
Enter the Hydra: Towards Principled Bug Bounties and

Exploit-Resistant Smart Contracts∗

Lorenz Breidenbach† Phil Daian‡ Florian Tramèr§ Ari Juels¶

Abstract

Vulnerability reward programs, a.k.a. bug bounties, are a popular tool that could help
prevent software exploits. Today, however, they lack rigorous principles for setting bounty
amounts and require high payments to attract economically rational hackers. Rather than
claim bounties for serious bugs, hackers often sell or exploit them.

We present the Hydra Framework, the first general, principled approach to modeling and
administering bug bounties and boosting incentives for hackers to report bugs. The key idea
is what we call an exploit gap, a program transformation that enables runtime detection
of security-critical bugs. The Hydra Framework transforms programs via N-of-N-version
programming (NNVP), a variant of classical N-version programming that executes multiple
independent program instances.

We apply the Hydra Framework to smart contracts, small programs that execute on
blockchains. We show how Hydra contracts greatly amplify the power of bounties to in-
centivize bug disclosure by economically rational adversaries, establishing the first framework
for economic evaluation of smart contract security. We also model powerful adversaries ca-
pable of bug withholding, exploiting race conditions in blockchains to claim bounties before
honest users can. We present Submarine Commitments, a countermeasure of independent
interest that conceals transactions on blockchains.

We present a simple core Hydra Framework for Ethereum. We report the implementation
of two Hydra contracts—an ERC20 token contract and a Monty-Hall-like game.

1 Introduction

Despite theoretical and practical advances in code development, software vulnerabilities remain
an ineradicable security problem. Vulnerability reward programs—a.k.a. bug bounties—have thus
become instrumental in many organizations’ security assurance strategies. These programs offer
rewards as incentives for hackers to disclose software bugs. Unfortunately, hackers often prefer to
exploit critical vulnerabilities or sell them in underground markets.

The chief reason for this choice is that the bugs eligible for large bounties are generally
weaponizable vulnerabilities. The financial value of critical bugs (0-days) in gray markets may
exceed bounty amounts by a factor of as much as ten to one hundred [1]. For example, while Apple
offers a maximum 200k USD bounty, a broker intermediary such as Zerodium purportedly offers
1.5 million USD for certain iPhone jailbreaks. In some cases hackers can monetize vulnerabili-
ties themselves for large payouts [2, 3]. Modest bounties may thus fail to successfully incentivize
disclosure [4].

Pricing bounties appropriately can also be hard because of a lack of research giving principled
guidance. Payments are often scheduled arbitrarily based on bug categories and may not reflect

∗The first three authors contributed equally to this work.
†ETH Zürich, Cornell Tech and the Initiative for CryptoCurrencies and Contracts (IC3). lb673@cornell.edu
‡Cornell Tech and the Initiative for CryptoCurrencies and Contracts (IC3). pad242@cornell.edu
§Stanford University. tramer@cs.stanford.edu
¶Cornell Tech Jacobs Institute and the Initiative for CryptoCurrencies and Contracts (IC3). juels@cornell.edu

1

lb673@cornell.edu
pad242@cornell.edu
tramer@cs.stanford.edu
juels@cornell.edu

Figure 1: Hydra program with heads f1, f2, and f3. Example on right shows effect of bug induced
by input X in f3.

bugs’ market value or impact. For example, Apple offers up to 100k USD for “Extraction of
confidential material protected by the Secure Enclave Processor” [4].

Finally, bounty payments present a problem of fair exchange. A bounty payer does not wish
to pay before reviewing an exploit, while hackers are wary of revealing exploits and risking non-
payment or mis-payment of bounties (e.g., [5, 6, 7]). This uncertainty creates a market inefficiency
that limits incentives for hackers to uncover vulnerabilities.

In this paper, we introduce the Hydra Framework, the first principled approach to bug bounty
administration that addresses these challenges. The Hydra Framework deters economically ra-
tional actors, including black-hat hackers, from exploiting bugs or selling them in underground
markets. We focus on smart contracts as a use case to demonstrate the framework’s power ana-
lytically and empirically.

The Hydra Framework. The key to the Hydra Framework is to build support for bug detection
and bounties into software at development time using a concept that we call an exploit gap. This
is a program transformation that makes critical bugs detectable at runtime, but hard to exploit.

We propose an exploit gap technique that we refer to as N-of-N-version programming (NNVP).
A variant of classical N-version programming, NNVP leverages multiple versions of a program that
are independently developed, or otherwise made heterogeneous. In the Hydra Framework, these
program versions, or heads, are executed in parallel within a meta-program that we call a Hydra
program.

In stark contrast to N-version programming’s goal of fault tolerance (i.e., where the program
attempts to produce a correct output even in the face of partial failures), NNVP focuses on error
detection and safe termination. If heads’ outputs are identical, a Hydra program runs normally.
If the outputs diverge for some input, a dangerous state is indicated and the program aborts. The
Hydra program may then trigger payment of a bounty for this bogus input or take other actions.
The basic idea is depicted in Figure 1.

A bug is only exploitable if it affects all Hydra heads identically. If failures are somewhat
uncorrelated across heads, a bug in one head is thus unlikely to affect the Hydra program as
a whole. Similarly, an adversary that breaks one head and, instead of claiming a bounty, tries
to generalize the exploit, risks preemption by honest bounty hunters. Modest bounties can thus
incentivize economically rational hackers to disclose bugs rather than attempt an exploit. We show
that even when an exploit’s market value exceeds the bounty by multiple orders of magnitude,
disclosing bugs in Hydra heads yields higher expected payoff than attempting a full exploit.

A Hydra Framework for smart contracts. We focus on smart contracts, programs that
execute in blockchain systems such as Ethereum [8]. They are especially well suited as a use case
given several distinctive properties:

• Heightened vulnerability: Smart contracts are often financial instruments. Program bugs
usually directly affect funds, enabling hackers to extract (pseudonymous) cryptocurrency,

2

as shown by tens of millions of dollars worth of Ethereum stolen from [2] and [3]. Smart
contract binaries are publicly visible and executable, and often open-source. Given their
high value and exposure to adversarial study and attack, smart contracts urgently require
new bug-mitigation techniques.

• Unique economic properties: Smart contracts often carry cryptocurrency balances that rep-
resent a direct measure of their value at risk and exploit value. This fact facilitates principled
bounty price setting in our framework. Moreover, the protocols that underpin these systems
are often secured by a combination of cryptography and economic guarantees. Creating sim-
ilar quantifiable economic guarantees of correctness at the smart contract level is an open
problem we address.

• Bounty automation: Application of our framework to and by smart contracts can award
bounties automatically. The result is a fair exchange of bugs for bounties and guaranteed
payment for the first valid submitted bug. Bounties are transparent to bounty hunters and
can be adjusted dynamically to reflect contracts’ changing exploit value, creating a stable
bounty marketplace.

• Graceful termination conditions: Smart contracts are not (yet) mission critical software
and can often be aborted with minimal adverse effects for users, as required for NNVP.
Remediation of the DAO and Parity multsig attacks involved refunding money to users, a
mechanism we consider in this paper.

We implement a simple Hydra Framework library for Ethereum and evaluate it on two appli-
cations, an ERC20 token [9] and a Monty Hall game [10]. In both cases, our Hydra contract auto-
matically rewards bugs in one of three deployed heads, implemented in three different languages
in the Ethereum ecosystem. Our Hydra ERC20 token is deployed on the Ethereum main network
(with an initial 1,000 USD bounty), the first example of a principled, automated and trust-free
bug bounty. Our framework and smart contracts are available at https://thehydra.io/.

Major challenges. Several well-cited papers [11, 12] criticize traditional N-version program-
ming, observing that multiple versions of a program often exhibit correlated faults—an ostensible
hitch in the Hydra Framework.

We revisit these papers and show that NNVP achieves an appealing cost-benefit trade-off, by
abandoning fault-tolerance in favor of error detection. Compared to N-version programming ma-
jority voting scheme, partial independence is greatly amplified by NNVP, which requires agreement
by all heads. Previous experimental results in fact show that NNVP can achieve a large exploit
gap in Hydra programs. In particular, we review high-profile smart contract failures, showing that
NNVP would have addressed many of them.

A second challenge arises in automating bug bounties for smart contracts. Decentralized
blockchain protocols allow adversaries to perform front-running—ordering their transactions ahead
of those of honest users [13]. As a result, a näıvely implemented bounty smart contract is vulnera-
ble to a bug-withholding attack. Upon discovering an exploit for one head, a hacker can withhold it
and try to compromise the remaining heads to exploit the full contract. If an honest user discovers
a bug, the hacker front-runs her and claims the bounty first. Thus, withholding carries no cost
for the hacker, removing incentives for early disclosure.

We propose Submarine Commitments, a countermeasure of independent interest. Our tech-
nique temporarily conceals a bounty claim among ordinary transactions, preventing a hacker from
observing and front-running a claim. We formally define security for Submarine Commitments
and prove that they effectively prevent bug withholding.

Contributions. In summary, our main contributions are:

• The Hydra Framework: We propose, analyze, and demonstrate the first general approach to
principled bug bounties. We introduce the idea of an exploit gap and explore N-of-N-version
programming (NNVP) as a specific instantiation. We demonstrate the power of NNVP Hydra
programs in revisiting the N-version programming literature and reviewing high-profile smart

3

https://thehydra.io/

contract failures that it could have prevented. We provide the first quantifiable notion of
economic security for smart contracts and analyze the resulting.

• Bug withholding and Submarine Commitments: We identify the subtle bug withholding at-
tack. To analyze its security, we present a strong, formal adversarial model that encompasses
front-running and other attacks. We introduce a countermeasure of independent interest
called Submarine Commitments and prove that it effectively prevents bug withholding.

• Implementation: We describe and implement a simple Hydra Framework for Ethereum smart
contracts. We present Hydra implementations of an ERC20 token and Monty Hall game.
We empirically measure the costs in scaling smart contracts to multiple heads on-chain, and
explore cost-reduction strategies. We launched our bounty-backed Hydra ERC20 token on
Ethereum.

Organization. We present the concept and formalism for exploit gaps in Section 2. We discuss
and justify our use of N-of-N-version programming (NNVP), and present Hydra contracts in
Section 3. We formally analyze the interplay between bug bounties and exploit gaps to incentivize
bug disclosure in Section 4. In Sections 5 and 6, we introduce the bug-withholding attack and
Submarine Commitments as a countermeasure, along with a formal model in which to prove their
effectiveness. We present an implementation and evaluation of ERC20 and Monty Hall Hydra
contracts in Section 7. Finally, we review related work in Section 8, concluding in Section 9.
Details on Submarine Commitment implementation and security proofs are in the appendix.

2 Preliminaries and Notation

We now define some notation useful to our Hydra model.

2.1 Programs

Let f denote a stateful program. From a state s, running f on input x produces output y and
updates s. For an input sequence X = [x1, x2, . . .], we denote by run(f,X) := [y1, y2, . . .] a serial
execution trace of f starting from the initial state and producing output yi on input xi.

2.2 Exploits

For a program f , we let I be an abstract ideal program that defines the intended behavior of f .
That is, for any input X, the output of run(I, X) is correct. We assume that the input space is
bounded and that input sequences are finite.

We further assume that a program may produce a fallback output ⊥ if it detects that the
execution is diverging from the intended behavior (e.g., throwing a runtime exception if a stack
canary detects a stack overflow). The ideal program I never outputs ⊥. If a program f outputs
⊥ on some input xi, then all subsequent outputs in that execution trace will also be fallbacks. A
program’s execution trace is a fallback trace if it agrees with the ideal program up to some input
xi, and then outputs ⊥. The set of fallback traces is

Y⊥ :=
{
Y | ∃i.[y1, . . . , yi] @ run(I, X) ∧

n∧
j=i+1

(yj = ⊥)
}
,

where A @ B means that sequence A is a strict prefix of sequence B.
We naturally define an exploit against f as any sequence of inputs X for which f ’s output

is neither that of the ideal program nor a fallback trace. If E(f, I) denotes the exploit set of f
with respect to I, then X ∈ E(f, I) if and only if run(f,X) 6∈ Y⊥ ∪{run(I, X)}. Note that the
notions of ideal program, fallback output, and exploit are oblivious to the actual representation
of the program’s internal state.

4

2.3 Exploit Gaps and Bug Bounties

A program transformation T aggregates a set of N ≥ 1 programs into a new program f∗ :=
T (f1, f2, . . . , fN). Our definition of exploit gap aims to capture the natural notion that f∗ has
fewer exploits than the original fi. However, directly relating the sizes of |E(f∗, I)| and |E(fi, I)|
is problematic as we cannot measure these quantities in practice. Instead, we define a probabilistic
notion of exploit gap, for input sequences X sampled from a distribution D (e.g., the distribution
of user inputs to a program).

Definition 1 (Exploit Gap). A program transformation T (f1, f2, . . . , fN) := f∗ introduces an
affirmative exploit gap for a distribution D over input sequences X if we have

gap :=
PrX∈D

[
X ∈

⋃N
i=1E(fi, I)

]
PrX∈D [X ∈ E(f∗, I)]

> 1 . (1)

The exploit gap is empirically measurable and its magnitude reflects the likelihood that an
input sequence that is an exploit for some fi does not affect f∗.

A transformed program f∗ that always returns ⊥ trivially induces a large exploit gap, while
not having any utility. We therefore also require the following notion of availability.

Definition 2 (Availability Preservation). Let F (f) be the set of input sequences that lead to
a fallback output, i.e. X ∈ F (f) iff run(f,X) ∈ Y⊥. Then a program transformation T is
availability-preserving iff

F (f∗) ⊆
⋃N
i=1 (E(fi, I) ∪ F (fi))

To be availability-preserving and yield an exploit gap, a program transformation may trade
availability for correctness. That is, a transformed program may fallback on inputs that are
exploits for one or more of the original programs.

Given a transformation T that induces an affirmative exploit gap, a natural bug bounty for a
deployed program f∗ rewards exploits in the original programs fi. Some of these exploits may be
harmless against f∗, so attackers cannot sell or exploit them. We further want the disclosure of
such bugs to be “useful” towards ultimately improving the security of f∗, a notion captured with
the following natural definition:

Definition 3 (Monotonicity). For a program fi let f ′i be such that E(f ′i , I) ⊂ E(fi, I). A program
transformation T is monotone if for any such fi, f

′
i ,

E(T (f1, . . . , f
′
i , . . . , fN), I) ⊆ E(T (f1, . . . , fi, . . . , fN), I) .

Monotonicity says that fixing bugs in the original programs can only reduce the exploit set of
f∗.

Given such a transformation, the bug bounty scheme described previously satisfies three im-
portant properties:

1. The bugs are efficiently verifiable, via differential testing : If run(fi, X) 6= run(f∗, X), then
the input X is an exploit against fi or f∗ or both.

2. A claimable bug need not be an exploit on f∗. If the exploit gap is large (i.e., gap � 1),
then it is likely that a submitted bug affects one of the programs fi but not f∗. The output
of f∗ on such an input is either correct (according to I), or a fallback output ⊥.

3. The bugs are valuable. As T is monotone, finding and fixing bugs in the original programs
must eventually reduce the exploit set of f∗.

2.4 Achieving an Affirmative Exploit Gap

We give examples of program transformations (some on N = 1 programs) that may induce ex-
ploit gaps suitable for bug bounties. In Section 3, we present N-of-N-version Programming, the
transformation we use in this work.

5

Contract name Exploit value (USD) Root cause Independence source Exploit gap

Parity Multisig [3] 180M Delegate call+unspecified modifier programmer/language? 4/7

The DAO* [18] 150M Re-entrancy language 4

SmartBillions [19] 500K Bug in caching mechanism programmer 4

HackerGold (HKG)* [20] 400K Typo in code programmer+language 4

MakerDAO* [21] 85K Re-entrancy language 4

Rubixi [22] <20K Wrong constructor name programmer+language 4

Governmental [22] 10K Exceeds gas limit None? 7

Table 1: Selected smart contract failures and potential exploit gaps. The list is extended
from [23]. For each incident, we report the value of affected funds (data from [24]) and identify the high-
level cause of the exploited vulnerability, as well as the (hypothetical) potential for fault independence
between multiple contract versions. Green lines indicate settings in which a Hydra contract is likely to
have induced a large exploit gap and prevented the loss of funds. Yellow and red lines indicate incidents
that our solution can address only partially or not at all. Asterisks indicate ERC20 compatible contracts,
like our bounty described in Section 7. Details about each exploit and the potential for exploit gaps are
in Appendix A.

Runtime checks. The addition of runtime checks (e.g., stack canaries, assertions, under- or
overflow detection) is an availability-preserving transformation on a single program: the checks
may result in a fallback output (e.g., a runtime exception), where the original program had an
exploit.

N-version programming. A more broadly applicable program transformation that satisfies
our requirements is the use of redundancy in fault-tolerant systems. Prominent examples include
Recovery Blocks [14] and N-version programming [15]. These transformations operate on N > 1
programs and aim at full availability (i.e., no fallback outputs), a natural requirement in mission-
critical systems.

We focus on N-version (or multiversion) programming, a paradigm we build upon in Section 3.
This software development process consists of three core steps [15, 16]:

1. A specification (not necessarily a formal one) is written, that describes the program’s func-
tionality, API, and error handling. It further specifies how the outputs of different versions are
combined (Step 3 below).

2. N versions of the program specification are independently developed. Independence among
versions is promoted via isolation (i.e., minimal interactions between developers) and diversity
(i.e., different programming languages, or technical backgrounds of developers).

3. A meta-program runs the N versions in isolation and combines their outputs according to some
voting scheme.

N-version programming traditionally uses majority voting to aggregate the programs’ out-
puts [15, 16, 17]. It has been shown that majority voting may induce only a small exploit gap, if
program failures are somewhat correlated [12].

3 N-of-N-version Programming: An Exploit Gap Tailored
for Smart Contracts

N-version programming builds upon the assumption that heterogeneous implementations have
weakly correlated failures [15]. However, this assumption has been challenged by various exper-
iments [11, 12] questioning the cost-benefit trade-off of the paradigm. Our thesis is that smart-
contract ecosystems present a number of key properties that render multiversion programming and
derived bug-bounty schemes attractive. These properties are absent in settings considered in prior
experiments with N-version programming.

6

The main differentiator between the traditional setting of N-version programming, and ours,
is the role of availability. Prior work focuses on mission-critical software and thus favors avail-
ability over safety in the face of partial failures. For instance, Eckhardt et al. [12] explicitly
ignore the “error-detection capabilities” of multiversion programming. This setup is not suit-
able for a smart-contract environment. Indeed, as in centralized financial institutions (including
stock-markets [25]), the cost of a fault is typically much higher than that of a temporary loss of
availability of resources.

The Ethereum community’s preference for safety in this trade-off was recently exemplified when
attackers exploited a bug in the Parity Multisig Wallet [3] to steal users’ funds. A consortium of
“white-hat hackers” used the same bug to move user’s funds into a safe account. Despite funds
being locked away for several weeks, and reimbursement being contingent on the consortium’s
good will, the action was acclaimed by the community and in particular by the victims of the
white-hat “attack”. Note that the “escape hatch” in this scenario (i.e., send all funds to a safe
account), albeit crude, was deemed a successful alternative to an actual exploit.

We thus propose trading availability for safety in multiversion programming, by means of
a wider spectrum of voting schemes. In effect, we transition from a goal of fault-tolerance to
one of error detection and safe termination. Suppose that programs f1, . . . , fN have no fallback
outputs (i.e., F (fi) = ∅). Then majority voting yields a program f∗ that also satisfies F (f∗) = ∅,
but may not induce a large exploit gap. At the other end of the spectrum, we propose N-of-N-
version programming (NNVP), wherein f∗ aborts (i.e., outputs ⊥) unless all of the N versions
agree. NNVP is an availability-preserving transformation that induces a much larger exploit gap
(f∗ only fails if all the fi fail simultaneously). The balance between availability and correctness
offered by intermediate points in this design space (e.g., abort if more than k versions disagree for
1 ≤ k ≤ N/2) is an interesting question to explore.

Table 1 lists prominent losses to Ethereum smart contract failures. We discuss these in more
detail in Appendix A, and argue that a majority could have been abated with NNVP.

3.1 Revisiting N-version Programming

We revisit experiments challenging the cost-effectiveness of N-version programming, in light of our
NNVP alternative.

In a famous experiment, Knight and Leveson [26] found that the null-hypothesis of statistical
independence between program failures should be rejected. Yet partial dependence between pro-
gram failures need not invalidate the multiversion paradigm, as long as the reduction in failure
rates warrants the increased development costs.

However, in an experiment at NASA, Eckhardt et al. [12] found that the correlation between
individual versions’ faults could be too high to be considered cost-effective, with a majority vote
between three programs reducing the probability of some fault classes by a factor of only 4.
For input sequences X sampled from a broad test suite, majority-voting over the programs they
analyzed thus achieves gap ≈ 4.

Under NNVP, the cost-benefit analysis is much more appealing. From the experimental results
of Eckhard et al. [12] we find that three of their programs failed simultaneously with probability
at least 30-5,000 times lower than a single program. Similarly, for four versions, the failure rate
is reduced by a factor of at least 190-24,200. More details are in Appendix B. The actual gain
is probably much larger, as Eckhardt et al. [12] do not distinguish whether program failures are
identical or not. In NNVP, a failure only occurs if all N versions produce exactly the same incorrect
output. Otherwise, our scheme would abort whenever a divergence in the N versions occurs. Thus,
if loss of availability can be tolerated in rare situations, NNVP can significantly boost the error
detection capabilities of multiversion programming.

3.2 NNVP-Friendly Properties of Smart Contracts

In addition to favoring safety over availability, other properties of smart contract ecosystems (and
Ethereum in particular) render NNVP bug bounties attractive.

7

High risk for small applications. Smart contracts store large financial values in small ap-
plications (e.g., token transfer contracts), thus achieving a “price per line of code” that may be
unparalleled in other software. Incentives for bug-mitigating strategies are high, as smart contract
code is stored on a public blockchain and can often be executed by any party. Consequently,
exploits can usually directly extract or destroy stored funds. The cost of developing multiple
versions, however, is typically small in absolute terms.

Principled bounty pricing. A contract’s balance can often provide a direct measure of an
exploit’s market value. This facilitates our analysis of principled bounty pricing that incentivizes
early disclosure of bugs (see Section 4).

Bounty automation. The smart contract ecosystem enables automation of the full bounty
program, from bug detection (with on-chain differential testing) to rollback to bounty payments.
Bounties administered by smart contracts can satisfy many desirable properties such as fair ex-
change of bounties for bugs and guaranteed payment for successful bug discovery and disclo-
sure [27]. Moreover, bounties are transparent to users (i.e., the bounty is publicly visible on the
blockchain) and may be dynamically adjusted to reflect a contract’s changing balance (and thus
exploit value). The result is a stable, decentralized bounty marketplace.

Programming language diversity. Many exploits in Ethereum arose due to traits of specific
programming languages. The simplicity of Ethereum’s virtual machine has led to the development
of multiple interoperable languages, thus enabling potentially diverse implementations.

A step towards formal verification. The development process underlying multiversion pro-
gramming [16] can itself increase program correctness. In particular, developing multiple inter-
operable program versions requires a detailed specification of the program’s behavior. Such a
specification is only rarely available for current smart contracts, yet could pave the way to more
systematic formal verification.

3.3 The Hydra Contract

The Hydra consists of two program transformations. The first transformation TNNVP uses the
NNVP paradigm to induce an exploit gap. TNNVP combines N smart contracts (or heads)
f1, . . . , fN into a single contract f∗, which delegates calls to each head on every input. If the
N outputs match, f∗ returns the output; otherwise, f∗ rolls back any state changes and returns
the fallback output ⊥.

The second transformation TBounty is responsible for paying out a bounty and providing escape-

hatch functionality. It transforms a program f∗ into a program f̂ which forwards any input to f∗

and then returns f∗’s output, unless f∗ returns ⊥. In the latter case, f̂ will pay out a bug bounty
to its caller and enter an escape hatch mode.

Ideally, bugs could be patched online. Yet this is hard in systems such as Ethereum where a
smart contract’s code cannot be updated after deployment [28]. An advocated best practice [29]
is thus to enhance smart contracts with an escape hatch mode, which enables the contract’s funds
to be retrieved, before it’s eventual termination and redeployment.

The exact design of the escape hatch mode depends on the application, but there are some
universal design criteria:

• Security: Since the escape hatch will not benefit from the protection afforded by NNVP,
special care must be taken to ensure its correctness.

• Availability: If the escape hatch mechanism is unavailable, all assets held by the contract
could end up stuck. The design of the escape hatch should ensure availability for the entire
lifetime of the contract.

8

• Distributed trust: The contract’s assets should be returned to their owners (if these can be
safely established), or distributed among multiple parties.1

Simple designs are generally easier to analyze and less likely to be vulnerable or unavailable.
In simple cases, where the last uncompromised state of the contract can be safely established,
reverting to that state and allowing stakeholders to withdraw their assets is a satisfactory solution
devoid of any trust assumptions. More generally, we suggest transferring the contract’s funds to
an external multisig contract. These standardized contracts hold many millions of dollars worth
of cryptocurrency and have been heavily audited. By virtue of requiring multiple signatures to
perform any action on the contract, trust is distributed among multiple parties. To further improve
security, this escape-hatch multisig contract can itself be developed using the Hydra Framework.
If a bug in the multisig contract is found (e.g., [3]) the Hydra multisig can resort to sending all
funds to a trusted mediator.

4 Economic Analysis of Hydra Bounties

We formally analyze the exploit gap introduced by the Hydra contract, and derive a pricing model
for bounties that incentivize bug disclosure. We assume that when a bounty hunter discovers a
bug in a head, she is awarded a bounty instantaneously. In Section 5, we revisit and refine our
analysis in the blockchain model, wherein the adversary may delay and reorder messages sent to
smart contracts.

4.1 Bug Finding as a Stochastic Process

We consider a set of parties that try to find vulnerabilities in a Hydra contract f∗ composed of N
heads f1, . . . , fN . Running an exploit on contract f∗ may require multiple transactions (e.g., [2, 3]).
For simplicity, we slightly overload notation and identify an exploit with the input that ultimately
causes the contract’s outputs to depart from the ideal behavior I (although the internal state
of f∗ may have been corrupted earlier). That is, an input x is an exploit if run(f∗, X t [x]) 6=
run(I, X t [x]), where X is the (implicit) sequence of all inputs previously submitted to f∗.

If an honest party finds an input x that yields an exploit for at least one of the heads (∃i ∈
[1, N] : x ∈ E(fi, I)), then the party is awarded a bounty of value $bounty and the contract’s
escape hatch is triggered. If a malicious party finds an exploit against the full Hydra (x is an
exploit for each head), then we assume that the party can exploit this vulnerability to steal the
full contract’s balance, $balance.

We model bug finding as a Poisson process with rate λi, which captures a party’s work rate
towards finding program flaws. We assume that parties sample inputs x from a common distribu-
tion of potential exploits D. In this context, we recover our exploit gap notion (Definition 1) by
considering the difference in arrival times of two random events: (1) a party discovers a flaw in one
of the heads; (2) a party finds a full exploit. The waiting times for both events are exponentially
distributed with respective rates λi and

λi · Pr
x∈D

[
x ∈ E(f∗, I) | x ∈

⋃N
i=1E(fi, I)

]
=λi ·

Prx∈D

[
x ∈ E(f∗, I) ∧ x ∈

⋃N
i=1E(fi, I)

]
Prx∈D

[
x ∈

⋃N
i=1E(fi, I)

]
= λi ·

Prx∈D [x ∈ E(f∗, I)]

Prx∈D

[
x ∈

⋃N
i=1E(fi, I)

] = λi · gap−1 , (2)

1An escape hatch that sends all funds to the contract’s administrator (often the contract developer) opens up a
perverse incentive for planting an obscure bug in one head that can later be triggered to deplete the contract. The
same incentive also exists for non-Hydra contracts (see e.g., FirePonzi [22]).

9

where we used the definition of gap in Definition 1.
For simplicity, we first consider the strong assumption of independent program failures. For a

head fi, let p be the probability that an input x sampled from D is an exploit for fi. Our analysis
can easily include a distribution over a head’s vulnerability p, as in [17]. Here, the gap is

gap =
Prx∈D

[
x ∈

⋃N
i=1E(fi, I)

]
Prx∈D [x ∈ E(f∗, I)]

=
1− (1− p)N

pN
, (3)

which grows exponentially in N , for p ∈ (0, 1).
In general, the gap can be computed by plugging empirical estimates into Equation (1). For

instance, from the results of Eckhardt et al. [12], we estimate a gap of 4,400 for three heads and
34,500 for four heads (details are in Appendix B). Note that these results are for inputs x sampled
from the test suite used in [12]. A bug hunter may of course use a different distribution. In [12],
the classes of inputs with highest failure rates (i.e., the inputs that a bug hunter would aim to
sample) actually yield the largest exploit gaps.

4.2 Economic Incentives

We assume a set of honest parties with combined work rate λH. These bounty hunters only try
to exchange bugs for bounties. Note that a bug that affects all heads (i.e., a full exploit) cannot
be detected and rewarded by the meta-contract f∗. For simplicity, we thus let λH be the rate at
which honest parties find bugs that affect 1 ≤ k < N heads.

To analyze economic incentives of bounties, we consider malicious parties which, if given an
exploit, would use it to deplete the contract’s balance. W.l.o.g, we consider a single adversary A
with work rate λM. Indeed, for m (non-colluding) malicious parties with work rates λ1, λ2, . . . , λm,
it suffices to analyze incentives for the party with rate λM = max1≤i≤m λi. If the bounty incen-
tivizes this party to act honestly, it is easy to see that less efficient parties will have the same
incentive. The work rate of any party that decides to act honestly is incorporated into λH.

Let TH be a random variable modeling the waiting time until some honest party finds a bug.
TH follows an exponential distribution with rate λH. Moreover, let TM be the waiting time until
the malicious party finds an exploit against f∗. This variable is exponential with rate λM · gap−1.
We analyze two cases: (1) A finds an exploit against f∗, and (2) A finds a bug that affects a
proper subset of the heads.

In the first case, it is clear that A has no incentive to disclose, unless the bounty exceeds the
contract’s value. This is the situation of a “traditional” bounty scheme. However, the probability
of this bad event occurring is

Pr[TM < TH] =
λM · gap−1

λH + λM · gap−1
=

λM

λH · gap + λM
,

which naturally decays as the exploit gap increases.
The second case is the one where an appropriate bounty can incentivize honest behavior of

A. Suppose A found a non-exploitable bug. If A discloses the bug, she receives a payout of
payoutH := $bounty. If instead, she conceals the vulnerability and continues searching for exploits,
she risks a payout of 0 if another party finds a bug and claims the bounty. Her expected payout,
payoutM, is thus

Pr[TM < TH] · $balance =
λM

λH · gap + λM
· $balance .

Let α := λH

λM
. Then, honest behavior is incentivized if

payoutH

payoutM

> 1 ⇐⇒ $bounty >
1

α · gap + 1
· $balance .

10

Under the (conservative) assumption that λM = λH (the malicious party’s work rate is equal
to the combined work rate of all other parties), we get $bounty > 1

gap+1 · $balance. Assuming

independent program failures (see Equation (3)) the bounty decays exponentially in the number
of heads N .

Thus, given estimates of α and of the exploit gap, our analysis provides a principled way
of setting a bounty that incentivizes honest disclosure of discovered bugs. For instance, for the
particular experiment conducted by Eckhardt et al. [12], a three headed Hydra could provide a
bounty that is 3 to 4 orders of magnitude below an exploit’s value.

5 Bounties on the Blockchain: The Bug Withholding Prob-
lem

Our economic analysis in the previous section assumes that a bounty is paid immediately upon a
bug being claimed. However, when a bounty is run on a blockchain, adversaries can potentially
exploit blockchain network protocols to cheat honest users. In this section, we refine our analysis
by modeling bounty smart-contract execution with respect to a powerful blockchain adversary.
We highlight in this model a problem called bug withholding and propose and analyze a solution
called a Submarine Commitment in Section 6.

Front-running. The main challenge is that transactions need not be ordered in blocks according
to the times they are sent to the network. When an honest user submits a bounty-claim transaction
τ to the network, an adversary can potentially insert its own bounty-claim transaction τ ′ earlier
into the block in which τ appears. It does this by ensuring faster network propagation of τ ′ or by
causing a miner to order τ ′ before τ . (The adversary can pay a higher fee—more gas in Ethereum,
for example—or corrupt the miner.) This problem is called rushing or front-running [13].

Front-running opens up a bug bounty system to bug-withholding attacks. Suppose an adversary
has found a bug in one or more heads in a Hydra contract, and aims to find a stronger exploit
compromising all heads. If another party in the meantime claims a bug bounty, the adversary’s
progress is wiped out: It loses all potential payoff on its already discovered bugs. By front-
running, though, the adversary can withhold the bug while trying to exploit the full contract. If
another player tries to claim a bounty, the adversary preemptively first claims its own bounty via
front-running.

We propose a formal model for blockchain security. Our model, expressed as an ideal function-
ality Fwithhold, encompasses front-running, but is far stronger and subsumes many previous models
(e.g., Hawk [30]). We present a basic bug-bounty contract BountyContract in Fwithhold. Refining
our analysis of Section 4, we show how bug withholding in BountyContract breaks incentives for
bug disclosure. We show that commit-reveal schemes cannot protect against bug withholding.
Instead we introduce Submarine Commitments, a new technique for transaction concealment in
Section 6. We prove within an Fwithhold-hybrid world that using Submarine Commitments for
BountyContract drastically reduces the payoff of a bug-withholding adversary.

5.1 Adversarial Model

We model an adversary A that can front-run a victim. In our model, A can mount strong
history-revision attacks, overwriting blocks at the head of the blockchain, and can delay a victim’s
transactions by a bounded number of blocks.

These capabilities reflect an adversary’s ability to monitor transactions in the network, mount
network-level attacks against transaction propagation, control client accounts, and even corrupt
or bribe miners to suppress or overwrite legitimately mined blocks. Previous models, e.g., [30],
considered weaker attacks in which A can arbitrarily reorder transactions in any given epoch, i.e.,
within a pending block. They are equivalent to history-revision attacks with only a single block.
Our model thus reflects a much stronger adversary.

11

In our model, A itself constructs the blockchain. A controls all but one honest player, denoted
P0. (P0 models the collective behavior of all honest players.) A can affect the ordering of P0’s
transactions by: (1) Rewinding the blockchain from its head, i.e., mounting a history-revision
attack, for a sequence of up to ρ blocks; and (2) Delaying the posting on the blockchain of a
transaction by P0 by up to δ blocks. We call such an adversary A a (δ, ρ)-adversary.

Our adversarial model takes the form of an ideal functionality Fwithhold that characterizes an
(δ, ρ)-adversary A.

Preliminaries. Let B = {B1, B2, . . . , BB.Height} denote a blockchain consisting of a fully ordered
sequence of blocks. Here, B.Height denotes the number of blocks B contains. A block Bi =
{τi,1, τi,2, . . . , τi,s} is an ordered sequence of s transactions, i.e., Bi has blocksize s. (Smaller block
sizes can be modeled via null transactions τi,j = ∅.) For simplicity, we assume no forks. In the
case of a fork, A may operate on what it believes to be the authoritative chain.

Let P = {P0, P1, . . . , Pm} denote a set of clients or players that execute transactions. We
assume w.l.o.g. that P0 is honest and the other m players are controlled by A. We assume a
system-wide transaction buffer Mempool, from which transactions are selected for mining.

The function ValidTx(τ ;B,Mempool) verifies that a transaction is valid. It checks that τ
respects the syntax and semantics of the blockchain. Additionally ValidTx verifies that the trans-
action carries a valid nonce. This nonce may be a counter value associated with the sender Pi
that is incremented for every transaction posted by Pi. A transaction posted by Pi is valid if its
nonce is larger than the nonces of any other transactions from Pi already in B or Mempool. Thus
any transaction in a set of valid transactions is unique.

Ideal functionality Fwithhold. The ideal functionality Fwithhold, shown in Figure 2, supports three
functions: “post”, “add block”, and “rewind”. The function “post” permits any player (honest or
adversarial) to send a transaction into the Mempool buffer. The function “add block” is called by
A to extend the blockchain B by adding a new block that includes transactions from Mempool.
The function “rewind” allows A to remove blocks from B. This capability may seem redundant,
as A controls the blocks added to B. A may, however, wish to make retroactive modifications
based on information in a fresh transaction submitted by P0.

After adding a block, A must wait until P0 has posted all its transactions, before A can add
a new block. Execution of Fwithhold is bounded by a target height n, at which point Fwithhold halts
and outputs B. P0 does not observe Mempool in our model, although variant models are possible
of course.

5.2 BountyContract

Within Fwithhold, we specify a contract BountyContract to administer a bounty for a single bug,
using a simple commit-reveal scheme. BountyContract is parameterized by ∆ > δ + ρ, as well as
$deposit and $bounty. It takes as input a commitment to a bug in some block Bi (via transaction
“commit”). The commitment must be revealed before block Bi+∆ (via transaction “reveal”).
After a delay ∆, the player with the first validly revealed commitment may claim the bounty (via
transaction “claim”). A “commit” incurs a cost of $deposit, to prevent A from committing in
every block and revealing only if P0 also reveals.

We assume a function isvalidbug (which may involve a call to another contract) that determines
whether a submitted bug is valid. Within the Fwithhold model, BountyContract is fed a height-n
blockchain B, which is replayed, i.e., transactions are executed as ordered by Fwithhold in B.

5.3 Front-Running Attacks on BountyContract

BountyContract uses a commit-reveal scheme, a simple and general folklore solution to certain
rushing / front-running attacks [31]. This works if A cannot post a valid commitment itself until
it sees a victim’s decommitment. For instance, BountyContract prevents A from trying to learn
and steal the committed bug from an honest player P0.

12

Fwithhold with P = {P0, P1, . . . , Pm}, (δ, ρ)-adversary A, blocksize s, target height n

Init: B ← ∅, B.Height← 0, MaxHeight← 0, Mempool← ∅

On receive (“post”, τ) from Pi: // Pi submits tx

assert ValidTx(τ ;B,Mempool)

tag(τ)← (B.Height, Pi) // Label tx with current chain height and sender

Mempool← Mempool ∪ τ
send Mempool to A

On receive (“add block”, B) from A: // A extends blockchain

if B.Height = n then

output B; halt // To complete chain, A adds arbitrary n+ 1th block

assert
(
|B| = s

) ∧ (
B ⊆ Mempool

)
assert @τ ∈ Mempool− B s.t.

(
tag(τ) = (h, P0)

) ∧ (
h ≤ B.Height− δ

)
// Ensure delay at most δ for P0’s transactions

B.Height← B.Height + 1

BB.Height ← B // Add new block to chain

Mempool← Mempool− B // Remove processed txs from Mempool

MaxHeight← max(B.Height,MaxHeight)

send B to P0

On receive (“rewind”, r) from A // A rewinds by r blocks

assert MaxHeight− (B.Height− r) ≤ ρ
// Ensure that A rewinds by no more than ρ

Mempool← Mempool
⋃
{Bi}i∈[B.Height−r+1,B.Height]

// Return rewound transactions to Mempool

B.Height← B.Height− r

Figure 2: Ideal functionality Fwithhold for (δ, ρ)-adversary A

Unfortunately, if Commit is a standard cryptographic commitment scheme, this approach does
not protect against front-running in the Fwithhold-hybrid model if A is withholding a bug it already
knows. Here, A waits to see P0 send a “commit”. A then knows that someone is trying to claim
a bounty, and can simply front-run P0’s commitment by posting her own “commit” ahead in the
blockchain.

Players could in principle conceal true commitments by sending dummy commitments with
random values $val ≥ deposit—so that they are indistinguishable from real commitments—but
have a “dummy” flag that can be revealed to trigger a refund. This approach turns out to be
complicated and unworkable, though. A community of users would not in general have an incentive
to generate dummy traffic and incur transaction fees. A would-be claimant could generate dummy
traffic to conceal her true commitment, but then the very inception of dummy traffic would signal
a pending claim and incentivize A to release its withheld bug.

This problem arises in many other scenarios, e.g., token sales or auctions, where a bidding user
must send funds for her bid, thus exposing the bid amount on the blockchain.

In Section 6, we show how a new technique, called a Submarine Commitment, can address the
bug-withholding problem. First, we show why such front-running is harmful.

5.4 Impact of Bug Withholding in BountyContract

In our analysis of Hydra bug bounties in Section 4.2, we assumed that if A conceals a bug, she
might end up forfeiting a payout of $bounty. However, a bug-withholding attack has the potential
of removing any incentives for early disclosure, as A can ensure a payout of at least $bounty by
front-running the honest bounty hunter.

If A conceals her bug, she finds an exploit before an honest party attempts to claim the bounty
with probability q := Pr[TM < TH], and otherwise front-runs to claim the bounty. Her expected
payout is

payoutM = q · $balance + (1− q) · $bounty .

13

BountyContract with B, P = {P0, P1, . . . , Pm}, ∆, $deposit, $bounty

Init: CommitList,RevealList← ∅

On receive τ = (“commit”, comm, $val) from Pi: // Pi commits to bug

if $val ≥ $deposit then

CommitList.append(comm,B.Height;Pi)

On receive τ = (“reveal”, (comm, height), (witness, bug)) from Pi:

// Pi reveals commitment made in block height

if (comm, height;Pi) ∈ CommitList then

assert (B.Height− height) ≤ ∆

assert Decommit(comm; (witness, bug)) = true

assert IsValidBug(bug) = true

RevealList.append(height;Pi)

On receive τ = (“claim”, height) from Pi: // Pi tries to claim bounty

assert (height;Pi) ∈ RevealList

assert B.Height− height > ∆

assert @(height′;Pi′) ∈ RevealList s.t. height′ < height

send $bounty to Pi and halt // Pay bounty and ignore further messages

Figure 3: Smart contract BountyContract

Conversely, if A discloses the bug, her payout is payoutH = $bounty. To incentivize honest
behavior, we need payoutH > payoutM, i.e., $bounty > $balance, which again corresponds to
a traditional bounty with no exploit gap. Fortunately, we now show an elegant solution that
effectively thwarts bug-withholding attacks in Ethereum, thus re-instantiating positive incentives
for bug disclosure.

6 Thwarting Front-Running Attacks with Submarine Com-
mitments

We present a bug-withholding defense called a Submarine Commitment. This is a powerful, general
solution to the problem of front-running that may be of independent interest, as it can be applied
to smart-contract-based auctions, exchange transactions, and other settings.

As the name suggests, a Submarine Commitment is a transaction whose existence is temporarily
concealed, but can later be surfaced to a target smart contract. It may be viewed as a special,
stronger form of a commit / reveal scheme. Achieving Submarine Commitments is challenging in
systems like Ethereum, however, because message contents and currency in all transactions are in
the clear.

Briefly, in Ethereum, to commit in a Submarine Commitment scheme, P posts a transaction τ

that sends (nonrefundable) currency $val ≥ $deposit to an address âddr. This address is itself a
commitment of the form

âddr = H(addr(Contract), H(addr(P), key), data) ,

for H a commitment scheme (e.g., hash function in the ROM), key a randomly selected wit-
ness (e.g., 256-bit string), and data other ancillary information. P’s address is included in the
commitment to prevent replay by A. To reveal, P sends key to Contract. A Submarine Commit-
ment scheme includes an operation DepositCollection that permits Contract to recover $val using
addr(P) and key. This scheme has these key properties:

1. Commit: As key is randomly selected, âddr is indistinguishable from random in the view of
A. Thus τ has no ascertainable connection to Contract, and looks to A like an ordinary send
to a fresh address.

2. Reveal: After learning key, Contract can compute âddr as above and verify that $val was sent

14

correctly. Via DepositCollection, Contract recovers $val thus avoiding unnecessary burning
of funds.

Thus if A does not know P’s address (e.g., P can use a mixer), and $val is sampled from an
appropriate distribution of values $val ≥ $deposit, A cannot distinguish transaction τ from other
sends to fresh addresses. As we show in Appendix C, such sends are common in Ethereum and,
for a reasonable commit-reveal period (e.g., 25 minutes), form an anonymity set of hundreds of
transactions with a diverse range of values among which $val is statistically hidden. Notably, the
anonymity set represents 2-3% of all transaction traffic over the commit-reveal window.

Submarine Commitments via contract creation. A simple realization of Submarine Com-
mitments in Ethereum leverages a new Ethereum Virtual Machine (EVM) opcode, CREATE2,
introduced by EIP-86 (EIP stands for “Ethereum Improvement Proposal”). CREATE2 creates
new smart contracts, much like an already existing CREATE opcode. Unlike CREATE, which does
not include a user-supplied value, CREATE2 computes the address of the created contract C as
H(addrCreator, salt, codeC), where addrCreator is the address of the contract’s creator, salt is
a 256-bit salt value chosen by the creator, codeC is the EVM byte code of C’s initcode, and H is
Ethereum-SHA3 (Keccak-256).

To realize a Submarine Commitment, we can use salt to play the role of key in sending money
$deposit to contract BountyContract. Let Forwarder be a contract that sends any money received
at its address to BountyContract. A Submarine Commitment involves these functions:

• Commit: P selects a witness key←$ {0, 1}` for suitable ` (e.g., ` = 256). P sends $deposit to
address

âddr = H(addr(BountyContract), H(addr(P), key), code),

where addr(BountyContract) is BountyContract’s address and code is Forwarder’s EVM initcode.

• Reveal: P sends key and commitBlk (the block number in which P committed) to BountyContract.
BountyContract verifies that the commit indeed occurred in block commitBlk (see Appendix C.1
for more details).

• DepositCollection: BountyContract creates an instance of Forwarder at address âddr using CREATE2.
A call to Forwarder sends $deposit to BountyContract.

EIP-86 will be included in Ethereum in the second stage of the Metropolis hard fork (tagged
“Constantinople”) [32]. More details are in Appendix C, including a less efficient alternative
scheme that is realizable in Ethereum today.

Submarine Commitments in Fwithhold. To model Submarine Commitments, we let players
send a special message (“submarine-post”, τ) where τ = (“commit”, comm, $val) to Fwithhold. If τ
is valid, Fwithhold adds τ to the end of block B, before B is added to the blockchain B. Thus B
can contain transactions that A does not see as it is constructing blocks. A cannot delay such
messages but can still rewind B to evict them once the commitment is revealed.

6.1 Submarine Commitments in BountyContract

We prove that Submarine Commitments strongly mitigate bug withholding in BountyContract.
Our analysis uses a game-based proof in the Fwithhold-hybrid world.

Figure 4 shows our simple game, denoted by Expbntyrace
A . The game is played between an honest

user P ∗ = P0, and a user P1 controlled by A. W.l.o.g., P ∗ models a collection of honest players,
while P1 models players controlled by A. A interacts with P ∗ in the ideal functionality Fwithhold.
Let ∆ > δ+ρ, where δ and ρ are the number of blocks by which A can delay or rewind in Fwithhold.
The experiment considers an interval of n blocks in a blockchain B of length n′ = n + ∆. The
experiment’s parameters are (n′, δ, ρ, s) for Fwithhold, and values ∆, $deposit and $bounty.

In this game, only two messages may validly be submitted by a player: (“commit”, $deposit),
and “reveal”. To model Submarine Commitments, we assume that P ∗’s commitment message is

15

Experiment Expbntyrace
A (n′, δ, ρ, s; ∆, $deposit, $bounty)

Init: n← n′ −∆, $cost← 0, commblockP∗ ←$ [1, n]

A{B←Fwithhold({P0=P
∗,P1},n,δ,ρ,s)} //A interacts with Fwithhold

for i = 1 to n

if (“commit”, $deposit) ∈ Bi then
$cost← $cost + $deposit //Every commit costs $deposit

if
(
∃(1 ≤ i ≤ commblockP∗ ∧ i ≤ j ≤ min(i+ ∆, n)) s.t.

∃ (τ = “commit”) ∈ Bi s.t. tag(τ) = (i, P1) ∧
∃ (τ = “reveal”) ∈ Bj s.t. tag(τ) = (j, P1)

)
then

output(true, $payoff := $bounty − $cost) //A wins

output(false, $payoff := −$cost)

Figure 4: Adversarial game Expbntyrace
A

opaque to A, i.e., its presence in a block is not detectable by A and by implication does not count
toward the size of the block in which it is included.

For clarity of exposition, we first analyze Submarine Commitments outside the Poisson frame-
work from Section 4. Our results also hold in that setting, with a slightly tighter bound for our
main Theorem 4, below (see Appendix D for a proof). Instead, we consider a blockchain inter-
val of n blocks, wherein P ∗ commits in a block chosen uniformly at random. That is, P ∗ posts
(“commit”, $deposit), in the block at index commblockP∗ ←$ [1, n]. P ∗ posts a “reveal” in block
revblockP∗ = commblockP∗ + ρ.
A wins the game if it posts a valid “commit” message before P ∗ does, and also posts a valid

corresponding “reveal” message. It then claims the bounty. We let

pwins = adv
Expbntyrace

A
A = Pr

[
(true, ·)← Expbntyrace

A

]
.

As a first goal, an economically rational adversary A’s aims to maximize its expected payoff, namely

E[$payoff] = pwins · $bounty − E[$cost]. (4)

Of course, A can win with probability 1 by posting a “commit” message in B1 followed by a valid
“reveal” message within ∆ blocks, in which case it achieves pwins = 1 with $payoff = $bounty −
$deposit, which is optimal.

But A has a second goal. Recall that A is a bug-withholding adversary. A may gain financial
benefit outside the experiment Expbntyrace

A from delaying disclosure of its bug. So A would like to
emit a “reveal” message as late as possible, so that it maximizes its withholding period.

One possible strategy for A is to reveal a bug only by front-running P ∗. We call this a pure
front-running strategy. Specifically, if P ∗ posts the message “reveal” in block Bj , then A learns
that P ∗ posted a “commit” in block Bj−ρ. A can rewind and post its own “reveal” message
earlier than P ∗. But A can rewind at most ρ blocks (i.e., block Bj−ρ cannot be erased), so A only
succeeds if it has previously posted a “commit” in the interval [Bj−ρ−∆, Bj−ρ].

We show that for natural parameter choices, a pure front-running strategy greatly reduces
the payoff of A. Intuitively, this is because front-running is quite expensive: Since A observes a
“commit” message from P ∗ too late to remove it by rewinding, A must keep posting “commit”
messages continuously to ensure that it can front-run P ∗. We prove the following theorem in
Appendix D.

Theorem 4. Suppose that ∆ ≥ 4 and $deposit > 10(∆+1)
9n · $bounty. Then a pure front-running

adversary cannot achieve E[$payoff] ≥ 0.

This result is fairly tight and enables practical parameterizations of BountyContract, as this
example shows.

16

Example 1. Consider a bounty on the Ethereum blockchain, with 15-second block intervals. Sup-
pose that $bounty = 100,000 USD, that the period over which A competes with honest bounty
hunters is one week, and that a commitment must be revealed in ∆ = 100 blocks. Then given
$deposit ≥ 278 USD, a pure front-running adversary cannot achieve a positive expected payoff
(i.e., E[$payoff] > 0).

Of course, A could adopt other strategies. Specifically, A could reveal its bug preemptively—
i.e., before observing a “reveal” message from P ∗. We therefore also consider a second, natural
strategy that we call α-revealing.

An α-revealing adversary uses front-running in the interval [B1, Bαn]. If it has not yet revealed
its bug, it does so in block Bαn+1, for αn an integer. Thus, A ensures that it wins the bounty
with probability at least 1− α, while also potentially withholding for αn blocks. With α = 1, the
strategy is equivalent to pure front-running.

The proof of Theorem 4 immediately yields the result:

Corollary 5. Suppose that ∆ ≥ 4 and $deposit ≥ 10(∆+1)
9n · $bounty. Then an α-revealing

adversary A achieves E[$payoff] ≤
(
(1− α) · $bounty

)
− $deposit.

Of course, the space of strategies for an economically rational adversary A is a superset of
α-withholding. A might use a probabilistic strategy, reveal preemptively at a time that depends
on the set of blocks in which it has made commitments, etc. We conjecture that such an approach
is no better than α-withholding. We leave proof of this claim, and thus general results about eco-
nomically rational adversaries A, as an open problem. Additionally, our analysis can be extended
to model imperfectly concealed Submarine Commitments and non-uniform commitment times by
P ∗.

For instance, returning to the Poisson model in Section 4, we can identify commblockP∗ with
the waiting time TH until P ∗ finds a bug to commit, which has an exponential distribution of rate
λH. We show in Appendix D that if A competes with P ∗ over a period of approximately n = λ−1

H

blocks (in which case we expect honest parties to find exactly one bug in this n-block interval)
Theorem 4 still holds.

7 Implementation and Evaluation

We now present our implementation of a decentralized automated bug bounty for Ethereum smart
contracts. We describe the main technical challenges in deploying a Hydra contract on-chain, and
explain our design choices. We applied the Hydra Framework to two applications: (1) a generic
ERC20 contract [9] for token transfers, and (2) a generalized Monty Hall Lottery, wherein two
participants play a multi-round betting game [10]. Details on the implementation of Submarine
Commitments in Ethereum are in Appendix D.

7.1 EVM Preliminaries

The Ethereum Virtual Machine (EVM) is a simple stack-based architecture [33]. Smart contracts
executing in the EVM get access to three data structures: (1) the stack; (2) volatile memory; and
(3) permanent on-chain storage.

Execution of a contract begins with a transaction sent to the blockchain, specifying the called
contract, the call arguments, and an amount of ether, Ethereum’s default currency. The EVM
executes the contract’s code in a sequential single-threaded fashion. Operations can update stack
items, read and write to memory or to storage, and spawn a new call frame (with a new empty
memory region) by calling other contracts. Each instruction costs a fixed amount of gas, a special
resource used to price transactions.

Contracts can exceptionally halt—reverting all changes made in the current call frame (e.g.,
storage updates, transfers of ether)—and report an exception to the callee.

17

7.2 An Execution Environment for the EVM

The main technical challenge in deploying our Hydra Framework on the Ethereum blockchain is
the implementation of the N-version “Execution Environment” [15, 16], the agent that coordinates
the N versions and combines their outputs. The Execution Environment’s complexity should be
minimal, as it constitutes a Trusted Computing Base (TCB) for our application: exploiting the
coordinating software is likely to lead to an exploit against the Hydra contract.

To achieve the full power of our Hydra bounty program, N versions of a smart contract as
well as the Execution Environment (the meta-contract) are run on the blockchain. Indeed, while
we could run a traditional bounty program off-chain (to reward bugs for a single smart contract
deployed on chain), this would not provide an affirmative exploit gap, a central property in our
analysis of attacker incentives.

A simple proxy contract. Suppose we have N smart contract versions or heads f1, . . . , fN . In
principle, a Hydra meta-contract could take on a simple and generic design: On a call with input
x, call each head on input x sequentially and record each head’s output. If all outputs match,
return that output. Otherwise, pay the bounty and invoke an escape hatch (e.g., reimburse all
users and destroy the contract).

However, this design suffers from a major shortcoming: smart contracts can, in addition to
changing their own long-term storage, interact with each other. For instance, a contract can send
ether to another contract. A näıve sequential execution of the N heads would result in N duplicate
sends.

Ordering reads and writes. To handle interactions between contracts, we could run each head
until it reads or writes the state of another contract (e.g., reading a contract’s balance, or sending
ether). The meta-contract then checks that all heads agree, issues the read/write operation, and
resumes the heads. The contract’s specification determines these cross-check points [15, 16], by
defining a total-ordering of the reads and writes issued on each call.

We have implemented a generic Hydra instrumenter that converts each head’s global reads and
writes into callbacks to the meta-contract, which issues the calls on the heads’ behalf. As handling
arbitrary read/write sequences introduces some technicalities unrelated to the main contributions
of this paper, we leave a detailed description of this generic solution to a forthcoming manuscript.

Hereafter, we describe a simplified design, sufficient for the applications we target, that slightly
limits the type of reads and writes a contract can issue:

• Heads can issue arbitrary sequences of reads of the blockchain state (e.g., read contract
balances).

• The only type of write operation permitted is sending ether to other contracts.

• All sends must occur as the last actions in a call (this is an example of the “Checks-Effects-
Interactions” pattern described in Solidity’s Security Guidelines [29]).

Given these assumptions, we ask that each head returns, in addition to its output, a list of
sends. If the outputs and sends returned by all heads match, the meta-contract executes the sends
and returns the output. Otherwise, it pays a bounty and invokes an escape hatch.

Sending ether is by far the most common interaction between Ethereum contracts. Others,
omitted here for simplicity, include creating child contracts, self-destructing a contract, or calling
arbitrary functions in other contracts.

Handling exceptions. Finally, we consider exception-handling in our meta-contract. Recall
that the EVM halts when contracts perform illegal operations, such as explicitly throwing excep-
tions, underflowing the stack, or running out of gas. Ideally, we would consider any difference in
the heads’ throw behavior as a bug and pay a bounty. However, it is easy to set gas amounts
so that one head runs out of gas, yet others succeed. This issue is fixed in the recent Byzantium
hard-fork [34]. Thrown exceptions can now return data, allowing the meta-contract to distinguish
explicit exceptions thrown by heads from stack or gas exceptions.

18

7.3 Applications

To demonstrate our approach empirically, we developed three independent copies of two appli-
cations, a simple token transfer contract implementing the ERC20 token interface [9], and a
generalized version of a Monty Hall game.

For each application, three authors developed one head in each of Solidity, Serpent, and Viper,
the main programming languages in Ethereum. Solidity is the most popular language, focusing
on ease-of-use and general applicability. Serpent is a lower-level language allowing direct access
to EVM opcodes. Viper is an experimental language with a focus on security and decidability.
Although we do not measure this quantitatively, the languages themselves seem to be a source of
strong diversity between our Hydra heads.

The Hydra ERC20 token. We deployed a Hydra token transfer contract on the main Ethereum
network. The standard ERC20 API has been thoroughly peer reviewed [9], and is supported by
most of the highest-dollar contracts in Ethereum (as of October 2017, the combined market cap
of the top ten Ethereum tokens is over 2.5 billion USD [24]). Notably, the exploit in the DAO [2]
was partially present in the code managing DAO tokens, or shares.

Our token is implemented by a meta-contract that dispatches calls to the three heads and
rewards a bounty for inputs that trigger a discrepancy in the heads’ output behavior. This
contract can be used as a drop-in replacement for any ERC20 token, including the tokens used in
the DAO [2] and ether.camp [20] contracts. Note that the heads themselves do not hold any ether,
and simply implement the token’s bookkeeping logic. When a user wishes to deposit, transfer
or withdraw tokens, the meta-contract examines the heads’ outputs and executes the order if
agreement is reached. Our current bounty on divergence in the heads is 1,000 USD, which we plan
to increase as the contract undergoes the security audit, review, and testing process. Details can
be found at https://thehydra.io/.

A Hydra Monty Hall game. We further evaluate a more complex Hydra contract, for a Monty
Hall game. One party, the house, first hides a reward behind one of n doors. The player bets on
which door holds the reward, and the house opens k other non-winning doors. Then the player
may change his guess. If the guess is correct, the player obtains the reward, otherwise the house
collects the bet.

A fourth author independently wrote a specification describing the contract’s API and expected
behavior. The house’s initial door choice takes the form of a cryptographic commitment that is
later opened to reveal the winner. If either party aborts, the other party can claim both the
reward and bet after a fixed timeout. The specification leaves the internal representation of the
game open to developers. We will release our specification, along with the code for the heads and
meta-contract prior to publication of this paper.

7.4 Evaluation

This paper’s goal is not to rigorously measure correlations between faults of developed smart
contracts, but rather to propose a novel principled bug bounty framework built upon an assumed
exploit gap. We leave a thorough analysis of failure patterns of multiversion smart contracts to
future work. We evaluate our framework under standard software metrics, such as TCB size and
performance overhead. We conclude with a discussion of our development process, and of some of
the bugs we encountered (and fixed) when writing and testing multiple heads.

Size and complexity of the TCB. The meta-contract design described in Section 7.2 is
generic, and easily handles both of our target applications. The generic meta-contract is imple-
mented in 130 lines of Solidity code, to which we add an application specific API (20-40 lines). As
the main code is application-agnostic, and of a very simple nature, we believe this is a reasonable
TCB. Given the simplicity of the functionality implemented in the meta-contract, it should also
be relatively straightforward to write a formal specification for it, although we have not attempted
this.

19

https://thehydra.io/

Number of heads (1, 3, 5)

50K

150K

250K

g
a
s

co
st

approval
deposit transfer

transferFrom withdraw

Linear scaling
Hydra cost

0.5M

1.5M

2.5M

g
a
s

co
st

Monty Hall

Figure 5: Gas cost of Hydra contracts with N heads. We compare the Hydra contract to a linear
scaling of a single contract for the ERC20 API (left) and a Monty Hall game (right).

Gas costs. A concern when running N copies of a smart contract is a transaction’s gas overhead.
We note that some projects in Ethereum, notably the Viper language, already trade gas efficiency
for security (e.g., by adding runtime checks to contracts). Moreover, Ethereum provides simple
mechanisms to offload a transaction’s gas cost onto the contract owner, thus dispensing users from
the gas overhead incurred by Hydra. In any event, for small yet common workloads, most of the
gas cost of a transaction is taken up by a fixed “base fee”. As the meta-contract calls all the
heads in a single transaction, this fee is amortized, leading to sub-linear scaling of the gas-cost for
N -headed Hydras.

Figure 5 compares gas-costs for Hydra contracts with 2-4 heads, compared to a linear scaling of
a single non-Hydra contract. We show results for the five non-static calls in the ERC20 API, and
for a full Monty Hall game (five transactions). For the ERC20 contract, a transaction’s main cost
is the Ethereum transaction base fee of 21,000 gas. A call to the meta-contract incurs an overhead
of about 8,000 gas (mostly independent of the number of heads) which corresponds to 0.0024
USD2. Completing a game of Monty Hall requires long-term storage of many game parameters
which overshadows the base fee costs (each stored word costs 20,000 gas). As each head stores the
data independently, the scaling is close to (but still below) linear in this case.

Evaluation of the gas costs for two variants of Submarine Commitments are in Appendix C.
Note that these costs are only incurred upon a successful bounty claim and do not affect “normal”
transactions.

Observations from the development process. As the goal of this project was not to rigor-
ously measure independence between faults of developed smart contracts, we took some liberties
with the N-version programming process [15, 16]. Each developer implemented a first version of
their head along with a unit-test suite. After that, we iteratively refined our heads, the test suites
and the meta-contract to correct for inconsistencies and discovered bugs.

This multi-phase development uncovered various bugs in each developer’s heads, none of which
impacted all heads simultaneously! Examples include a misunderstanding of an ERC20 API
call, incorrect treatment of integer overflows, an “off-by-one” error in validating the inputs to a
Monty Hall game, and a vulnerability to an only recently discovered EVM anti-pattern that allows
contracts to silently send ether via the SELFDESTRUCT opcode.3 Notably, all these bugs could have
been exploited for some gain individually, yet none of them appear useful against all three heads
simultaneously.

In addition to the exploit gap induced by the Hydra contract, the development process itself
contributed to increasing the quality of our contracts. For the Monty Hall, ensuring compatibility
between heads required writing a detailed specification, which revealed several blind spots in our
original design. Moreover, we found that writing a differential testing suite [35] (generating inputs

2As of October 2017, 1 ether is worth roughly 300 USD and a gas price of 1 gwei (= 109 wei) is standard
according to https://ethgasstation.info. A value of 1 ether corresponds to 1018 wei.

3This bug is particularly interesting: Two of our ERC20 heads explicitly stored the token balance in long-
term storage, while the third head used the contract balance to reflect the number of tokens in circulation. The
developers noted this difference in logic, but concluded that the two approaches should be equivalent. Yet, it
was later demonstrated that the EVM actually allows for a contract to silently send ether to another when it is
destroyed. The invariant that a token contract’s balance reflects the tokens in circulation is thus false, yielding a
bug in the third head.

20

https://ethgasstation.info

at random and verifying agreement between the heads) was remarkably simpler for exercising
many different code paths in the Monty Hall contract than with a traditional test suite.

8 Related Work

Software assurance and fault-tolerance are well-studied topics supported by an extensive literature
on programming languages, formal verification, static and dynamic analysis, and other techniques.
N-version programming [15, 16, 17] in particular was first explored decades ago and challenged in
early influential studies [12, 11] discussed in Section 2.

Smart contracts [36] and script-enhanced cryptocurrency [37], first proposed in the 1990s,
have recently gained popularity thanks largely to the inclusion of a limited scripting language
in Bitcoin and, more importantly, to the advent of Ethereum [8]. Research on smart contract
security is in its infancy but topically extremely varied and includes: Descriptions of common
contract bugs [38, 39, 40], static analysis and language enhancements for Solidity [39], formal
verification tools [41, 42], design of “escape hatches” [28], resistance to DoS-like attacks against
miners [43], techniques for data integrity [44], and a formal semantics for the EVM [23]. While
promising, none of these tools and techniques have yet seen mainstream adoption, and they do
not relate directly to our explorations in this paper.

Perhaps most closely related to our work is that of Tramèr et al. [27], who explore the use of
smart contracts for bug bounties (using trusted hardware), but not the converse, i.e., bug bounties
for smart contracts.

Bug withholding is reminiscent of “selfish-mining” [45], wherein a miner withholds and selec-
tively releases blocks to nullify other miners’ work, thereby amplifying her own mining power. As
selfish mining operates at the block level and bug-withholding at the application level, the two
attacks differ in their mechanisms, analysis, and implications.

Submarine commitments conceal bounty-related transactions using ordinary ones. This form
of cover traffic reveals a conceptual connection to a variety of technologies, including anonymity
networks such as Tor [46], network-based covert channels [47], and steganography and water-
marking [48]. Submarine commitments differ from these techniques in that they assume ultimate
decommitment of a hidden value and in their reliance on Ethereum-specific techniques.

Several works [30, 31, 27] model blockchain-level adversaries and their impact on smart con-
tracts. They consider an adversary that can mount rushing or front-running attacks within a given
block, however, and not the much stronger model of block rewriting we explore here.

9 Conclusion

We have presented the Hydra Framework, the first principled approach to modeling and admin-
istering bug bounties that incentivize honest disclosure. The framework relies on a novel notion
of an exploit gap, a program transformation that enables runtime detection of critical bugs. We
have described one such strategy, N-of-N-version programming (NNVP), a variant of N-version
programming that detects behavioral divergences between multiple program instances.

We have applied the Hydra Framework to smart contracts, highly valuable and vulnerable
programs that are particularly well suited for fair and automated bug bounties. We have analyzed
high profile smart contract compromises in Ethereum, totaling over $500M in losses, and argued
that Hydra contracts could have prevented a majority of them.

We have formally shown that Hydra contracts incentivize bug disclosure by rational hack-
ers, for bounties orders of magnitude lower than an exploit’s value. We have modeled strong
bug-withholding adversaries that could threaten the viability of on-chain bounties, and analyzed
Submarine Commitments, a countermeasure of independent interest that conceals transactions
among a pool of benign traffic.

Finally, we have described and evaluated an implementation of our Hydra Framework for
two Ethereum applications, an ERC20 token contract and a Monty Hall betting game. We have

21

launched our bounty-backed ERC20 Hydra token on the Ethereum main network, the first example
of a principled and trust-free bug bounty offering. We hope that similarly rigorous bounties can
bolster smart contract security, and be applied more broadly to high-risk applications.

Acknowledgements

We thank Paul Grubbs and Rahul Chatterjee for comments and feedback. This research was
supported by NSF CNS-1330599, CNS-1514163, CNS-1564102, and CNS-1704615, ARL W911NF-
16-1-0145, and IC3 Industry Partners. Phil Daian is supported by a National Science Foundation
Graduate Research Fellowship. Lorenz Breidenbach was supported by the ETH Studio New York
scholarship.

References

[1] L. Ablon, M. C. Libicki, and A. A. Golay, Markets for cybercrime tools and stolen data:
Hackers’ bazaar. Rand Corporation, 2014.

[2] V. Buterin. (2016, Jul.) Hard fork completed. [Online]. Available: https://blog.ethereum.org/
2016/07/20/hard-fork-completed/

[3] L. Breidenbach, P. Daian, A. Juels, and E. G. Sirer. (2017, Jul.) An in-depth look at the
Parity multisig bug. [Online]. Available: http://hackingdistributed.com/2017/07/22/deep-
dive-parity-bug/

[4] C. Miller. (2017, Jul.) Apple’s bug bounty program faltering due to low payouts to
researchers, new report claims. [Online]. Available: https://9to5mac.com/2017/07/06/apple-
bug-bounty-program-payouts

[5] High-Tech Bridge SA. (2013, Sep.) What’s your email security worth? 12 dollars
and 50 cents according to Yahoo. [Online]. Available: https://www.htbridge.com/news/
what s your email security worth 12 dollars and 50 cents according to yahoo.html

[6] I. Arghire. (2016, Oct.) Researchers claim Wickr patched flaws but didn’t pay rewards.
[Online]. Available: http://www.securityweek.com/researchers-claim-wickr-patched-flaws-
didnt-pay-rewards

[7] L. Vaas. (2013, May) Paypal refuses to pay bug-finding teen. [Online]. Available:
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/

[8] V. Buterin, “Ethereum: A next-generation smart contract and decentralized application plat-
form,” 2014, https://github.com/ethereum/wiki/wiki/White-Paper.

[9] F. Vogelsteller and V. Buterin. (2015, Nov.) ERC-20 token standard. Ethereum Improvement
Proposal. Revision 405c369. [Online]. Available: https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-20-token-standard.md

[10] Wikipedia. Monty Hall problem. Accessed Oct. 30, 2017. [Online]. Available: https:
//en.wikipedia.org/wiki/Monty Hall problem

[11] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption of indepen-
dence in multiversion programming,” IEEE Transactions on software engineering, no. 1, pp.
96–109, 1986.

[12] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. Vouk,
and J. P. J. Kelly, “An experimental evaluation of software redundancy as a strategy for
improving reliability,” IEEE TSE, vol. 17, no. 7, pp. 692–702, 1991.

22

https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://9to5mac.com/2017/07/06/apple-bug-bounty-program-payouts
https://9to5mac.com/2017/07/06/apple-bug-bounty-program-payouts
https://www.htbridge.com/news/what_s_your_email_security_worth_12_dollars_and_50_cents_according_to_yahoo.html
https://www.htbridge.com/news/what_s_your_email_security_worth_12_dollars_and_50_cents_according_to_yahoo.html
http://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
http://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://en.wikipedia.org/wiki/Monty_Hall_problem
https://en.wikipedia.org/wiki/Monty_Hall_problem

[13] M. H. Swende. (2017, Jul.) Blockchain frontrunning. [Online]. Available: http:
//www.swende.se/blog/Frontrunning.html

[14] B. Randell, “System structure for software fault tolerance,” IEEE TSE, no. 2, pp. 220–232,
1975.

[15] L. Chen and A. Avižienis, “N-version programming: A fault-tolerance approach to reliability
of software operation,” in Fault-Tolerant Computing. IEEE, 1995, p. 113.

[16] A. Avižienis, “The methodology of N-version programming,” in Software Fault Tolerance,
M. R. Lyu, Ed. John Wiley & Sons Ltd, 1995.

[17] D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of multiversion software
subject to coincident errors,” IEEE TSE, no. 12, pp. 1511–1517, 1985.

[18] P. Daian. (2016, Jun.) Analysis of the DAO exploit. [Online]. Available: http:
//hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

[19] J. Solana. (2017, Oct.) $500K hack challenge backfires on blockchain lottery SmartBil-
lions. [Online]. Available: https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-
backfires-blockchain-lottery-smartbillions/

[20] J. Manning. (2017, Jan.) Ether.Camp’s HKG token has a bug and needs to be reissued.
[Online]. Available: https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-
to-be-reissued

[21] Reddit user “jupiter0”. (2016, Jun.) From the MAKER DAO slack: “today we discovered
a vulnerability in the ETH token wrapper which would let anyone drain it.”. [Online].
Available: https://www.reddit.com/r/ethereum/comments/4nmohu/

[22] V. Buterin. (2016, Jun.) Thinking about smart contract security. [Online]. Available:
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

[23] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, and G. Rosu, “KEVM:
A complete semantics of the Ethereum Virtual Machine,” 2017.

[24] Cryptocurrency market capitalizations. Accessed Oct. 30, 2017. [Online]. Available:
https://coinmarketcap.com/tokens/

[25] S. Ro. (2014, Mar.) 29 instances of a major world stock market shutdown. [Online].
Available: http://www.businessinsider.com/history-of-world-stock-market-breaks-2014-3

[26] J. C. Knight and N. G. Leveson, “A reply to the criticisms of the Knight & Leveson experi-
ment,” ACM SEN, vol. 15, no. 1, pp. 24–35, 1990.

[27] F. Tramèr, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, “Sealed-glass proofs: Using
transparent enclaves to prove and sell knowledge,” in IEEE EuroS&P, 2017, pp. 19–34.

[28] B. Marino and A. Juels, “Setting standards for altering and undoing smart contracts,” in
RuleML. Springer, 2016, pp. 151–166.

[29] Ethereum. Security considerations. Solidity documentation. Revision dc154b4e. [Online].
Available: http://solidity.readthedocs.io/en/develop/security-considerations.html

[30] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts,” in IEEE S&P. IEEE, 2016, pp.
839–858.

[31] A. Juels, A. Kosba, and E. Shi, “The Ring of Gyges: Investigating the future of criminal
smart contracts,” in ACM CCS. ACM, 2016, pp. 283–295.

23

http://www.swende.se/blog/Frontrunning.html
http://www.swende.se/blog/Frontrunning.html
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://www.reddit.com/r/ethereum/comments/4nmohu/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://coinmarketcap.com/tokens/
http://www.businessinsider.com/history-of-world-stock-market-breaks-2014-3
http://solidity.readthedocs.io/en/develop/security-considerations.html

[32] R. R. O’Leary. (2017, Sep.) Metropolis today: The shifting plans for Ethereum’s next big
upgrade. [Online]. Available: https://www.coindesk.com/metropolis-today-shifting-plans-
ethereums-next-big-upgrade/

[33] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2014. [Online].
Available: http://yellowpaper.io/

[34] Ethereum Team. (2017, Oct.) Byzantium HF announcement. [Online]. Available:
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

[35] W. M. McKeeman, “Differential testing for software,” Digital Technical Journal, vol. 10, no. 1,
pp. 100–107, 1998.

[36] N. Szabo, “Formalizing and securing relationships on public networks,” First Monday, vol. 2,
no. 9, 1997.

[37] M. Jakobsson and A. Juels, “X-cash: Executable digital cash,” in Financial Cryptography.
Springer, 1998, pp. 16–27.

[38] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards creat-
ing a safe smart contract: Lessons and insights from a cryptocurrency lab,” in Financial
Cryptography. Springer, 2016, pp. 79–94.

[39] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,”
in ACM CCS. ACM, 2016, pp. 254–269.

[40] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum smart contracts
(SoK),” in International Conference on Principles of Security and Trust. Springer, 2017,
pp. 164–186.

[41] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi,
N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy et al., “Formal verification of smart
contracts: Short paper,” in ACM PLAS. ACM, 2016, pp. 91–96.

[42] Y. Hirai, “Formal verification of Deed contract in Ethereum name service,” 2016. [Online].
Available: https://yoichihirai.com/deed.pdf

[43] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives in the consensus
computer,” in ACM CCS. ACM, 2015, pp. 706–719.

[44] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier: An authenticated
data feed for smart contracts,” in ACM CCS. ACM, 2016, pp. 270–282.

[45] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Financial
Cryptography. Springer, 2014, pp. 436–454.

[46] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,”
Naval Research Lab Washington DC, Tech. Rep., 2004.

[47] S. J. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,” in Information
hiding, vol. 3727. Springer, 2005, pp. 247–261.

[48] S. Katzenbeisser and F. Petitcolas, Information hiding techniques for steganography and dig-
ital watermarking. Artech house, 2000.

[49] J. Krug. (2016, Jun.) A Serpent send exploit. [Online]. Available: http://www.joeykrug.com/
home/a-serpent-send-exploit

[50] L. Luu. (2017, Jul.) PeaceRelay: Connecting the many Ethereum blockchains. [Online].
Available: https://medium.com/@loiluu/22605c300ad3

24

https://www.coindesk.com/metropolis-today-shifting-plans-ethereums-next-big-upgrade/
https://www.coindesk.com/metropolis-today-shifting-plans-ethereums-next-big-upgrade/
http://yellowpaper.io/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://yoichihirai.com/deed.pdf
http://www.joeykrug.com/home/a-serpent-send-exploit
http://www.joeykrug.com/home/a-serpent-send-exploit
https://medium.com/@loiluu/22605c300ad3

A Brief Analysis of Previous Exploits

We briefly justify why various smart contracts exploits in Table 1 may have benefited from an
exploit gap introduced by NNVP. Obviously, we cannot make definite claims that NNVP would
have averted a loss. Instead, we give some informal arguments on why a NNVP setup would have
likely introduced independence in many cases.

Typos and trivial errors. Some exploits in our analysis are due to trivial programmer errors.
For instance in HKG a developer mistakenly used an =+ expression rather than the correct +=,
resulting in bad variable initialization. It is unlikely that this exact mistake would be repeated
across the contracts of several developers. Moreover, x =+ y is not valid code in Viper or Serpent.
It is thus impossible that this mistake would have persisted in a multi-language contract.

The mistake in Rubixi [22] resulted from a code refactoring that renamed a class but not
the corresponding constructor. It is similarly unlikely that independent developers would have
misnamed the constructor to the exact same wrong name (as any other inconsistent and
incorrect naming would have triggered a recovery and bounty). Also, some languages like Viper
have a fixed constructor name (i.e., init), so this bug has no analogue in that language.

Note that for such trivial errors, Hydra contracts are likely not required, and thorough test-
ing should have exposed the flaws. Nevertheless, Hydra’s principled development process would
certainly have prevented these losses.

Re-entrancy. Re-entrancy is a flaw described in [18], whereby a victim contract calls an external
untrusted contract, allowing the called contract to call back into the victim and effect state changes
in the middle of the original call.

There are several aggravating factors that lead to a string of re-entrancy vulnerabilities, in-
cluding the The DAO [18] and MakerDAO [21]. For one, Solidity encouraged the use of the
call.value construct in sending funds to accounts, to prevent “out of gas” errors. By forwarding
all the gas by default, Solidity contracts essentially gave these untrusted contracts infinite fuel to
execute their attack.

Unlike in Solidity, in Serpent, the use of the send function was recommended, which did
not provide enough gas to re-enter into the original contract. The difference between Solidity
and Serpent (these analyses pre-dated Viper) with regards to re-entrancy is detailed in [49]. As
pointed out in this analysis, not all recursive send issues are mitigated by Serpent, but recursive
sends with a non-zero valued call (as in Maker and the DAO) are impossible.

Complex programmer errors. Some errors are more complex; for example, the Parity hack [3]
involved a bad unforeseen interaction between a “delegate call”—allowing library code to be run in
the trusted context of a victim contract—and missing modifiers and guards on the library contract
to prevent misuse. Although different contracts may have similarly missed this vulnerability,
the complex nature of the bug suggests that the failure patterns would not have been identical.
It is possible of course that these broken design decisions would have been formalized in the
specification, annulling the likelihood of an exploit gap.

The analysis of [19] is similar, with a complex mistake in a blockhash caching system’s code
by the developer. This caching system was required by a limitation of the Ethereum platform
on retrieving old blockhashes. Again, it is not clear that this complex cache would have been
implemented correctly by a second developer, yet it is unlikely that both versions would fail in
exactly the same fashion.

Other out-of-scope exploits. Not all exploits can be covered by a Hydra contract. One
example in Table 1 is Governmental [22], which had a function that required more gas than was
allowed to be used on the network, resulting in a denial-of-service vulnerability. Gas errors are
explicitly ignored in our framework (see Section 7.2), as they can be triggered at any time by users
simply refusing to provide enough gas.

Another example is FirePonzi [22], in which a variable was intentionally misnamed by the
developers to serve as a backdoor. Such subtle backdoors-by-construction are still possible in the
Hydra framework, and may actually be made even more subtle: for example, minor disagreements

25

between heads can be made to trigger recovery with plausible deniability, potentially stealing funds
if the recovery process is trusted or vulnerable to its own hidden exploits.

Lastly, errors in the contract specification—e.g., the flawed rock paper scissors game in [22]—
are not covered by our framework as the specification is common to all heads.

B Analysis of NNVP in the NASA Experiment

We briefly justify the results we obtained when applying our NNVP paradigm for the experimental
results in [12]. The experiment consisted of 20 different program versions evaluated on six work-
loads (corresponding to different initial system states). For y ∈ [0, 20], Eckhardt et al. report g(y),
the empirical proportion of inputs in each of their test suites that induce a failure in exactly y out
of 20 programs. They do not distinguish whether the failures are identical or not.

Following the notation and analysis for majority-voting in [12], we compute the empirical
probability P̃N that N programs (randomly chosen from the 20) fail simultaneously:

P̃N =

(
20

N

)−1 20∑
y=0

(
y

N

)
g(y) . (5)

When comparing P̃N to P̃1 (i.e., the expected failure rate for NNVP with N heads compared to
the use of a single program), we find that 30 · P̃3 ≤ P̃1 ≤ 5,087 · P̃3 and 190 · P̃4 ≤ P̃1 ≤ 24,216 · P̃4.
In both cases, the lowest exploit gap is obtained for the third work-load (denoted S1,0), for which

the failure rate P̃1 of a single program is the lowest.
If we combine all work-loads into one, and assume that hackers sample uniformly from the test

inputs used in the experiment, then the exploit gap, gap, defined in Section 4 is estimated as the
ratio of P̃1 and P̃N (averaged over the six workloads). We obtain gap = 4,409 for N = 3 and
gap = 34,546 for N = 4. Note that we can also apply NNVP with N = 2 (whereas majority-voting
obviously does not work in this case), and find a gap of gap = 79.

C Submarine Commitment Constructions

C.1 Merkle-Patricia Proof Verification

In order for Submarine Commitments to be secure against front-running attacks, we need to verify
that the commit transaction indeed occurred in block commitBlk. Otherwise, an adversary can
wait until she observes the “reveal” transaction τ . Upon observing τ , she can front-run it by
including a backdated “commit” transaction and a corresponding “reveal” message in front of τ .
We can prevent this attack by having Contract verify that “commit” was indeed sent in block
commitBlk and that at least ρ blocks have elapsed since commitBlk upon receiving a “reveal”.
(Recall that the adversary can roll back the blockchain by at most ρ blocks.)

Unfortunately, Ethereum provides no native capability for smart contracts to verify that a
transaction occurred in a specific block. However, Ethereum’s block structure enables efficient
verification of Merkle-Patricia proofs of (non-)inclusion of a given transaction in a block [50]: all
transactions in a block are organized in a Merkle-Patricia Tree [33] mapping transaction indices to
transaction data. The root hash of this tree is included in the block header and the block header
is hashed into the block hash, which can be queried from inside a smart contract by means of the
BLOCKHASH opcode.

We implemented this verification procedure in a smart contract that takes a block number,
the transaction data, and a Merkle-Patricia proof of transaction inclusion as inputs, and outputs
accept or reject. We benchmarked the gas cost of this contract by verifying the inclusion of 25
transactions from the Ethereum blockchain. The proof verification has a mean cost of 207,800 gas
(approximately 0.06 USD2). Note that this cost is only incurred when a bounty is being claimed,
and has no impact on “normal” transactions.

26

Algorithm CreateForwarder(P, key)

nonces← E(H′(addr(P), key))

address← addr(Contract)

for i = 1 to k

whileno contract at address H(address, noncesi + 1)

call Clone on contract at address

address← H(address, noncesi + 1)

//address now equals âddr

Figure 6: Algorithm for creating a Forwarder at address âddr.

Proof of Cheat. We can reduce the gas cost of our Submarine Commitment scheme by not
performing a Merkle-Patricia proof verification on every “reveal”: instead of requiring parties to
prove that their “commit” occurred in commitBlk, we only require them to provide commitBlk
and the transaction data, but no Merkle-Patricia proof. A party P can then submit a Proof of
Cheat, a Merkle-Patricia proof demonstrating that an adversary A backdated their transaction: to
backdate their transaction A had to claim the existence of a non-existing transaction; therefore,
there will either be a different transaction or no transaction at the purported transaction index in
block commitBlk. If the proof of cheat is accepted, A’s $deposit is given to P and A’s “commit”
and “reveal” are voided.

Checking whether another party cheated is simple to do off-chain, so we expect competing
parties to check each other’s commits and provide a Proof of Cheat if they witness a cheat. In
this setting, P benefits from catching a malicious competitor A in two ways: A’s claim is voided
(potentially netting P’s $bounty) and A’s $deposit is given to P.

C.2 CREATE-based Construction

In Section 6, we gave a construction of Submarine Commitments that requires the CREATE2 opcode.
Hereafter, we show a different construction relying on the CREATE opcode, available in Ethereum
today. However, the CREATE2-based construction is simpler and has 98.5% (75,000 gas vs 5,000,000
gas, or 0.023 USD vs 1.50 USD respectively2) lower gas costs than the CREATE-based construction.

When a contract C creates a new contract Cnew using the CREATE opcode, Cnew ’s address
is computed as H(addr(C),nonce(C)), where nonce(C) a monotonic counter of the number of
contracts created by C. (Ethereum’s state records this nonce for each contract.)

By chaining a series of contract creations and encoding information in the associated nonce
values, we can compute an address for Submarine Commitments. Let Contract be the contract that
will receive Submarine Commitments. Let Forwarder be a simple contract that has two functions
both of which abort if they aren’t being called by Contract:

• Clone uses CREATE to spawn another Forwarder instance at addressH(addr(Forwarder),nonce(Forwarder)).

• Forward sends all funds held by the contract to Contract.

We now describe the three functions that make up a Submarine Commitment:

• Commit: P selects a witness key←$ {0, 1}` and computes x := H ′(addr(Contract), key) for
a suitable ` and hash function H ′ with codomain {0, 1}`. Let A := addr(Contract) and let
E : {0, 1}` → {0, . . . , b− 1}k be the function that takes an integer (encoded as a binary string)
and reencodes it as a string of length k in base b. P sends $deposit to address

âddr = H(H(. . . H(A, E(x)1 + 1) . . . , E(x)k−1 + 1), E(x)k + 1) .

• Reveal: P sends key to BountyContract.

27

0 20 40 60 80 100
 (blocks)

0

1

2

3

4

5

tx
s

pe
r

bl
oc

k

txs in anonymity set
fraction in anonymity set

0

2

4

6

8

fra
ct

io
n

of
 b

lo
ck

 (%
)

Figure 7: Size of anonymity set for Submarine Commitments. We show the number of transac-
tions (left) and the fraction of transactions (right) per block that are a part of the anonymity set, as a
function of ρ, the size of the commit window. Statistics are computed by averaging 48 block sequences of
length ρ, starting at (hourly-spaced) blocks 4430000 + i · 240 for i ∈ [0, 47].

3 2 1 0 1
log10(value in ether)

0.0

0.1

0.2

0.3

0.4

re
la

tiv
e

fre
qu

en
cy

Figure 8: Histogram of transaction values in anonymity set for Submarine Commitments.
We set ρ = 100 and take all transactions in the anonymity sets of 48 sequences of 100 blocks, starting at
blocks 4430000 + i · 240 for i ∈ [0, 47].

• DepositCollection: BountyContract repeatedly calls the Clone function of appropriate Forwarder

instances until a Forwarder is created at address âddr. (See Figure 6 for details.) BountyContract
then calls Forward to make this instance send the the deposit to BountyContract.

Choosing n and b. Since we aren’t concerned with collision attacks on H ′, n = 80 provides
sufficient security. For n = 80, in the ROM, a choice of b = 4 minimizes the expected number
of contract creations logb(2

n)
(
1 + b−1

2

)
. In practice, we instantiate H ′ as a truncated version

of Ethereum SHA-3 (Keccak-256) as this is the cheapest cryptographically secure hash function
available in the EVM.

C.3 Empirical Analysis of Anonymity Set Size

The Submarine Commitment constructions from Section 6 and Appendix C.2 both rely on con-
cealing “commit” transactions in an anonymity set of unrelated transactions: to prevent bug-
withholding attacks, the “commit” transactions of the Submarine Commitment scheme must re-
main concealed until the “reveal” transaction is broadcast. Since the “commit” transactions are
indistinguishable from benign transactions sending ether to a fresh address, a transaction to an
address A is a part of the anonymity set if:

• The (external) transaction is a regular send of a non-zero amount of ether with an empty
data field.

28

• A has never received any ether or sent any transactions.

• A has no associated code (i.e. A is not a contract).

• A is not involved in any other transactions (internal or external) during the commit window.

In the experiment Expbntyrace
A analyzed in Section 6.1, a commitment is revealed after ρ blocks,

where it is assumed that the adversary can rewind up to ρ blocks in the blockchain. Figure 7
shows the size of the anonymity set as a function of this commitment window ρ. Even for ρ = 100
(i.e. a 25 minute rewind window at 15 secs/block), an average block still contains two transactions
that are part of the anonymity set. Furthermore, 34 of the 48 blocks we studied (70%) contained
at least one transaction that is part of the anonymity set. For a full commit window of size
ρ = 100, we get an anonymity set of approximately 200 transactions, which represents over 2% of
all transaction traffic in that period.

As Figure 8 shows, the transaction values in the anonymity set span a wide range. Commit-
ments with an associated value between 0.0001 ether and 10 ether (approximately 3,000 USD2)
are easily concealed.

D Security Proofs for BountyContract

In this appendix, we prove Thm. 4 of Section 6.1.
Recall that commblockP∗ ←$ [1, n] in Expbntyrace

A , i.e., P ∗ commits in a uniformly random block
Bi. Thus, Pr[commblockP∗ ∈ [a, b]] = (b − a + 1)/n for 1 ≤ a ≤ b ≤ n. Note that A is oblivious
to the value of commblockP∗ until P ∗ reveals in block revblockP∗ = commblockP∗ + ρ.

We assume an economically rational adversary A. It will be useful to consider another rational
adversary A1 which does not observe revblockP∗ . A follows the same strategy as A1 until P ∗

reveals his commitment.
Let Xi be the event in an execution of Fwithhold that A1 places message “commit” in block

Bi. Note that the {Xi} may not be independent. Let pi = Pr[Xi = 1]. As A1 is oblivious to
revblockP∗ , the events Xi are independent of commblockP∗ . Moreover, let Zi be the event in an
execution of Fwithhold that A places message “commit” in Bi.

We state some simple claims.

Claim 6. If commblockP∗ ≥ i, then Zi = Xi.

Proof. If P ∗ commits in block i or later, A does not learn of this commit until at least block i+ρ,
when P ∗ reveals. At this point, A cannot rewind to block Bi and change Zi.

Claim 7. If commblockP∗ < i, then Zi = 0.

Proof. Committing in block Bi will not enable A to frontrun P ∗, as P ∗ committed earlier. If A
did commit in block Bi before P ∗ reveals (as late as Bi+ρ−1), then A rewinds and erases its own
“commit” in Bi, to save cost $deposit.

Claim 8. Pr[Zi = 1] ≥ Pr[commblockP∗ ≥ i ∧ Xi = 1].

Proof. This is an immediate corollary of Claim 6: If commblockP∗ ≥ i and Xi = 1, then we have
Zi = 1. For events A,B with A =⇒ B we have Pr[B] ≥ Pr[A].

Note that A never benefits from delaying P ∗’s messages as, by assumption, A cannot delay
the Submarine Commitment in block commblockP∗ .

For adversary A, let EA[$cost] denote the expected value of $cost in an execution of Expbntyrace
A

and pwins(A) be the probability of winning. We have the following lemma:

Lemma 9. Suppose for a given A that q = Pr[Xi+k = 1 ∧ Xi = 1] > 0 for some 1 < k < ∆ and
i + k ≤ n. Then there exists an adversary A′ such that EA′ [$cost] < EA[$cost] and pwins(A′) ≥
pwins(A).

29

Proof. We construct A′ that emulates A exactly, except that if A commits in Bi and in Bi+k, then
A′ does not commit in Bi+k, but commits in block Bi+∆. (If i + ∆ > n, then A′ does not make
the second commitment.) For any value of commblockP∗ , it is easy to see that if A can frontrun,
then A′ can also frontrun P ∗. Thus pwins(A′) ≥ pwins(A).

With probability 1/n, commblockP∗ = i + k. In this case, A′ does not make its second
commitment in block Bi+∆, and thus incurs $cost at least $deposit less than A. Thus, EA[$cost] ≥
EA′ [$cost] + q·$deposit

n .

We now prove an upper bound on the probability that A wins based on the values {pi}, i.e.,
the strategy of A1.

Lemma 10. pwins ≤ ∆+1
n

(∑n
i=1 pi

)
.

Proof. Recall thatA is a pure frontrunning adversary. Suppose revblockP∗ = j and thus commblockP∗ =
j − ρ. As A cannot rewind more than ρ blocks, for A to win Expbntyrace

A it must be the case that
A has a message “commit” in a block Bi for i ∈ [j − ρ −∆, j − ρ] (equivalently, commblockP∗ ∈
[i, i+ ∆]). Thus, under a union bound,

pwins ≤
n∑
i=1

Pr[Zi = 1 ∧ commblockP∗ ∈ [i, i+ ∆]]

=

n∑
i=1

Pr[Xi = 1 ∧ commblockP∗ ∈ [i, i+ ∆]]

=

n∑
i=1

(
pi · Pr[commblockP∗ ∈ [i, i+ ∆]]

)
=

n∑
i=1

(
pi ·

∆ + 1

n

)
=

∆ + 1

n

(n∑
i=1

pi
)
,

using Claim 6 and independence of Xi and commblockP∗ .

We now prove a lower bound on the expected cost incurred by a frontrunning A. Let $costi
be a random variable denoting commitment costs by A in Bi.

Lemma 11. E[$cost] ≥ $deposit ·
∑n
i=1

(
n−i+1
n

)
pi.

Proof. Let Ci denote the event (commblockP∗ ≥ i). Then,

E[$cost] =

n∑
i=1

E[$costi] =

n∑
i=1

$deposit · Pr[Zi = 1]

≥ $deposit ·
n∑
i=1

Pr[Xi = 1 ∧ Ci]

= $deposit ·
n∑
i=1

Pr[Xi] · Pr[Ci]

= $deposit ·
n∑
i=1

(n− i+ 1

n

)
pi ,

using Claim 8 and independence of Xi and commblockP∗ .

Let us restate Theorem 4:

Theorem. Suppose that ∆ ≥ 4 and $deposit > 10(∆+1)
9n · $bounty. Then a pure-frontrunning

adversary cannot achieve E[$payoff] ≥ 0.

30

Proof. By Claims 6, 7 and 8, A’s strategy (i.e., the values of Zi) are fully determined by A1’s
strategy and the value of commblockP∗ . We consider the optimal assignment of probabilities pi,
to maximize pwins while minimizing E[$cost].

Let p =
∑n
i=1 pi. By Lemma 10, pwins ≤ (∆+1)·p

n .
To achieve pwins, then, we require p ≥ (npwins)/(∆ + 1). Let k = (npwins)/(∆ + 1), and assume

for simplicity of computation that k is an integer. Now, Lemma 11 states that

E[$cost] = $deposit ·
n∑
i=1

(n− i+ 1

n

)
pi. (6)

For a given value of p, the sum in Eqn. 6 is minimized by concentrating probability mass among {pi}
for the largest values of i. Additionally, by Lemma 9, if pi = 1, then pi+1 = pi+2 = . . . = p∆−1 = 0,
i.e., non-zero pi values are spaced by ∆. Therefore, as pi ∈ [0, 1], Eqn. 6 is minimized when
pn = pn−∆ = . . . = pn−(k−1)∆ = 1, and thus:

E[$cost] ≥ $deposit ·
k∑
i=1

(n−∆(i− 1) + 1

n

)
= $deposit ·

(
k − k/n− ∆(k − 1)(k − 2)

2n

)
> $deposit ·

(
k − k2

2n

)
= $deposit · npwins

∆ + 1

(
1− pwins

2(∆ + 1)

)
≥ $deposit · 9npwins

10(∆ + 1)
,

as pwins

2(∆+1) ≤ 1/10 (∆ ≥ 4 and pwins ≤ 1). Thus,

E[$payoff] ≤ $bounty · pwins − $deposit · 9npwins

10(∆ + 1)
.

The theorem follows.

Recall that an α-withholding adversary is one that may frontrun up to block Bαn and then
posts messages “commit” and “reveal” in block Bαn+1. It is straightforward, based on the proof
of Thm. 4 to show Corollary 5 restated here:

Corollary. Suppose that ∆ ≥ 4 and $deposit ≥ 10(∆+1)
9n ·$bounty. Then an α-revealing adversary

A achieves E[$payoff] ≤
(
(1− α) · $bounty

)
− $deposit.

From uniform to exponential distributions. Finally, we sketch a proof of an analog The-
orem 4 where commblockP∗ follows an exponential distribution rather than a uniform one. From
our Poisson model of bug finding in Section 4, we obtained that P ∗ finds a bug after an exponen-
tially distributed waiting time TH of rate λH. We assume that P ∗ commits as soon as it finds a
bug.

The only difference in the proof above are the probabilities Pr[commblockP∗ ∈ [i, i+ ∆]] in
the proof of Lemma 10 and Pr[commblockP∗ ≥ i] in the proof of Lemma 11. For the exponential
distribution, we get

Pr[commblockP∗ ∈ [i, i+ ∆]] = e−i·λH · (1− e−∆·λH)

Pr[commblockP∗ ≥ i] = e−i·λH .

31

Therefore, the analogs of Lemma 10 and Lemma 11 are:

pwins ≤
n∑
i=1

pi · e−i·λH · (1− e−∆·λH) (7)

E[$cost] ≥ $deposit ·
n∑
i=1

pi · e−i·λH . (8)

Rearranging terms, we get:

E[$cost] ≥ $deposit · pwins ·
1

1− e−∆·λH

E[$payoff] ≤ $bounty · pwins − $deposit · pwins

1− e−∆·λH
.

Suppose that the bug-finding period extends over approximately n = λ−1
H blocks. That is, we

expect honest parties to find one bug on average over the full bounty period. Then, (as ∆
n � 1),

we need

$deposit ≥ $bounty · (1− e−∆
n) ≈ $bounty · ∆

n
, (9)

to ensure E[$payoff] ≥ 0.

32

	Introduction
	Preliminaries and Notation
	Programs
	Exploits
	Exploit Gaps and Bug Bounties
	Achieving an Affirmative Exploit Gap

	N-of-N-version Programming: An Exploit Gap Tailored for Smart Contracts
	Revisiting N-version Programming
	NNVP-Friendly Properties of Smart Contracts
	The Hydra Contract

	Economic Analysis of Hydra Bounties
	Bug Finding as a Stochastic Process
	Economic Incentives

	Bounties on the Blockchain: The Bug Withholding Problem
	Adversarial Model
	BountyContract
	Front-Running Attacks on BountyContract
	Impact of Bug Withholding in BountyContract

	Thwarting Front-Running Attacks with Submarine Commitments
	Submarine Commitments in BountyContract

	Implementation and Evaluation
	EVM Preliminaries
	An Execution Environment for the EVM
	Applications
	Evaluation

	Related Work
	Conclusion
	Brief Analysis of Previous Exploits
	Analysis of NNVP in the NASA Experiment
	Submarine Commitment Constructions
	Merkle-Patricia Proof Verification
	CREATE-based Construction
	Empirical Analysis of Anonymity Set Size

	Security Proofs for BountyContract

