed execution. Thus, in this case, the adversary’s view in HybReal is computationally
indistinguishable to that in Hyb0.
Case 2: Pr[not abort] < µ

4 :
Suppose the adversary doesn’t cause an abort at the end of round 3 with probability less than µ

4 .
Then, in both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability
µ
4 . Thus, in this case, the adversary’s view in HybReal is indistinguishable to that in Hyb0 except
with probability atmost µ

4 + negl(λ).

Claim 20. The invariant holds in Hyb1.

Proof. Since there is no difference in the main thread between Hyb0 and Hyb1, the invariant con-
tinues to hold true.

Claim 21. Assuming the hiding property of Com and NCom, the weak ZK property of WZK, the
witness indistinguishability with reusability property of RWI, the security of the protocol πSM, Hyb0

is indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is in the scenario when the “Check Abort”
step doesn’t succeed. In that case, in Hyb0, SimHyb uses the honest parties’ inputs to run the
protocol while in Hyb1, SimHyb runs the protocol using input 0 for every honest party. We show

56

in Appendix B via a sequence of sub-hybrids that these two hybrids are indistinguishable. Here,
note that we can’t just directly use a three round strong WI from [JKKR17] (instead of the RWI
protocol) to prove this claim because that protocol is strictly delayed-input and in our case, we
crucially do require part of the statement to be decided before the third round. Hence, we resort
to the sequence of sub-hybrids in Appendix B to emulate a delayed-input strong WI.

We now get back to proving security of the main simulation.

Claim 22. The invariant holds in Hyb2.

Proof. There is no difference in the main thread between Hyb1 and Hyb2 and so the invariant
continues to hold true.

Claim 23. Assuming the hiding property of Com and NCom, the weak ZK property of WZK, the
witness indistinguishability with reusability property of RWI, the security of the protocol πSM, Hyb1

is indistinguishable from Hyb2.

Proof. The difference between the two hybrids is in the way the look-ahead threads are generated.
Therefore, the only difference in the distinguisher’s view is if SimHyb outputs “Special Abort” in
the extraction phase of one hybrid and not the other.

We argue that this doesn’t happen except with negligible probability. First, observe that in
order to perform extraction successfully, all we need is 5 “GOOD” look-ahead threads. Therefore,
it suffices to argue that the probability with which a given thread is “GOOD” does not change by
more than a negligible amount between the two hybrids. As a result, in order to ensure that the
probability of extraction remains the same in both the hybrids, it is enough to prove that each
look-ahead thread, in isolation, is indistinguishable in both the hybrids.

Now, in order to prove this, first observe that for every look-ahead thread, the difference between
Hyb1 and Hyb2 is exactly the same as the difference on the main thread between Hyb0 and Hyb1

when the “Check Abort” step doesn’t succeed. That is, in Hyb1, SimHyb runs the look-ahead thread
using honest parties’ inputs while in Hyb2, SimHyb runs the look-ahead thread using input 0. So, by
using the same set of arguments as in Appendix B, we can show that, in isolation, every look-ahead
thread in Hyb1 is indistinguishable from the corresponding look-ahead thread in Hyb2.

Therefore, since every look-ahead thread in isolation is indistinguishable in both the hybrids,
for each look-ahead thread, the probability with which the thread is “GOOD with respect to Pi∗”
for some honest party Pi∗ remains the same. Hence, the probability with which SimHyb outputs
“Special Abort” in the extraction phase is same in both hybrids and this completes the proof.

Claim 24. Assuming NMCom is a secure non-malleable commitment scheme, the invariant holds
in Hyb3.

Proof. First, observe that if the number of “GOOD” look-ahead threads is less than 5 with respect
to all honest parties, then SimHyb outputs “Special Abort” in both hybrids and they are identical.
Therefore, suppose we have 5 “GOOD” look-ahead threads in both hybrids with respect to some
honest party Pi∗ .

We know that the invariant holds in Hyb2. The only difference between Hyb2 and Hyb3 is that
in Hyb3, the simulator now computes the non-malleable commitment in the main thread using the
adversary’s trapdoor value. Assume for the sake of contradiction that the invariant doesn’t hold in
Hyb3. That is, there exists an adversary A such that for some honest party P∗i and malicious party
P∗j , A causes event E to occur in the main thread with non-negligible probability. We will use A to
design an adversary ANMCom that breaks the security of the non-malleable commitment scheme.

57

ANMCom interacts with a challenger CNMCom. ANMCom performs the role of SimHyb in its inter-
action with A exactly as done in Hyb2. ANMCom picks an honest party Pi and a malicious party
Pj uniformly at random. ANMCom interacts with a challenger CNMCom and receives a first round

message nmcomL
1 on the left side which is set as nmcomi→j

1 in its interaction with A in round 1 of

protocol π. On receiving nmcomj→i
1 , ANMCom forwards this to CNMCom as its first round message

on the right side.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread, ANMCom computes nmcomi→j
3 as a commitment to ⊥.

Recall from the definition of the scheme NMCom that ANMCom can do this even without knowing
the randomness used to generate nmcomi→j

1 . As in the proof of Claim 25, recall that using these 5
threads (that are all “GOOD with respect to some honest party H” with noticeable probability),
ANMCom can successfully run the input extraction phase.

Then, on the main thread, ANMCom receives a value nmcomR
2 from CNMCom as the second round

message on the right side which it sets as the value nmcomi→j
2 in round 2 of protocol π on the

main thread. Then, on receiving nmcomj→i
2 in the main thread, ANMCom sends this to CNMCom as

its second round message on the left side along with the pair of values (⊥, tj) where tj is generated
in the input extraction phase. (Recall that NMCom is a delayed-input scheme.)
ANMCom receives a third round message nmcomL

3 which is either a commitment to ⊥ or tj . This

is sent to A as the value nmcomi→j
3 in the main thread and the rest of protocol π is performed

exactly as in Hyb1. On receiving the value nmcomi→j
3 from A in the main thread, ANMCom sends it

to CNMCom as its third round message in the right thread.
Observe that the first case corresponds to Hyb2 while the second case corresponds to Hyb3. By

our assumption, the invariant doesn’t hold in Hyb3 so there exists honest party P∗i and malicious
party P∗j such that event E doesn’t hold. That is, the adversary P∗j , using the non-malleable com-
mitment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the honest party
P∗i with non-negligible probability ε. With probability 1

n2 where n is the total number of parties,
this corresponds to honest party Pi and malicious party Pj picked randomly by ANMCom. There-
fore, with non-negligible probability ε

n2 , the adversary Pj , using the non-malleable commitment,
commits to a valid trapdoor t∗i for the trapdoor generation messages of the honest party Pi in Hyb3.
Recall that this is same as the messages sent by ANMCom to CNMCom as its commitment messages on
the right side. In Hyb2, since the invariant holds, the adversary did not commit to a valid trapdoor
from any malicious party Pj to honest party Pi.

Therefore, when the value committed to by the honest party in the left execution changes, the
value committed to by the adversary in the right execution has also changed except with negligible
probability. This breaks the security of the scheme NMCom which is a contradiction. Thus, the
invariant must hold in Hyb2 as well.

Remark: To simplify the exposition, we will implicitly use this argument in every subsequent
proof that the two hybrids are identical if the number of “GOOD” look-ahead threads is less than
5 with respect to all honest parties. Therefore, we argue that there exists some honest party
H, such that if we create just 5 look-ahead threads they are all “GOOD with respect to H” with
noticeable probability and hence we can extract the adversary’s input and trapdoor with noticeable
probability. We will skip describing the specific party H in the rest of the exposition. For a similar
reason, we will consider only one execution of the main thread in the reductions and not all the
resampling. That is, without resampling, just one execution should be “GOOD” with noticeable
probability and that suffices.

58

Claim 25. Assuming the hiding property of the non-malleable commitment scheme NMCom, Hyb2

is computationally indistinguishable from Hyb3.

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3, the simulator now computes the
non-malleable commitment using the adversary’s trapdoor value. Suppose there exists an adversary
A that can distinguish between the two hybrids. We can use A to design an adversary AHid that
breaks the hiding property of the non-malleable commitment scheme. The rest of the proof is
similar to the proof of Claim 24 above.

Claim 26. Assuming the bounded rewinding security of the protocol RWI and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Hyb4.

Proof. We know that the invariant holds in Hyb3. The only difference between Hyb3 and Hyb4 is
that in Hyb4, in the main thread, the simulator now computes the rewinding secure WI using a
witness for the non-malleable commitment. Assume for the sake of contradiction that the invariant
doesn’t hold in Hyb4. That is, there exists an adversary A such that for some honest party P∗i and
malicious party P∗j , A causes event E to occur in the main thread with non-negligible probability.

We will use A to design an adversary ARWI that breaks the bounded security of the protocol
RWI.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

A exactly as done in Hyb2. ARWI picks an honest party Pi and a malicious party Pj uniformly

at random. Initially, it receives a message rwi1 from CRWI which it sets as the value rwii→j1 in its

interaction with A in round 1. Then, after receiving the round 2 message rwij→i2 from A, ARWI

creates a set of 5 look-ahead threads that run only rounds 2 and 3 of the protocol. For each thread,
on receiving rwij→i2 in round 2, ARWI forwards this to CRWI as its second round message for that
look-ahead thread. For each thread, ARWI also sends the statement

sti→j2 =
(
{ecomi→j

a,` }
3
`=1, {ecomi→j

b,` }
3
`=1,msg2,i,Trans1, {nmcomi→j

` }3`=1, td1,j , nci
)
∈ Li→j2

where the other values are generated as in Hyb3.
In the main thread, ARWI also sends the pair of witnesses (xi, ri, r

i→j
ecom,⊥,⊥,⊥,⊥) and (⊥,⊥,⊥,⊥,

tj , r
i→j
nmcom,⊥) where tj is generated in the input extraction phase. For each look-ahead thread, ARWI

sends the witness (xi, ri, r
i→j
ecom,⊥,⊥,⊥,⊥). For each thread, ARWI receives a message rwi3 which is

set as rwii→j3 in its interaction with A in round 3 of protocol π. The rest of protocol π is performed
exactly as in Hyb3. As in the proof of Claim 25, recall that using these 5 threads (that are all
“GOOD with respect to some honest party H” with noticeable probability), ARWI can successfully
run the input extraction phase.

Observe that the first case corresponds to Hyb3 while the second case corresponds to Hyb4.
Now, let’s see how ARWI breaks the security of the protocol RWI. Recall that RWI is secure

even in the presence of 6 total threads. ARWI runs the extractor ExtNMCom of the non-malleable
commitment scheme using the messages in all the threads that correspond to the non-malleable
commitment from malicious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. If
TDValid(td1,i, t

∗) = 1, then ARWI outputs case 2 indicating that the WI was constructed using the
second witness on the main thread. Else, it outputs case 1.

Let’s analyze why this works. We know that the invariant doesn’t hold in Hyb4 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation

59

messages of the honest party P∗i with non-negligible probability ε. With probability 1
n2 where n

is the total number of parties, this corresponds to honest party Pi and malicious party Pj picked
randomly by ARWI. Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the
non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages
of the honest party Pi in Hyb3. Therefore, since the invariant holds in Hyb3 with non-negligible
probability, by the 2-extractability property of the non-malleable commitment, when the extractor
ExtNMCom outputs a valid trapdoor t∗, it must be the case that we are in Hyb4 with non-negligible
probability. That is, when ExtNMCom outputs a valid trapdoor, it corresponds to ARWI receiving a
proof using the second (alternate) witness and otherwise, it corresponds to ARWI receiving a proof
using the first witness. Thus, ARWI breaks the bounded rewinding security of the scheme RWI
which is a contradiction. Hence, the invariant holds in Hyb4 as well.

Claim 27. Assuming the bounded rewinding security of the protocol RWI, Hyb3 is indistinguishable
from Hyb4.

Proof. The only difference between Hyb3 and Hyb4 is that in Hyb4, in the main thread, the simulator
now computes the rewinding secure WI using a witness for the alternate statement. Suppose there
exists an adversary A that can distinguish between the two hybrids, we can use A to design an
adversary ARWI that breaks the bounded rewinding security of the protocol RWI. The rest of the
proof is very similar to the proof of Claim 26 above.

Claim 28. Assuming WI is a secure delayed input witness indistinguishable argument, the invariant
holds in Hyb5.

Proof. Notice that the only difference between Hyb4 and Hyb5 is in the witness used in the WI proof
of the main thread that is completed in round 4 of the protocol. However, since WI is a delayed-
input scheme, there is no difference in the first 2 rounds of the WI protocol. In other words, there
is no difference between Hyb4 and Hyb5 in the messages sent in the first 3 rounds of the protocol
by SimHyb. Since the invariant depends only on the first 3 rounds, and since the invariant holds in
Hyb4, it continues to hold in Hyb5.

Claim 29. Assuming WI is a secure delayed input witness indistinguishable argument, Hyb4 is
indistinguishable from Hyb5.

Proof. This is very similar to (and in fact, simpler than) the proof of Claim 27 with the main
difference being that there is no rewinding here in the reduction. That is, the reduction uses the
external challenger’s messages only once - to generate the proof only in the final round of the main
thread and not in each look-ahead thread. Therefore, we don’t need any rewinding security for the
scheme WI.

Claim 30. Assuming the bounded rewinding security of the RWI , the hiding property of the com-
mitment scheme Com and the pseudorandom function PRF used in the construction of ECom and
the existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the
invariant holds in Hyb6.

Proof. We know that the invariant holds in Hyb5. The only difference between Hyb5 and Hyb6 is
that in Hyb6, the simulator now computes the extractable commitment in the main thread for every
honest party Pi using input 0 whereas in Hyb5 it was computed using input (xi, ri). We drop the
subscript “a” throughout the description of this proof.

60

First, throughout this proof, we drop the subscript “a” since it is clear from context that we
are referring only to the first invocation of the extractable commitment. The second invocation is
not used in the proof at all.

Let’s briefly recall the construction of the scheme ECom from Section 7.1 in the context of proto-
col π. Consider a party Pi as committer interacting with a party Pj as receiver using input message

m. In round 1, Pi computes ecomi→j
1 = {ecomi→j

1,1 , . . . , ecomi→j
1,N } where ecomi→j

1,` = Com(pi→j`)

where each pi→j` is a random polynomial of degree 4 (defined in Section 7.1). In round 2, Pj
generates ecomj→i

2 = (zj→i1 , . . . , zj→iN) where each zj→i` is a random value. Then, in round 3, Pi
outputs ecomi→j

3 = {ecomi→j
3,1 , . . . , ecomi→j

3,N+2} where ecomi→j
3,` = (ki→j ⊕ pi→j` (0), pi→j` (zj→i`)) for

each ` ∈ [N] and ecom3,N+1 = si→j and ecom3,N+2 = PRF(ki→j , si→j)⊕m.
We will design a set of intermediate hybrids Sub.Hyb1 to Sub.Hyb5 where Sub.Hyb1 denotes

Hyb5 and Sub.Hyb5 denotes Hyb6. We will then show that the invariant holds in every intermediate
hybrid to complete the proof.

• Sub.Hyb1: This is same as H5.

• Sub.Hyb2: In this hybrid, for every honest party Pi and malicious party Pj , only on the main

thread, compute ecomi→j
3,` = (0 ⊕ pi→j` (0), pi→j` (zj→i`)) for all ` ∈ [N]. Observe that all the

look-ahead threads continue committing to a random value ri→j .

• Sub.Hyb3: In this hybrid, for every honest party Pi and malicious party Pj , in the main

thread, compute ecomi→j
3,N+2 uniformly at random.

• Sub.Hyb4: In this hybrid, for every honest party Pi and malicious party Pj , in the main

thread, compute ecomi→j
3,N+2 = PRF(ki→j , ecomi→j

3,N+1)⊕ 0.

• Sub.Hyb5: In this hybrid, for every honest party Pi and malicious party Pj , in the main

thread, compute ecomi→j
3,` = (ki→j ⊕ pi→j` (0), pi→j` (zj→i`)) for all ` ∈ [N]. This is same as H6.

Sub-Claim 1. Assuming the bounded rewinding security of the RWI, the hiding property of the un-
derlying commitment scheme Com used in the construction of ECom and the existence of an extrac-
tor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in Sub.Hyb2.

Proof. The only difference between the two hybrids is that in Sub.Hyb1, for all ` ∈ [N], in ecomi→j
3,`

we use ki→j while in Sub.Hyb2, we use 0. We know that the invariant holds in Sub.Hyb1.
We will design a set of intermediate hybrids Sub.Hyb1,0 to Sub.Hyb1,N where Sub.Hyb1,0 denotes

Sub.Hyb1 and Sub.Hyb1,N denotes Sub.Hyb2. We will then show that the invariant holds in every
intermediate hybrid to complete the proof. For ` = 1 . . . N , Sub.Hyb1,`: For every honest party Pi
and malicious party Pj , do: (to ease the exposition, we will skip the superscript i→ j).

• Pick a new degree 4 polynomial q` such that (k ⊕ p`(0)) = (0⊕ q`(0)).

• In round 1, compute ecom1,` = Com(q`).

• in the main thread, compute ecom3,` as (0⊕ q`(0), q`(z`)).

• In every look-ahead thread, compute ecom3,` as before, i.e using input k but using polynomial
q`.

61

That is, in Sub.Hyb1,`, we switch the `th index of the extractable commitment scheme from using
input (k) to using input 0.

Recall that the goal was to show that the invariant holds in every intermediate hybrid. Assume
for the sake of contradiction that there exists ` such that the invariant doesn’t hold in Sub.Hyb1,`

but holds in Sub.Hyb1,0, . . . ,Sub.Hyb1,`−1. That is, there exists an adversary A such that for some
honest party P∗i and malicious party P∗j , A causes event E to occur with non-negligible probability
in Sub.Hyb1,`. We will use A to arrive at a contradiction.

We will again prove this using a series of intermediate hybrids. We know that the invariant
holds in Sub.Hyb1,`−1. Consider a set of hybrids H1, . . . ,H5 as follows where H1 corresponds to
Sub.Hyb1,`−1 and H5 corresponds to Sub.Hyb1,`.

• H2: In round 3 of every look-ahead thread, for every honest party Pi and malicious party
Pj , the algorithm RWI3 proves that the commitment (ecom1, ecom2, ecom3) is “well-formed”
using all indices from 1, . . . , λ except index `.

• H3: In round 1, for every honest party Pi and malicious party Pj , compute ecom1,` = Com(0).

• H4: For every honest party Pi and malicious party Pj :

– In the main thread, compute ecom3,` as (0⊕ q`(0), q`(z`)).

– In every look-ahead thread, compute ecom3,` as before but using polynomial q`.

• H5: In round 1, for every honest party Pi and malicious party Pj , compute ecom1,` = Com(q`).

Note: as before, we drop the superscript i → j to ease the exposition. We will now show that
the invariant holds in H2, . . . ,H5 and this completes the proof.

Lemma 2. Assuming the bounded rewinding security of the protocol RWI and the existence of an
extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in H2.

Proof. We know that the invariant holds in H1. Suppose it doesn’t hold in H2. That is, there exists
an adversary A such that for some honest party P∗i and malicious party P∗j , A causes event E to
occur with non-negligible probability. The only difference between the two hybrids is in the witness
used to compute the RWI in round 3 of protocol π for every look-ahead thread. We will use A to
design an adversary ARWI that breaks the bounded rewinding security of the scheme RWI.
ARWI interacts with a challenger CRWI. ARWI performs the role of SimHyb in its interaction with

A exactly as done in H1. ARWI picks an honest party Pi, a malicious party Pj . Initially, it receives a

message rwi1 from CRWI which it sets as the value rwii→j1 in its interaction with A in round 1. Then,

ARWI creates a set of 5 look-ahead threads. On receiving rwij→i2 in round 2 for each look-ahead
thread, ARWI forwards this to CRWI as its second round message for that look-ahead thread. ARWI

also sends the statement

sti→j2 =
(
{ecomi→j

a,` }
3
`=1, {ecomi→j

b,` }
3
`=1,msg2,i,Trans1, {nmcomi→j

` }3`=1, td1,j , nci
)
∈ Li→j2

where the other values are generated as in H1 along with the pair of witnesses used in H1 and H2

respectively. Corresponding to each look-ahead thread, ARWI receives a message rwi3 which is set
as rwii→j3 in its interaction with A in round 3 of protocol π. The rest of protocol π is performed
exactly as in H1. As in the proof of Claim 25, recall that using these 5 threads (that are all “GOOD
with respect to some honest party H” with noticeable probability), ARWI can successfully run the
input extraction phase.

62

Observe that the first case corresponds to H1 while the second case corresponds to H2.
Now, let’s see how ARWI breaks the bounded rewinding security of the scheme RWI. ARWI runs

the extractor ExtNMCom of the non-malleable commitment scheme using the messages in all the
threads that correspond to the non-malleable commitment from malicious party Pj to honest party
Pi. Let the output of ExtNMCom be t∗. If TDValid(td1,i, td2,i, td3,i, t

∗) = 1, then ARWI outputs case
2 indicating that the WI was constructed using the witness as in H2. Else, it outputs case 1.

Let’s analyze why this works. We know that the invariant doesn’t hold in H2 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of the honest party P∗i with non-negligible probability ε. With probability 1

n2 where n
is the total number of parties, this corresponds to honest party Pi and malicious party Pj picked
randomly by ARWI. Therefore, with non-negligible probability ε

n2 , the adversary Pj , using the non-
malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation messages of the
honest party Pi in H2. Therefore, since the invariant holds in H1 with non-negligible probability,
when the extractor ExtNMCom outputs a valid trapdoor t∗, it must be the case that we are in H2

with non-negligible probability. Thus, ARWI breaks the bounded rewinding security of the scheme
RWI which is a contradiction. Hence, the invariant holds in H2 as well.

Lemma 3. Assuming the hiding of the commitment scheme Com, the invariant holds in H3.

Proof. We know that the invariant holds in H2. The only difference between H2 and H3 is that in
H3, the simulator now computes the commitment ecom1,` in round 1 as ecom1,` = Com(0) for every
honest party Pi and malicious party Pj . Assume for the sake of contradiction that the invariant
doesn’t hold in H3. That is, there exists an adversary A such that for some honest party P∗i and
malicious party P∗j , A causes event E to occur with non-negligible probability. We will use A to
design an adversary ACom that breaks the hiding of the commitment scheme.
ACom interacts with a challenger CCom. ACom performs the role of SimHyb in its interaction with

A exactly as done in Hyb1. ANMCom picks an honest party Pi and a malicious party Pj uniformly
at random. ACom creates a set of 5 look-ahead threads. ACom interacts with a challenger CCom
and sends two strings: (p`) and (0). ACom receives a message nmcom which is sent to A as the
value ecom1,` round 1 and the rest of protocol π is performed exactly as in H2. As in the proof of
Claim 25, recall that using these 5 threads (that are all “GOOD with respect to some honest party
H” with noticeable probability), ACom can successfully run the input extraction phase.

Observe that the first case corresponds to H2 while the second case corresponds to H3.
Now, let’s analyze why ACom breaks the hiding of the scheme Com. We know that the invariant

doesn’t hold in H3 so there exists honest party P∗i and malicious party P∗j such that event E doesn’t
hold. That is, the adversary P∗j , using the non-malleable commitment, commits to a valid trapdoor
t∗i for the trapdoor generation messages of the honest party P∗i with non-negligible probability ε.
With probability 1

n2 where n is the total number of parties, this corresponds to honest party Pi
and malicious party Pj picked randomly by ACom. Therefore, with non-negligible probability ε

n2 ,
the adversary Pj , using the non-malleable commitment, commits to a valid trapdoor t∗i for the
trapdoor generation messages of the honest party Pi in H3. Therefore, since the invariant holds
in H2 with non-negligible probability, when the extractor ExtNMCom outputs a valid trapdoor t∗, it
must be the case that we are in H3 with non-negligible probability. Thus, ACom can use this to
break the hiding of the commitment scheme Com which is a contradiction. Hence, the invariant
holds in H3 as well.

Lemma 4. Invariant holds in H4.

63

Proof. We know that the invariant holds in H3. The difference between H3 and H4 is only a
statistical change and hence the invariant continues to hold in H4 as well.

Lemma 5. Invariant holds in H5.

Proof. This is same as the proof of Lemma 3.

This completes the proof of Sub-Claim 1.

Sub-Claim 2. Assuming the security of the pseudorandom function PRF and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb3.

Proof. The only difference between the two hybrids is that, in Sub.Hyb3, on the main thread,
the value ecomi→j

3,N+2 is computed uniformly at random while in Sub.Hyb2, it was computed as

PRF(ki→j , ecomi→j
3,N+1)⊕ xi. Therefore, if there exists an adversary A for which the invariant holds

in Sub.Hyb2 but not in Sub.Hyb3, we can use the extractor ExtNMCom to extract the value inside
the adversary’s non-malleable commitment and check whether the invariant holds or not. Thus,
we can build a reduction that breaks the security of the PRF.

Sub-Claim 3. Assuming the security of the pseudorandom function PRF and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb4.

Proof. This is identical to the previous proof.

Sub-Claim 4. Assuming the bounded rewinding security of the scheme RWI, the hiding property
of the underlying commitment scheme Com used in the construction of ECom and the existence of
an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in
Sub.Hyb5.

Proof. This is identical to the proof of Sub-Claim 1.

This completes the proof of Claim 30.

Claim 31. Assuming the bounded rewinding security of the scheme RWI and the hiding property of
the underlying commitment scheme Com used in the construction of ECom, Hyb5 is indistinguishable
from Hyb6.

Proof. This is similar to the proof of Claim 30 except that we no longer have to run the extractor
ExtNMCom of the non-malleable commitment scheme.

Claim 32. Assuming the security of protocol πSM and the existence of an extractor ExtNMCom for
the non-malleable commitment scheme NMCom, the invariant holds in Hyb7.

Proof. We know that the invariant holds in Hyb6. The only difference between Hyb6 and Hyb7 is
that in Hyb7, in the main thread, the simulator now computes the messages of protocol πSM using
the simulated algorithms S1,S2,S3. Assume for the sake of contradiction that the invariant doesn’t
hold in Hyb7. That is, there exists an adversary A such that for some honest party P∗i and malicious
party P∗j , A causes event E to occur in the main thread with non-negligible probability. We will

use A to design an adversary AπSM that breaks the security of the protocol πSM.

64

AπSM performs the role of SimHyb in its interaction with A exactly as done in Hyb6. AπSM also
interacts with a challenger CπSM and corrupts the same parties as done by A. For every honest
party Pi, AπSM receives a first round message msg1,i which is sent to A in round 1 of protocol π on
the main thread. On receiving msg1,j for every malicious party Pj in round 1 of the main thread
from A, AπSM forwards this to CπSM as the first round messages of the malicious parties.
AπSM then creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of

the protocol alone. In each look-ahead thread, AπSM computes msgi2 using input 0. Recall from
the properties of the scheme πSM that AπSM can do since msgi1 is public coin. As in the proof of
Claim 25, recall that using these 5 threads (that are all “GOOD with respect to some honest party
H” with noticeable probability), AπSM can successfully run the input extraction phase.

Then, on the main thread, as before, the messages msg2,i and msg2,j corresponding to every
honest party Pi and malicious party Pj are sent across between CπSM and A via AπSM in round 3
of protocol π on the main thread. AπSM also sends the values (y, {xj , rj}) (obtained in the input
extraction phase) to CπSM . Then, for every honest party Pi AπSM receives a third round message
msg3,i which is sent to A in round 4 of protocol π. On receiving msg3,j for every malicious party
Pj in round 3 from A, AπSM forwards this to CπSM as the third round messages of the malicious
parties. The rest of protocol π is performed exactly as in Hyb6. Observe that when CπSM computes
the messages of protocol πSM honestly, A’s view corresponds to Hyb6 and then CπSM computes
simulated messages, A’s view corresponds to Hyb7.

Now, let’s see how AπSM breaks the security of protocol πSM. For every honest party Pi and
malicious party Pj , AπSM runs the extractor ExtNMCom of the non-malleable commitment scheme
using the messages in all the “Good” threads that correspond to the non-malleable commitment
from Pj to Pi. Let the output of ExtNMCom be t∗i . If for some pair of parties, TDValid(td1,i, t

∗
i) = 1,

then AπSM outputs case 2 indicating that the messages sent by the challenger were simulated. Else,
it outputs case 1 indicating that the messages were generated honestly.

Let’s analyze why this works. We know that the invariant doesn’t hold in Hyb7 so there exists
honest party P∗i and malicious party P∗j such that event E doesn’t hold. That is, the adversary P∗j ,
using the non-malleable commitment, commits to a valid trapdoor t∗i for the trapdoor generation
messages of the honest party P∗i with non-negligible probability ε. Therefore, since the invariant
holds in Hyb6 with non-negligible probability, when the extractor ExtNMCom outputs a valid trapdoor
t∗i corresponding to this pair of parties, it must be the case that we are in Hyb6 with non-negligible
probability. That is, when ExtNMCom outputs a valid trapdoor, it corresponds to AπSM receiving
simulated messages and otherwise, it corresponds to AπSM receiving honestly generated messages.
Thus, AπSM breaks the security of the protocol πSM which is a contradiction. Hence, the invariant
holds in Hyb7 as well.
Remark: Note that the adversary could potentially cause some honest parties to abort at the end
of round 3 and some to continue the protocol. In the event that the adversary causes all the honest
parties to abort, there is no difference between the two hybrids. In the case when the adversary
causes at least one honest party to not abort,

Claim 33. Assuming the security of protocol πSM, Hyb6 is indistinguishable from Hyb7.

Proof. The only difference between Hyb6 and Hyb7 is that in Hyb7, in the main thread, the simulator
now computes the messages of protocol πSM using the simulated algorithms S1,S2,S3. If there exists
an adversary A that can distinguish between the two hybrids, we can use A to design an adversary
AπSM that breaks the security of the protocol πSM. The rest of the proof is similar to the proof of
Claim 32 above.

65

Claim 34. The invariant holds in Hyb8.

Proof. There is no difference in the main thread between Hyb7 and Hyb8 and so the invariant
continues to remain true.

Claim 35. Hyb7 is computationally indistinguishable from HybIdeal except with probability atmost
µ
4 + negl(λ).

Proof. We argue the proof via the following two cases.
Case 1: Pr[not abort] ≥ µ

4 :
Suppose the adversary doesn’t abort with probability greater than µ

4 , then, by Chernoff’s bound,

in Hyb7, except with negligible probability, in the set of 5·n·λ
µ threads, there will be at least 5

“GOOD threads with respect to Pi∗ for some honest party Pi∗ . Also, in HybIdeal (the final ideal
world simulator), SimHyb will run an expected polynomial number of threads to get at least 12λ
(which is greater than 5 · n) “GOOD” threads. Thus, the input and trapdoor extraction will be
successful in both hybrids except with negligible probability.

Therefore, the only difference between Hyb7 and HybIdeal is that in Hyb7, after the input ex-
traction, SimHyb resamples the main thread λ

µ times while in HybIdeal, SimHyb first estimates the

probability of not aborting to be ε′ and then resamples the main thread min(2λ, λ
2

ε′) times. The
rest of the proof follows in a very similar manner to the proof of claim 5.8 in [Lin17]. That is, we
show that if the “Check Abort” step succeeds, the simulator fails in HybIdeal only with negligible
probability using the claim in [Lin17]. Also, by a Markov argument, we know that in Hyb7, if
the “Check Abort” step succeeds, the simulation successfully forces the output and hence, this
completes the proof.
Case 2: Pr[not abort] < µ

4 :
Suppose the adversary doesn’t cause an abort at the end of round 3 with probability less than µ

4 .
Then, in both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability
µ
4 . Thus, in this case, the adversary’s view in Hyb7 is indistinguishable to that in HybIdeal except
with probability atmost µ

4 + negl(λ).

We now calculate the probability that the adversary can distinguish between HybReal and
HybIdeal.

Observe that except in 2 cases, every pair of consecutive hybrids is computationally indistin-
guishable. In each of those 2 cases (the indistinguishability between Hyb7 and HybIdeal, Hyb0 and
HybReal), the pair of hybrids are indistinguishable except with probability atmost µ

4 +negl(λ). Thus,
HybReal and HybIdeal are indistinguishable except with probability atmost µ

2 + negl(λ). This con-
tradicts our assumption that there exists an adversary A that can distinguish the real and ideal
worlds with some non-negligible probability µ. This completes the proof.

66

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In CRYPTO, pages 468–499, 2017.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, pages 483–501, 2012.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 106–115.
IEEE, 2001.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model
from new assumptions. In ASIACRYPT, 2017.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent mpc via strong simulation. In TCC, 2017.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In TCC, 2017.

[BKP17] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: A
paradigm for keyless hash functions. IACR Cryptology ePrint Archive, 2017:488, 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via garbled inter-
active circuits. EUROCRYPT, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - con-
current composition via super-polynomial simulation. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,
PA, USA, Proceedings, pages 543–552, 2005.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In Juris Hartmanis, editor, STOC, pages 364–369. ACM, 1986.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent
non-malleable commitments (and more) in 3 rounds. In CRYPTO, pages 270–299,
2016.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Siniscalchi, and Ivan Visconti. Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In TCC, 2017.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Siniscalchi, and Ivan Visconti. Round-optimal secure
two-party computation from trapdoor permutations. In TCC, 2017.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In STOC, pages 542–552, 1991.

67

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283–293,
2000.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In FOCS, pages 308–317,
1990.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

[GKP17] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round complexity
of self-composable two-party computation. In EUROCRYPT, pages 194–224, 2017.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In EUROCRYPT, pages 448–476, 2016.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
STOC, pages 695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In STOC, pages 1128–1141, 2016.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In FOCS, pages 41–50, 2014.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round mpc from
bilinear maps. In FOCS, 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. EUROCRYPT, 2018.

[HHPV17] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Round-optimal secure multi-party computation. IACR Cryptology
ePrint Archive, 2017:1056, 2017.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptology, 25(1):158–193, 2012.

68

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, 2010.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In STOC, pages 21–30, 2007.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In CRYPTO,
2017.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial hard-
ness. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th Inter-
national Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Pro-
ceedings, Part II, volume 10678 of Lecture Notes in Computer Science, pages 139–171.
Springer, 2017.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, pages 335–354, 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party
computation with a dishonest majority. In EUROCRYPT, pages 578–595, 2003.

[KS17] Dakshita Khurana and Amit Sahai. Two-message non-malleable commitments from
standard sub-exponential assumptions. IACR Cryptology ePrint Archive, 2017:291,
2017.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In
Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography., pages 277–346.
Springer International Publishing, 2017.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In TCC, pages 571–588, 2008.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In CRYPTO, pages 353–365, 1990.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, pages 735–763, 2016.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on Discrete Algo-
rithms, January 7-9, 2001, Washington, DC, USA., pages 448–457. ACM/SIAM, 2001.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 232–241, 2004.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions
and applications. In CRYPTO, pages 57–74, 2008.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, pages
563–572, 2005.

69

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In EUROCRYPT, pages 638–655, 2010.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In TCC, pages
191–202, 2004.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 1999.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In FOCS, pages 531–540, 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982.

A WI with Bounded Rewinding Security

In this section, we sketch the proof of Theorem 7.
More generally, for any constant B > 0, we construct a 3 round delayed-input witness indistin-

guishable argument with B-rewinding security according to Definition 6 assuming the existence of
injective one way functions.

Overview of the Protocol and Proof. At a very high level, the protocol consists of combining
the 3-round delayed-input WI protocol in [LS90] with the bounded rewinding secure 3-round “MPC
in the head” based 3-round protocol of [IKOS07]. The 3-round delayed-input WI protocol in [LS90]
for proving that a Graph G contains Hamiltonian cycle H is as follows. The prover first commits
to a random hamiltonian matrix H ′ in the first round. Upon receiving verifier challenge, if this
challenge is 0, the prover decommits the entire matrix H ′ (containing 0’s representing non-edges
and 1’s representing edges), and the verifier checks if it is Hamiltonian. If this challenge is 1, the
prover uses input G,H to compute a random permutation π that maps H to H ′. It outputs π, and
additionally decommits all values in H ′ that correspond to non-edges in π(G). The verifier checks
that all opened values in H ′ are 0.

The main idea to obtain bounded rewinding security, is to offload the process of verifying the
commitment to the Hamiltonian H ′ (corresponding to b = 0), to an “MPC-in-the-Head” proto-
col [IKOS07] with bounded rewinding security. Opening this up, the commitment c = Com(H ′)
will be accompanied by commitments to views of n = (6B + 1) virtual players in a robust MPC
protocol, with privacy against any subset of 2B collusions. The MPC protocol will output 1 to all
virtual players iff H ′ is indeed a commitment to a hamiltonian. The verifier challenge corresponding

to b = 0, will be replaced by

(
n
2

)
possible challenges revealing the views of different subsets of

2 players, and the verifier will check these views for correctness and consistency. By 2B-privacy
of MPC, even given the views of 2B players, a malicious verifier will learn no information about
H ′, giving us the desired bounded-rewinding security. Soundness will follow by [LS90] because the
soundness of MPC-in-the-head will guarantee that H ′ is Hamiltonian.

To prove B-rewinding security, we note that each query of the malicious verifier V ∗ can be
interpreted as consisting of two parts - the first is a bit b that is either 0 or 1 and if b = 0, the

70

second part consists of a random subset of 2 parties whose views must be opened. The simulator
runs by guessing the set of queries made across all the B-rewinds in advance, and appropriately
running the [LS90] and [IKOS07] simulators based on this guess. We now describe the construction
for completeness.

MPC-in-the-Head. We make black-box use of a 3-round zero knowledge protocol (non delayed-
input) with constant soundness error and bounded rewinding security.

Definition 17 (3-Round Constant Soundness ZK with Bounded Rewinding Security). Fix a pos-
itive integer B. A delayed-input 3-round interactive argument (as defined in Definition 1) for an
NP language L, with an NP relation RL is said to have B-Rewinding Security if there exists a
simulator Sim such that for every non-uniform PPT interactive Turing Machine V ∗, it holds that
{REALV

∗
(1λ)}λ and {IDEALV

∗
(1λ)}λ are computationally indistinguishable, where the random vari-

able REALV
∗
(1λ) is defined via the following experiment. In what follows we denote by PZK1 the

prover’s algorithm in the first round, and similarly we denote by PZK3 his algorithm in the third
round.

Experiment REALV
∗
(1λ) is defined as follows:

1. Run PZK1(1
λ, x, w; r) and obtain output rwi1 to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1) and interpret its output as message rwi2.

3. Run PZK3(1
λ, rwi2, x, w; r), where PZK3 is the (honest) prover’s algorithm for generating the

third message of the WI protocol, and send its output rwi3 to V ∗.

4. Set a counter i = 0.

5. If i < B, then set i = i + 1, and V ∗ (given all the information so far) generates another
message rwii2, and receives the (honest) prover’s message PZK3(rwii2, x, w; r). Repeat this step
until i = B.

6. The output of the experiment is the view of V ∗.

Experiment IDEALV
∗
(1λ) is the output of the experiment SimV ∗(1λ, x; r).

Imported Theorem 2. [IKOS07] Assume the existence of injective one-way functions. Then,
there exists a 3-round constant-soundness zero-knowledge protocol for proving NP statements, that
is simulatable under B-bounded rewinding according to Definition 17.

The work of [IKOS07] constructs such a protocol by having the prover emulate a t = 2B-private
MPC “in his head”.

Construction. We construct the protocol RWI with constant soundness error for the Graph
Hamiltonicity problem, in Figure 7. Soundness of this protocol can be amplified via parallel repe-
tition while preserving the WI property: and this can be used to prove general NP statements via
a Karp reduction. The protocol RWI consists of 4 algorithms (RWI1,RWI2,RWI3,RWI4) where the
first 3 denote the algorithms used by the prover and verifier to send their messages and the last is
the final verification algorithm.

We use the protocol from Imported Theorem 2. We denote its algorithms by Head.ZK =
(Head.ZK1,Head.ZK2,Head.ZK3,Head.ZK4), where the first 3 denote the algorithms used by the
prover and verifier to generate their messages, and the last is the final verification algorithm.

71

Inputs: Prover P obtains input (in the third round) an efficiently sampleable graph G (the
statement) and a corresponding hamiltonian cycle H (the witness).

1. Round 1: Prover message:

• Pick a random cyclic graph H ′, uniform randomness r and compute nmcom =
Com(H ′; r) to the adjacency matrix of H ′ using a non-interactive commitment Com.

• Compute hzkP→V1 ← Head.ZK1(1
λ) and send (nmcom, proveP→V1) to V .

2. Round 2: Verifier message:

• Pick a random bit b.

• If b = 0, compute hzkV→P2 ← Head.ZK2(hzkP→V1) and send (0, hzkV→P2) to P .

• If b = 1, send (1,⊥) to P .

3. Round 3: Prover message:

• On input graph G with hamiltonian cycle H, do the following:

• If b = 0, compute and send hzkP→V3 ← Head.ZK3(hzkP→V1 , hzkV→P2) to prove using
witness w = (H ′, r) that H ′ is a cyclic graph and nmcom = Com(H ′; r).

• If b = 1, compute and send a permutation π that maps H ′ onto H. Also, decommit to
all edges in the adjacency graph of H ′ that correspond to non-edges in π−1(G).

4. Verifier Output:

• If b = 0, compute the output of the algorithm Head.ZK4.

• If b = 1, check that all opened values are 0 and map (via π) to all non-edges of G.

Figure 7: 3 round Bounded Rewinding Secure WI

B MPC - Proof of Aborting Case

Recall that the only difference between the two hybrids is if the adversary causes SimHyb to abort
at the end of round 3 - that is, the “Check Abort” step doesn’t succeed. In that case, in Hyb0,
SimHyb uses the honest parties’ inputs to run the protocol while in Hyb1, SimHyb runs the protocol
using input 0 for every honest party. We will now show that these two hybrids are indistinguishable
via a sequence of intermediate hybrids H0 to H12. Here, H0 will correspond to Hyb0 and H12 will
correspond to Hyb1.

• H0 : This is same as Hyb0.

• H1 - Simulate Weak ZK: In this hybrid, SimHyb creates two sets of look-ahead threads that
run only round 3 of the protocol. The first set is identical to the main thread in Hyb0. The
second set is identical to the main thread in Hyb1 (same as H12) - that is, it computes an
extractable commitment using input 0 and the messages for the underlying semi-malicious
MPC protocol πSM using input 0.

These look-ahead threads are used to simulate the Weak ZK argument WZK. Using all these
look-ahead threads, SimHyb runs the algorithm SimWZK of the weak ZK protocol to simulate
the weak ZK argument given by every honest party in round 3 of the main thread. Note that
in the look-ahead threads, the weak ZK is computed honestly.

72

Recall from [JKKR17] that SimWZK is a distinguisher-dependent simulator that uses the
distinguisher’s response on all these look-ahead threads to simulate the weak ZK. Note that
these look-ahead threads that are created here are local to this proof and have nothing to
do with the look-ahead threads that are created by the actual simulator Sim for the overall
protocol. In particular, these local look-ahead threads are not created by Sim in the overall
proof. As a result, though SimWZK depends on the distinguisher, we use it only in the
underlying reductions here and not in the overall simulation and hence our overall simulator
Sim is not distinguisher dependent.

• H2 - Change Second ECom: In the main thread, for each honest party Pi, SimHyb does

the following: in round 3, compute ecomi→j
b,3 = ECom3(xi, ri, ecomi→j

b,1 , ecomj→i
b,2 ; ri→jb,ecom). That

is, in the main thread, the simulator now commits to the input in the second extractable
commitment scheme too.

Further, SimHyb also changes the first set of look-ahead threads. In the first set of look-
ahead threads, the second extractable commitment is computed as in the main thread: that
is, ecomi→j

b,3 = ECom3(xi, ri, ecomi→j
b,1 , ecomj→i

b,2 ; ri→jb,ecom). In the second set of look-aheads, the

second extractable commitment continues to be computed using input 0: that is, ecomi→j
b,3 =

ECom3(0, ri, ecomi→j
b,1 , ecomj→i

b,2 ; ri→jb,ecom) where ri is sampled fresh in each look-ahead thread.

• H3 - Switch RWI: In every thread (main and look-aheads), in round 3, SimHyb computes
the RWI from each honest party Pi to malicious party Pj using the witness for the second
statement: that is, using the second extractable commitment.

• H4 - Switch Commitment: In the main thread, in round 3, SimHyb computes nci ←
NCom(0; rnc,i). Note that in the look ahead threads, nci continues to be computed as a
commitment to 1 so that the weak ZK arguments in the look-ahead threads can be honestly
generated.

• H5 - Switch RWI: In the main thread, in round 3, SimHyb computes the RWI from each
honest party Pi to malicious party Pj using the witness for the fourth statement: that is,
using the commitment nci to input 0.

• H6 - Change First ECom: In the main thread, for each honest party Pi, SimHyb does the

following: in round 3, compute ecomi→j
a,3 = ECom3(0, ri, ecomi→j

a,1 , ecomj→i
a,2 ; ri→ja,ecom). That is, in

the main thread, the simulator now commits to input 0 in the first extractable commitment
scheme.

• H7 - Change πSM: In the main thread, for every honest party Pi, SimHyb compute msg2,i ←
S2(Trans2; ri). Note that this is same as computing msg2,i ← πSM2 (0,Trans1; ri).

• H8 - Switch RWI: In every thread (main and look-aheads), in round 3, SimHyb computes the
RWI from each honest party Pi to malicious party Pj using the witness for the first statement:
that is, using the first extractable commitment.

• H9 - Change Second ECom: In the main thread and every look-ahead thread in the first
set, for each honest party Pi, SimHyb does the following: in round 3, compute ecomi→j

b,3 =

ECom3(⊥, ecomi→j
b,1 , ecomj→i

b,2 ; ri→jb,ecom). That is, the simulator now commits to ⊥ in the second
extractable commitment scheme.

73

• H11 - Switch Commitment: In the main thread, in round 3, SimHyb computes nci ←
NCom(1; rnc,i).

• H12 - Stop Simulating Weak ZK: In this hybrid, SimHyb stops the two sets of look-ahead
threads and computes the Weak ZK argument honestly. This hybrid exactly corresponds to
Hyb1.

We now show that each pair of successive hybrids in the above list is computationally indistin-
guishable and that completes the proof of Claim 21.

Sub-Claim 5. Assuming the Weak Zero Knowledge property of the argument system WZK, H0 is
computationally indistinguishable from H1.

Proof. The only difference between the two hybrids is that in H0, the Weak ZK argument is com-
puted honestly while in H1, the Weak ZK argument on the main thread is computed using the
simulator SimWZK from [JKKR17]. The proof of indistinguishability of the two hybrids directly
follows from the security of the Weak ZK argument system constructed in [JKKR17].

Here, note that for the second set of look-ahead threads, we can generate the extractable
commitment using input 0 even though the first 2 rounds are already fixed because the scheme is
delayed input and allows sampling a fresh value s for the term ecomb,3,N+1 in each third round
message. Informally, recall that this is the reusability property mentioned in Section 7.1. That is, in
round 3 of each look-ahead thread in the second set, corresponding to the commitment from every
honest party Pi to malicious party Pj , SimHyb computes ecomi→j

b,3 as (ecomi→j
b,3,1, . . . , ecomi→j

b,3,N+2)

where ecomi→j
b,3,1, . . . , ecomi→j

b,3,N are the same in all the threads, ecomb,3,N+1 = si→j is sampled afresh

in each thread and ecomb,3,N+2 = PRF(ki→j , si→j)⊕ 0. Also, note that the second round message
of protocol πSM can also be generated using input 0 in the second set of look-ahead threads because
the first round message doesn’t depend on the input at all.

Sub-Claim 6. Assuming the security of the non-interactive commitment Com and the pseudo-
random function PRF used inside the scheme ECom, H1 is computationally indistinguishable from
H2.

Proof. Let’s briefly recall the construction of the scheme ECom from Section 7.1 in the context
of protocol π. Consider a party Pi as committer interacting with a party Pj as receiver using

input message m. In round 1, Pi computes ecomi→j
1 = {ecomi→j

1,1 , . . . , ecomi→j
1,N } where ecomi→j

1,` =

Com(pi→j`) where each pi→j` is a random polynomial of degree 4 (defined in Section 7.1). In round

2, Pj generates ecomj→i
2 = (zj→i1 , . . . , zj→iN) where each zj→i` is a random value. Then, in round 3,

Pi outputs ecomi→j
3 = {ecomi→j

3,1 , . . . , ecomi→j
3,N+2} where ecomi→j

3,` = (ki→j⊕pi→j` (0), pi→j` (zj→i`)) for

each l ∈ [N] and ecom3,N+1 = si→j and ecom3,N+2 = PRF(ki→j , si→j)⊕m.
We will now prove this subclaim via a series of intermediate sub-hybrids Sub.Hyb1 to Sub.Hyb5

where Sub.Hyb1 corresponds to H1 and Sub.Hyb5 corresponds to H2. Throughout, we skip the
subscript “b” to ease the exposition.

• Sub.Hyb1: This is same as H1.

• Sub.Hyb2: In the main thread and each look ahead thread in the first set, for every honest
party Pi and malicious party Pj , in round 1, compute ecomi→j

1,` = Com(0) for all ` ∈ [N].
This is indistinguishable from the previous hybrid by the hiding property of the scheme Com.

74

• Sub.Hyb3: In the main thread and each look ahead thread in the first set, for every honest
party Pi and malicious party Pj , pick ki→j1 uniformly at random. Then, for each ` ∈ [N], pick

a new degree B polynomial qi→j` such that (ki→j ⊕ pi→j` (0)) = (ki→j1 ⊕ qi→j` (0)). Compute

ecom3,` as (ki→j1 ⊕ qi→j` (0), qi→j` (zi→j`)).
This hybrid is statistically indistinguishable from the previous hybrid.

• Sub.Hyb4: In the main thread and each look ahead thread in the first set, for every honest
party Pi and malicious party Pj , in round 1, compute ecomi→j

1,` = Com(qi→j`) for all ` ∈ [N].
This is indistinguishable from the previous hybrid by the hiding property of the scheme Com.

• Sub.Hyb5: In the main thread and each look ahead thread in the first set, for every honest
party Pi and malicious party Pj , compute ecomi→j

3,N+2 = PRF(ki→j1 , ecomi→j
3,N+1) ⊕ xi. This is

same as H2.
This is indistinguishable from the previous sub-hybrid by the security of the pseudorandom
function PRF.

Sub-Claim 7. Assuming the reusability security of the scheme RWI, H2 is computationally indis-
tinguishable from H3.

Proof. This follows from the reusability property of RWI in the same manner as in [JKKR17].
(In particular, we make L invocations of the reusability security, where L is the total number of
threads.)

Sub-Claim 8. Assuming the hiding property of the non-interactive commitment scheme NCom,
H3 is computationally indistinguishable from H4.

Proof. The only difference between the two hybrids is that in H3, for every honest party Pi, nci is
computed as a commitment of 1 in the main thread while in H4 it is computed as a commitment of
0. Note that in both hybrids, there is no change on any of the look-ahead threads. Thus, if there
exists an adversary that can distinguish between the two hybrids, there exists a reduction that can
break the hiding property of the commitment scheme.

Sub-Claim 9. Assuming the reusability security of the scheme RWI, H4 is computationally indis-
tinguishable from H5.

Proof. The proof is similar to the proof of Sub-Claim 7. The only difference being that here, the
witness is changed only in the main thread and not in all the threads.

Sub-Claim 10. Assuming the hiding property of the commitment scheme Com and the security
of the pseudorandom function PRF used inside the scheme ECom, H5 is computationally indistin-
guishable from H6.

Proof. The proof is similar to the proof of Sub-Claim 6.

Sub-Claim 11. Assuming the security of the semi-malicious MPC protocol πSM, H6 is computa-
tionally indistinguishable from H7.

75

Proof. The only difference between H6 and H7 is that in H7, in the main thread, the simulator
now computes the second message of protocol πSM using the simulated algorithms S2. Assume for
the sake of contradiction that there exists an adversary A that can distinguish between the two
hybrids. We will use A to design an adversary AπSM that breaks the security of the protocol πSM.
AπSM performs the role of SimHyb in its interaction with A exactly as done in H6. AπSM also

interacts with a challenger CπSM and corrupts the same parties as done by A. For every honest
party Pi, AπSM receives a first round message msg1,i which is sent to A in round 1 of protocol π on
the main thread. On receiving msg1,j for every malicious party Pj in round 1 of the main thread
from A, AπSM forwards this to CπSM as the first round messages of the malicious parties. Similarly,
the messages msg2,i and msg2,j corresponding to every honest party Pi and malicious party Pj are
sent across between CπSM and A via AπSM in round 3 of protocol π on the main thread. The rest
of protocol π is performed exactly as in H6. In particular, AπSM generates the messages of protocol
πSM in the look-ahead threads on its own even though the first message of the protocol was received
externally from CπSM . Recall that this follows from a property of the protocol πSM that the first
round message is independent of the input and doesn’t have any secret information used to generate
the second round messages.

Observe that when CπSM computes the messages of protocol πSM honestly, A’s view corresponds
to H6 and when CπSM computes simulated messages, A’s view corresponds to H7. Therefore, if A
can distinguish between these two hybrids, AπSM will use the same distinguishing guess to break
the security of protocol πSM.

Sub-Claim 12. Assuming the reusability security of the scheme RWI, H7 is computationally in-
distinguishable from H8.

Proof. The proof is same as the proof of Sub-Claim 7 discussed above.

Sub-Claim 13. Assuming the hiding property of the commitment scheme Com and the security
of the pseudorandom function PRF used inside the scheme ECom, H8 is computationally indistin-
guishable from H9.

Proof. The proof is same as the proof of Sub-Claim 6 discussed above.

Sub-Claim 14. Assuming the hiding property of the non-interactive commitment scheme NCom,
H9 is computationally indistinguishable from H10.

Proof. The proof is same as the proof of Sub-Claim 8 discussed above.

Sub-Claim 15. Assuming the Weak Zero Knowledge property of the argument system WZK, H10

is computationally indistinguishable from H11.

Proof. The proof is same as the proof of Sub-Claim 5 discussed above.

C Non-adaptive Bounded Rewinding WI with Reusability Secu-
rity

In this section, we first define 3 round delayed input WI with reusability security verbatim from
Definition 10 in [JKKR17]. We then define 3 round delayed input WI with non-adaptive rewinding
security which is a modification of Definition 6. In the next subsection, we show how to construct
a 3 round WI protocol that is non-adaptive bounded rewinding secure and reusable secure.

76

Definition 18 (3-Round Delayed-Input WI with Reusability Security). A delayed-input 3-round
interactive argument (as defined in Definition 1) for an NP language L, with an NP relation RL is
said to be WI with Resuable Security if for every non-uniform PPT interactive Turing Machine V ∗,
every k = poly(λ) and every sequence (x1, w1), (x2, w2), ...(xk−1, wk−1), (xk, wk0 , w

k
1) it holds that

{REALV
∗

0 (1λ)}λ and {REALV
∗

1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1} the
random variable REALV

∗
b (1λ) is defined via the following experiment. In what follows we denote by

PZK1 the prover’s algorithm in the first round, and similarly we denote by PZK3 his algorithm in
the third round.

Experiment REALV
∗

b (1λ):

1. Run PZK1(1
λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the

message to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs a message rwi2.

3. Next, P receives inputs ((x1, w1), (x2, w2), ...(xk−1, wk−1), (xk, wk0 , w
k
1)) and V receives (x1, x2...xk).

4. Run PZK3(σ, rwi2, x
1, w1), . . . , PZK3(σ, rwi2, x

k−1, wk−1), PZK3(σ, rwi2, x
k, wkb), where PZK3 is

the (honest) prover’s algorithm for generating the third message of the WI protocol, and
send its messages (rwi13, . . . , rwik3) to V ∗.

5. The output of the experiment is the output of V ∗.

Definition 19 (3-Round Delayed-Input WI with Non-Adaptive Bounded Rewinding Security).
Fix a positive integer B. A delayed-input 3-round interactive argument (as defined in Definition 1)
for an NP language L, with an NP relation RL is said to be WI with Non-Adaptive B-Rewinding
Security if for every non-uniform PPT interactive Turing Machine V ∗, it holds that {REALV

∗
0 (1λ)}λ

and {REALV
∗

1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1} the random variable
REALV

∗
b (1λ) is defined via the following experiment. In what follows we denote by PZK1 the prover’s

algorithm in the first round, and similarly we denote by PZK3 his algorithm in the third round.

Experiment REALV
∗

b (1λ):

1. Run PZK1(1
λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the

message to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs {(xi, wi0, wi1)}i∈[B] and a set of messages {rwii2}i∈[B].

3. For each i ∈ [B], run PZK3(σ, rwii2, x
i, wib), where PZK3 is the (honest) prover’s algorithm for

generating the third message of the WI protocol, and send its message rwi3 to V ∗.

4. The output of the experiment is the output of V ∗.

C.1 Construction

In this section, we show how that protocol 6 in [JKKR17] is a 3 round non-adaptive bounded
rewinding and reusable secure WI argument if the underlying WI in that construction is instead
instantiated using our 3 round delayed-input bounded rewinding WI argument from Appendix A.
Formally, we show the following theorem:

Theorem 14. For any constant B > 0, assuming polynomially secure:

77

• DDH or Quadratic Residuosity or N th Residuosity,

the protocol π presented below is a 3 round delayed-input non-adaptive B-rewinding and reusable
secure witness indistinguishable argument.

Our protocol π, which is a modified version of protocol 6 from [JKKR17] is described in Figure 8.
Let BR.WI denote the 3 round delayed-input bounded rewinding WI argument from Appendix A.
let OT denote a two round oblivious transfer protocol with security against malicious receivers and
semi-honest senders. Such oblivious transfer protocols can be instantiated based on DDH/QR/Nth

Residuosity [NP01, HK12]. We also assume the existence of dense cryptosystems which are known
based on DDH/QR/Nth Residuosity.

Prover Input: Instance x ∈ L, witness w such that RL(x,w) = 1.
Verifier Input: Instance x, language L.

• Prover Message: Pick r1, r2, r
′
1, r
′
2 ∈ {0, 1}

∗, send c1 = com(r1; r
′
1), c2 = com(r2; r

′
2)

using non-interactive statistically binding commitment com. Also, send br.wi1 as the first
message of the WI argument.

• Verifier Message: Pick challenge e
$← {0, 1}λ for the Σ-protocol, and for i ∈ [λ], send

OT1,i(ei) in parallel. Each ei is encrypted with a fresh OT instance. Additionally send

r̃1, r̃2
$←{0, 1}∗, and send br.wi2 as the second message of the WI argument.

• Prover Message: Send r1, r2 with br.wi3 as the third message of the WI argument
proving that ∃r′1 such that c1 = com(r1; r

′
1) OR ∃r′2 such that c2 = com(r2; r

′
2). Set pk1 =

r1 ⊕ r̃1, pk2 = r2 ⊕ r̃2 as public keys for a dense cryptosystem.

Define commit(M ;R) = encpk1(M ; s1), encpk2(M ; s2) and R = s1||s2, which is decommitted
by revealing R. For i ∈ [λ], and send commit(hi),OT2,i(z

0
i , z

1
i) in parallel using the scheme

commit. The decommitment information in z0i , z
1
i corresponding to any commitment, only

consists of the randomness R used to generate the commitment using commit.

• Verifier Output: The verifier V recovers zi as the output of OTi for i ∈ [λ], and outputs
accept if and only if (br.wi1, br.wi2, br.wi3) is an accepting transcript and (ai, ei, zi)i∈[λ] is
an accepting transcript of the underlying Σ-protocol, according to the commitment scheme
commit.

Figure 8: 3 round delayed-input non-adaptive bounded rewinding WI with reusability security

C.2 Overview of Security

The delayed-input non-adaptive bounded rewinding WI with reusability security of the protocol in
Figure 8 follows by a straightforward adaptation of their proof to rely on bounded-rewinding secure
WI instead of ZAPs.

Soundness and Reusable Security. Note that the proof of soundness and reusable security of
this protocol([JKKR17]) only relies on soundness and witness indistinguishability of the underlying
building block br ·wi. As such, since our bounded-rewinding secure WI satisfies both soundness and
(standard) witness indistinguishability, these properties follow exactly by the proofs in [JKKR17].

78

That is, in the proof of soundness, instead of relying on the soundness of any generic WI as is used in
their construction, one can rely on the soundness of the WI we instantiate with here. Similarly, the
reusable witness indistinguishability follows ([JKKR17]) by using the reusability of two-message
OT, and noting that the underlying WI component is used only to prove the same statement in
every invocation.

Non-adaptive Bounded Rewinding Security. The proof of non-adaptive bounded rewinding
security of the primitive follows the proof in [JKKR17]. They note that all primitives satisfy
non-adaptive rewinding security and allow the same sequence to go through as the non-rewinding
setting. We note that their proof can be modified only so that in the hybrid argument that relies
on resettable witness indistinguishability of the WI (or ZAP) protocol in [JKKR17], we instead
rely on bounded-rewinding security of the WI protocol. As a result, in this hybrid, we reduce non-
adaptive bounded-rewinding security of the protocol in Figure 8 to bounded-rewinding security of
the underlying WI, by only creating a bounded number of rewinding or look-ahead threads.

79

	Introduction
	Our Results
	Related Work

	Technical Overview
	Promise Zero Knowledge
	Four Round Secure Multiparty Computation
	List Coin-Tossing

	Preliminaries
	Secure Multiparty Computation
	Delayed-Input Interactive Arguments
	Extractable Commitments
	Non-Malleable Commitments

	Building Blocks
	Trapdoor Generation Protocol
	WI with Bounded Rewinding Security

	Promise Zero Knowledge
	Definitions
	Constructing Simulation Sound Promise ZK
	Security Proof

	Three Round List Coin Tossing
	Our List Coin Tossing Protocol
	Security Proof

	Four Round Malicious Secure MPC
	Building Block: Extractable Commitments with Additional Properties
	The MPC Protocol
	The Protocol
	Security Proof

	References
	WI with Bounded Rewinding Security
	MPC - Proof of Aborting Case
	Non-adaptive Bounded Rewinding WI with Reusability Security
	Construction
	Overview of Security

