
Enter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant
Smart Contracts∗

Lorenz Breidenbach
lorenzb@ethz.ch

Cornell Tech, IC3†,
ETH Zürich

Philip Daian
phil@cs.cornell.edu

Cornell Tech, IC3†

Florian Tramèr
tramer@cs.stanford.edu

Stanford

Ari Juels
juels@cornell.edu

Cornell Tech, IC3†,
Jacobs Institute

Abstract
Bug bounties are a popular tool to help prevent soft-

ware exploits. Yet, they lack rigorous principles for set-
ting bounty amounts and require high payments to attract
economically rational hackers. Rather than claim boun-
ties for serious bugs, hackers often sell or exploit them.

We present the Hydra Framework, the first general,
principled approach to modeling and administering bug
bounties that incentivize bug disclosure. Our key idea
is an exploit gap, a program transformation that enables
runtime detection, and rewarding, of critical bugs. Our
framework transforms programs via N-of-N-version pro-
gramming, a variant of classical N-version programming
that runs multiple independent program instances.

We apply the Hydra Framework to smart contracts,
small programs that execute on blockchains. We show
how Hydra contracts greatly amplify the power of boun-
ties to incentivize bug disclosure by economically ra-
tional adversaries, establishing the first framework for
rigorous economic evaluation of smart contract secu-
rity. We also model powerful adversaries capable of bug
withholding, exploiting race conditions in blockchains to
claim bounties before honest users can. We present Sub-
marine Commitments, a countermeasure of independent
interest that conceals transactions on blockchains.

We design a simple, automated version of the Hydra
Framework for Ethereum (ethereum.org) and imple-
ment two Hydra contracts, an ERC20 standard token and
a Monty-Hall game. We evaluate our implementation for
completeness and soundness with the official Ethereum
virtual machine test suite and live blockchain data.

1 Introduction

Despite theoretical and practical advances in code de-
velopment, software vulnerabilities remain an ineradica-

∗The first three authors contributed equally to this work.
†Initiative for Cryptocurrencies and Contracts, initc3.org

ble security problem. Vulnerability reward programs—
a.k.a. bug bounties—have become instrumental in orga-
nizations’ security assurance strategies. These programs
offer rewards as incentives for hackers to disclose soft-
ware bugs. Unfortunately, hackers often prefer to exploit
critical vulnerabilities or sell them in gray markets.

The chief reason for this choice is that the bugs eli-
gible for large bounties are generally weaponizable vul-
nerabilities. The financial value of critical bugs (0-days)
in gray markets may exceed bounty amounts by a fac-
tor of as much as ten to one hundred [2]. For example,
while Apple offers a maximum 200k USD bounty, a bro-
ker intermediary such as Zerodium purportedly offers 1.5
million USD for certain iPhone jailbreaks. In some cases
hackers can monetize vulnerabilities themselves for large
payouts [11, 9]. Modest bounties may thus fail to suc-
cessfully incentivize disclosure by rational actors [38].

Pricing bounties appropriately can also be hard be-
cause of a lack of research giving principled guidance.
Payments are often scheduled arbitrarily based on bug
categories and may not reflect bugs’ market value or im-
pact. For example, Apple offers up to 100k USD for
generic bugs defined as “Extraction of confidential mate-
rial protected by the Secure Enclave Processor” [38].

Finally, bounties present a problem of fair exchange.
A bounty payer does not wish to pay before reviewing
an exploit, while hackers are wary of revealing exploits
and risking non-payment (e.g., [21, 4, 50]). This uncer-
tainty creates a market inefficiency that limits incentives
for rational hackers to uncover vulnerabilities.

We introduce the Hydra Framework, the first prin-
cipled approach to bug bounty administration that ad-
dresses these challenges. Our framework deters econom-
ically rational actors, including black-hat hackers, from
exploiting bugs or selling them in underground markets.
We focus on smart contracts as a use case to demonstrate
our framework’s power analytically and empirically.

1

mailto:lorenzb@ethz.ch
mailto:phil@cs.cornell.edu
mailto:tramer@cs.stanford.edu
mailto:juels@cornell.edu
https://ethereum.org
http://initc3.org/

Figure 1: Hydra program with heads f1, f2, and f3. Exam-
ple on right shows effect of bug induced by input X in f3.

The Hydra Framework. Our key idea is to build sup-
port for bug detection and bounties into software at de-
velopment time using a concept that we call an exploit
gap. This is a program transformation that makes critical
bugs detectable at runtime, but hard to exploit.

We propose an exploit gap technique that we refer to as
N-of-N-version programming (NNVP). A variant of clas-
sical N-version programming, NNVP leverages multiple
versions of a program that are independently developed,
or otherwise made heterogeneous. In the Hydra Frame-
work, these program versions, or heads, are executed in
parallel within a meta-program called a Hydra program.

In stark contrast to N-version programming’s goal of
fault tolerance (i.e., where the program attempts to pro-
duce a correct output even in the face of partial failures),
NNVP focuses on error detection and safe termination.
If heads’ outputs are identical, a Hydra program runs nor-
mally. If the outputs diverge for some input, a dangerous
state is indicated and the program aborts and pays out a
bounty. The basic idea is depicted in Figure 1.

A bug is only exploitable if it affects all Hydra heads
identically. If failures are somewhat uncorrelated across
heads, a bug in one head is thus unlikely to affect the
Hydra program as a whole. Moreover, an adversary
that breaks one head and, instead of claiming a bounty,
tries to generalize the exploit, risks preemption by hon-
est bounty hunters. We show that even when an ex-
ploit’s market value exceeds the bounty by multiple or-
ders of magnitude, economically rational hackers are in-
centivized to disclose bugs rather than attempt an exploit.

A Hydra Framework for smart contracts. We focus
on smart contracts, programs that execute on blockchains
such as Ethereum [10]. They are especially well suited
as a use case given several distinctive properties:

• Heightened vulnerability: Smart contracts are often fi-
nancial instruments. Bugs usually directly affect funds,
enabling hackers to extract (pseudonymous) cryptocur-
rency, as shown by tens of millions of dollars worth of
Ethereum stolen from [11] and [9]. Smart contract bi-
naries are publicly visible and executable, and often
open-source. Given their high value and exposure to

adversarial study and attack, smart contracts urgently
require new bug-mitigation techniques.

• Unique economic properties: A smart contract’s cryp-
tocurrency balance is often a direct measure of an ex-
ploit value. This facilitates principled bounty price set-
ting in our framework. Moreover, blockchain proto-
cols are often secured through both cryptography and
economic guarantees. For the first time, we lift similar
economic safety guarantees to the smart-contract level,
creating programs with measurable economic security.

• Bounty automation: Application of our framework to
and by smart contracts can award bounties automati-
cally. The result is a fair exchange of bugs for boun-
ties and guaranteed payment for the first valid submit-
ted bug. Bounties are transparent to bounty hunters
and can be adjusted dynamically to reflect contracts’
changing value, creating a stable bounty marketplace.

• Graceful termination: Smart contracts are not (yet)
mission critical software and can often be aborted with
minimal adverse effects, as required for NNVP. Reme-
diation of the DAO and Parity multisig attacks involved
refunding users, a mechanism considered in this paper.

We design a Hydra Framework for Ethereum and eval-
uate it on two applications, an ERC20 token [51] and a
Monty Hall game [52]. In both cases, our Hydra con-
tract automatically rewards bugs in any of three deployed
heads, implemented in three different programming lan-
guages. Our Hydra ERC20 token is deployed on the
Ethereum main network (with a 3000 USD bounty), the
first principled, automated and trust-free bug bounty. Our
framework is applicable to over 76% of Ethereum con-
tracts in use. Our full code, tests, and experiments are
available at github.com/anon328945234895/Hydra.

Major challenges. Several papers [28, 17] criticize
traditional N-version programming, observing that mul-
tiple versions of a program often exhibit correlated
faults—an ostensible hitch in our framework.

We revisit these papers and show that NNVP achieves
an appealing cost-benefit trade-off, by abandoning fault-
tolerance in favor of error detection. Compared to the
majority voting scheme used in N-version programming,
partial independence is greatly amplified by NNVP,
which requires agreement by all heads. Previous exper-
imental results in fact show that NNVP can achieve a
large exploit gap in Hydra programs. In particular, we
review high-profile smart contract failures, showing that
NNVP would have addressed many of them.

A second challenge arises in automating bug bounties
for smart contracts. Decentralized blockchain protocols
allow adversaries to perform front-running—ordering
their transactions ahead of those of honest users [47]. As
a result, a naı̈vely implemented bounty contract is vul-

2

https://github.com/anon328945234895/Hydra

nerable to bug-withholding attacks: upon finding a bug
in one head, a hacker can withhold it and try to compro-
mise all heads to exploit the full contract. If an honest
user discovers a bug, the hacker front-runs her and claims
the bounty first. Thus, withholding carries no cost for the
hacker, removing incentives for early disclosure.

We propose Submarine Commitments, a countermea-
sure of independent interest that temporarily conceals a
bounty claim among ordinary transactions, preventing a
hacker from observing and front-running a claim. We
formally define security for Submarine Commitments
and prove that they effectively prevent bug withholding.

Contributions. Our main contributions are:
• The Hydra Framework: We propose, analyze, and

demonstrate the first general approach to principled
bug bounties. We introduce the idea of an exploit gap
and explore N-of-N-version programming (NNVP) as
a specific instantiation. We demonstrate the power of
NNVP Hydra programs in revisiting the N-version pro-
gramming literature and provide the first quantifiable
notion of economic security for smart contracts.

• Bug withholding and Submarine Commitments: We
identify the subtle bug-withholding attack. To ana-
lyze its security, we present a strong, formal adversar-
ial model that encompasses front-running and other at-
tacks. We introduce a countermeasure of independent
interest called Submarine Commitments and prove that
it effectively prevents bug withholding.

• Implementation: We implement a Hydra Framework
for Ethereum and instantiate it for an ERC20 token
and a Monty Hall game. We measure costs of run-
ning multi-headed contracts on-chain and showcase
Hydra’s soundness and applicability, concluding that
our framework can automatically transform the major-
ity (76%) of contracts used in Ethereum while passing
all official virtual machine tests. Our bounty-backed,
three-headed Hydra ERC20 token is live on Ethereum.

2 Preliminaries and Notation

Programs. Let f denote a stateful program. From a
state s, running f on input x produces output y and up-
dates s. For an input sequence X = [x1,x2, . . .], we denote
by run(f ,X) := [y1,y2, . . .] a serial execution trace of f
starting at the initial state and outputting yi on input xi.

Exploits. For a program f , let I be an abstract ideal
program that defines f ’s intended behavior. I.e., for any
input X , run(I,X) is the correct output. The input space
is assumed to be bounded and input sequences are finite.

We assume that a program may produce a fallback out-
put⊥ if it detects that the execution is diverging from in-
tended behavior (e.g., throwing an exception on a stack

overflow). The ideal program I never outputs⊥. If a pro-
gram f outputs ⊥ on some input xi, then all subsequent
outputs in that execution trace will also be fallbacks. A
program’s execution trace is a fallback trace if it agrees
with the ideal program up to some input xi, and then out-
puts⊥. Let A@B denote that sequence A is a strict prefix
of sequence B. The set of fallback traces is then

Y⊥ :=
{

Y | ∃i.[y1, . . . ,yi]@ run(I,X)∧
∧n

j=i+1(y j =⊥)
}
,

We define an exploit against f as any input sequence X
for which f ’s output is neither that of the ideal program
nor a fallback trace. If E(f ,I) denotes the exploit set
of f with respect to I, then X ∈ E(f ,I) if and only if
run(f ,X) 6∈ Y⊥∪ {run(I,X)}. Note that the notions of
ideal program, fallback output, and exploit are oblivious
to the representation of the program’s internal state.

Exploit gaps and bug bounties. A program transfor-
mation T combines N ≥ 1 programs into a program
f ∗ := T(f1, f2, . . . , fN). Our notion of exploit gap aims
to capture the idea that f ∗ has fewer exploits than the
original fi. However, directly relating the sizes |E(f ∗,I)|
and |E(fi,I)| is problematic as these quantities are hard
to measure. Instead, we define a probabilistic notion of
exploit gap, for input sequences sampled from a distribu-
tionD (e.g., the distribution of user inputs to a program).

Definition 1 (Exploit Gap). A program transformation
T(f1, f2, . . . , fN) := f ∗ introduces an affirmative exploit
gap for a distribution D over inputs sequences X if

gap :=
PrX∈D

[
X ∈

⋃N
i=1 E(fi,I)

]
PrX∈D [X ∈ E(f ∗,I)]

> 1 . (1)

The exploit gap is empirically measurable and its mag-
nitude reflects the likelihood that an input sequence that
is an exploit for some fi does not affect f ∗.

A transformed program f ∗ that always returns ⊥ in-
duces a large exploit gap, yet has no utility. We therefore
also require the following notion of availability.

Definition 2 (Availability Preservation). Let F(f) be the
set of inputs with fallbacks, i.e. X ∈ F(f) iff run(f ,X) ∈
Y⊥. Then a program transformation T is availability-
preserving iff F(f ∗)⊆

⋃N
i=1 (E(fi,I)∪F(fi))

To be availability-preserving and yield an exploit gap,
a program transformation may trade availability for cor-
rectness. That is, a transformed program may fallback on
inputs that are exploits for some of the original programs.

Given a transformation T that induces an exploit gap,
a natural bug bounty for a deployed program f ∗ rewards
bugs in the original programs fi. Such a bug bounty
scheme satisfies three important properties:

3

1. The bugs are efficiently verifiable, via differential test-
ing: If run(fi,X) 6= run(f ∗,X), then the input X is an
exploit against fi or f ∗ or both.

2. A claimable bug need not be an exploit on f ∗. If the
exploit gap is large (gap� 1), then a discovered bug
likely affects one of the programs fi but not f ∗.

3. The bugs are valuable. If gap > 1, fixing bugs in the
fi eventually reduces the probability of exploits in f ∗.

Achieving an exploit gap. Generically, dynamic run-
time checks (e.g., stack canaries, under- or overflow de-
tection) can yield an availability-preserving exploit-gap:
the checks result in a fallback output (e.g., a runtime ex-
ception), where the original program had an exploit.

A broadly applicable method for achieving an exploit-
gap is via redundancy and fault-tolerance, e.g., Recov-
ery Blocks [42] or N-version programming [13]. These
transformations operate on N > 1 programs and aim at
full availability (i.e., no fallback outputs), a natural re-
quirement in mission-critical systems.

We focus on N-version (or multiversion) program-
ming, which we build upon in Section 3. This software
paradigm consists in three steps [13, 6]:
1. A specification is written for the program’s function-

ality, API, and error handling. It further defines how
to combine outputs of different versions (see Step 3).

2. N versions of the program specification are devel-
oped. Independence among versions is promoted via
isolation (i.e., minimal interactions between devel-
opers) and diversity (i.e., different programming lan-
guages, or technical backgrounds of developers).

3. The N versions are run in parallel and their outputs
combined via some voting scheme. N-version pro-
gramming traditionally uses majority voting between
programs to induce an exploit gap [13, 6].

3 N-of-N-version Programming

N-version programming assumes that heterogeneous
implementations have weakly correlated failures [13].
Many experiments have challenged this view [28, 17],
questioning the cost-benefit trade-off of the paradigm.
Our thesis is that smart-contract ecosystems present a
number of key properties that render multiversion pro-
gramming and derived bug-bounty schemes attractive.

The main differentiator between the traditional set-
ting of N-version programming, and ours, is the role of
availability. Prior works consider mission-critical sys-
tems and thus favor availability over safety in the face
of partial failures. For instance, Eckhardt et al. [17] ex-
plicitly ignore the “error-detection capabilities” of N-
version programming. This setup is not suitable for
smart-contracts: As in centralized financial institutions

(e.g., stock-markets [44]), the cost of a fault typically
trumps that of a temporary loss of resource availability.

Ethereum’s community exemplified its preference for
safety in this trade-off, when attackers found an exploit
in the Parity Multisig Wallet [9] and stole user funds. A
consortium of “white-hat hackers” used the same bug to
move user’s funds to a safe account. Despite funds being
unavailable for weeks, and reimbursement depending on
the consortium’s good will, the action was acclaimed by
the community and affected users. The simple escape
hatch in this scenario (i.e., move funds to a safe account)
was deemed a successful alternative to an actual exploit.

We propose trading availability for safety in N-version
programming, by replacing the goal of fault-tolerance by
one of error detection and safe termination. Suppose
that programs f1, . . . , fN have no fallback outputs (i.e.,
F(fi) = /0). Then majority voting yields a program f ∗

that also satisfies F(f ∗) = /0, but the exploit gap may be
small. At the other end of the spectrum, we propose N-of-
N-version programming (NNVP), wherein f ∗ aborts un-
less all of the N versions agree. NNVP is an availability-
preserving transformation that induces a much larger ex-
ploit gap (f ∗ only fails if all the fi fail simultaneously).

Table 1 lists prominent Ethereum smart contract fail-
ures. We discuss these in more detail in Appendix A, and
argue that a majority could have been abated with NNVP.

3.1 Revisiting N-version Programming

We revisit experiments on the cost-effectiveness of N-
version programming, in light of our NNVP alternative.

Knight and Leveson [29] first showed that the null-
hypothesis of statistical independence between program
failures should be rejected. Yet, such correlated failures
only invalidate the N-version paradigm if increased de-
velopment costs outweigh failure rate improvements.

Unfortunately, in an experiment at NASA, Eckhardt
et al. [17] found that the correlation between individual
versions’ faults could be too high to be considered cost-
effective, with a majority vote between three programs
reducing the probability of some fault classes by a factor
of only 4 (i.e., an exploit gap of gap≈ 4).

Fortunately, NNVP provides a better cost-benefit
trade-off. In the experiment of Eckhardt et al. [17], three
programs failed simultaneously with probability 30-
5000× lower than a single program (see Appendix B).
The actual gain is probably much larger, as Eckhardt et
al. did not consider whether program failures were iden-
tical or not. In NNVP, a failure only occurs if all N ver-
sions produce the same incorrect output. In any other
failure scenario, NNVP aborts. Thus, if loss of availabil-
ity can be tolerated, NNVP can significantly boost the
error detection capabilities of N-version programming.

4

Contract name Exploit value (USD) Root cause Independence source Exploit gap
Parity Multisig 2 [46] 300M Delegate call+exposed self-destruct programmer/language? 4/7
Parity Multisig 1 [9] 180M Delegate call+unspecified modifier programmer/language? 4/7
The DAO* [14] 150M Re-entrancy language 4

Proof of Weak Hands [7] 1M Arithmetic overflow programmer+language 4

SmartBillions [45] 500K Bug in caching mechanism programmer 4

HackerGold (HKG)* [35] 400K Typo in code programmer+language 4

MakerDAO* [43] 85K Re-entrancy language 4

Rubixi [12] <20K Wrong constructor name programmer+language 4

Governmental [12] 10K Exceeds gas limit None? 7

Table 1: Selected smart contract failures and potential exploit gaps. The list is extended from [22]. For each incident, we
report the value of affected funds (data from [1]), the cause of the exploited vulnerability, as well as the (hypothetical) potential for
fault independence between multiple contract versions. Green lines indicate settings in which a Hydra contract would have likely
induced a large exploit gap and prevented the exploit. Yellow and red lines indicate incidents that Hydra addresses only partially or
not at all. Asterisks indicate ERC20 compatible contracts, like our bounty described in Section 6. More details are in Appendix A.

3.2 Smart Contracts are NNVP-Friendly

In addition to favoring safety over availability, other
properties of smart contract ecosystems (and Ethereum
in particular) render NNVP bug bounties attractive:

• High risk for small applications. Smart contracts store
large financial values in small applications with an ex-
ceptionally high “price per line of code” (some token
contracts hold over 1M USD per line [1]). Contract
code is stored on a public blockchain and exploits often
directly extract or destroy stored funds. Yet developing
multiple versions is typically cheap in absolute terms.

• Principled bounty pricing. A contract’s balance is of-
ten a direct measure of an exploit’s market value. This
facilitates our analysis of principled bounty pricing that
incentivizes early disclosure of bugs (see Section 4).

• Bounty automation. Smart contracts enable automa-
tion of the full bounty program, from bug detection
(with differential testing) to rollback to bounty pay-
ments. Bounties administered by smart contracts can
satisfy fair exchange of bounties for bugs and guaran-
teed payment for disclosure of valid bugs [49]. Boun-
ties are also transparent (i.e., the bounty is publicly
visible on the blockchain) and may be dynamically ad-
justed to reflect a contract’s changing exploit value.
The result is a stable, decentralized bounty market.

• Programming language diversity. Many exploits in
Ethereum arose due to specific language idiosyn-
crasies. The multiple interoperable languages for
Ethereum enable potentially diverse implementations.

3.3 The Hydra Contract

Hydra consists of two program transformations. The
first, TNNVP, uses the NNVP paradigm to yield an
availability-preserving exploit gap. TNNVP combines N
smart contracts (or heads) f1, . . . , fN into a contract f ∗,

Contract	

External	

call(x)	②	 res	③	

Hydra	X	①	

Head	1	

X	②	

call(O,	x)	③	

res	⑥	

Head	2	

X⑦	

call(O,	x)	⑧	

res	⑨	

X	①	

External	

call(x)	④	 res	⑤	

Figure 2: The Hydra NNVP Transformation. (Left) a smart
contract that calls an external contract. (Right) a Hydra con-
tract with two heads. The meta-contract acts as a proxy and
delegates calls to each head in turn. Calls to external contracts
are routed through the meta contract and executed only once,
with the obtained result being replayed for each head.

which delegates incoming calls to each head. If all out-
puts match, f ∗ returns the output; otherwise, f ∗ reverts
all state changes and returns ⊥.

The idea is depicted in Figure 2. The heads are in-
dividually deployed and only interact with the Hydra
meta-contract (MC), which is the logical embodiment
of the contract functionality (i.e., the MC holds all as-
sets, and interfaces with external contracts and clients).
To maintain consistency while interacting with external
contracts, the MC checks that all heads agree on which
external interaction to perform, executes the interaction
once, and distributes the obtained response (if any). Our
design and implementation of the TNNVP transformation
for Ethereum smart contracts is described in Section 6.

The second transformation TBounty is responsible for
paying out a bounty and providing escape-hatch func-
tionality. It transforms a program f ∗ into a program f̂
which forwards any input to f ∗ and then returns f ∗’s out-
put, unless f ∗ returns⊥. In the latter case, f̂ will pay out
a bug bounty to its caller and enter an escape hatch mode.

Escape hatches. Ideally, bugs could be patched online.
This is hard in Ethereum as smart contract code cannot

5

be updated after deployment [36]. Best practices [19]
suggest enhancing smart contracts with an escape hatch
mode, which enables the contract’s funds to be retrieved,
before it’s eventual termination and redeployment.

The design of the escape hatch mode depends on the
application, but there are some universal design criteria:
• Security: The escape hatch’s correctness requires spe-

cial care, as it will not be protected by NNVP.
• Availability: The escape hatch must be available for the

contract’s entire lifetime, or assets could end up stuck.
• Distributed trust: All assets should be returned to their

rightful owners, or distributed among multiple parties.
For instance, contract funds could be sent to an audited

multisig contract (possibly implemented as a Hydra con-
tract itself), to distribute trust among multiple parties.

4 Economic Analysis of Hydra Bounties

We formally analyze the exploit gap induced by the Hy-
dra contract, and derive a bounty pricing model to incen-
tivize bug disclosure. We assume that bounties are paid
out immediately upon bug disclosure. In Section 5, we
refine our analysis in the blockchain model, wherein an
adversary may reorder messages sent to smart contracts.

4.1 Bug Finding as a Stochastic Process
We consider a set of parties that try to find vulnerabilities
in a Hydra contract f ∗ composed of N heads f1, . . . , fN .
For simplicity, we slightly overload notation and iden-
tify an exploit with the input that ultimately causes the
contract’s outputs to depart from the ideal behavior I (al-
though the internal state of f ∗ may have been corrupted
earlier). That is, x is an exploit if run(f ∗,X t [x]) 6=
run(I,X t [x]), where X is the sequence of all inputs pre-
viously submitted to f ∗ and t denotes concatenation.

If an honest party finds an input x that yields an exploit
for at least one of the heads (∃i ∈ [1,N] : x ∈ E(fi,I)),
then the party is awarded a bounty of value $bounty and
the contract’s escape hatch is triggered. If a malicious
party finds an exploit against the full Hydra contract (x is
an exploit for each head), the party can use this exploit
to steal the entirety of the contract’s balance, $balance.

We model bug finding as a Poisson process with rate
λi, which captures a party’s work rate towards finding
bugs. We assume that parties sample inputs x from a
common distribution of potential exploits D. We then
recover our exploit gap notion (Definition 1) by consider-
ing the difference in arrival times of two random events:
(1) a party discovers a flaw in one of the heads; (2) a party
finds a full exploit. The waiting times for both events are
exponentially distributed with respective rates λi and

λi · Pr
x∈D

[
x ∈ E(f ∗,I) | x ∈

⋃N
i=1E(fi,I)

]

= λi ·
Prx∈D

[
x ∈ E(f ∗,I) ∧ x ∈

⋃N
i=1 E(fi,I)

]
Prx∈D

[
x ∈

⋃N
i=1 E(fi,I)

]
= λi ·

Prx∈D [x ∈ E(f ∗,I)]
Prx∈D

[
x ∈

⋃N
i=1 E(fi,I)

] = λi ·gap−1 . (2)

Let us first consider the strong assumption of indepen-
dent program failures. For a head fi, let p be the proba-
bility that an input x ∈ D is an exploit for fi. We get

gap=
Prx∈D[x∈

⋃N
i=1 E(fi,I)]

Prx∈D [x∈E(f ∗,I)] =
1− (1− p)N

pN , (3)

which grows exponentially in N, for p ∈ (0,1).
The gap can be empirically estimated using Equa-

tion (1). For the test suites considered in the experiments
of Eckhardt et al. [17], the average gap for three program
variants is 4400 (see Appendix B for details).

4.2 Analyzing Economic Incentives
We assume a set of honest parties with combined work
rate λH. These bounty hunters only try to exchange bugs
for bounties. Note that a bug in all heads (i.e., a full
exploit) cannot be detected and rewarded by the meta-
contract f ∗. We thus let λH be the rate at which honest
parties find bugs that affect 1≤ k < N heads.

To analyze economic incentives of bounties, we con-
sider malicious parties which, if given an exploit, would
deplete the contract’s balance. W.l.o.g, we model a sin-
gle adversary A with work rate λM. Indeed, for m (non-
colluding) adversaries with work rates λ1, . . . ,λm, it suf-
fices to analyze the party with rate λM = max1≤i≤m λi.
If the bounty incentivizes this party to act honestly, less
efficient parties will have the same incentive.

Let TH be denote the waiting time until an honest party
finds a bug. TH is exponentially distributed with rate
λH. Let TM be the waiting time until A finds an exploit
against f ∗, which is exponential with rate λM · gap−1.
We analyze two cases: (1) A finds an exploit against f ∗,
and (2) A finds a bug for a strict subset of the heads.

In the first case, it is clear that A has no incentive to
disclose, unless the bounty exceeds the contract’s value.
This is the situation of a “traditional” bounty scheme.
However, the probability of this bad event occurring is

Pr[TM < TH] =
λM ·gap−1

λH +λM ·gap−1 =
λM

λH ·gap+λM
,

which naturally decays as the exploit gap increases.
In the second case, a bounty can incentivize early dis-

closure. Suppose A found a bug in a head. If A dis-
closes it, her payout is payoutH := $bounty. Instead,
if she conceals the bug and continues searching for ex-
ploits, she risks a payout of 0 if another party claims the

6

bounty first. Her expected payout, payoutM, is thus

Pr[TM < TH] ·$balance =
λM

λH ·gap+λM
·$balance .

Let α := λH
λM

. Then, honest behavior is incentivized if

payoutH
payoutM

> 1 ⇐⇒ $bounty >
1

α ·gap+1
·$balance .

We may assume that λM = λH (i.e., A’s work rate is
equal to the combined work rate of honest parties). Then,
for independent program failures (see Equation (3)) the
bounty decays exponentially in the number of heads N.

Thus, given estimates of α and gap, we get a prin-
cipled bounty pricing that incentivizes bug disclosure.
For example, in the experiment of Eckhardt et al. [17],
a three-headed Hydra could sustain a bounty 3 to 4 or-
ders of magnitude below an exploit’s value.

5 The Bug-Withholding Problem

Our analysis in Section 4 assumed that a bounty is paid
immediately when a bug is claimed. Hereafter, we refine
our analysis by modeling bounty smart-contract execu-
tion with respect to a powerful adversary, that can cheat
users by exploiting blockchain network protocols. We
highlight the bug-withholding attack and propose and an-
alyze a solution called Submarine Commitments.

Front-running. The issue is that transactions may not
be ordered in blocks by network submission time. When
a user sends a bounty-claim transaction τ to the network,
an adversary may front-run the user, and insert its own
bounty-claim τ ′ earlier in the chain [47]. It does this by
ensuring faster network propagation of τ ′ or by causing
a miner to order τ ′ before τ , e.g., by paying a higher fee
(more gas in Ethereum) or corrupting the miner.

Front-running opens up a bug bounty system to bug-
withholding attacks. Suppose an adversary has found a
bug in one or more heads in a Hydra contract, and aims
to find a stronger exploit against all heads. If another
party in the meantime claims the bounty, the adversary’s
progress is wiped out: It loses all potential payoff on its
already discovered bugs. By front-running, though, the
adversary can ensure it claims the bounty first, thus nul-
lifying any economic incentives for early disclosure.

We propose a formal model for blockchain security,
expressed as an ideal functionality Fwithhold. It captures
front-running, but is far stronger than previous models
(e.g., Hawk [30]). We present a basic bug-bounty con-
tract BountyContract in Fwithhold. Refining our analy-
sis of Section 4, we show how bug withholding breaks
incentives for bug disclosure in BountyContract. We

show that commit-reveal schemes are an insufficient de-
fense, and therefore introduce Submarine Commitments.
We prove, in an Fwithhold-hybrid world, that using Sub-
marine Commitments for BountyContract drastically re-
duces the payoff of a bug-withholding adversary.

5.1 Adversarial Model

We model an adversary A that can front-run a victim. In
our model, A can mount strong history-revision attacks,
overwriting blocks at the head of the blockchain, and can
delay any transaction by a bounded number of blocks.

This reflects an adversary’s ability to monitor trans-
actions, mount network-level attacks, control client ac-
counts, and even corrupt or bribe miners to alter legit-
imate blocks. Previous models, e.g., [30], considered
weaker attacks in which A can arbitrarily reorder trans-
actions in a pending block. They are equivalent to weak
history-revision attacks with only a single block.

In our model, A itself constructs the blockchain. A
controls all but one honest player, denoted P0. (P0 models
the collective behavior of all honest players.) A can re-
order P0’s transactions by: (1) Rewinding the blockchain
from its head, i.e., mounting a history-revision attack, for
a sequence of up to ρ blocks ; and (2) Delaying the post-
ing on the blockchain of a transaction by P0 by up to δ

blocks. We call such an adversary A a (δ ,ρ)-adversary.
Our adversarial model takes the form of an ideal func-

tionality Fwithhold characterizing an (δ ,ρ)-adversary A.
We give details on Fwithhold in Appendix D.1.

Notation. Let B= {B1, . . . ,BB.Height} be a blockchain,
i.e., an ordered sequence of blocks. Here, B.Height is the
number of blocks in B. A block Bi = {τi,1, . . . ,τi,s} is an
ordered sequence of s transactions, i.e., Bi has blocksize
s. For simplicity, we assume no forks. If a fork occurs,
A may operate on what it believes to be the main chain.

Let P = {P0,P1, . . . ,Pm} be a set of clients or players
that execute transactions. We assume w.l.o.g. that P0 is
honest and the other m players are controlled by A.

5.2 The BountyContract Smart Contract

Within the Fwithhold-hybrid model, we specify a contract
BountyContract to administer a single bug bounty, us-
ing a simple commit-reveal scheme to prevent adversarial
copying and resubmission of bugs. BountyContract has
parameters ∆ > δ + ρ , $deposit and $bounty. It takes
as input a commitment to a bug in some block Bi (via
transaction “commit”), which must be revealed before
block Bi+∆ (via transaction “reveal”). After a delay ∆, the
player with the first validly revealed commitment may
claim the bounty (via transaction “claim”). A “commit”

7

BountyContract with B, P = {P0,P1, . . . ,Pm}, ∆, $deposit, $bounty

Init: CommitList,RevealList← /0

On receive τ = (“commit”,comm,$val) from Pi: // Pi commits to bug
if $val≥ $deposit then CommitList.append(comm,B.Height;Pi)

On receive τ = (“reveal”,(comm,height),(witness,bug)) from Pi:
if (comm,height;Pi) ∈ CommitList then // Pi reveals commitment

assert (B.Height−height)≤∆

assert Decommit(comm;(witness,bug)) ∧ IsValidBug(bug)

RevealList.append(height;Pi)

On receive τ = (“claim”,height) from Pi: // Pi tries to claim bounty
assert (height;Pi) ∈ RevealList

assert B.Height−height > ∆

assert @(height′;Pi′) ∈ RevealList s.t. height′ < height

send $bounty to Pi and halt // Pay bounty and ignore further messages

Figure 3: The BountyContract smart contract.

incurs a cost of $deposit, to prevent A from committing
in every block and revealing only if P0 also reveals.

We assume a function isvalidbug that determines
whether a submitted bug is valid. In the Fwithhold-hybrid
model, BountyContract is fed a height-n blockchain B,
which is replayed after being generated by Fwithhold, i.e.,
transactions are executed as ordered by Fwithhold in B.

Bug withholding in BountyContract. The contract in
Figure 3 uses a cryptographic commit-reveal scheme,
a simple folklore solution to certain front-running at-
tacks [26]. This works if A cannot post a valid com-
mitment itself until it sees a victim’s reveal. For in-
stance, BountyContract prevents A from trying to learn
and steal the committed bug from an honest player P0.

Unfortunately, this approach does not protect against
front-running in the Fwithhold-hybrid model if A is with-
holding a bug it already knows. Here, A waits until P0
sends a “commit”. A then knows that P0 is trying to
claim a bounty, and can front-run P0’s commitment by
posting her own “commit” ahead in the blockchain.

This problem arises in many other scenarios, e.g., to-
ken sales or auctions, where a user must send funds to
place her bid, thus exposing the bid on the blockchain.

Impact of bug withholding. In our analysis of Hydra
bug bounties in Section 4.2, we assumed thatA risks for-
feiting a payout of $bounty if she conceals a bug. How-
ever, front-running has the potential of removing incen-
tives for early disclosure, as A can ensure a payout of
$bounty by front-running the honest bounty hunter.

If A conceals a bug, she finds a full exploit before
the bounty is claimed with probability q := Pr[TM < TH].
Otherwise she front-runs and steals the bounty. Her ex-
pected payout is q ·$balance+(1−q) ·$bounty.

If A discloses the bug, her payout is $bounty. To in-
centivize disclosure, we need $bounty> $balance, as in a
standard bounty with no exploit gap. We now show a so-

lution that thwarts bug-withholding attacks in Ethereum,
thus re-instantiating positive incentives to disclose bugs.

5.3 Submarine Commitments

We present a bug-withholding defense called a Subma-
rine Commitment. This is a powerful, general solution
to the problem of front-running that may be of indepen-
dent interest, as it can be applied to smart-contract-based
auctions, exchange transactions, and other settings.

As the name suggests, a Submarine Commitment is
a transaction whose existence is temporarily concealed,
but can later be surfaced to a target smart contract. It may
be viewed as a stronger form of a commit-reveal scheme.
Achieving Submarine Commitments is challenging in
systems like Ethereum, however, because message con-
tents and currency in all transactions are in the clear.

Briefly, in Ethereum, to commit in a Submarine Com-
mitment scheme, P posts a transaction τ that sends (non-
refundable) currency $val≥ $deposit to an address âddr.
This address is itself a commitment of the form

âddr = H(addr(Contract),H(addr(P),key),data) ,

for H a commitment scheme (e.g., hash function in the
ROM), key a randomly selected witness (e.g., 256-bit
string), and data other ancillary information. P’s address
is included in the commitment to prevent replay by A.
To reveal, P sends key to Contract. A Submarine Com-
mitment scheme includes an operation DepositCollec-
tion that permits Contract to recover $val using addr(P)
and key. This scheme has these key properties:

1. Commit: As key is randomly selected, âddr is indis-
tinguishable from random in the view of A. Thus
τ has no ascertainable connection to Contract, and
looks to A like an ordinary send to a fresh address.

2. Reveal: After learning key, Contract can compute
âddr as above and verify that $val was sent correctly.
Via DepositCollection, Contract recovers $val thus
avoiding unnecessary burning of funds.

Thus if A does not know P’s address (honest bounty
hunters could use a mixer), and $val is sampled from
an appropriate distribution of values $val ≥ $deposit, A
cannot distinguish transaction τ from other sends to fresh
addresses. As we show in Appendix C.2, such sends
are common in Ethereum and, for a reasonable commit-
reveal period (e.g., 25 minutes), form an anonymity set
of hundreds of transactions with a diverse range of val-
ues among which $val is statistically hidden. Notably,
the anonymity set represents 2-3% of all transaction traf-
fic over the commit-reveal window. Two concrete Sub-
marine Commitment constructions are in Appendix C.

8

5.4 Analysis of Submarine Commitments
We prove that Submarine Commitments strongly miti-
gate bug withholding in BountyContract. Our analysis
uses a game-based proof in the Fwithhold-hybrid world.
Details are in Appendix D.1, although our model is un-
derstandable without detailed knowledge of Fwithhold.

Withholding game: Expbntyrace
A . Figure 4 shows the

simple game used in our security analysis, denoted by
Expbntyrace

A . The game is played between an honest user
P∗ = P0, and a user P1 controlled by A. W.l.o.g., P∗

models a collection of honest players, while P1 models
players controlled by A. A interacts with P∗ in the ideal
functionality Fwithhold. Let ∆ > δ +ρ , where δ and ρ are
the number of blocks by which A can delay or rewind
in Fwithhold. The experiment considers an interval of n
blocks in a blockchain B of length n′ = n+∆.

In this game, a player can send only two messages:
(“commit”,$deposit), and “reveal”. To model Subma-
rine Commitments, we assume that P∗’s commit mes-
sage is opaque to A, i.e., A cannot detect its presence in
a block and it does not count toward the block’s size.

For clarity’s sake, we first analyze Submarine Com-
mitments outside the Poisson framework of Section 4.
Our results also hold in that setting, with a slightly tighter
bound for Theorem 3 below (see Appendix D for a
proof). Instead, we consider a blockchain interval of n
blocks, wherein P∗ commits in a block chosen uniformly
at random. That is, P∗ posts (“commit”,$deposit), in
the block at index commblockP∗ ←$ [1,n]. P∗ posts a
“reveal” in block revblockP∗ = commblockP∗ +ρ .
A wins the game if she posts a valid “commit” before

P∗ does, and also posts a corresponding “reveal” to claim
the bounty. We let pwins = Pr[(TRUE, ·)← Expbntyrace

A].
As a first goal, an economically rational adversary A’s
aims to maximize its expected payoff, namely

E[$payoff] = pwins ·$bounty−E[$cost]. (4)

Of course,A can always post a “commit” in B1 followed
by a “reveal” within ∆ blocks, in which case it achieves
pwins = 1 with $payoff = $bounty− $deposit, which is
optimal. But then it achieves no withholding.

Results. A compelling withholding strategy forA is to
reveal a bug only by front-running P∗, i.e., a pure front-
running strategy. That is, if P∗ sends a “reveal” in block
B j, then A learns that P∗ posted a “commit” in block
B j−ρ . A can rewind and post its own “reveal” earlier than
P∗. But A can rewind at most ρ blocks (i.e., block B j−ρ

cannot be erased), soA only succeeds if it has previously
posted a “commit” in the interval [B j−ρ−∆,B j−ρ].

We show that for natural parameters, A achieves no
benefit, i.e., positive expected payoff, via pure front-

Experiment Expbntyrace
A (n′,δ ,ρ,s;∆,$deposit,$bounty)

Init: n← n′−∆,$cost← 0,commblockP∗ ←$ [1,n]

A{B←Fwithhold({P0=P∗ ,P1},n,δ ,ρ,s)} //A interacts with Fwithhold

for i = 1 to n
if (“commit”,$deposit) ∈ Bi then

$cost← $cost+$deposit //Every commit costs $deposit

if
(
∃(1≤ i≤ commblockP∗ ∧ i≤ j ≤min(i+∆,n)) s.t.

∃(τ = “commit”) ∈ Bi s.t. tag(τ) = (i,P1) ∧
∃(τ = “reveal”) ∈ B j s.t. tag(τ) = (j,P1)

)
then

output(TRUE,$payoff := $bounty−$cost) //A wins

output(FALSE,$payoff :=−$cost)

Figure 4: Adversarial game Expbntyrace
A

running. Intuitively, this is because front-running is ex-
pensive: Since A observes a “commit” message from P∗

too late to remove it by rewinding,Amust post “commit”
messages continuously to ensure that it can front-run P∗.
We prove the following in Appendix D.

Theorem 3. Let ∆≥ 4 and $deposit > 10(∆+1)
9n ·$bounty.

Then a pure front-running adversary has E[$payoff]< 0.

This result is fairly tight and enables practical param-
eterizations of BountyContract, as this example shows.

Example 1. Consider a bounty in Ethereum, with 15-
second block intervals. Suppose that $bounty = 100,000
USD, that the period over whichA competes with honest
bounty hunters is one week, and that a commitment must
be revealed in ∆ = 100 blocks. Then given $deposit ≥
278 USD, a pure front-running adversary cannot achieve
a positive expected payoff (i.e., E[$payoff]> 0).

Of course, A could use other strategies. We consider
in Appendix D a generalized α-revealing strategy that in-
volves conditional preemptive bug disclosure. We show
that this strategy does no better than pure front-running.

6 Design and Implementation

We implemented a decentralized automated bug bounty
for Ethereum smart contracts. We describe the main
technical deployment challenges, and explain our design.

The EVM. The Ethereum Virtual Machine (EVM) is
a simple stack-based architecture [53]. Smart contracts
can access three data structures: a stack, volatile mem-
ory, and permanent on-chain storage.

Execution of a contract begins with a transaction sent
to the blockchain, specifying the called contract, the call
arguments, and an amount of ether, Ethereum’s currency.
The EVM executes the contract’s code in a sequential,
deterministic, single-threaded fashion. Operations can
read and write to stack, memory or storage, and spawn a
new call frame (with a fresh memory region) by calling

9

other contracts. Each instruction costs a fixed amount of
gas, a special resource used to price transactions.

Contracts can exceptionally halt, revert all changes
made in the current call frame (e.g., storage updates,
transfers of ether), and report an exception to the callee.

6.1 An EVM Execution Environment
To achieve the full power of our Hydra bug bounty, N
smart contract versions are run on the blockchain. While
we could also run a bounty program off-chain (for a sin-
gle deployed contract), this would not provide an exploit
gap, a key property in our analysis of attacker incentives.

The main challenge is the implementation of the “Ex-
ecution Environment” [13, 6], the agent that coordinates
the N heads and combines their outputs. Its complexity
should be minimal, as it is part of the Trusted Computing
Base (TCB) of our application: a bug in the coordinating
agent is likely an exploit against the Hydra contract.

A proxy meta-contract. As we showed in Figure 2,
the logical embodiment of a Hydra contract is a proxy
meta-contract (MC), which coordinates N deployed con-
tract versions (or heads). Clients and other contracts only
interact with the MC. The heads only respond to calls
from the MC, and do not hold any ether themselves.

The MC delegates all incoming calls to each head, and
verifies that the obtained outputs match. If so, it returns
that output. Otherwise, it throws an exception, to revert
all changes made by the heads. The TBounty transforma-
tion described in Section 3.3 is implemented as a simple
wrapper around the MC, which catches the above excep-
tion, pays out a bounty, and enters an escape-hatch mode.

Maintaining consistent blockchain interactions. As
the EVM execution is deterministic, the result of a con-
tract call is fully determined by the call’s input, the con-
tract code and the current blockchain state. If smart con-
tracts were executed in isolation, the above proxy con-
tract would thus be sufficient. However, most smart con-
tracts also interact with the blockchain, e.g., by access-
ing information about the current transaction (such as the
sender’s address) or by calling other contracts, and the
MC must thus guarantee consistency among the heads.

We illustrate the issue in Figure 5 with a Solidity
code snippet (top-left) and corresponding EVM opcodes
(bottom-left). The function f (x) makes a call to g(x) in
the calling contract (msg.sender) and reimburses any
sent ether (msg.value). If used as a head in a Hydra
contract, this code snippet presents multiple issues.

1. CALLVALUE and CALLER are modified when the MC
delegates a call to the head. CALLER will now be the
MC’s address, and CALLVALUE will be zero.

2. The heads cannot send ether as they do not hold any.
3. With N heads, g(x) is called N times instead of once.

The heads might also obtain different return values.

To resolve these issues, the heads are instrumented
prior to deployment so that all interactions with the
blockchain are mediated by the MC. While these mod-
ifications could be made in a high-level language (e.g.,
Solidity), we opt for a more generic, automated, and
globally applicable solution that operates on the EVM
opcodes of a compiled contract (the instrumentation is
thus agnostic to the language used to develop the heads).
Opcode instrumentations are essentially of two types:

• Environment Information. We ensure that all heads
share the view of a common Hydra contract. The
ADDRESS opcode (which returns the current contract’s
address) is modified to return the MC’s address. The
heads reject all calls that do not emanate from the MC.
The MC also forwards CALLVALUE and CALLER to the
heads as extra call arguments, to make the proxy dele-
gation transparent. These opcodes are overwritten ac-
cordingly in the heads to read from the call data.

• System Operations. Opcodes that interact with other
blockchain entities (e.g., calling a contract, reading
account balances, or logging messages) are rewritten
as callbacks to the MC. The MC checks consistency
among the heads’ callbacks and issues the required op-
erations on their behalf. The instrumentation requires
some extra volatile memory to store callback argu-
ments, so all memory accesses in the original code are
shifted by a fixed offset to create a scratch space.

The instrumented heads are independently deployed
on chain. We now discuss the callback mechanism, as
well as the soundness and applicability of our approach.

Callbacks. Due to the sequential nature of the EVM,
we designed the Hydra meta-contract to optimistically
responds to callbacks. That is, when the first head runs,
the MC executes all callbacks (e.g., external calls) and
records the callback arguments and return values. When
the remaining heads run, the MC verifies consistency of
requested callbacks and replays the responses. If heads
request different callbacks, the MC throws an exception,
reverting all changes and triggering the bounty payment.

To maintain consistency between heads, and avoid po-
tential read-write inversions (e.g., if heads send ether and
read contract balances in different orders), the program
specification is required to define a total-ordering of the
read and write operations issued by the heads.

Tail-call optimization. A design pattern for smart-
contracts (“Checks-Effects-Interactions” [19]) suggests
that interactions with other blockchain entities should oc-

10

function f(int x) payable {
// reimburse sender and call g(x)
(msg.sender).g.value(msg.value)(x);

}

function f(int x, addr sender , uint val) {
// send all call args to meta -contract
MC.call(bytes4(sha3("g(int256)")),x,sender ,val);

}

⇓ (⇑)
MSTORE(M, 0x7877b803) #store sig of g in memory
MSTORE(M+4, CALLDATALOAD (4)) #store x
PUSH32 (0) #output size and memory location
PUSH32 (0) #output memory
PUSH32 (36) #input size
PUSH32(M) #input memory
CALLVALUE #use msg.value as the call value
CALLER #use msg.sender as the dest address
GAS
CALL #this opcode will be instrumented ⇒

MSTORE(M∗, 0x7877b803) #store sig of g in memory
MSTORE(M∗+4, CALLDATALOAD (4)) #store x
MSTORE(M∗+36, CALLDATALOAD (36)) #store sender
MSTORE(M∗+68, CALLDATALOAD (68)) #store value
PUSH32 (0) #output size
PUSH32 (0) #output memory
PUSH32 (100) #input size
PUSH32(M∗) #input memory
PUSH32 (0) #send 0 ether
PUSH32(MCaddress) # destination address of the call
GAS
CALL #after call returns , cleanup stack

Figure 5: EVM instrumentation of Hydra heads (simplified example). (Top left) Solidity function that calls g(x) in the calling
contract (msg.sender) and sends back all ether (msg.value). (Bottom left) EVM bytecode for the call to g(x). MSTORE(a, v) is
syntactic sugar for {PUSH32(a),PUSH32(v),MSTORE} which writes value v to memory address a. CALL consumes 7 stack items:
gas amount, address to call, ether amount to send, and memory location and size for call arguments and outputs. (Bottom right)
Instrumented bytecode: CALLVALUE and CALLER are read from function arguments. All call data is stored in memory and used as
arguments for a callback to the MC. (Top right) Functionally equivalent Solidity code for the instrumented bytecode.

cur last in a call. For contracts that follow this paradigm,
a tail-call optimization can be applied to callbacks.

Instead of calling into the MC, the heads simply ap-
pend any required call or log operations to the calls’ re-
turn value. Operations that read blockchain state (e.g.,
balance checks) are not instrumented. The MC then col-
lects the return values from all heads, verifies consis-
tency, and executes all interactions before returning.

Exception handling. Recall that the EVM halts when
contracts perform illegal operations, e.g., explicitly
throwing exceptions or running out of gas. Ideally, we
would classify any divergence in the heads’ behavior as
a bug and pay a bounty. However, it is easy to set gas
amounts so that one head runs out of gas, yet others suc-
ceed. Explicit exceptions are thus instrumented to return
a special value to the MC, so as to be distinguished from
an out-of-gas exception. If all heads throw an explicit
exception, the MC propagates the exception to the caller.

6.2 Limitations.

Our Hydra head instrumenter, written in Haskell, applies
simple opcode rewriting rules (see Figure 5), which are
verified to preserve program invariants such as stack and
memory layout. Our modifications impact the heads’ gas
consumption, yet the overhead is minor (see Section 7).
Rewriting opcodes also modifies the layout of the byte-
code, so all JUMP instructions are updated accordingly.

The instrumentation applies to contracts written in
any high-level language that compiles to the EVM, and
requires no changes to the EVM. We have not yet
implemented callbacks for the infrequent CREATE and
SELFDESTRUCT opcodes. We do not yet support opcodes

that modify a head’s code (e.g., DELEGATECALL). These
are often used to load libraries into a contract. Using
such opcodes would require the library code to be in-
strumented itself, which is possible in principle. We note
however that code delegation is typically at odds with the
multiversion programming philosophy: if all heads call
the same library contract, a library bug could yield an
exploit. We leave Hydra-based libraries to future work.

7 Evaluation

This paper’s goal is not to rigorously measure corre-
lations between smart contract faults, but to propose a
novel principled bug bounty framework built upon an
assumed exploit gap. We leave a thorough analysis of
smart contract failure patterns to future work. We evalu-
ate our framework under standard software metrics: TCB
size, soundness, applicability and performance. We con-
clude with a discussion of our development process.

Workloads. To test soundness, applicability and per-
formance of Hydra contracts, we use three workloads:
(1) The official suite of test contracts for the EVM1; (2)
All contracts used in Ethereum between Dec. 7 2017 and
Feb. 7 2018; and (3) two representative smart-contract
applications developed by the authors. Implementations
of Submarine Commitments in Ethereum, and a thor-
ough analysis of the resulting anonymity sets for bounty
claiming transactions are in Appendix C.

We developed a generic ERC20 contract [51] for to-
ken transfers, and a Monty Hall Lottery, wherein two
participants play a multi-round betting game [52]. In
both cases, three authors independently developed one

1https://github.com/ethereum/tests/tree/develop/VMTests

11

https://github.com/ethereum/tests/tree/develop/VMTests

Opcode Contracts Transactions Difficulty
CODECOPY 50,147 (14%) 5,646,607 (27%) medium
CALLCODE 30,109 (8%) 1,213,064 (6%) hard
SELFDESTRUCT 24,707 (7%) 739,249 (4%) easy
DELEGATECALL 19,749 (6%) 2,695,326 (13%) hard
CREATE 11,559 (3%) 1,143,961 (5%) easy
Other 6681 (2%) 195,569 (1%) -

None 268,652 (76%) 12,780,929 (61%) supported

Table 2: Frequency of main unsupported opcodes. For
blocks 4690101 to 5049100 on the Ethereum network, we
count how many transactions use an opcode that cannot cur-
rently be handled by our Hydra Framework. We further record
the fraction of unique smart contract codes that contain those
opcodes, and the difficulty in adding support for each opcode.

head in each of Solidity, Serpent, and Vyper, the main
programming languages in Ethereum. These languages
have different design tradeoffs (in terms of ease-of-use,
low-level features or security) and are by themselves a
valuable source of diversity between our Hydra heads.

• The Hydra ERC20 token: The ERC20 token-transfer
API has been thoroughly peer reviewed [51], and is
supported by most of the highest-dollar contracts in
Ethereum (as of February 2018, the combined market
cap of the top ten Ethereum tokens is over 20 billion
USD [1]). Notably, the exploit in the DAO [11] was
partially present in the code managing tokens.

Our three-headed Hydra token is deployed on the
main Ethereum network and can be used as a drop-
in replacement for any ERC20 token, e.g., in the
DAO [11] and ether.camp [35] contracts. When a user
submits a token order, the MC delegates to all heads
and validates the order upon agreement. Our initial
bounty is 3000 USD, which we will increase as the
contract undergoes further audit, review, and testing.

• A Hydra Monty-Hall lottery: In this game, one party,
the house, first hides a reward behind one of n doors.
The player bets on the winning door, and the house
opens k other non-winning doors. The player may then
change his guess. If he guessed correctly, the player
wins the reward; otherwise the house collects the bet.

A fourth author wrote a specification describing the
contract’s API and behavior. The house’s initial door
choice takes the form of a cryptographic commitment
that is later opened to reveal the winner. If either party
aborts, the other party can claim both the reward and
bet after a fixed timeout. The specification leaves the
internal representation of the game open to developers.

TCB size. Our design from Section 6.1 is generic, and
covers both of our target applications (and the majority
of our other workloads, see below). The instrumenter for
Hydra heads is written in 1500 lines of Haskell, and ap-
plies simple code parsing and rewriting rules. The MC’s
proxy functionality is implemented in EVM assembly.

We also wrote an MC in Solidity (185 lines) that applies
tail-call optimization to callbacks. As the Hydra Frame-
work is application-agnostic, we believe this is a reason-
able TCB. It should also be relatively easy to write a for-
mal specification for the simple functionality of the MC
and instrumenter, although we have not attempted this.

Completeness and correctness. To evaluate com-
pleteness of our Hydra instrumenter, we consider all
Ethereum transactions for blocks 4690101 - 5049100
(Dec. 7 2017 to Feb. 7 2018). For each transaction,
we test whether our instrumenter supports the evaluated
code (see Section 6.2 for unsupported opcodes). We
find that 61% out of 21M transactions, or 76% of 270K
unique smart contracts, are compatible with Hydra. Ta-
ble 2 breaks down the contracts that Hydra currently can-
not handle. This analysis supports the fact that Hydra
could be usable for the majority of Ethereum contracts,
both by deployed code and transaction volume.

We verify soundness by running the official EVM test
suite1 on Hydra contracts. That is, we replace every con-
tract in the test suite by a Hydra contract, and ensure all
observable side effects (e.g. logs, external calls, return
values, computation outputs) are unchanged. This test
suite is used to evaluate EVM implementations, includ-
ing executable formal specifications of the virtual ma-
chine [22]. It is thus critical that the suite be compre-
hensive: any gap in coverage represents a potential con-
sensus break among official EVM implementations, with
impact far beyond Hydra. Hydra passes all tests for con-
tracts it supports (6% of tests contain unsupported opera-
tions, see Section 6.2). This gives us extremely high con-
fidence in the soundness of our transformation. We are
extending the test suite and completeness of our frame-
work towards maximal assurance for our TCB, including
to all official Ethereum tests beyond VM tests.

Gas costs. Running N copies of a smart contract in-
curs an overhead on gas consumption. Some Ethereum
projects, notably the Vyper language, already trade gas
efficiency for security. Moreover, a transaction’s gas cost
can be offloaded onto the contract owner, thus dispensing
users from Hydra’s gas overhead. In any event, for small
yet common workloads, the main gas cost of a transac-
tion is the fixed “base fee”. As the MC calls all the heads
in a single transaction, this fee is amortized, leading to
sub-linear scaling of the gas-cost for N-headed Hydras.

Figure 6 compares gas costs for Hydra contracts with
1-5 heads to a linear scaling of a single non-instrumented
contract. We show results for the five non-static calls in
the ERC20 API, and for a full Monty Hall game (five
transactions), with and without tail-call optimization.

For the ERC20 contract, the main cost is the transac-
tion’s base fee of 21,000 gas. A call to the MC incurs

12

Number of heads (1, 3, 5)

50K

150K

250K

ga
s c

os
t o

f E
RC

20

approval
deposit transfer

transferFrom withdraw

Hydra + tail call opti.
Hydra
Linear scaling

0.5M

1.5M

2.5M

ga
s c

os
t o

f M
on

ty
 H

al
lMonty Hall

Figure 6: Gas cost of Hydra contracts with N heads. We
compare the Hydra contract—with and without tail-call opti-
mization for callbacks—to a linear scaling of a single contract
for the ERC20 API (left) and a Monty Hall game (right).

an overhead of about 8000 gas (independent of the num-
ber of heads) or about 0.08 USD2. Each function call
ends in a LOG callback to the MC (to log an “Approval”
or “Transfer” event, as mandated by the ERC20 specifi-
cation). The withdraw function also sends ether to the
calling party. Applying the tail-call optimization results
in significant savings for these callback-heavy functions.

Completing a game of Monty Hall requires long-term
storage of many game parameters which overshadows
the base fee costs (each stored word costs 20,000 gas).
As each head stores the data independently, the scaling
is close to (but still below) linear in this case. The tail
call optimization still results in savings at the end of the
game, when the winnings are sent to the house or player.

Evaluation of gas costs (and anonymity set sizes) for
Submarine Commitments are in Appendix C. These costs
only affect the transaction that claims the bounty.

Observations on the development process. After
writing three heads independently, we commonly tested
our contracts for discrepancies and found multiple bugs
in each head, none of which impacted all heads simul-
taneously. Examples include a misunderstanding of the
ERC20 API, integer overflows, “off-by-one” errors in
the Monty Hall game, and a vulnerability to an only re-
cently discovered EVM anti-pattern that lets a contract
silently increase another contract’s ether balance via the
SUICIDE opcode. Notably, all these bugs could have
been exploited against a single contract, yet none of them
appear useful against all heads simultaneously.

In addition to the exploit gap induced by Hydra, the
NNVP development process itself increased the quality
of our contracts. For the Monty Hall, ensuring compat-
ibility between heads required writing a detailed speci-
fication, which revealed many blind spots in our origi-
nal design. Moreover, differential testing [37] (verify-
ing agreement between heads on random inputs) was re-
markably simpler for exercising multiple code paths for

2As of February 2018, 1 ether is worth roughly 1000 USD
and a gas price of 1010 wei) is standard according to https://

ethgasstation.info. A value of 1 ether corresponds to 1018 wei.

the Monty Hall game, compared to a standard test suite.

8 Related Work

Software assurance and fault-tolerance are well-studied
topics with an extensive literature. N-version program-
ming [13, 6, 18] in particular was introduced decades
ago and challenged in influential studies [17, 28] (see
Section 2). Nagy et al. use N-version programming to
construct honey-pots for detecting web exploits [40].

Bitcoin and, more importantly, Ethereum [10] have
popularized smart contracts [48] and script-enhanced
cryptocurrency [25]. Research on smart contract security
is burgeoning and includes: Analysis of common con-
tract bugs [15, 33, 5], static analysis and enhancements
for Solidity [33], formal verification tools [8, 23, 3], de-
sign of “escape hatches” [36], DoS defenses for min-
ers [34], trusted data feeds [54], and formal EVM se-
mantics [22, 24]. While promising, none of these tools
and techniques have yet seen mainstream adoption, nor
do they relate directly to our explorations in this paper.

In a closely related work, Tramèr et al. [49] consider
using smart contracts for bug bounties (using SGX), but
not the converse, i.e., bounties for smart contracts.

Bug withholding is related to selfish-mining [20],
where a miner withholds blocks to later nullify other
miners’ work. As selfish mining operates at the block
level and bug withholding at the application level, they
differ in their mechanisms, analysis, and implications.

Submarine Commitments hide bounty claims among
normal Ethereum transactions and relate to cover traffic
techniques such as anonymity networks (e.g., Tor [16]),
network-based covert channels [39], steganography and
watermarking [27]. Submarine Commitments differ in
that they assume ultimate opening of a hidden value.

Several works [30, 26, 49] model blockchain-level ad-
versaries. They consider an adversary that can reorder
transactions within a given block, however, and not the
much stronger model of chain-rewriting we explore here.

9 Conclusion

We have presented the Hydra Framework, the first prin-
cipled approach to administering bug bounties that in-
centivize honest disclosure. The framework relies on a
novel notion of an exploit gap, a program transforma-
tion that enables bug detection at runtime. We have de-
scribed one such strategy, N-of-N-version programming
(NNVP), a variant of N-version programming that de-
tects divergences between multiple program instances.

We have applied our framework to smart contracts,
highly valuable and vulnerable programs that are par-
ticularly well suited for fair and automated bug boun-

13

https://ethgasstation.info
https://ethgasstation.info

ties. We have formally shown that Hydra contracts in-
centivize bug disclosure, for bounties orders of magni-
tude below an exploit’s value. We have modeled strong
bug-withholding attacks against on-chain bounties, and
analyzed Submarine Commitments, a generic defense to
front-running that hides transactions in ordinary traffic.

Finally, we have designed and evaluated a Hydra
Framework for Ethereum, and rigorously tested its
soundness and applicability to the majority of Ethereum
contracts today. We used this framework to construct a
Hydra ERC20 token and Monty Hall game. The former
is live in production on Ethereum, and represents the first
principled and trust-free bug bounty offering.

Acknowledgements

We thank Paul Grubbs and Rahul Chatterjee for com-
ments and feedback. This research was supported by
NSF CNS-1330599, CNS-1514163, CNS-1564102, and
CNS-1704615, ARL W911NF-16-1-0145, and IC3 In-
dustry Partners. Phil Daian is supported by a Na-
tional Science Foundation Graduate Research Fellow-
ship. Lorenz Breidenbach was supported by the ETH
Studio New York scholarship.

References
[1] Cryptocurrency market capitalizations. https://

coinmarketcap.com/tokens/.

[2] ABLON, L., LIBICKI, M. C., AND GOLAY, A. A. Markets for
cybercrime tools and stolen data: Hackers’ bazaar. Rand Corpo-
ration, 2014.

[3] AMANI, S., BÉGEL, M., BORTIN, M., AND STAPLES, M.
Towards verifying Ethereum smart contract bytecode in Is-
abelle/HOL. CPP. ACM. To appear (2018).

[4] ARGHIRE, I. Researchers claim Wickr patched flaws but didn’t
pay rewards, Oct. 2016. http://www.securityweek.com/
researchers-claim-wickr-patched-flaws-didnt-pay-

rewards.

[5] ATZEI, N., BARTOLETTI, M., AND CIMOLI, T. A survey of
attacks on Ethereum smart contracts (SoK). In International
Conference on Principles of Security and Trust (2017), Springer,
pp. 164–186.

[6] AVIŽIENIS, A. The methodology of N-version programming. In
Software Fault Tolerance, M. R. Lyu, Ed. John Wiley & Sons Ltd,
1995.

[7] BANISADR, E. How $800k evaporated from the powh coin ponzi
scheme overnight, 2018. https://blog.goodaudience.com/
how-800k-evaporated-from-the-powh-coin-ponzi-

scheme-overnight-1b025c33b530.

[8] BHARGAVAN, K., DELIGNAT-LAVAUD, A., FOURNET, C.,
GOLLAMUDI, A., GONTHIER, G., KOBEISSI, N., KULATOVA,
N., RASTOGI, A., SIBUT-PINOTE, T., SWAMY, N., ET AL. For-
mal verification of smart contracts: Short paper. In ACM PLAS
(2016), ACM, pp. 91–96.

[9] BREIDENBACH, L., DAIAN, P., JUELS, A., AND SIRER,
E. G. An in-depth look at the Parity multisig bug,
Jul. 2017. http://hackingdistributed.com/2017/07/22/
deep-dive-parity-bug/.

[10] BUTERIN, V. Ethereum: A next-generation smart contract
and decentralized application platform. https://github.com/
ethereum/wiki/wiki/White-Paper, 2014.

[11] BUTERIN, V. Hard fork completed, Jul. 2016. https://

blog.ethereum.org/2016/07/20/hard-fork-completed/.

[12] BUTERIN, V. Thinking about smart contract security,
Jun. 2016. https://blog.ethereum.org/2016/06/19/
thinking-smart-contract-security/.

[13] CHEN, L., AND AVIŽIENIS, A. N-version programming: A
fault-tolerance approach to reliability of software operation. In
Fault-Tolerant Computing (1995), IEEE, p. 113.

[14] DAIAN, P. Analysis of the DAO exploit, Jun. 2016.
http://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/.

[15] DELMOLINO, K., ARNETT, M., KOSBA, A., MILLER, A., AND
SHI, E. Step by step towards creating a safe smart contract:
Lessons and insights from a cryptocurrency lab. In Financial
Cryptography (2016), Springer, pp. 79–94.

[16] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. Tech. rep., Naval Research
Lab Washington DC, 2004.

[17] ECKHARDT, D. E., CAGLAYAN, A. K., KNIGHT, J. C., LEE,
L. D., MCALLISTER, D. F., VOUK, M. A., AND KELLY, J. P. J.
An experimental evaluation of software redundancy as a strategy
for improving reliability. IEEE TSE 17, 7 (1991), 692–702.

[18] ECKHARDT, D. E., AND LEE, L. D. A theoretical basis for
the analysis of multiversion software subject to coincident errors.
IEEE TSE, 12 (1985), 1511–1517.

[19] ETHEREUM. Security considerations. Solidity documen-
tation. http://solidity.readthedocs.io/en/develop/
security-considerations.html.

[20] EYAL, I., AND SIRER, E. G. Majority is not enough: Bit-
coin mining is vulnerable. In Financial Cryptography (2014),
Springer, pp. 436–454.

[21] HIGH-TECH BRIDGE SA. What’s your email security
worth? 12 dollars and 50 cents according to Yahoo, Sep.
2013. https://www.htbridge.com/news/what_s_your_
email_security_worth_12_dollars_and_50_cents_

according_to_yahoo.html.

[22] HILDENBRANDT, E., SAXENA, M., ZHU, X., RODRIGUES, N.,
DAIAN, P., GUTH, D., AND ROSU, G. KEVM: A complete
semantics of the Ethereum Virtual Machine, 2017.

[23] HIRAI, Y. Formal verification of Deed contract in Ethereum
name service, 2016.

[24] HIRAI, Y. Defining the ethereum virtual machine for interac-
tive theorem provers. In International Conference on Financial
Cryptography and Data Security (2017), Springer, pp. 520–535.

[25] JAKOBSSON, M., AND JUELS, A. X-cash: Executable digital
cash. In Financial Cryptography (1998), Springer, pp. 16–27.

[26] JUELS, A., KOSBA, A., AND SHI, E. The Ring of Gyges: In-
vestigating the future of criminal smart contracts. In ACM CCS
(2016), ACM, pp. 283–295.

[27] KATZENBEISSER, S., AND PETITCOLAS, F. Information hiding
techniques for steganography and digital watermarking. Artech
house, 2000.

[28] KNIGHT, J. C., AND LEVESON, N. G. An experimental evalua-
tion of the assumption of independence in multiversion program-
ming. IEEE Transactions on software engineering, 1 (1986), 96–
109.

[29] KNIGHT, J. C., AND LEVESON, N. G. A reply to the criticisms
of the Knight & Leveson experiment. ACM SEN 15, 1 (1990),
24–35.

14

https://coinmarketcap.com/tokens/
https://coinmarketcap.com/tokens/
http://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
http://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
http://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
https://blog.goodaudience.com/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://blog.goodaudience.com/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://blog.goodaudience.com/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://solidity.readthedocs.io/en/develop/security-considerations.html
http://solidity.readthedocs.io/en/develop/security-considerations.html
https://www.htbridge.com/news/what_s_your_email_security_worth_12_dollars_and_50_cents_according_to_yahoo.html
https://www.htbridge.com/news/what_s_your_email_security_worth_12_dollars_and_50_cents_according_to_yahoo.html
https://www.htbridge.com/news/what_s_your_email_security_worth_12_dollars_and_50_cents_according_to_yahoo.html

[30] KOSBA, A., MILLER, A., SHI, E., WEN, Z., AND PAPAMAN-
THOU, C. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In IEEE S&P (2016), IEEE,
pp. 839–858.

[31] KRUG, J. A Serpent send exploit, Jun. 2016. http://

www.joeykrug.com/home/a-serpent-send-exploit.

[32] LUU, L. PeaceRelay: Connecting the many Ethereum
blockchains, Jul. 2017. https://medium.com/@loiluu/
22605c300ad3.

[33] LUU, L., CHU, D.-H., OLICKEL, H., SAXENA, P., AND HO-
BOR, A. Making smart contracts smarter. In ACM CCS (2016),
ACM, pp. 254–269.

[34] LUU, L., TEUTSCH, J., KULKARNI, R., AND SAXENA, P. De-
mystifying incentives in the consensus computer. In ACM CCS
(2015), ACM, pp. 706–719.

[35] MANNING, J. Ether.Camp’s HKG token has a bug and needs
to be reissued, Jan. 2017. https://www.ethnews.com/
ethercamps-hkg-token-has-a-bug-and-needs-to-be-

reissued.

[36] MARINO, B., AND JUELS, A. Setting standards for altering and
undoing smart contracts. In RuleML (2016), Springer, pp. 151–
166.

[37] MCKEEMAN, W. M. Differential testing for software. Digital
Technical Journal 10, 1 (1998), 100–107.

[38] MILLER, C. Apple’s bug bounty program faltering due
to low payouts to researchers, new report claims, Jul.
2017. https://9to5mac.com/2017/07/06/apple-bug-
bounty-program-payouts.

[39] MURDOCH, S. J., AND LEWIS, S. Embedding covert channels
into TCP/IP. In Information hiding (2005), vol. 3727, Springer,
pp. 247–261.

[40] NAGY, L., FORD, R., AND ALLEN, W. N-version programming
for the detection of zero-day exploits. In IEEE Topical Confer-
ence on Cybersecurity (2006).

[41] O’LEARY, R. R. Metropolis today: The shifting plans
for Ethereum’s next big upgrade, Sep. 2017. https://

www.coindesk.com/metropolis-today-shifting-plans-
ethereums-next-big-upgrade/.

[42] RANDELL, B. System structure for software fault tolerance.
IEEE TSE, 2 (1975), 220–232.

[43] REDDIT USER “JUPITER0”. From the MAKER DAO slack:
“today we discovered a vulnerability in the ETH token wrap-
per which would let anyone drain it.”, Jun. 2016. https://

www.reddit.com/r/ethereum/comments/4nmohu/.

[44] RO, S. 29 instances of a major world stock market shutdown,
Mar. 2014. http://www.businessinsider.com/history-
of-world-stock-market-breaks-2014-3.

[45] SOLANA, J. $500K hack challenge backfires on blockchain
lottery SmartBillions, Oct. 2017. https://calvinayre.com/
2017/10/13/bitcoin/500k-hack-challenge-

backfires-blockchain-lottery-smartbillions/.

[46] STEINER, J. Security is a process: A postmortem
on the parity multi-sig library self-destruct, 2017.
https://blog.ethcore.io/security-is-a-process-
a-postmortem-on-the-parity-multi-sig-library-

self-destruct/.

[47] SWENDE, M. H. Blockchain frontrunning, Jul. 2017. http://
www.swende.se/blog/Frontrunning.html.

[48] SZABO, N. Formalizing and securing relationships on public
networks. First Monday 2, 9 (1997).

[49] TRAMÈR, F., ZHANG, F., LIN, H., HUBAUX, J.-P., JUELS, A.,
AND SHI, E. Sealed-glass proofs: Using transparent enclaves to
prove and sell knowledge. In IEEE EuroS&P (2017), pp. 19–34.

[50] VAAS, L. PayPal refuses to pay bug-finding teen, May
2013. https://nakedsecurity.sophos.com/2013/05/29/
paypal-refuses-to-pay-bug-finding-teen/.

[51] VOGELSTELLER, F., AND BUTERIN, V. ERC-20 token
standard. Ethereum Improvement Proposal, Nov. 2015.
https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20-token-standard.md.

[52] WIKIPEDIA. Monty Hall problem. https://

en.wikipedia.org/wiki/Monty_Hall_problem.

[53] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger, 2014.

[54] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND
SHI, E. Town Crier: An authenticated data feed for smart con-
tracts. In ACM CCS (2016), ACM, pp. 270–282.

A Brief Analysis of Previous Exploits

We briefly justify why various smart contract exploits in
Table 1 might have benefited from an exploit gap intro-
duced by NNVP. Obviously, we cannot make definite
claims that NNVP would have averted a loss. Instead,
we give some informal arguments on why a NNVP setup
could have introduced independence in many cases.

Typos and trivial errors. Some exploits in our anal-
ysis are due to trivial programmer errors. For instance
in HKG [35] a developer mistakenly used an =+ expres-
sion rather than the correct +=, resulting in bad variable
initialization. It is unlikely that this exact mistake would
be repeated across the contracts of several developers.
Moreover, x =+ y is not valid code in Vyper or Serpent.
It is thus impossible that this mistake would have per-
sisted in a multi-language contract.

The mistake in Rubixi [12] resulted from a code refac-
toring that renamed a class but not the corresponding
constructor. It is similarly unlikely that independent de-
velopers would have misnamed the constructor to the
exact same wrong name (as any other inconsistent and
incorrect naming would have triggered a recovery and
bounty). Also, some languages like Vyper have a fixed
constructor name (i.e., init), so this bug has no ana-
logue in that language.

Note that for such trivial errors, Hydra contracts are
likely not required, and thorough testing should have ex-
posed the flaws. Nevertheless, Hydra’s principled devel-
opment process could have prevented these losses.

Re-entrancy. Re-entrancy is a flaw described in [14],
whereby a victim contract calls an external untrusted
contract, allowing the called contract to call back into
the victim and effect state changes in the middle of the
original call.

15

http://www.joeykrug.com/home/a-serpent-send-exploit
http://www.joeykrug.com/home/a-serpent-send-exploit
https://medium.com/@loiluu/22605c300ad3
https://medium.com/@loiluu/22605c300ad3
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://9to5mac.com/2017/07/06/apple-bug-bounty-program-payouts
https://9to5mac.com/2017/07/06/apple-bug-bounty-program-payouts
https://www.coindesk.com/metropolis-today-shifting-plans-ethereums-next-big-upgrade/
https://www.coindesk.com/metropolis-today-shifting-plans-ethereums-next-big-upgrade/
https://www.coindesk.com/metropolis-today-shifting-plans-ethereums-next-big-upgrade/
https://www.reddit.com/r/ethereum/comments/4nmohu/
https://www.reddit.com/r/ethereum/comments/4nmohu/
http://www.businessinsider.com/history-of-world-stock-market-breaks-2014-3
http://www.businessinsider.com/history-of-world-stock-market-breaks-2014-3
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
http://www.swende.se/blog/Frontrunning.html
http://www.swende.se/blog/Frontrunning.html
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://en.wikipedia.org/wiki/Monty_Hall_problem
https://en.wikipedia.org/wiki/Monty_Hall_problem

There are several aggravating factors that lead to a
string of re-entrancy vulnerabilities, including the The
DAO [14] and MakerDAO [43]. For one, Solidity en-
couraged the use of the call.value construct in send-
ing funds to accounts, to prevent “out of gas” errors. By
forwarding all available gas by default, Solidity contracts
essentially gave these untrusted contracts infinite fuel to
execute their attack.

Unlike in Solidity, in Serpent, the use of the send

function was recommended, which did not provide
enough gas to re-enter into the original contract. The
difference between Solidity and Serpent (these analyses
pre-dated Vyper) with regards to re-entrancy is detailed
in [31]. As pointed out in this analysis, not all recursive
send issues are mitigated by Serpent, but recursive sends
with a non-zero valued call (as in Maker and the DAO)
are impossible.

Complex programmer errors. Some errors are more
complex; for example, the Parity hacks [9] [46]
involved a bad unforeseen interaction between a
delegatecall—allowing library code to be run in the
trusted context of a victim contract—and missing modi-
fiers and guards on the library contract to prevent misuse.
Although different contracts might have similarly con-
tained this vulnerability, the complex nature of the bug
suggests that the failure patterns would not have been
identical. It is possible of course that these broken de-
sign decisions would have been formalized in the speci-
fication, annulling the likelihood of an exploit gap.

The analysis of [45] is similar, with a complex mis-
take in a blockhash caching system’s code by the devel-
oper. This caching system was required due to a limi-
tation of the Ethereum platform on retrieving old block-
hashes. Again, it is not clear that this complex cache
would have been implemented correctly by a second de-
veloper, yet it is unlikely that both versions would fail in
exactly the same fashion.

Other out-of-scope exploits. Not all exploits can be
prevented by a Hydra contract. One example in Table 1
is Governmental [12], which had a function that required
more gas than was allowed to be used on the network,
resulting in a denial-of-service vulnerability. Gas errors
are explicitly ignored in our framework (see Section 6.1),
as they can be triggered at any time by users simply re-
fusing to provide enough gas.

Another example is FirePonzi [12], in which a variable
was intentionally misnamed by the developers to serve as
a backdoor. Such subtle backdoors-by-construction are
still possible in the Hydra Framework, and may actually
be made even more subtle: for example, minor disagree-
ments between heads can be made to trigger recovery
with plausible deniability, potentially stealing funds if

the recovery process is trusted or vulnerable to its own
hidden exploits.

Lastly, errors in the contract specification—e.g., the
flawed rock paper scissors game in [12]—are not covered
by our framework as the specification is common to all
heads.

B Analysis of NNVP in the NASA Experi-
ment

We briefly justify the results we obtained when applying
our NNVP paradigm for the experimental results in [17].
The experiment consisted of 20 different program ver-
sions evaluated on six work-loads (corresponding to dif-
ferent initial system states). For y ∈ [0,20], Eckhardt et
al. report g(y), the empirical proportion of inputs in each
of their test suites that induce a failure in exactly y out of
20 programs. They do not distinguish whether the fail-
ures are identical or not.

Following the notation and analysis for majority-
voting in [17], we compute the empirical probability P̃N
that N programs (randomly chosen from the 20) fail si-
multaneously:

P̃N =

(
20
N

)−1 20

∑
y=0

(
y
N

)
g(y) . (5)

Comparing P̃N to P̃1 (i.e., the expected failure rate for
NNVP with N heads compared to the failure rate of a
standalone program), we find that 30 · P̃3 ≤ P̃1 ≤ 5087 · P̃3
and 190 · P̃4 ≤ P̃1 ≤ 24,216 · P̃4. In both cases, the lowest
exploit gap is obtained for the third work-load (denoted
S1,0), which has the lowest failure rate overall.

If we combine all work-loads into one, and assume
that hackers sample uniformly from the test inputs used
in the experiment, then the exploit gap, gap, defined in
Section 4 is estimated as the ratio of P̃1 and P̃N (averaged
over the six workloads). We obtain gap= 4409 for N = 3
and gap= 34,546 for N = 4. Note that we can also apply
NNVP with N = 2 (whereas majority-voting obviously
does not work in this case), and find a gap of gap= 79.

C Submarine Commitment Constructions

In this section, we present two constructions for Subma-
rine Commitments. The first, in Section C.1, is our pre-
ferred construction. It is simple and efficient, but only
realizable with changes to Ethereum awaiting adoption
of EIP-86. The second, in Section C.2 is more involved
and expensive, but realizable today.

We note that players could in principle conceal true
commitments by sending dummy commitments with
random values $val≥ deposit—so that they are indistin-
guishable from real commitments—but have a “dummy”

16

flag that can be revealed to trigger a refund. This ap-
proach turns out to be complicated and unworkable,
though. A community of users would not in general have
an incentive to generate dummy traffic and incur transac-
tion fees. A would-be claimant could generate dummy
traffic to conceal her true commitment, but then the very
inception of dummy traffic would signal a pending claim
and incentivize A to release its withheld bug. These
problems motivate the use of Submarine Commitments
instead.

C.1 Submarine Commitments via Con-
tract Creation.

Our simple realization of Submarine Commitments
in Ethereum leverages a new Ethereum Virtual Ma-
chine (EVM) opcode, CREATE2, introduced in EIP-
86 (EIP stands for “Ethereum Improvement Proposal”).
CREATE2 creates new smart contracts, much like an
already existing CREATE opcode. Unlike CREATE,
which does not include a user-supplied value, CREATE2
computes the address of the created contract C as
H(addrCreator,salt,codeC), where addrCreator is the
address of the contract’s creator, salt is a 256-bit salt
value chosen by the creator, codeC is the EVM byte code
of C’s initcode, and H is Ethereum-SHA3 (Keccak-256).

To realize a Submarine Commitment, we can use salt
to encode the inputs to the commit, key and addr(P). Let
Forwarder be a contract that sends any money received at
its address to BountyContract. A Submarine Commit-
ment involves these functions:

• Commit: P selects a witness key←${0,1}` for suitable
` (e.g., `= 256). P sends $deposit to address

âddr = H(addr(BountyContract),H(addr(P),key),code),

where addr(BountyContract) is BountyContract’s
address and code is Forwarder’s EVM initcode.

• Reveal: P sends key and commitBlk (the block
number in which P committed) to BountyContract.
BountyContract verifies that the commit indeed oc-
curred in block commitBlk (see Appendix C.2 for
more details).

• DepositCollection: BountyContract creates an in-
stance of Forwarder at address âddr using CREATE2. A
call to Forwarder sends $deposit to BountyContract.

EIP-86 will be included in Ethereum in the second
stage of the Metropolis hard fork (tagged “Constantino-
ple”) [41]. More details are in Appendix C, including
a less efficient alternative scheme that is realizable in
Ethereum today.

C.2 Merkle-Patricia Proof Verification

In order for Submarine Commitments to be secure
against front-running attacks, we need to verify that the
commit transaction indeed occurred in block commitBlk.
Otherwise, an adversary can wait until she observes the
“reveal” transaction τ . Upon observing τ , she can front-
run it by including a backdated “commit” transaction
and a corresponding “reveal” message in front of τ . We
can prevent this attack by having Contract verify that
“commit” was indeed sent in block commitBlk and that
at least ρ blocks have elapsed since commitBlk upon re-
ceiving a “reveal”. (Recall that the adversary can roll
back the blockchain by at most ρ blocks.)

Unfortunately, Ethereum provides no native capability
for smart contracts to verify that a transaction occurred
in a specific block. However, Ethereum’s block structure
enables efficient verification of Merkle-Patricia proofs of
(non-)inclusion of a given transaction in a block [32]:
all transactions in a block are organized in a Merkle-
Patricia Tree [53] mapping transaction indices to trans-
action data. The root hash of this tree is included in
the block header and the block header is hashed into the
block hash, which can be queried from inside a smart
contract by means of the BLOCKHASH opcode.

We implemented this verification procedure in a smart
contract that takes a block number, the transaction data,
and a Merkle-Patricia proof of transaction inclusion as
inputs, and outputs accept or reject. We benchmarked
the gas cost of this contract by verifying the inclusion
of 25 transactions from the Ethereum blockchain. The
proof verification has a mean cost of 207,800 gas (ap-
proximately 2.08 USD2). Note that this cost is only in-
curred when a bounty is being claimed, and has no im-
pact on “normal” transactions.

Proof of cheat. We can reduce the gas cost of our
Submarine Commitment scheme by not performing a
Merkle-Patricia proof verification on every “reveal”: in-
stead of requiring parties to prove that their “commit”
occurred in commitBlk, we only require them to pro-
vide commitBlk and the transaction data, but no Merkle-
Patricia proof. A party P can then submit a Proof of
Cheat, a Merkle-Patricia proof demonstrating that an ad-
versary A backdated their transaction: to backdate their
transactionA had to claim the existence of a non-existing
transaction; therefore, there will either be a different
transaction or no transaction at the purported transaction
index in block commitBlk. If the proof of cheat is ac-
cepted, A’s $deposit is given to P and A’s “commit” and
“reveal” are voided.

Checking whether another party cheated is simple to
do off-chain, so we expect competing parties to check
each other’s commits and provide a Proof of Cheat if they

17

Algorithm CreateForwarder(P,key)

nonces← E(H ′(addr(P),key))

address← addr(Contract)

for i = 1 to k
whileno contract at address H(address,noncesi +1)

call Clone on contract at address

address← H(address,noncesi +1)

//address now equals âddr

Figure 7: Algorithm to create a Forwarder at address âddr.

witness a cheat. In this setting, P benefits from catching a
malicious competitorA in two ways: A’s claim is voided
(potentially netting P the $bounty) and A’s $deposit is
given to P.

C.3 CREATE-Based Construction
In Section 5.3, we gave a construction of Submarine
Commitments that requires the CREATE2 opcode. Here-
after, we show a different construction relying on the
CREATE opcode, available in Ethereum today. How-
ever, the CREATE2-based construction is simpler and has
98.5% lower gas costs than the CREATE-based construc-
tion during deposit collection (75,000 gas vs 5,000,000
gas, or 0.75 USD vs 50.00 USD respectively2).

When a contract C creates a new contract Cnew us-
ing the CREATE opcode, Cnew’s address is computed
as H(addr(C),nonce(C)), where nonce(C) a mono-
tonic counter of the number of contracts created by C.
(Ethereum’s state records this nonce for each contract.)

By chaining a series of contract creations and encod-
ing information in the associated nonce values, we can
compute an address for Submarine Commitments. Let
Contract be the contract that will receive Submarine
Commitments. Let Forwarder be a simple contract that
has two functions both of which abort if they aren’t being
called by Contract:
• Clone uses CREATE to spawn another Forwarder in-

stance at address H(addr(Forwarder),nonce(Forwarder)).
• Forward sends all funds held by the contract to
Contract.
We now describe the three functions that make up a

Submarine Commitment:
• Commit: P selects a witness key←${0,1}` and com-

putes x := H ′(addr(Contract),key) for a suitable ` and
hash function H ′ with codomain {0,1}`. Let A :=
addr(Contract) and let E : {0,1}`→{0, . . . ,b−1}k be
the function that takes an integer (encoded as a binary
string) and reencodes it as a string of length k in base
b. P sends $deposit to address

âddr=H(H(. . .H(A,E(x)1+1) . . . ,E(x)k−1+1),E(x)k+1) .

0 20 40 60 80 100
 (blocks)

0

1

2

3

4

5

tx
s

pe
r

bl
oc

k

txs in anonymity set
fraction in anonymity set

0

2

4

6

8

fra
ct

io
n

of
 b

lo
ck

 (%
)

Figure 8: Size of anonymity set for Submarine Commit-
ments. We show the number of transactions (left) and the
fraction of transactions (right) per block that are a part of the
anonymity set, as a function of ρ , the size of the commit win-
dow. Statistics are computed by averaging 48 block sequences
of length ρ , starting at (hourly-spaced) blocks 4430000+ i ·240
for i ∈ [0,47].

• Reveal: P sends key and a Merkle-Patricia proof that
she committed in the correct block (see Appendix C.2)
to BountyContract.

• DepositCollection: BountyContract repeatedly calls
the Clone function of appropriate Forwarder instances
until a Forwarder is created at address âddr. (See
Figure 7 for details.) BountyContract then calls
Forward to make this instance send the the deposit to
BountyContract.

Choosing n and b. Since we aren’t concerned with
collision attacks on H ′, n = 80 provides sufficient se-
curity. For n = 80, in the ROM, a choice of b = 4
minimizes the expected number of contract creations
logb(2

n)
(
1+ b−1

2

)
. In practice, we instantiate H ′ as a

truncated version of Ethereum SHA-3 (Keccak-256) as
this is the cheapest cryptographically secure hash func-
tion available in the EVM. In our prototype implemen-
tation, a DepositCollection call costs 5,000,000 gas with
these parameters.

C.4 Analysis of Anonymity Set Size

The Submarine Commitment constructions from Sec-
tion 5.3 and Appendix C.3 both rely on concealing
“commit” transactions in an anonymity set of unrelated
transactions: to prevent bug-withholding attacks, the
“commit” transactions of the Submarine Commitment
scheme must remain concealed until the “reveal” trans-
action is broadcast. Since the “commit” transactions are
indistinguishable from benign transactions sending ether
to a fresh address, a transaction to an address A is a part
of the anonymity set if:

18

3 2 1 0 1
log10(value in ether)

0.0

0.1

0.2

0.3

0.4
re

la
tiv

e
fre

qu
en

cy

Figure 9: Histogram of transaction values in anonymity
set for Submarine Commitments. We set ρ = 100 and take
all transactions in the anonymity sets of 48 sequences of 100
blocks, starting at blocks 4430000+ i ·240 for i ∈ [0,47].

• The (external) transaction is a regular send of a non-
zero amount of ether with an empty data field.
• A has never received any ether or sent any transactions.
• A has no associated code (i.e. A is not a contract).
• A is not involved in any other transactions (internal or

external) during the commit window.
In the experiment Expbntyrace

A analyzed in Section 5.4,
a commitment is revealed after ρ blocks, where it is as-
sumed that the adversary can rewind up to ρ blocks in the
blockchain. Figure 8 shows the size of the anonymity
set as a function of this commitment window ρ . Even
for ρ = 100 (i.e. a 25 minute rewind window at 15 sec-
s/block), an average block still contains two transactions
that are part of the anonymity set. Furthermore, 34 of the
48 blocks we studied (70%) contained at least one trans-
action that is part of the anonymity set. For a full commit
window of size ρ = 100, we get an anonymity set of ap-
proximately 200 transactions, which represents over 2%
of all transaction traffic in that period.

As Figure 9 shows, the transaction values in the
anonymity set span a wide range. Commitments with
an associated value between 0.0001 ether and 10 ether
(approximately 10,000 USD2) are easily concealed.

D Security Model and Proof Details

In this appendix, we present the detailed ideal function
Fwithhold. Within the Fwithhold-hybrid model, we prove
Thm. 3 of Section 5.4. We also extend our analyses be-
yond pure front-running adversaries.

D.1 Ideal Functionality Fwithhold

The ideal functionality Fwithhold, shown in Figure 10,
supports three functions: “post”, “add block”, and
“rewind”. We assume a system-wide transaction buffer

Fwithhold with P = {P0,P1, . . . ,Pm}, (δ ,ρ)-adversary A, blocksize s, target
height n

Init: B← /0, B.Height← 0, MaxHeight← 0, Mempool← /0

On receive (“post”,τ) from Pi: // Pi submits tx
assert ValidTx(τ;B,Mempool)

tag(τ)← (B.Height,Pi) // Label tx with current chain height and sender
Mempool←Mempool ∪ τ

send Mempool to A

On receive (“add block”,B) from A: // A extends blockchain
if B.Height = n then

output B; halt // To complete chain, A adds arbitrary n+1th block

assert
(
|B|= s

)∧ (
B⊆Mempool

)
assert @τ ∈Mempool−B s.t.

(
tag(τ) = (h,P0)

)∧ (
h≤ B.Height−δ

)
// Ensure delay at most δ for P0’s transactions

B.Height← B.Height+1
BB.Height← B // Add new block to chain

Mempool←Mempool−B // Remove processed txs from Mempool

MaxHeight←max(B.Height,MaxHeight)

send B to P0

On receive (“rewind”,r) from A // A rewinds by r blocks
assert MaxHeight− (B.Height− r)≤ ρ

// Ensure that A rewinds by no more than ρ

Mempool←Mempool
⋃
{Bi}i∈[B.Height−r+1,B.Height]

// Return rewound transactions to Mempool

B.Height← B.Height− r

Figure 10: Ideal functionality Fwithhold for (δ ,ρ)-adversary.

Mempool, from which transactions are selected for min-
ing. The function “post” permits any player (honest
or adversarial) to send a transaction into the Mempool
buffer. The function “add block” is called byA to extend
the blockchain B by adding a new block that includes
transactions from Mempool. The function “rewind” al-
lows A to remove blocks from B. This capability may
seem redundant, as A controls the blocks added to B.
A may, however, wish to make retroactive modifications
based on information in a fresh transaction submitted by
P0.

The function ValidTx(τ;B,Mempool) verifies that a
transaction is valid. It checks that τ respects the syntax
and semantics of the blockchain. Additionally ValidTx
verifies that the transaction carries a valid nonce. This
nonce may be a counter value associated with the sender
Pi that is incremented for every transaction posted by Pi.
A transaction posted by Pi is valid if its nonce is larger
than the nonces of any other transactions from Pi already
in B or Mempool. Thus any transaction in a set of valid
transactions is unique.

After adding a block, A must wait until P0 has posted
all its transactions, before A can add a new block. Ex-
ecution of Fwithhold is bounded by a target height n, at
which point Fwithhold halts and outputs B. P0 does not
observe Mempool in our model, although variant models
are possible of course.

19

Submarine Commitments in Fwithhold. To model
Submarine Commitments in Fwithhold, we let players
send a special message (“submarine-post”,τ) where
τ = (“commit”,comm,$val) to Fwithhold. If τ is valid,
Fwithhold adds τ to the end of block B, before B is added
to the blockchain B. Thus B can contain transactions that
A does not see as it is constructing blocks. A cannot de-
lay such messages but can still rewind B to evict them
once the commitment is revealed.

D.2 Pure Front-Running Adversary.

Recall that commblockP∗ ←$ [1,n] in Expbntyrace
A , i.e.,

P∗ commits in a uniformly random block Bi. Thus,
Pr [commblockP∗ ∈ [a,b]] = (b− a+ 1)/n for 1 ≤ a ≤
b ≤ n. Note that A is oblivious to the value of
commblockP∗ until P∗ reveals in block revblockP∗ =
commblockP∗ +ρ .

We assume an economically rational adversary A. It
will be useful to consider another rational adversary A1
which does not observe revblockP∗ . A follows the same
strategy as A1 until P∗ reveals his commitment.

Let Xi be the event in an execution of Fwithhold thatA1
places message “commit” in block Bi. Note that the {Xi}
may not be independent. Let pi = Pr [Xi = 1]. As A1
is oblivious to revblockP∗ , the events Xi are independent
of commblockP∗ . Moreover, let Zi be the event in an
execution of Fwithhold that A places message “commit”
in Bi.

We state some simple claims.

Claim 4. If commblockP∗ ≥ i, then Zi = Xi.

Proof. If P∗ commits in block i or later,A does not learn
of this commit until at least block i+ρ , when P∗ reveals.
At this point, A cannot rewind to block Bi and change
Zi.

Claim 5. If commblockP∗ < i, then Zi = 0.

Proof. Committing in block Bi will not enable A to
front-run P∗, as P∗ committed earlier. If A did commit
in block Bi before P∗ reveals (as late as Bi+ρ−1), then A
rewinds and erases its own “commit” in Bi, to save cost
$deposit.

Claim 6. Pr[Zi = 1]≥ Pr[commblockP∗ ≥ i ∧ Xi = 1].

Proof. This is an immediate corollary of Claim 4: If
commblockP∗ ≥ i and Xi = 1, then we have Zi = 1. For
events A,B with A =⇒ B we have Pr[B]≥ Pr[A].

Note that A never benefits from delaying P∗’s mes-
sages as, by assumption, A cannot delay the Submarine
Commitment in block commblockP∗ .

For adversary A, let EA[$cost] denote the expected
value of $cost in an execution of Expbntyrace

A and

pwins(A) be the probability of winning. We have the fol-
lowing lemma:

Lemma 7. Suppose for a given A that q =
Pr [Xi+k = 1 ∧ Xi = 1] > 0 for some 1 < k < ∆ and
i+ k ≤ n. Then there exists an adversary A′ such that
EA′ [$cost]< EA[$cost] and pwins(A′)≥ pwins(A).

Proof. We construct A′ that emulates A exactly, ex-
cept that if A commits in Bi and in Bi+k, then A′ does
not commit in Bi+k, but commits in block Bi+∆. (If
i+∆ > n, then A′ does not make the second commit-
ment.) For any value of commblockP∗ , it is easy to see
that if A can front-run, then A′ can also front-run P∗.
Thus pwins(A′)≥ pwins(A).

With probability 1/n, commblockP∗ = i+ k. In this
case, A′ does not make its second commitment in block
Bi+∆, and thus incurs $cost at least $deposit less than A.
Thus, EA[$cost]≥ EA′ [$cost]+ q·$deposit

n .

We now prove an upper bound on the probability that
A wins based on the values {pi}, i.e., the strategy of A1.

Lemma 8. pwins ≤ ∆+1
n

(
∑

n
i=1 pi

)
.

Proof. Recall that A is a pure front-running adversary.
Suppose revblockP∗ = j and thus commblockP∗ = j−ρ .
As A cannot rewind more than ρ blocks, for A to win
Expbntyrace

A it must be the case that A has a message
“commit” in a block Bi for i ∈ [j−ρ−∆, j−ρ] (equiv-
alently, commblockP∗ ∈ [i, i+∆]). Thus, under a union
bound,

pwins ≤
n

∑
i=1

Pr [Zi = 1 ∧ commblockP∗ ∈ [i, i+∆]]

=
n

∑
i=1

Pr [Xi = 1 ∧ commblockP∗ ∈ [i, i+∆]]

=
n

∑
i=1

(
pi ·Pr [commblockP∗ ∈ [i, i+∆]]

)
=

n

∑
i=1

(
pi ·

∆+1
n

)
=

∆+1
n

(n

∑
i=1

pi
)
,

using Claim 4 and independence of Xi and commblockP∗ .

We now prove a lower bound on the expected cost in-
curred by a front-runningA. Let $costi be a random vari-
able denoting commitment costs by A in Bi.

Lemma 9. E[$cost]≥ $deposit ·∑n
i=1

(
n−i+1

n

)
pi.

Proof. Let Ci denote the event (commblockP∗ ≥ i).
Then,

E[$cost] =
n

∑
i=1

E[$costi] =
n

∑
i=1

$deposit ·Pr [Zi = 1]

20

≥ $deposit ·
n

∑
i=1

Pr [Xi = 1 ∧Ci]

= $deposit ·
n

∑
i=1

Pr [Xi] ·Pr [Ci]

= $deposit ·
n

∑
i=1

(n− i+1
n

)
pi ,

using Claim 6 and independence of Xi and commblockP∗ .

Let us restate Theorem 3:

Theorem. Suppose that ∆ ≥ 4 and $deposit > 10(∆+1)
9n ·

$bounty. Then a pure-front-running adversary cannot
achieve E[$payoff]≥ 0.

Proof. By Claims 4, 5 and 6,A’s strategy (i.e., the values
of Zi) are fully determined byA1’s strategy and the value
of commblockP∗ . We consider the optimal assignment
of probabilities pi, to maximize pwins while minimizing
E[$cost].

Let p = ∑
n
i=1 pi. By Lemma 8, pwins ≤ (∆+1)·p

n .
To achieve pwins, then, we require p ≥ (npwins)/(∆+

1). Let k = (npwins)/(∆+ 1), and assume for simplicity
of computation that k is an integer. Now, Lemma 9 states
that

E[$cost] = $deposit ·
n

∑
i=1

(n− i+1
n

)
pi. (6)

For a given value of p, the sum in Eqn. 6 is minimized
by concentrating probability mass among {pi} for the
largest values of i. Additionally, by Lemma 7, if pi = 1,
then pi+1 = pi+2 = . . .= p∆−1 = 0, i.e., non-zero pi val-
ues are spaced by ∆. Therefore, as pi ∈ [0,1], Eqn. 6 is
minimized when pn = pn−∆ = . . . = pn−(k−1)∆ = 1, and
thus:

E[$cost]≥ $deposit ·
k

∑
i=1

(n−∆(i−1)+1
n

)
= $deposit ·

(
k− k/n− ∆(k−1)(k−2)

2n

)
> $deposit ·

(
k− k2

2n

)
= $deposit · npwins

∆+1

(
1− pwins

2(∆+1)

)
≥ $deposit · 9npwins

10(∆+1)
,

as pwins
2(∆+1) ≤ 1/10 (∆≥ 4 and pwins ≤ 1). Thus,

E[$payoff]≤ $bounty · pwins−$deposit · 9npwins

10(∆+1)
.

The theorem follows.

D.3 Extension: α-Revealing Adversary
In Section 5, we consider an adversary trying to maxi-
mize its profit in Expbntyrace

A . But A has a second goal.
Recall that A is a bug-withholding adversary. A may
gain financial benefit outside the experiment Expbntyrace

A
from delaying disclosure of its bug. So A would like to
emit a “reveal” message as late as possible, to maximize
its withholding period. For such an adversary, a natural
strategy is α-revealing.

An α-revealing adversary uses front-running in the in-
terval [B1,Bαn]. If it has not yet revealed its bug, it does
so in block Bαn+1, for αn an integer. Thus, A ensures
that it wins the bounty with probability at least 1−α ,
while also potentially withholding for αn blocks. With
α = 1, the strategy is equivalent to pure front-running.

The proof of Theorem 3 immediately yields the result:

Corollary 10. Suppose that ∆ ≥ 4 and $deposit ≥
10(∆+1)

9n · $bounty. Then an α-revealing adversary A
achieves E[$payoff]≤

(
(1−α) ·$bounty

)
−$deposit.

Of course, the space of strategies for an economically
rational adversary A is a superset of α-revealing. A
might use a probabilistic strategy, reveal preemptively at
a time that depends on the set of blocks in which it has
made commitments, etc. We conjecture that such an ap-
proach is no better than α-revealing. We leave proof of
this claim, and thus general results about economically
rational adversariesA, as an open problem. Additionally,
our analysis can be extended to model imperfectly con-
cealed Submarine Commitments and non-uniform com-
mitment times by P∗, something we now consider.

D.4 Extension: Exponential Distributions
Finally, we sketch a proof of an analog Theorem 3 where
commblockP∗ follows an exponential distribution rather
than a uniform one. From our Poisson model of bug find-
ing in Section 4, we obtained that P∗ finds a bug after an
exponentially distributed waiting time TH of rate λH. We
assume that P∗ commits as soon as it finds a bug.

The only difference in the proof above are the prob-
abilities Pr [commblockP∗ ∈ [i, i+∆]] in the proof of
Lemma 8 and Pr [commblockP∗ ≥ i] in the proof of
Lemma 9. For the exponential distribution, we get

Pr [commblockP∗ ∈ [i, i+∆]] = e−i·λH · (1− e−∆·λH)

Pr [commblockP∗ ≥ i] = e−i·λH .

Therefore, the analogs of Lemma 8 and Lemma 9 are:

pwins ≤
n

∑
i=1

pi · e−i·λH · (1− e−∆·λH) (7)

E[$cost]≥ $deposit ·
n

∑
i=1

pi · e−i·λH . (8)

21

Rearranging terms, we get:

E[$cost]≥ $deposit · pwins ·
1

1− e−∆·λH

E[$payoff]≤ $bounty · pwins−$deposit · pwins

1− e−∆·λH
.

Suppose that the bug-finding period extends over approx-
imately n= λ

−1
H blocks. That is, we expect honest parties

to find one bug on average over the full bounty period.
Then, (as ∆

n � 1), we need

$deposit≥ $bounty · (1− e−
∆
n)≈ $bounty · ∆

n
, (9)

to ensure E[$payoff]≥ 0.

22

	Introduction
	Preliminaries and Notation
	N-of-N-version Programming
	Revisiting N-version Programming
	Smart Contracts are NNVP-Friendly
	The Hydra Contract

	Economic Analysis of Hydra Bounties
	Bug Finding as a Stochastic Process
	Analyzing Economic Incentives

	The Bug-Withholding Problem
	Adversarial Model
	The BountyContract Smart Contract
	Submarine Commitments
	Analysis of Submarine Commitments

	Design and Implementation
	An EVM Execution Environment
	Limitations.

	Evaluation
	Related Work
	Conclusion
	Brief Analysis of Previous Exploits
	Analysis of NNVP in the NASA Experiment
	Submarine Commitment Constructions
	Submarine Commitments via Contract Creation.
	Merkle-Patricia Proof Verification
	CREATE-Based Construction
	Analysis of Anonymity Set Size

	Security Model and Proof Details
	Ideal Functionality Fwithhold
	Pure Front-Running Adversary.
	Extension: -Revealing Adversary
	Extension: Exponential Distributions

