
Universally Composable

Secure Two and Multi-party Computation

in the Corruptible Tamper-Proof

Hardware Token Model

Nishanth Chandran
Microsoft Research India, India

nichandr@microsoft.com

Wutichai Chongchitmate
UCLA, USA

wutichai@cs.ucla.edu

Rafail Ostrovsky∗

UCLA, USA
rafail@cs.ucla.edu

Ivan Visconti
Università di Salerno, ITALY

visconti@unisa.it

Abstract

In this work we introduce the corruptible token model. This model generalizes the stateless
tamper-proof token model introduced by Katz (EUROCRYPT ’07) and relaxes the trust as-
sumption. Our improved model is motivated by the real-world practice of outsourcing hardware
production to possibly untrusted manufacturers and allows tokens created by honest parties to
be corrupted at the time of their creation.

Assuming one-way functions, we show how to UC-securely realize the tamper-proof token
functionality of Katz in the corruptible token model with n stateless tokens assuming that the
adversary corrupts at most n − 1 of them. We then apply this transformation to existing two
and MPC protocols to achieve a UC-secure 2PC/MPC protocol in the corruptible token model
assuming only the existence of one-way functions.

Finally, we further transform the above protocol to only use tokens of small size that take
only short inputs. The technique in the last transformation can also be used to improve the
assumption of UC-secure hardware obfuscation by Nayak et al. (NDSS ’17) from collision-
resistant hash functions to one-way functions, which can then be transformed into a protocol
with n corruptible tokens in our model.

∗Research supported in part by NSF grant 1619348, DARPA, US-Israel BSF grant 2012366, OKAWA Foundation
Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award. The views expressed are those of the
authors and do not reflect position of the Department of Defense or the U.S. Government.

1

1 Introduction

UC-secure MPC. Secure multi-party computation [GMW87] (MPC) allows mutually distrustful
parties to jointly compute a function f preserving the privacy of their inputs/outputs. Canetti [Can01]
introduced the notion of universal composability (UC) to model secure MPC in an environment
where multiple concurrent executions of different protocols take place. Unfortunately UC security
is significantly harder to achieve than plain secure computation. In fact, in the plain model (i.e.,
without trusted set-up assumptions, physical assumptions, superpolynomial-time simulation and
so on) most functionalities can not be UC-realized [CF01, CKL06, Lin03].

One of the widely studied assumptions that enable the realization of UC-secure MPC is the
existence of tamper-proof hardware tokens. This assumption was modeled by Katz [Kat07] through
a functionality in order to abstractly capture physical tamper-proof hardware that are created and
sent by a party (sender) to another party (receiver). The receiver can use the received token to
execute the program stored in it multiple times as a black-box, on inputs of his choice. Tokens
can be either stateful (i.e., they retain an updatable memory between executions) or stateless
(all executions start with the same configurations). Motivated by the challenging open questions
on (in)feasibility results and by the practical relevance of the model, UC-security with tamper-
proof tokens has been widely explored with recent focus on the more challenging case of stateless
tokens [CGS08, LPV09, GIS+10, DSMRV13, CKS+14, DKMQN15, HPV16, NFR+17].

All previous work critically relies on the honest player being able to construct tamper-proof
tokens1. This is clearly a very demanding assumption that concretely requires honest players to
rely on the honesty of a token manufacturer that they trust. In turn, while the tamper-proof token
model in theory consists of a physical assumption, in practice it degenerates into a model where
the security of an honest player depends on the honest behavior of an external player chosen by
the honest player2. The question that we ask in this work is: “Can trust in a given tamper-proof
token manufacturer be relaxed?”

Weakening trust in the hardware model. We address the above open problem and solve
it under minimal complexity assumptions. More specifically, we consider the concrete scenario
where the sender of a token does not have the ability to physically create a tamper-proof token,
but instead has to rely on possibly untrusted manufacturers. In case a manufacturer is corrupted
(and may be colluding with other parties), the program embedded in the token may be leaked, or
replaced in its entirety. In other words, tokens in this model can be tampered with at the time of
its creation.

We define a functionality for UC-security allowing the design of protocols that make use of tokens
generated by potentially adversarial manufacturers. In turn, we propose a new model extending
the stateless version of Katz’s tamper-proof token model in [Kat07], that we call corruptible token
model. In our new model, the adversary is allowed to corrupt stateless tokens when they are created
by honest parties. The attack happens during the token creation phase, and the adversary learns
all information that the honest player wanted to store in the token. Moreover the adversary is
allowed to replace the token with a different token of its choice, including a stateful one.

1An attempt to relax this assumption was done in [FPS+11] focusing only on the set intersection functionality,
without considering UC security and using informal definitions.

2Similar question for the CRS generation was answered in the multi-string model [GO07], where multiple corrupt-
ible CRS’s are generated.

2

The corruptible token model abstractly represents the process of outsourcing the production of
hardware tokens to possibly corrupted manufacturers. We only allow the corruption to occur at
the time the tokens are created. Our model also allows adaptive corruption of the manufacturers,
in the sense that the adversary may choose to corrupt new tokens based on what it learns from his
view from other corrupted tokens. So, instead of preselecting the manufacturers beforehand, the
adversary can corrupt tokens individually one by one. Finally, during the token generation phase
we allow the adversary to replace tokens with stateful ones to represent the real-world hardware
Trojan described in [DFS16].

1.1 Our Results

In this work, we provide the following results:

We construct a protocol in the corruptible token model using n tokens that UC-realizes a
variant of Katz’s tamper-proof token functionality. We call this the tamper-proof token with
abort functionality and UC-realize it assuming that the adversary corrupts at most n − 1
tokens requested to be created by an honest party. The only (unavoidable) difference between
the tamper-proof token with abort functionality and the original Katz’s tamper-proof token
functionality is that our variant allows the adversary to learn whenever a token is sent (even
between honest parties), and can choose to abort and prevent the delivery of that token. Still
the adversary learns nothing about the program in the token3.
We then show how to transform any protocol in Katz’s tamper-proof token model to a protocol
in our model having a much improved trust assumption. Indeed the transformed protocol
remains secure even when n−1 out of the n tokens created by every honest party are corrupted
at the time of creation. Our transformation preserves UC security and only assumes the
existence of one-way functions (OWF). We focus on stateless tokens since this is a milder
physical assumption and is the most challenging case. Requiring one token to be uncorrupted
is unavoidable as this clearly leads to the impossibility results for UC in the standard model.
Our transformation can now be applied to existing protocols in the Katz’s token model to obtain
new results in the corruptible token model. For instance, starting with the recent UC-secure
two and MPC construction in the tamper-proof token model based on OWFs of [HPV16], we
get the same result in the corruptible token model under the same assumption.
Additionally, we also improve the result of [NFR+17] by removing the need of collision-resistant
hash functions, and apply our transformation to obtain an obfuscation protocol in the corrupt-
ible token model based on OWFs.
As building blocks for our constructions, we obtain a simultaneous resettable zero-knowledge
(sim-res ZK) argument and a UC-secure MPC for any well-formed functionality in the cor-
related randomness model assuming OWFs only. In the correlated randomness model, each
party has access to a private string honestly generated before the execution of the protocol by

3The need for abort in the functionality is motivated by the following reason. Suppose the tamper-proof token
functionality (without abort) can be realized by n corruptible tokens. Then, the adversary in the corruptible token
model corrupts all but one of the tokens and replaces them with corrupted tokens that do nothing. Now, if the
tamper-proof token functionality without abort is realized with the remaining one (uncorrupted) token, then this
token must hold the complete program and secrets of the honest party (so that it can carry out the computation by
itself). However, this token is also susceptible to corruption, and if the adversary had instead corrupted only this
token, would have learnt all secrets of the honest party resulting in the insecurity of the protocol. Hence, we must
model the functionality to allow for aborts.

3

the correlated randomness functionality independently of the input. These protocols may be
of independent interest.

We finally remark that token corruption was studied in [DFS16] for the case of “hardware Trojans”.
However, their solution, “the Trojan protection scheme” requires a “master circuit” to remain
uncorrupted. Moreover their work is not about UC security.

1.2 Our Techniques

We now discuss the techniques that go into UC-realizing Katz’s token functionality in the (n, n−1)-
token-corruptible hybrid model, (i.e., the model where n tokens are generated by a honest player
and at most n − 1 are corrupted by the adversary at the time of generation). We refer to the
final protocol as Π. Given a description of the program P for Katz’s tamper-proof token (such
a description is specified by the protocol in Katz’s model) we create n shares of the description
of P using an n-out-of-n threshold secret sharing scheme. Then n tokens are created as follows.
The program of the i-th token includes 1) the i-th share; 2) commitments of all other shares; 3)
correlated randomness to run a UC-secure n-party protocol Π′ to reconstruct P from the shares
and to run P on some given input; 4) a seed for a PRF; 5) commitments of all PRF seeds (we call
these commitments the determining messages).

n-party UC computation Π for the evaluation of P . The execution of Π consists of running
a UC-secure protocol Π′ in the correlated randomness model4. The random tape needed by Π′

is obtained by Π by computing the PRF on the determining messages. Each message m of Π′ is
followed by a simultaneous resettable ZK argument of knowledge proving that the message m is
computed correctly according to the committed seeds, and committed shares. We will prove that
as long as the adversary does not corrupt all n tokens, it cannot learn P even when he can run it
multiple times on different inputs.

Simultaneous resettable ZK argument in the correlated randomness model from OWFs.
The above discussion assumed the existence of a UC-secure MPC protocol Π′ in the correlated ran-
domness model. We construct Π′ by first constructing a simultaneous resettable zero-knowledge
(ZK) argument Π′ZK with straight-line simulator in the correlated randomness model from a 3-round
public-coin ZK argument, Σ, in the CRS model with straight-line simulation based on OWFs.

The construction of Π′ZK is done in 2 steps. First, we add the argument of knowledge (AoK)
property with straight-line witness extractor to Σ in the correlated randomness model. We use a
technique similar to one used for Ω protocols in [MY04] but with a secret key encryption scheme
and a commitment scheme instead of a public key encryption scheme. The resulting protocol is still
3-round, public-coin and with straight-line simulation. In the second step, we add a simultaneous
resettable witness indistinguishability (sim-res WI) argument to construct a simultaneous resettable
zero-knowledge argument in the correlated randomness model with straight-line simulation. The
verifier uses a PRF to generate a string c to play in Σ instead of uniform sampling his message.
Then the verifier runs the prover of the sim-res WI to prove c is generated honestly or that a given
long string d is an output of a PRG on input a short seed. Since d is uniformly chosen as part of
the correlated randomness, the verifier cannot maliciously manipulate c.

4The correlated randomness is the key that allows us to avoid the impossibility of resettably-secure computation
in the standard model proven in [GKOV12].

4

UC-secure n-party computation in the correlated randomness model. We then construct
Π′, i.e., a UC-secure n-party computation protocol in the correlated randomness model for any
well-formed functionality based on OWFs as follows. First, we apply a modified version of Beaver’s
technique in [Bea96] to construct UC-secure unbounded number of OTs from a small number of
correlated OTs distributed as setup in the correlated randomness model. We then apply the IPS
transformation [IPS08], which constructs a UC-secure MPC in the OT-hybrid model, to get the
UC-secure MPC. Note that the transformation requires a large number of access to the OT. Thus,
the OT extension technique is required. All the above techniques are then put together carefully
to obtain our final result.

Practical tokens. In order to ensure that the queries to tokens are short and the size of each
token is small, we consider a technique used in [NFR+17] where a large input is fed into a token in
blocks of small size. To ensure the consistency of the input, in [NFR+17] a Merkle’s tree based on
CRHFs is used to commit to the input beforehand. We improve on this technique by replacing the
Merkle’s tree with a new construction based on OWFs. This result can be seen to be of independent
interest as an improvement on the assumption of [NFR+17].

1.3 Organization of the paper

We present the building blocks used in our construction (such as interactive argument systems,
resettable zero-knowledge and so on) as well as describe the correlated randomness model and
UC security in Section 2. In Section 3, we present our first result of a simultaneous resettable
zero-knowledge protocol in the correlated randomness model, based solely on OWFs. In Section
4, we show how to construct a UC-secure MPC protocol in the correlated randomness model
based on OWFs. We define our corruptible tamper-proof token model in Section 5 and we present
our main compiler that converts any protocol in the Katz’s tamper-proof token model into our
(n, n − 1)−corruptible tamper-proof token model in Section 6 of the paper. Finally, we show an
application of our compiler to secure obfuscation in Section 7.

2 Preliminaries

2.1 Building Blocks

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1. We
will call such a w a valid witness for x ∈ L. Let λ denote the security parameter. A negligible
function ν(λ) is a non-negative function such that for any constant c < 0 and for all sufficiently
large λ, ν(λ) < λc. We will denote by Prr[X] the probability of an event X over coins r, and Pr[X]
when r is not specified. The abbreviation “PPT” stands for probabilistic polynomial time. For a
randomized algorithm A, let A(x; r) denote running A on an input x with random coins r. If r
is chosen uniformly at random with an output y, we denote y ← A(x). For a pair of interactive
Turing machines (P, V), let 〈P, V 〉(x) denote V ’s output after interacting with P upon common

input x. We say V accepts if 〈P, V 〉(x) = 1 and rejects if 〈P, V 〉(x) = 0. We denote by view
P (w)
V (x,z)

the view (i.e., its private coins and the received messages) of V during an interaction with P (w)

5

on common input x and auxiliary input z. We will use the standard notion of computational
indistinguishability [GM84].

Definition 2.1 (interactive argument system in the correlated randomness model). An interactive
argument system for the language L consists of a correlated random string generation algorithm
K and a pair of interactive Turing machines (P, V) where V runs on input (σV , x) and P runs on
input (σP , x, w) where w is a witness for x such that:

• Efficiency: K, P and V are PPT.

• (Perfect) Completeness: For every λ ∈ N and for every pair (x,w) such that (x,w) ∈ RL,

Pr[(σP , σV)← K(1λ) : 〈P (σP , w), V (σV)〉(x) = 1] = 1.

• Soundness: There exists a negligible function ν(·) such that for any non-uniform PPTadversary
P ∗ = (P ∗1 , P

∗
2)

Pr[(x, z)← P ∗1 (σP) : x /∈ L ∧ 〈P ∗2 (σP , z), V (σV)〉(x) = 1] < ν(λ).

If K always outputs ⊥, we say that (P, V) is an interactive argument (in the plain model). If K
outputs σP = σV , we say that (P, V) is an interactive argument in the CRS model.

Definition 2.2 (zero-knowledge arguments). Let (K,P, V) be an interactive argument system for a
language L. We say that (K,P, V) is zero knowledge (ZK) if, for any probabilistic polynomial-time
adversary V ∗, there exists probabilistic polynomial-time algorithms SV ∗ = (S1, S2) such that, for all
auxiliary inputs z and all pairs (x,w) ∈ RL

|Pr[(σP , σV)← K(1λ) : 〈P (σP , w), V ∗(σV , z)〉(x) = 1]

−Pr[(σP , σV , τ)← S1(1λ) : 〈S2(τ), V ∗(σV , z)〉(x) = 1]| < ν(λ)

Definition 2.3 (witness indistinguishability). Let L be a language in NP and RL be the corre-
sponding relation. An interactive argument (K,P, V) for L is witness indistinguishable (WI) if for
every verifier V ∗, every pair (w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL and every auxiliary
input z, for σ ← K(1λ), the following ensembles are computationally indistinguishable:

{viewP (σ,w0)
V ∗(σ,x,z)} and {viewP (σ,w1)

V ∗(σ,x,z)}.

Definition 2.4 (argument of knowledge). Let (K,P, V) be an interactive argument system for a
language L. We say that (K,P, V) is argument of knowledge if there exists probabilistic polynomial-
time algorithms E = (E1, E2) such that

• for all non-uniform polynomial-time adversary A,

Pr[(σP , σV)← K(1λ) : A(σP) = 1] = Pr[(σP , σV , τ)← E1(1λ) : A(σP) = 1]

• for all non-uniform polynomial-time adversary A = (A1,A2), the following experiments are
indistinguishable:

6

ExpA(λ):

1. (σP , σV)← K(1λ).

2. (x, z)← A1(σP).

3. b← 〈A2(z), V (σV)〉(x).

4. Output b.

ExpEA(λ):

1. (σP , σV , τ)← E1(1λ).

2. (x, z)← A1(σP).

3. (b, w)← 〈A2(z), E2(τ)〉(x).

4. Output 1 iff b = 1 and (x,w) ∈ RL.

Definition 2.5 (resetting adversary). Let (K,P, V) be an interactive argument system for a lan-
guage L, t = poly(λ), x̄ = x1, . . . , xt be a sequence of common inputs and w̄ = w1, . . . , wt the
corresponding witnesses (i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. Let r1, . . . , rt be independent random
tapes. We say that a PPT V ∗ is a resetting verifier if for (σP , σV)← K(1λ), it concurrently inter-
acts with an unbounded number of independent copies of P (σP) by choosing for each interaction the
value i so that the common input will be xi ∈ x̄, and the prover will use witness wi, and choosing j
so that the prover will use rj as randomness, with i, j ∈ {1, . . . , t}. The scheduling or the messages
to be sent in the different interactions with P are freely decided by V ∗. Moreover we say that the
transcript of such interactions consists of the common inputs x̄ and the sequence of prover and ver-

ifier messages exchanged during the interactions. We refer to view
P (σP ,w̄)
V ∗(σV ,x̄,z)

as the random variable

describing the content of the random tape of V ∗ and the transcript of the interactions between P
and V ∗ using (σP .σV) as correlated random strings, where z is an auxiliary input received by V ∗.

Definition 2.6 (resettable zero knowledge). Let (K,P, V) be an interactive argument system for
a language L. We say that (K,P, V) is resettable zero knowledge (rZK) if, for any PPT resetting
verifier V ∗ there exists a expected probabilistic polynomial-time algorithm SV ∗ == (S1, S2) such

that the for all pairs (x̄, w̄) ∈ RL, for (σP , σV , τ) ← S1(1λ), the ensembles {viewP (σP ,w̄)
V ∗(σV ,x̄,z)

} and

{SV ∗(τ, x̄, z)} are computationally indistinguishable.

Definition 2.7 (resettable WI). Let L be a language in NP and RL be the corresponding relation.
An interactive argument system (K,P, V) for L is resettable witness indistinguishable (rWI) if
for every PPT resetting verifier V ∗ every t = poly(λ), and every pair (w̄0 = (w0

1, . . . , w
0
t), w̄

1 =
(w1

1, . . . , w
1
t)) such that (xi, w

0
i) ∈ RL and (xi, w

1
i) ∈ RL for i = 1, . . . , t, and any auxiliary input z,

for σ ← K(1λ), the following ensembles are computationally indistinguishable:

{viewP (σ,w̄0)
V ∗(σ,x̄,z)} and {viewP (σ,w̄1)

V ∗(σ,x̄,z)}.

Definition 2.8 (resettably-sound arguments). A resetting attack of a cheating prover P ∗ on a
resettable verifier V is defined by the following two-step random process, indexed by a security
parameter λ.

1. Uniformly select and fix t = poly(λ) random-tapes, denoted r1, . . . , rt, for V , resulting in
deterministic strategies V (j)(x) = VσV ,x,rjdefined by VσV ,x,rj (α) = V (σV , x, rj , α),5 where

(σP , σV)← K(1λ), x ∈ {0, 1}λ and j ∈ [t]. Each V (j)(σV , x) is called an incarnation of V .

5Here, V (σV , x, r, α) denotes the message sent by the strategy V on the correlated random string σV , common
input x, random-tape r, after seeing the message-sequence α.

7

2. On input 1λ, machine P ∗ is allowed to initiate poly(λ)-many interactions with the V (j)(x)’s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}λ and j ∈ [t], thus
defining V (j)(x), and conducts a complete session with it.

Let (K,P, V) be an interactive argument for a language L. We say that (K,P, V) is a resettably-
sound argument for L if the following condition holds:

• Resettable-soundness: For every polynomial-size resetting attack, the probability that in some
session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

An interactive argument system that is both resettable zero-knowledge and resettably-sound is
called simultaneous resettable zero-knowledge argument.

Definition 2.9 (commitment scheme). Given a security parameter 1λ, a commitment scheme com
is a two-phase protocol between two PPT interactive algorithms, a sender S and a receiver R.
In the commitment phase S on input a message m interacts with R to produce a commitment
c = com(m). In the decommitment phase, S sends to R a decommitment information d such that
R accepts m as the decommitment of c.

Formally, we say that com is a perfectly binding commitment scheme if the following properties
hold:

Correctness:

– Commitment phase. Let c = com(m) be the commitment of the message m given as
output of an execution of com where S runs on input a message m. Let d be the private
output of S in this phase.

– Decommitment phase6. R on input m and d accepts m as decommitment of c.

Statistical (resp. Computational) Hiding ([Lin10]): for any adversary (resp. PPT
adversary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,com(λ):

– Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

– S on input the message mb interacts with A to produce a commitment of mb.

– A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. PPT adversary) A, there exist a negligible function ν, s.t.:∣∣∣Pr[ExpHiding0
A,com(λ) = 1]− Pr[ExpHiding1

A,com(λ) = 1]
∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious PPT) sender S∗

there exists a negligible function ν such that S∗, with probability at most ν(λ), outputs two
decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that R accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
6In this paper we consider a non-interactive decommitment phase only.

8

Definition 2.10 (secret sharing scheme). Let K be a finite set of secrets. An n-out-of-n secret
sharing scheme S consists of a randomized algorithm share : K → K1× . . .×Kn and a deterministic
algorithm recon : K1 × . . .×Kn → K satisfying

• Correctness: for any s ∈ K,

Pr[recon(share(s)) = s] = 1;

• Privacy: for any s, s′ ∈ K, (s1, . . . , sn) ∈ K1 × . . .×Kn and any T ([n],

Pr[share(s)T = (si)i∈T] = Pr[share(s′)T = (si)i∈T]

where (s1, . . . , sn)T = (si)i∈T .

Definition 2.11 (pseudorandom function (PRF)). A family of functions {fs}s∈{0,1}∗ is called pseu-
dorandom if for all adversarial PPT machines A, for every positive polynomial p(·), and sufficiently
large λ ∈ N, it holds that

|Pr[Afs(1λ) = 1]− Pr[AF (1λ) = 1]| ≤ 1

p(λ)
.

where |s| = n and F denotes a truly random function.

2.2 UC Security in the Correlated Randomness Model

In this section, we describe our setup model used in the construction of the resettable ZK and the
MPC in the following sections. The correlated randomness model is an extension of the CRS model
where each party has an access to a random string generated by an outside trusted party. Unlike in
the CRS model, the random string for each party may be different, but possibly correlated. Also,
unlike in the augmented CRS model of [CDPW07], honest parties can access their own private
string. Thus, it can be considered a variant of the key registration (KR) model of [CDPW07].

Our correlated randomness model is defined to be consistent with that in [IKM+13], but more
formally in the UC setting. A protocol φ in the correlated randomness model is defined with
the corresponding correlated randomness functionality Fφcorr, which generates a correlated random
string for each party in the protocol φ independently of the parties’ input. Each party can access
its random string (but not other parties’ random strings) by invoking Fφcorr.

In the security proof, the ideal world simulator is allowed to obtain the correlated random
strings associated to all parties, thereby having an advantage over the real world adversary.

Let φ be n-party protocol in the correlated randomness model. Let D be a distribution on
S1× . . .×Sn where Si is the set of possible random strings for party Pi. The correlated randomness
functionality Fφcorr is defined in Figure 1.

Definition 2.12. Let F be an ideal functionality and let φ be a multi-party protocol. Then the
protocol φ is UC-secure in the correlated randomness model if φ UC realizes F in Fφcorr-hybrid
model. That is if for every PPT hybrid model adversary A, there exists a uniform PPT simulator
S such that for every non-uniform environment Z, the following two ensembles are computationally
indistinguishable

{ViewF
φ
corr

φ,A,Z(λ)}λ∈N ≈c {ViewF ,S,Z(λ)}λ∈N.

9

Fφcorr

When receiving (sid) from Pi:

1. If there is no tuple of the form (sid, ?, . . . , ?),

(a) Generate (s1, . . . , sn)← D(1λ).

(b) Store (sid, s1, . . . , sn).

Otherwise, retrieve the stored (sid, s1, . . . , sn).

2. Send (sid, si) to Pi.

Figure 1: Correlated Randomness Functionality Fφcorr

3 Sim. Resettable ZK in the Correlated Randomness Model

In this section, we construct a simultaneous resettable ZK argument in the correlated randomness
model with straight-line simulator. Our construction only assumes the existence of OWFs. The
main building block for the construction is a 3-round (3 messages) public-coin ZK argument protocol
in the CRS model with straight-line simulator and based on OWFs (such as in [MY04]) We first
construct a new protocol with the above properties and an argument of knowledge with straight-
line witness extractor in the correlated randomness model without additional assumptions. We
then convert it into a protocol that is simultaneously resettable in the following way: we have the
verifier prove, using a simultaneous resettable WI (srWI) argument (based on OWFs [COPV13]),
that: either the verifier random message c is the output of a PRF on input the transcript so far
(using as seed a value that has been committed to in the correlated randomness), or that a long
string d present in the correlated randomness is the output of a PRG on input a short string. The
prover receives the commitment and d necessary to run as a verifier of the srWI as part of its
correlated randomness.

3.1 ZKAoK in the correlated randomness model from OWFs

We first show how to convert a 3-round public-coin ZK argument in the CRS model with straight-
line simulator (based on OWFs) into one that is also an argument of knowledge (with straight-
line simulator and witness extractor) in the correlated randomness model. Let ΠZK = (K,P, V)
be the ZK argument in the CRS model with straight-line simulator S = (S1,S2) (e.g. [MY04]).
Let (KeyGen,Enc,Dec) be a CPA-secure secret key encryption scheme. Define (K ′, P ′, V ′) in the
correlated randomness model as in Figure 2.

Lemma 3.1. ΠZKAoK is ZKAoK with straight-line simulator and witness extractor in the correlated
randomness model.

Proof. Zero-knowledge: we construct a straight-line simulator S ′ = (S ′1,S ′2) as follows. S ′1 runs
S ′1 to generate (σ′, τ), generates sk, k, γ0 as in K0, and outputs s′P = (σ′, sk, k, γ0), s′V = (σ′, k)

10

ΠZKAoK = (K ′, P ′, V ′)

K ′(1λ):

1. σ ← K(1λ), sk ← KeyGen(λ). Let k = com(sk) and γ0 be the decommitment information.

2. K ′ outputs sP = (σ, sk, k, γ0) and sV = (σ, k).

Execution phase: P on input (x,w) and private string sP ; V on input x and private string sV

1. P ′ parses sP = (σ, sk, k, γ0), computes e← Enc(sk, w) and sends e to V ′.

2. V ′ parses sV = (σ, k).

3. P ′ and V ′ run 〈P (w′), V 〉(σ, x′) where x′ = (x, e, k) and w′ = (w, sk, γ0) to prove that
there exists w, sk, γ0 such that (x,w) ∈ RL and w = Dec(sk, e) and k can be decommitted
to sk using γ0.

4. V ′ outputs the output of V .

Figure 2: ZKAoK argument protocol ΠZKAoK in the correlated randomness model

and τ ′ = (sk, k, γ0). S ′2(τ ′) sends e′ ← Enc(sk, 0|w|) and runs S2(τ) to generate messages. We
show the indistinguishability by considering a hybrid HybEncS where S is used to generate the CRS
σ′ and messages, but the prover sends e ← Enc(sk, w) as in ΠZKAoK . Finally, HybEncS outputs
the verifier’s output. This hybrid is indistinguishable from ExpΠZKAoK = 〈P ′(w, sP), V ′(sV)〉(x)
by the zero-knowledge property of ΠZK . It is also indistinguishable from the experiment ExpS′ =
〈S ′2(τ ′), V ′(s′V)〉(x) running the above simulator by the security of the encryption scheme.

Argument of knowledge: we construct a straight-line witness extractor E = (E1, E2) as follows.
E1 generates sP and sV as in K and also outputs τ = sk. E2 runs V ′ honestly, and if V ′ accepts,
it decrypts and outputs w = Dec(sk, e). Otherwise, it outputs ⊥. If V ′ accepts but (x,w) /∈ RL,
we have (x′, w′) fails to satisfy the relation proved by ΠZK . By the soundness of ΠZK , this only
occurs with negligible probability.

If the protocol ΠZK is 3-round and public-coin, the resulting protocol ΠZKAoK is also 3-round
and public-coin.

3.2 Simultaneous resettable ZK in the correlated randomness model from OWFs

We now construct a simultaneous resettable ZK protocol in the correlated randomness model based
on OWFs. Let ΠZKAoK = (KZKAoK , PZKAoK , VZKAoK) be a 3-round ZK argument of knowledge
protocol in the correlated randomness model with transcript (m1, c,m2) where c ∈ {0, 1}λ is chosen
uniformly at random, a straight-line simulator SZKAoK = (S1,S2), and a straight-line witness ex-
tractor EZKAoK = (E1, E2) from Lemma 3.1. Let (PWI , VWI) be a srWI argument (e.g. [COPV13]).
Let {fs}s be a family of pseudorandom functions such that for s ∈ {0, 1}`0(λ), fs outputs c ∈ {0, 1}λ.
Let f : {0, 1}`1(λ) → {0, 1}`2(λ) be a PRG.

11

We define ΠsrZK as in Figure 3.

ΠsrZK = (K,P, V)

K(1λ):

1. (σP , σV) ← KZKAoK(1λ), s ← U`0(λ), d ← U`2(λ). Let t = com(s) and γ be the decom-
mitment information.

2. K outputs sP = (σP , t, d) and sV = (σV , s, γ, t, d).

Execution phase: P on input (x,w) and private string sP ; V on input x and private string sV

1. P parses sP = (σP , t, d), runs PZKAoK(x,w, σP) to compute m1, and sends m1 to V .

2. V parses sV = (σV , s, γ, t, d), runs VZKAoK(x, σV) to sends c = fs(x||m1) on behalf of
VZKAoK to P (running PZKAoK), and runs PWI(y, (s, γ)), with y = (t, c, d, x,m1), proving
to P running VWI(y) that one of the following statements hold

• there exists s′ and γ such that t can be decommitted to s′ using γ and c = fs′(x||m1).

• there exists d′ such that d = f(d′).

3. If VWI accepts, P continues running PZKAoK(x,w, σP) to compute m2 and send it to V .

4. V runs VZKAoK on (m1, c,m2) and outputs the output of VZKAoK .

Figure 3: Simultaneous resettable ZK argument protocol ΠsrZK in the correlated randomness model

The proof of resettable soundness goes as follows. We first consider an experiment with an
imaginary protocol ΠF where a truly random function is used instead of the PRF, and the verifier
uses an alternate witness for the sim-res WI. We will show that ΠF is resettably-sound by con-
tradiction. Finally, we show that the probability that any resetting adversary can prove a false
theorem in ΠsrZK is negligible close to that of ΠF through a series of hybrids. This implies that
ΠsrZK is also resettably-sound.

Lemma 3.2. The protocol ΠsrZK in the correlated randomness model is resettably-sound.

Proof. Let F be a truly random function. Consider an experiment ΠF in Figure 4.
Note that sP generated in KF is computationally indistinguishable from sP generated in K.

Furthermore, P behaves identically in the execution phase of ΠsrZK and ΠF . We first prove that
in ΠF , for any resetting prover P̃ , the probability that P̃ makes VF accepts x /∈ L in one of the
resetting session is negligible.

Assume for contradiction that there exists a PPT resetting prover P̃ that can prove a false
statement x /∈ L in one of the resetting session of ΠF with non-negligible probability p. We
construct a non-resetting prover P̃ZKAoK that can prove a false statement x /∈ L in ΠZKAoK as
follows. Given σP , P̃ZKAoK generates the additional parameters d0, t, γ, d as in KF . P̃ZKAoK
internally runs P̃ on sP = (σP , t, d) in ΠF by either sending c from an honest verifier VZKAoK or

12

ΠF = (KF , P, VF)

KF :

1. (σP , σV) ← KZKAoK(1λ), d0 ← U`1(λ). Let t = com(0`0(λ)) and γ be the decommitment
information, and d = f(d0).

2. KF outputs sP = (σP , t, d) and sV = (σV , d0, t, d).

Execution phase: P on input (x,w) and private string sP ; VF on input x and private string sV

1. P parses sP = (σP , t, d), runs PZKAoK(x,w, σP) to compute m1, and sends m1 to VF .

2. VF parses sV = (σV , s, γ, t, d), runs VZKAoK(x, σV) to send c = F (x||m1) on behalf of
VZKAoK to P (running PZKAoK), and runs PWI(y, d0), with y = (t, c, d, x,m1), proving
to P running VWI(y) that one of the following statements hold

• there exists s′ and γ such that t can be decommitted to s′ using γ and c = fs′(x||m1).

• there exists d′ such that d = f(d′).

3. If VWI accepts, P continues running PZKAoK(x,w, σP) to compute m2 and send it to VF .

4. VF runs VZKAoK on (m1, c,m2) and outputs the output of VZKAoK .

Figure 4: Experiment ΠF

generating c itself to P̃ on behalf of V . At the beginning of the protocol, P̃ZKAoK randomly selects
i ∈ [T] where T is the upper bound on the number of resetting sessions determined by P̃ . P̃ZKAoK
runs a verifier VF for P̃ for all but the ith resetting session. In the ith resetting session, P̃ZKAoK
passes the first message m1 from P̃ to VZKAoK and c from VZKAoK to P̃ . P̃ZKAoK also provides a
srWI argument to P̃ using d0 it generated as a witness. If P̃ resets and sends the same m1, P̃ZKAoK
will send the same c corresponding to the m1 sent before. If P̃ resets and sends a new m1, P̃ZKAoK
will either pass m1 to VZKAoK and relay c from VZKAoK to P̃ , or generate c itself. Since P̃ cannot
distinguish H0 and H3, it will also prove a false statement x /∈ L in one of the resetting session
of ΠsrZK with non-negligible probability p′ = p − negl(λ). If P̃ZKAoK guesses correctly which m1

to pass to VZKAoK for P̃ to complete the protocol for x /∈ L, then it will convince VZKAoK to
accept a false statement. This happens with probability 1/T where T is polynomial in the security
parameter. Thus, P̃ZKAoK can prove a false statement in ΠZKAoK with probability p′/T which is
non-negligible (in the security parameter). This contradicts the soundness of ΠZKAoK . Hence, the
protocol ΠF is resettably sound.

We then show that the original protocol ΠsrZK is also resettably-sound by considering the
following hybrid experiments whose outputs come from the joint distribution of the output of the
verifier and the witness extractor E2: let P̃ be a resetting prover.

13

H0: This hybrid experiment runs the protocol ΠsrZK 〈P̃ , V 〉 with σ replaced by σ′ generated in
(σ′, τ)← E1(1λ). If P̃ convinces V to accept x in a resetting session, take the transcript (m1, c,m2)
and run E2(x, τ, (m1, c,m2)) to extract a witness w. Output (x,w) where w = ⊥ if E2 fails to
extract a witness, or abort if V rejects.

H1: This hybrid is the same as H0 except that d is generated by first sampling d0 ← U`1(λ)

and computing d = f(d0), and also giving d0 to V . By the property of the PRG, this hybrid is
indistinguishable from H0.

H2: This hybrid is the same as H1 except that V runs PWI(y, d0) instead of PWI(y, s).

Claim. Hybrid H1 and H2 are indistinguishable.

Proof. Suppose a distinguisher D can distinguish H1 and H2 with non-negligible probability q.
We construct Ṽ ∗ that can distinguish the interaction with PWI(y, (s, γ)) and PWI(y, d0) where
y = (t, c, d, x,m1) with probability q as follows. Ṽ ∗ samples d0, s and computes t, d, γ,m1, c as in
H1, H2. It then runs D while feeding the messages from PWI(x, (s, γ)) or PWI(x, d0) after sending
c.

H3: This hybrid is the same as H2 except that V is no longer given s, γ and instead sends
c ← F (x||m1), where F is a truly random function. By the property of the PRF, this hybrid is
indistinguishable from H2.

H4: This hybrid is the same as H3 except that s is no longer generated and t is a commitment of
0`0(λ) instead of s. By the hiding property of the commitment scheme, this hybrid is indistinguish-
able from H3.

Let εi = εi(λ) be the (negligible) probability of distinguishing Hi−1 from Hi for each i. Note that
the Hybrid H4 is the same as Hybrid H0 but with protocol ΠF 〈P̃ , VF 〉 instead of ΠsrZK . As we
proved above, the probability that VF accepts x but E2 cannot extract the witness Pr[H4 = (x,⊥)]
is negligible ε0 = ε0(λ) by the property of the witness extractor EZKAoK . Thus, Pr[H0 = (x,⊥)] ≤
ε0 + ε1 + ε2 + ε3 + ε4 = ε′ is negligible. Note that by the property of the PRF, the extractor E2 can
fail to extract in the Hybrid H0 with at most negligible probability ε5 = ε5(λ). Therefore, for any
resetting prover P̃ , the probability that P̃ convinces V to accept x /∈ L is at most ε5 + ε′ which is
negligible.

Lemma 3.3. The protocol ΠsrZK is resettable ZK in the correlated randomness model with a
straight-line simulator.

Proof. Now we construct a zero-knowledge simulator S against a resetting verifier Ṽ . S runs the
simulator S1 for Π0 to generate (σ′P , σ

′
V , τ). It gives σ′V to Ṽ instead of honestly generated σV in

the correlated randomness generation phase. S generates s, γ, t, d honestly. In the execution phase,
S runs S2(τ) to generate m1. S receives c from Ṽ and runs VWI honestly. S continues running
S2(τ) to generate m2, and records the transcript (m1, c,m2) for later use. When Ṽ resets, S sends
the recorded m1. If Ṽ sends the previously seen c, S will send the corresponding recorded m2. If
Ṽ sends a new c, S aborts.

14

Claim. The views of Ṽ interacting with an honest prover P and with S are indistinguishable.

Proof. First consider a hybrid experiment where we replace (σP , σV)← KZKAoK(λ) with (σ′P , σ
′
V)

from (σ′P , σ
′
V , τ)← S1(λ), and m1 and m2 are generated by S2(τ). By the ZK property of ΠZKAoK ,

Ṽ cannot distinguish this hybrid experiment from running ΠZK . Now suppose that Ṽ can distin-
guish the hybrid experiment from running against the simulator S with non-negligible probability q.
The only difference between the hybrid and the interaction with S is when Ṽ resets and sends differ-
ent c. In this case, Ṽ needs to provide a sim-res WI for y1 = (t, c1, d, x,m1) and y2 = (t, c2, d, x,m1)
with c1 6= c2. We construct a PPT P̃WI that can prove a false statement y = (t, c, d, x,m1) /∈ RWI

as follows: P̃WI generates the setup strings and runs the interaction above (with (S1,S2)). P̃WI

randomly chooses the session of sim-res WI to pass the WI prover message from Ṽ to VWI . Since d
is chosen uniformly at random, except with negligible probability, d 6= f(d′) for any d′ ∈ {0, 1}`1(λ).
Thus, if y1, y2 ∈ RWI , there exists s′ such that t = com(s′) and c1 = c2 = fs′(x||m1). At least
one of the c’s will make y = (t, c, d, x,m1) /∈ RWI . The probability that P̃WI passes the sim-res
WI messages corresponding to such y to VWI is at least 1/T ′, where T ′ is the number of different
c’s sent by Ṽ . Therefore, the probability that P̃WI can prove y /∈ RWI is at least q/T ′, which
contradicts the soundness of (PWI , VWI).

Since (S1,S2) is straight-line, S is also straight-line.

This gives us the following theorem:

Theorem 3.4. Assuming the existence of OWFs, there exists a simultaneous resettable ZK argu-
ment protocol in the correlated randomness model with a straight-line simulator.7

4 MPC in the Correlated Randomness Model from OWFs

In this section, we construct a UC-secure MPC protocol in the correlated randomness model based
on OWFs. The key ingredient is a protocol to generate unbounded number of OTs (from a bounded
number of OTs that are received by every party as part of the correlated randomness) and the IPS
transformation [IPS08]. In [IPS08], Ishai, Prabhakaran and Sahai construct an MPC protocol
in the OT-hybrid model assuming only a PRG. This protocol requires a large number of OTs,
proportional to the circuit size.

We first construct a UC-secure protocol for unbounded number of OTs in the correlated ran-
domness model. At a very high level, the idea is as follows. We have the sender construct a
super-polynomial size Yao’s garbled circuit that computes the OTs. Instead of sending the circuit
to the receiver, the sender commits to the first layer of the circuit and the seed for the PRF that
is used to generate the rest of the circuit. When the receiver queries for the ith OT, the sender
sends a section of the garbled circuit that suffices to compute the output followed by the ZK ar-
gument that it is consistent with committed values. However, this section of the circuit is now
of polynomial size. More details of this construction are presented in Section 4.1. Using this, we
then combine it with the [IPS08] transformation, to obtain our UC-secure MPC protocol in the
correlated randomness model from OWFs (Section 4.2).

7Our ZK argument protocol also has a straight-line witness extractor, but it is not necessary for our purpose.

15

4.1 Unbounded Number of OTs in the Correlated Randomness Model

We first construct a UC-secure protocol computing unbounded number of OTs in the correlated
randomness model assuming only OWFs. We make use of Beaver’s OT setup [Bea95] and exten-
sion [Bea96] as follows. In [Bea96], the sender constructs a garbled circuit that takes a seed for a
PRF as an input, and then expands this to a long string. Each bit of the string is matched with
a random bit from the sender. In case of a match, a secret bit of the sender is revealed. Now, in
order to get a garbled input corresponding to the receiver’s seed and the garbled circuit, the sender
and the receiver only need to perform a small number of OTs for each bit of the seed. This OT
extension technique reduces λc OTs to λ OTs for any constant c and the security parameter λ.
This small number of OTs can be precomputed [Bea95] as part of the correlated randomness.

Since our final goal is for each token to have a small-size memory, this OT extension does not
suffice. We consider the following modification. Instead of sending the whole garbled circuit as
in [Bea96], the sender first commits to another seed for the PRF whose output is used to generate the
garbled circuit. The receiver uses the small number of OTs to obtain the garbled inputs associated
to its seed. For each i, the receiver then sends the index i for the OT. The sender replies with a
part of the garbled circuit that suffices to compute the ith OT along with UC-secure ZK argument
that the part is computed correctly using the committed seed. This way, the garbled circuit is
allowed to have super-polynomial size while the part for computing each OT is of polynomial size.
Since the whole garbled circuit is fixed given the committed values, the sender cannot change the
circuit and still successfully provide the ZK argument. Sender security is proved by arguing that
the receiver does not learn more than the intended output by the property of the garbled circuits.
More details follow.

Let {fs}s be a family of PRFs. Let G = (GC,GI,GE) be a projective garbling scheme. Let
OT0 = (K0, S0, R0) be the OT protocol in the correlated randomness model for small number of
OTs. Let ΠZK = (KZK , PZK , VZK) be a UC-secure ZK argument in the CRS model based on
OWFs. We describe the unbounded OT protocol in Figure 5.

Theorem 4.1. Assuming OWFs, the protocol in Figure 5 is a UC-secure protocol computing un-
bounded number of OTs in the correlated randomness model.

Proof. (Sketch) We construct a simulator Sim in the ideal world running Adv as follows. Sim
generates the correlated randomness for the small number of OTs for each party. In the case
that Adv corrupts the receiver, Sim first commits to a zero string. When Adv queries the garbled
input for its seed, Sim extracts the seed using the correlated randomness. For each i, Sim queries
the OT functionality for the ith output, and generates a garbled circuit that takes the extracted
seed and outputs the ith output from the functionality. Finally, Sim runs the simulator for the
ZK argument instead of the ZK prover. In the case that Adv corrupts the sender, Sim uses the
correlated randomness to extract both garbled inputs for each bit of the seed. Given the ith garbled
input, it can learn both sender’s inputs, and send them to the OT functionality.

The indistinguishability proof is through a series of hybrids. First, we use the simulator for the
ZK argument instead of the ZK prover. Then, using the hiding property of com, we replace the
commitment of the seed to the commitment of zero. Sim then generates the correlated randomness
for the correlated randomness functionality, thereby learning the private string for both parties.
Finally, Sim extracts the sender’s garbled inputs and the receiver’s seed and proceed as above, using
the security of the garbled circuit.

16

OTN = (K,S,R)

K(1λ):

1. (σS , σR) ← K0(1λ), σZK ← KZK(1λ), s1, s2 ← U`(λ). For i = 1, 2, let ci = com(si) with
decommitment information γi.

2. K outputs sS = (σS , σZK , s1, γ1, c2) and sR = (σR, σZK , s2, γ2, c1).

Execution phase: S on input X = {xi0, xi1}i∈[N], x
i
b ∈ {0, 1}, and private string sS ; R on input

{bi}i∈[N], bi ∈ {0, 1}, and private string sR

1. S parses sP = (σS , σZK , s1, c2). Let CX,s1,c2(s2, γ2) be a circuit that computes r = fs1(s2)
and uses Beaver’s expansion described above to output {xibi}i∈[N] only if c2 is decommitted
to s2 using γ2. S samples s3 ← U`(λ) and let (G, π) = GC(C; f(s3)) with Gi the part of G
necessary to evaluate xibi . Let c3 = com(s3) with decommitment information γ3. S sends
c to R.

2. R parses sV = (σS , σZK , s2, c1). S runs S0(σS) with R running R0(σR) to send S =
GI(π, (s2, γ2)), garbled inputs corresponding to (s2, γ2).

3. For each i ∈ [N],

(a) R sends i to S.

(b) S sends Gi to R, S then runs PZK(σZK , (s1, s3, γ1, γ3))) to prove to R running
VZK(σZK) that Gi is generated using s1 and s3 that are committed earlier. R
aborts if VZK rejects or Gi is inconsistent with previously received Gj for j < i.

(c) R evaluates xibi = GE(Gi, S).

Figure 5: UC-Secure Unbounded OT Protocol

4.2 IPS Transformation

In [IPS08], Ishai et al. construct a compiler that turns an MPC protocol that is secure against
adversary corrupting less than half of the parties (honest majority) into a UC-secure MPC pro-
tocol in the OT-hybrid model. They apply this transformation to a variant of the MPC protocol
from [DI05] to obtain the following theorem.

Theorem 4.2 ([IPS08]). Assuming a PRG, for any n ≥ 2, there exists an n-party constant-round
MPC protocol in the OT-hybrid model that is UC-secure against an active adversary adaptively
corrupting at most n− 1 parties.

Combining this theorem with our UC-secure protocol for unbounded number of OTs in the
correlated randomness model, we get the following corollary.

17

Corollary 4.3. Assuming a PRG and OWFs, for any n ≥ 2, there exists an n-party constant-round
MPC protocol in the correlated randomness model that is UC-secure against an active adversary
adaptively corrupting at most n− 1 parties.

5 Corruptible Tamper-Proof Token Model

We consider a generalization of the Katz’s tamper-proof token model [Kat07] where tokens can be
corrupted by adversaries even when they are created by honest parties. Our model is inspired by
the real world application where honest users cannot create tokens themselves. They instead rely
on a number of manufacturers, some of whom could be malicious. Thus, the secrets embedded in
the token description can be revealed to the adversary. Furthermore, the adversary can replace the
tokens with ones of its choice.

5.1 Katz’s Stateless Tamper-Proof Token Functionality Ftoken

Our model is based on the stateless version of Katz’s tamper-proof token model [Kat07] defined
in Figure 6. In this model, each user can create a stateless token by sending its description to
Ftoken. The token is tamper-proof in the sense that the receiver can only access it through Ftoken

functionality in a black-box manner. We consider the case of stateless tokens where the tokens do
not keep information between each access and use the same random tape. Hence, without loss of
generality, we can assume that the function computed by the token is deterministic. In this case,
we may represent the function with a circuit.

Ftoken

Upon receiving (create, sid, Pj ,Π) from Pi with i 6= j:

1. If there is no tuple of the form (sid, Pi, Pj , ?), store (sid, Pi, Pj ,Π).

2. Send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i 6= j:

1. Find the unique stored tuple (sid, Pi, Pj ,Π). If no such tuple exists, abort.

2. Run Π(inp) and let out be the output.

3. Send (sid, out) to Pj .

Figure 6: Token Functionality Ftoken

Our protocol however will UC-realize a variant of Ftoken, called Fabort
token, described in Figure 7

in which the adversary is notified whenever a party creates a token and can choose to interrupt
its delivery. The receiver will not receive the token, but will be notified with the special message
interrupted. In such a case, the receiver aborts the protocol. This change can be avoided by restrict-
ing the adversary to corrupt less than half of the corruptible tokens, which will allow the receiver

18

to compute the output using the remaining uncorrupted tokens, but will weaken the threshold of
corruptions tolerated.

Fabort
token

Upon receiving (create, sid, Pj ,Π) from Pi with i 6= j:

1. If there is no tuple of the form (sid, Pi, Pj , ?), store (sid, Pi, Pj ,Π, creating).

2. Send (create, sid, Pi, Pj) to Adv.

Upon receiving (interrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pi, Pj ,Π, creating). If no such tuple exists,
abort.

2. Send (interrupted, Pi) to Pj .

Upon receiving (notinterrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pi, Pj ,Π, creating). If no such tuple exists,
abort.

2. Store (sid, Pi, Pj ,Π).

3. Send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i 6= j:

1. Find the unique stored tuple (sid, Pi, Pj ,Π). If no such tuple exists, abort.

2. Run Π(inp) and let out be the output.

3. Send (sid, out) to Pj .

Figure 7: Token with Abort Functionality Fabort
token

5.2 Corruptible Tamper-Proof Token Functionality F corruptible
token

We generalize the tamper-proof token model to accommodate such a scenario by allowing an adver-
sary to corrupt each token upon its creation. We define corruptible tamper-proof token functionality
Fcorruptible
token in Figure 8 by modifying Ftoken as follows. Every time a user sends create command

to the functionality Fcorruptible
token , it first notifies the adversary and waits for one of two possible re-

sponses. The adversary may choose to learn the description of the token, and replace it with another
(possibly stateful) token of its choice. We call the token chosen by the adversary a corrupted token.
Alternately, the adversary may ignore the creation of that token, and therefore, that token creation
is completed successfully and in this case, the adversary will not learn the description of the token.

19

After uncorrupted tokens are created, they are tamper-proof in the same sense as in Katz’s model.
The stateful program for the corrupted token can be represented by a Turing machine.

In the case that the adversary chooses not to corrupt any token created by honest users, our
model is identical to the model of Katz. Thus, our model generalizes the standard tamper-proof
token model. In this work, we show that we can achieve UC-secure 2PC/MPC in the corruptible
tamper-proof token model allowing the adversary to corrupt one party and all but one token
generated by every honest party.

6 A Compiler from Katz’s Model to the Corruptible Token Model

6.1 Protocol for corruptible tokens

In this section, we describe a multi-party protocol that the n corruptible tokens will run in order
to emulate the Katz’ stateless token functionality.

Let (KsrZK , PsrZK , VsrZK) be a simultaneous resettable ZK argument in the correlated ran-
domness model with straight-line simulator. Let S = (share, recon) be an n out of n secret sharing
scheme. Let Γ0 be a UC-secure MPC protocol in the correlated randomness model for functionality
F described in Figure 9.

We define a multi-party protocol Γ = Γ(Π) on input (x1, . . . , xn) to compute Π(x) when x = xi
for all i ∈ [n] in Figure 10.

6.2 Realizing Tamper-Proof Token with Corruptible Tokens

Now we are ready to describe our protocol realizing the tamper-proof token with n corruptible
tokens. To compute Π, the corruptible tokens are given the setup parameters for the MPC protocol
Γ(Π). Up on execution with input xi, they will run Γ(Π) to compute Π(x) only if x = xi for all
i ∈ [n]. Since the token receiver, possibly malicious, will deliver Γ(Π) messages between the tokens
we need an additional wrapper layer to encrypt the messages and the saved states of the tokens for
authenticity.

Let (SetUp,Enc,Dec) be a symmetric key encryption scheme. For 1 ≤ i < j ≤ n, let ski,j =
skj,i ← SetUp(1λ). Let Γi be the Turing machine representing Party Pi in Γ with embedded secret
keys {ski,j}j 6=i such that

Γi(statek−1, in) = (statek, out)

where statek is the internal state of the Turing machine in round k and

• in = (cj)j 6=i where Dec(ski,j , cj) is the incoming message from Party j to Party i in round
k − 1.

• out = (Enc(ski,j ,mj,k))j 6=i where mi,j,k is the corresponding outgoing message from Party i
to Party j in round k (or 0 if Party i does not send a message to Party j in this round).

Let Ti = T (si) be defined in Figure 11.

Finally, we define the protocol Λ in Fcorruptible
token -hybrid model realizing Fabort

token in Figure 12.

20

Fcorruptible
token

Upon receiving (create, sid, Pj ,Π) from Pi with i 6= j:

1. If there is no tuple of the form (sid, Pi, Pj , ?, ?), store (sid, Pi, Pj ,Π, creating).

2. Send (create, sid, Pi, Pj) to Adv.

Upon receiving (corrupt, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi,Π, creating). If no such tuple exists, abort.

2. Send Π to Adv.

Upon receiving (replace, sid, Pi, Pj ,Π
∗, state0) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi,Π, creating). If no such tuple exists,
abort.

2. Store (sid, Pi, Pj ,Π
∗, state0), send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (notcorrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi,Π, creating). If no such tuple exists,
abort.

2. Store (sid, Pi, Pj ,Π,⊥), send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i 6= j:

1. Find the unique stored tuple (sid, Pi, Pj ,Π, state). If no such tuple exists, abort.

2. Run Π(state, inp) and let (state′, out) be the output. If state 6= ⊥, set state = state′.

3. Send (sid, out) to Pj .

Upon receiving (read, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi, P, state). If no such tuple exists, abort.

2. Send (sid, state) to Adv.

Figure 8: Token Functionality Fcorruptible
token

21

F
On input ((Π1, x1), . . . , (Πn, xn))

1. If xi 6= xj for some i 6= j, output ⊥. Otherwise, let x be the common input.

2. Π = recon(Π1, . . . ,Πn).

3. Output Π(x).

Figure 9: Function F

6.3 Proof of Security

Let SsrZK = (S1,S2) be the straight-line simulator for the simultaneous resettable ZK, and SimMPC

be the UC simulator for the UC-secure MPC.
Let Adv be an adversary corrupting up to n − 1 tokens. Let nc be the number of corrupted

tokens, and nh = n − nc be the number of honest (uncorrupted) tokens. We construct a UC
simulator Sim in Figure 13 internally running Adv such that any environment E cannot distinguish
between interacting with Adv running Λ in the real world and interacting with Sim running Fabort

token

in the ideal world.
Now consider the series of hybrids:

Hybrid H0: This hybrid is the real world execution.

Hybrid H1: This hybrid is similar to H0 except that every message to Fcorruptible
token goes to Sim,

and Sim acts honestly on behalf of Fcorruptible
token while recording the messages. This hybrid is identical

to H0.
Let Hybrid H2.0 = H1. For k = 1, . . . , nh · nc,

Hybrid H2.k: This hybrid is similar toH2.(k−1) except that Sim uses S1 to generate (σi,j,P , σi,j,V , τi,j)
instead of KsrZK for honest token i and corrupted token j with k = i(nc− 1) + j, and runs S2(τi,j)
to generate the sim-res ZK messages for token i by feeding the sim-res ZK messages from corrupted
tokens. Sim records the transcript leading to each sim-res ZK session.

Lemma 6.1. Hybrid H2.(k−1) and H2.k are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H2.(k − 1) and H2.k with non-
negligible probability. We construct a distinguisher D′ that can distinguish an interaction of PsrZK
with a resetting verifier V ∗srZK and S2(τi,j) for the sim-res ZK as follows. Given setup strings for
the sim-res ZK, D′ generates the setup for other pairs of tokens and the inputs for Γ(Π). D′ then
runs H2.(k−1) or H2.k until Adv queries the honest token to prove a statement x using the sim-res
ZK. D′ runs the interaction and passes the messages from and to Adv as V ∗srZK ’s messages. When
V ∗srZK resets PsrZK or S2(τi,j), D

′ queries the token using the saved state of the earlier round in
the sim-res ZK. Finally, D′ outputs the output of D.

22

Γ(Π)

Setup:

1. Let (Π1, . . . ,Πn)← share(Π). Let ci = com(Πi) for i ∈ [n].

2. For i 6= j ∈ [n], let (σi,j,P , σi,j,V) ← KsrZK(1λ) be the correlated randomness for the
simultaneous resettable ZK argument with prover Pi and verifier Pj .

3. Let (σ1, . . . , σn)← SetUpΓ0
(1λ) be the correlated randomness for Γ0.

4. For i ∈ [n], send Σi = (Πi, σi, {cj , σi,j,P , σj,i,V }j 6=i) to Party Pi.

Execution: Party Pi on input xi, correlated string Σi, and a random tape Ri

1. For each i ∈ [n], Pi generates a seed si for the PRF from Ri[0], and sends the determining
message Mi = com(αi;Ri[1]) where αi = (xi, si).

2. For each i ∈ [n], Pi computes R′i = PRFsi(M1|| . . . ||Mn) consisting of R′i[0] for running
Γ0 and R′i[1] for running (PsrZK , VsrZK).

3. For each i ∈ [n], Pi executes as the ith party in Γ0 where Pi follows kth round message
mi,k by running PsrZK to prove that there exists αi = (xi, si) and Πi such that

(a) Mi can be decommitted to αi;

(b) ci can be decommitted to Πi;

(c) mi,k is correctly computed using R′i[0] in Γ0 with (Πi, xi) as an input where R′i =
PRFsi(M1|| . . . ||Mn).

Figure 10: Multi-party protocol Γ(Π) computing Π

Claim. Fixed a combined determining message M = M1|| . . . ||Mn, any polynomial-time resetting
machine Adv can find only one transcript of Γ0 in Γ(Π) that every following sim-res ZK argument
convinces the verifier to accept.

Proof. Suppose not. Let tr = (. . . ,mi,k) and tr′ = (. . . ,m′i,k) be the partial transcripts of Γ0

generated by Adv up to the differing messages mi,k,m
′
i,k with accepting sim-res ZK argument.

Note that we cannot have both (ci,Mi,M, tr), (ci,Mi,M, tr′) ∈ RrsZK . Otherwise, either Mi or
ci can be decommitted to two different values, and thus can be reduced to the security of the
commitment scheme. Hence, either (ci,Mi,M, tr) /∈ RrsZK or (ci,Mi,M, tr′) /∈ RrsZK . Thus, we
can construct a resetting prover P ∗srZK that can prove a false statement.

Let Hybrid H3.0 = H2.(nh·nc). Let m be the number of distinct sessions of Γ0 based on combined
determining message M1|| . . . ||Mn generated through Adv querying the tokens. For k = 1, . . . ,m,

23

On input (Initialize, xi)

1. Parse si = (i, ski, Ri,Πi, σi, {cj , σi,j,P , σj,i,V , ski,j}j∈[n]).

2. Initiate Γi on setup parameters (Πi, σi, {cj , σi,j,P , σj,i,V)}j∈[n]), random tape Ri and input
xi.

3. Let msg be the first message from Γi and let state0 be its initial state.

4. Output (msg,Enc(ski, state0)).

On input (msg, statei)

1. Parse si = (i, ski, Ri,Πi, σi, {cj , σi,j,P , σj,i,V , ski,j}j∈[n]).

2. Initiate Γi on setup parameters (Πi, σi, {cj , σi,j,P , σj,i,V)}j∈[n]), random tape Ri and input
xi.

3. Decrypt statei = Dec(ski, statei), abort if fail.

4. Load Γi with state state.

5. Feed Γi, msg and let out be its reply and state′ be its new state.

6. Output (out,Enc(ski, state
′)).

Figure 11: Token Ti = T (si)

Hybrid H3.k: This hybrid is similar to H3.(k−1) except that Sim runs SimMPC to generate the
MPC messages for uncorrupted tokens by feeding the MPC messages from corrupted tokens in the
execution of Γ(Π) following kth combined determining message.

Lemma 6.2. Hybrid H3.(k−1) and H3.k are indistinguishable.

Proof. Suppose there exists a poly-timeD that can distinguishH3.(k−1) andH3.k with non-negligible
probability. We construct a distinguisher D′ for SimMPC as follows. Given the correlated random-
ness for the MPC, D′ generates the rest of the setup parameters for Σ(Π) as in the experiment. D′

then passes the MPC messages from Adv to D followed by the srZK messages from SimZK . Since
the accepting transcript is unique by the claim above, Adv cannot change the messages. D′ outputs
the output of D.

Hybrid H4: This hybrid is similar to H3.m except that Sim passes token creation request from
honest parties to Fabort

token and uses it to compute the output for SimMPC .

Lemma 6.3. Hybrid H3.m and H4 are indistinguishable.

Proof. Note that if Adv generates messages for the MPC honestly using the same input xi and
the share Πi given in the setup, then the output from Fabort

token must be the same as the output of

24

Λ

To create a token running Π for Pj , Pi does the following:

1. Generate the setup parameters for Γ(Π): (Πk, σk, {cl, σk,l,P , σl,k,V)}l∈[n]) for k ∈ [n] as
defined in Figure 10.

2. Generate secret keys for decrypting share/state skk ← KeyGen(1λ) for all k ∈ [n].

3. Generate secret keys for secure channel between token k and l skk,l ← KeyGen(1λ) for all
k, l ∈ [n].

4. Let sk = (k, skk, Rk,Πk, σk, {cl, σk,l,P , σl,k,V , skk,l}l∈[n]).

5. Send (create, sidk, Pj , Tk) to Fcorruptible
token where Tk = T (sk) for k ∈ [n].

To execute a token running Π sent by Pi, Pj does the following:

1. For k ∈ [n], initialize Tk by sending (execute, sidk, S, (initialize, inp)) to Fcorruptible
token to com-

pute Tk(initialize, inp) = (statek, outk).

2. While statek 6= done for all k ∈ [n], for k ∈ [n]

(a) Parse outk = (ck,l)l 6=k. Let ink = (cl,k)l 6=k.

(b) Send (execute, sidk, Pi, (statek, ink)) to Fcorruptible
token to compute Tk(statek, ink) =

(state′k, outk).

(c) Replace statek by state′k.

3. Let out = outk for k ∈ [n] such that statek = done.

Figure 12: Protocol Λ in Fcorruptible
token -hybrid model UC realizing Fabort

token

the MPC by the correctness of the MPC. Suppose there exists a poly-time D that can distinguish
H3 and H4 with non-negligible probability p. There must be at least one MPC message m∗ from
Adv that is not generated honestly. Thus, we construct a resetting prover P ∗srZK for the sim-res
ZK argument following m∗ by randomly choosing a Γ0 message and passing the following prover
messages to V . When Adv sends a different message using the same token state, P ∗srZK resets the
verifier. It has at least 1/T probability of choosing m∗ where T is the number of Γ0 messages
sent by Adv. Thus, it has at least p/T probability of proving a false statement, contradicting the
resettable soundness of the sim-res ZK.

Hybrid H5: This hybrid is similar to H4 except that Sim generates secret share of zero string
0|Π| instead of the one received from an honest party. This hybrid is the ideal world execution.

Lemma 6.4. Hybrid H4 and H5 are indistinguishable.

25

Sim

Whenever Sim receives (create, sid, Pi, Pj) from Fabort
token, Sim does the followings:

1. For each k ∈ [n], send (create, sidk, Pi, Pj) to Adv.

2. If Adv replies with (corrupt, sidk, Pi, Pj) for any k ∈ [n],

(a) Follow the protocol of Λ for creating a token, except that Sim uses zero string 0|Π|

instead of the actual token Π to create secret shares Π1, . . . ,Πn, and uses S1 to
generate (σi,j,P , σi,j,V , τi,j) instead of KsrZK and SimMPC to generate σi instead of
SetUpΓ0

for the setup parameters of Γ for the corruptible tokens. Sim stores the
secret shares for later comparison.

(b) Send Tk to Adv for each k Adv chose to corrupt.

(c) Store (replace, sidk, Pi, Pj , T
′
k, statek) from Adv.

(d) Send (interrupt, sid, Pi, Pj) to Fabort
token.

3. Otherwise, send (notinterrupt, sid, Pi, Pj) to Fabort
token.

Whenever Adv runs the protocol for execution that involves both corrupted and uncorrupted
tokens, Sim does the followings:

1. Sim generates the Γ messages for uncorrupted Tk using S2(τk) and SimMPC as follows:

(a) Sim generates and commits to αk honestly as in Γ.

(b) Sim runs SimMPC to generate messages for Γ0.

(c) Sim For each message generated by SimMPC , runs S2(τk) to generate messages for
the following sim-res ZK argument.

(d) When SimMPC queries the functionality of the function F on input
((Π′1, x

′
1), . . . , (Π′n, x

′
n)), if x′k’s are all equal to x′, send (execute, sid, Pi, x) to Fabort

token

and passes the output to SimMPC . Otherwise, Sim aborts.

2. Sim encrypts the messages and states as in Λ

3. Sim records all inputs/outputs to the tokens. If Adv queries with the same input (state and
incoming messages), Sim returns the recorded output (new state and outgoing messages).

Figure 13: UC Simulator Sim for Λ

26

Proof. Suppose there exists a poly-time D that can distinguish H4 and H5 with non-negligible
probability. We construct a distinguisher D′ for the secret sharing scheme S as follows. D′ runs
the experiment for D until it is given Adv shares consisting of less than n shares. D′ then continues
the experiment and D distinguishes between H4 and H5. Using the result of D, D′ can distinguish
between less than n shares of 0 and some program Π, contradicting the security of S.

Finally, we have proved our main theorem.

Theorem 6.5. Assuming an existence of OWFs, there exists a protocol with n corruptible tokens
in Fcorruptible

token -hybrid model UC-realizing Fabort
token.

7 Obfuscation with stateless hardware token from OWFs

7.1 Very high level description of protocol

At a very high level, the protocol of Nayak et al. makes use of OWFs and CRHFs. First, they
make use of CRHFs for the authenticated ORAM structure. We observe that we can replace the
authenticated ORAM used in Nayak et al. with an authenticated ORAM based on OWF (that
can be built from the work of Ostrovsky and Goldreich, Ostrovsky). Next, in order to obtain a
single starting seed for randomness that depends on the specific execution of the program and
input, Nayak et al. require the user to first feed in a hash of the input to the token and then use
this hash to derive all randomness (along with a unique program id). This gives them a unique
execution id. We derive a unique value based on the input and program by having the user feed
the input one-by-one to the token. Upon receiving one input, the token will authenticate it and
provide an authentication tag (this process is deterministic) that will then allow the user to input
the next input. This process continues until the last input is inserted into the token, upon which
the authentication tag produced at this stage is a unique id that can be used (in combination with
the program id) to derive all randomness needed by the token for program execution. This process
is similar in spirit to the GGM construction of deriving a PRF from a PRG.

7.2 High level description of protocol

Program Authentication. At a high level, the program creation by the sender works as follows.
Let the program to be obfuscated be RAM := (cpustate,mem) where mem is a list of program
instructions and cpustate is the initial cpu state. Let the program comprise of t instructions. The
sender first creates the token containing a hardwired secret key K where K := (Ke,Kprf). Ke is
used as the encryption key for encrypting state, Kprf is used as the key to a pseudorandom function
used by the token to generate all randomness needed for executing the ORAM, creating ciphertexts,
and so on. The sender creates a unique execution identity idexec, which is unique for every program
created. The sender then encrypts mem||idexec||idinstr (one instruction at a time) to obtain mem
(memi denotes the ciphertext obtained upon encrypting memi||idexec||i). The sender also computes
a “tag” of the start ciphertext, mem1, as τ1 = PRFKprf

(start,mem1). The sender creates an

encrypted program header Header := EncKe(cpustate, idexec, t). The receiver is sent mem,mem∗1 and
Header as the obfuscated program.

27

Program Feed. At a very high level, the receiver will feed in the program, one instruction at a
time, to the token, as follows:

1. As the first message, the token receives (programauth, 1,mem1, τ1,mem2,Header). It will
check that PRFKprf

(start,mem1,Header) = τ1 and output ⊥ otherwise. Similarly, for all

2 ≤ i < t − 1, it receives (programauth, i, τi−1,memi, τi,memi+1,Header). It will check that
PRFKprf

(τi−1,memi,Header) = τi and output ⊥ otherwise.

2. Next, it decrypts memi and memi+1 to get memi and memi+1, and idexec as well as decrypt
Header to get idexec and t. It will check that idinstr = i and i+ 1 respectively (also that these
values are ≤ t) and that the two idexec values are the same and equal to the idexec value in
Header. If these checks do not pass, it will respond with ⊥. If the checks pass, the token will
output τi+1 = PRFKprf

(τi,memi+1,Header).

Input Feed. Let the input to the program be denoted by x1, · · · , xn. The receiver will send the
following instructions, step-by-step, for every input, to the token.

1. On input, (inputauth, 1, τt−1,memt, τt, x1, n,Header), it checks that
PRFKprf

(τt−1,memt,Header) = τt, that memt is the tth program instruction (by de-

crypting memt to get idinstr and Header to get t and comparing) and output ⊥ otherwise. It
outputs τt+1 = PRFKprf

(τt, 1, x1, n,Header).

2. On input, (inputauth, j, τt+j−2, xj−1, τt+j−1, xj , n,Header), for 2 ≤ j ≤ n, it checks that
PRFKprf

(τt+j−2, j − 1, xj−1, n,Header) = τt+j−1 and outputs ⊥ otherwise. It then outputs

τt+j = PRFKprf
(τt+j−1, j, xj , n,Header).

Program/Input ORAM Insertion. Once the program and input authentication is done, the
program and input, henceforth collectively referred to as memory, must be inserted into the Au-
thenticated Oblivious RAM structure. There are t program instructions and n inputs that must
be inserted. Let ` = t + n be the total memory requirement of the program (we can assume this
without loss of generality as any additional memory needed by the program can be thought of as
dummy program instructions). First, a set of ` “zeroes” are inserted into the ORAM structure
(i.e., the values of memory in all locations is set to 0)8. The insertion of a set of ` “zeroes” into
the ORAM structure is done as follows:

1. For every memory location 1 ≤ i ≤ `, the user prepares the message
(ORAMsetup, i, `, τoraminit

i−1 , n, xn,Header, τ
oraminit
i , τ`) and gives it to the token, with τoraminit

1 =

τ` and τoraminit
0 = τ`−1. The token checks that PRFKprf

(τoraminit
0 , n, xn, n,Header) = τoraminit

1

(for i = 1) and PRFKprf
(ORAMsetup, i, `,Header, τoraminit

i−1 , τ`) = τoraminit
i (for all other i) and

outputs ⊥ otherwise.

2. Otherwise, the token derives a key for the ORAM structure − this ORAM key is derived as
Koram = PRFKprf

(ORAMKey, τ`).

8Whenever, the state of the program (ORAM or otherwise) needs to be modified, this is done by appending
encrypted state with Header and then authenticating, similar to Nayak et al. [NFR+17]

28

(a) It creates an ORAM initialization structure (that is, creates an initial random mapping
of all virtual addresses to their real address); this initialization is done using randomness
from the ORAM key Koram.

(b) In this map let address aj have been mapped to address i. In this case, the token creates
an authenticated encryption of (aj , 0) (again using keys and randomness derived from
Koram) to be inserted into the ORAM structure at virtual address i.

(c) The token then outputs τoraminit
i+1 = PRFKprf

(ORAMsetup, i, `,Header, τoraminit
i , τ`).

Once all ` memory locations have been inserted with 0 values, the user then inserts the real input
and program into the ORAM structure. This is done as follows: in the reverse order, starting with
the nth input to the first input, and then the tth to the first program instruction. We now describe
this process at a high level. For ease of exposition, we shall assume that every ORAM operation
is a single step denoted as oramσ,Koram(i, vi, read/write,⊥/v∗i) (this can be easily extended to the
case when the ORAM read/write is a set of operations, similar to Nayak et al. [NFR+17]). The
protocol is as follows:

1. The user will insert the ith memory location (` ≥ i ≥ 1, which
is either an input or a program instruction) by sending the message
(MemORAMInsert, i, `, τoraminit

2`−i , n, xn, n,Header, τ
oraminit
2`−i+1 , τi, τi−1, wi), where wi =

(i − t, xi−t, n) if the ith location has an input (i.e., ` ≥ i ≥ t + 1) and wi = memi if
the ith location has a program instruction (i.e., t ≥ i ≥ 1).

2. If the ith location has an input:

(a) The token will check that τi = PRFKprf
(τi−1, i − t, xi−t, n,Header) and that τoraminit

2`−i+1 =

PRFKprf
(ORAMsetup, i, `,Header, τoraminit

2`−i , τ`).

(b) The token will then execute the ORAM instruction oramσ,Koram(i, 0, write, xi−t).

(c) The token then outputs τoraminit
2`−i+2 = PRFKprf

(ORAMsetup, i− 1, `,Header, τoraminit
2`−i+1 , τ`).

3. If the ith location has a program instruction:

(a) The token will check that τi = PRFKprf
(τi−1,memi,Header) and that τoraminit

2`−i+1 =

PRFKprf
(ORAMsetup, i, `,Header, τoraminit

2`−i , τ`).

(b) The token decrypts memi to get memi||idexec||i and executes the ORAM instruction
oramσ,Koram(i, 0, write,memi||idexec||i).

(c) The token then outputs τoraminit
2`−i+2 = PRFKprf

(ORAMsetup, i− 1, `,Header, τoraminit
2`−i+1 , τ`).

Program Execution. The program execution works in a similar manner to that of Nayak et al.

8 Practical Tokens

In this section, we improve the corruptible token protocol in Section 6 to ensure that the tokens
created in the protocol only require small memory (for the embedded secret parameters) and only
take short strings as inputs. We apply the technique in Section 7 to the construction, and thus the
resulting protocol is still based on OWFs.

29

We consider a variant of Fcorruptible
token in Figure 8, called Fcorruptible,short,L1,L2

token in Figure 14 where
create and execute only take Π and inp of short size. We also allow a token sender to send a message
along with the token created through the functionality. This allows the adversary to intercept the
message when it chooses to corrupt a token without neither sender nor receiver knowledge. This is
unavoidable as we represent a token in the standard corruptible model with both a token and an
additional auxiliary string from the sender. We use Fcorruptible,short

token when L1 and L2 are clear from
the context.

In theory, we would like L1 and L2 be of constant size in security parameter. Though [NFR+17]
suggests using logarithmic size in practice for better performance.

We define an implementation Token of Fcorruptible
token in Fcorruptible,short

token -hybrid model as follows:

Theorem 8.1. The protocol Token UC-realizes Fcorruptible
token in Fcorruptible,short

token -hybrid model.

Proof. (Sketch) The proof follows closely to the proof of Theorem 1 in [NFR+17] when the adversary
Adv does not corrupt a token. We construct a simulator Sim as follows: Whenever Sim receives
a create message from Fcorruptible

token , it passes the message to Adv. If Adv chooses to corrupt the

token, Sim sends corrupt to Fcorruptible
token and receives Π. It creates RAM from Π and generates

m = (mem, header, τ1) honestly as in Token and sends them to Adv. When Sim receives T
∗
K and m∗

from Adv, it parses K∗ = (K∗e ,K
∗
prf) and m∗ = (mem∗, header∗, τ∗1). Sim then uses K∗e to decrypt

to get RAM∗ = (cpustate∗,mem∗) representing a program Π∗. If Sim fails to get Π∗ from this steps,

it aborts. Otherwise, it sends Π∗ to Fcorruptible
token . Sim runs Token honestly for this token, and sends

execution message to Fcorruptible
token whenever Adv complete the execution phase.

If Adv chooses not to corrupt the token created by an honest party, Sim passes notcorrupt to
Fcorruptible
token , and creates a token for RAM0 = (0|cpustate|, 0|mem0|) instead of the actual program RAM

representing Π. Sim maintains a memory mem′ to keep track of mem = mem0||inp||0.
Sim runs input and program authentication phases as described in Token, and also records the

input authenticated. If Adv resets and sends different input, Sim aborts.
Whenever Fcorruptible,short

token sends an encrypted state state to Adv, Sim instead sends EncK(0|state|).
To simulate ORAM algorithm, it uses the ORAM simulator and the PRF is replaced by a truly

random function. Sim records all transcripts with Adv and sends the recorded response when Adv
resets and sends the recorded messages. It aborts if it receives messages different from recorded
ones.

Upon completion of the execution phase, Sim sends the execution message to Fcorruptible
token with

the recorded input. Sim sends the output it receives from Fcorruptible
token to Adv.

We show the indistinguishability through a series of hybrids:

Hybrid H0: This hybrid is the real world execution. Sim runs Token honestly in place of honest
parties given their inputs using Fcorruptible,short

token functionality.

Hybrid H1: This hybrid is similar to Hybrid H0 except that when Adv chooses to corrupt a token
created by an honest party, Sim maintains a memory mem′ to keep track of mem. Sim records all
transcripts with Adv and sends the recorded response when Adv resets and sends the recorded
messages. This hybrid is identical to H1.

30

Fcorruptible,short,L1,L2

token

Upon receiving (create, sid, Pj ,Π,m) from Pi with i 6= j:

1. If |Π| > L1, ignore.

2. Otherwise, if there is no tuple of the form (sid, Pi, Pj , ?, ?), store (sid, Pi, Pj ,Π,m, creating).

3. Send (create, sid, Pi, Pj) to Adv.

Upon receiving (corrupt, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi,Π,m, creating). If no such tuple exists, abort.

2. Send (Π,m) to Adv.

Upon receiving (replace, sid, Pi, Pj ,Π
∗,m∗, state0) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi,Π,m, creating). If no such tuple
exists, abort.

2. Store (sid, Pi, Pj ,Π
∗, state0), send (done, sid) to Pi and send (create, sid, Pi,m

∗) to Pj .

Upon receiving (notcorrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi,Π,m, creating). If no such tuple
exists, abort.

2. Store (sid, Pi, Pj ,Π,⊥), send (done, sid) to Pi and send (create, sid, Pi,m) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i 6= j:

1. If |inp| > L2, ignore.

2. Otherwise, find the unique stored tuple (sid, Pi, Pj ,Π, state). If no such tuple exists, abort.

3. Run Π(state, inp) and let (state′, out) be the output. If state 6= ⊥, set state = state′.

4. Send (sid, out) to Pj .

Upon receiving (read, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi, P, state). If no such tuple exists, abort.

2. Send (sid, state) to Adv.

Figure 14: Token with Short Input Functionality Fcorruptible,short,L1,L2

token

31

Token

To create a token running Π for Pj , Pi does the following:

1. Construct a RAM program RAM = (cpustate,mem0) that runs Π.

2. Sample Ke ← KeyGen(1λ) and Kprf ← U`.

3. Let τ1 = PRFKprf (start,mem1) where memk = EncKe(mem0[k]||id||k), and header =
EncKe(cpustate||id||t).

4. Send (create, sid, Pj , TK , (mem0, header, τ1)) to Fcorruptible,short
token where K = (Ke,Kprf) and

mem0 = {memk}k∈[t].

To execute a token on input inp = {inpk}k∈[n], Pj , given (mem0, header, τ1), does the following:

1. Authenticate the program feed and input feed as described in Section 7 to get τ2, . . . , τt+n
by sending (execute, sid, Pi,−) to Fcorruptible,short

token with appropriate command.

2. Execute as described in Section 7.

Figure 15: Token Implementation Token in Fcorruptible,short
token -hybrid model

Hybrid H2: This hybrid is similar to Hybrid H1 except that when Adv chooses to corrupt a token
created by an honest party, Sim uses a truly random function instead of the PRF. This hybrid is
computationally indistinguishable from H1 by the property of the PRF.

Hybrid H3: This hybrid is similar to Hybrid H2 except that when Adv chooses to corrupt a
token created by an honest party, Sim checks the authenticity of the program in header and input
in the execution phase directly from its recorded memory mem′ instead of checking tags τ1, . . . , τt+n.
When Adv initializes the program and the input, Sim records the pairing of tags and the program
and the input. If Adv restarts the program and input feed, Sim compares with the recorded pairs
and outputs the same tags for the same program and input. Since the tags are generated uniformly
at random, the probability that poly-time Adv can find a different program or input with the same
tag is negligible. This hybrid is indistinguishable from H2 by the randomness of the truly random
function.

Hybrid H4: This hybrid is similar to Hybrid H3 except that when Adv chooses to corrupt a
token created by an honest party, simu compares state from Adv with the recorded state previously
outputed on behalf of Fcorruptible,short

token instead of using the authentication of Dec. This hybrid is
computationally indistinguishable from H3 by the authenticity of the encryption scheme.

Hybrid H5: This hybrid is similar to Hybrid H4 except that when Adv chooses to corrupt a token
created by an honest party, Sim replaces all encryptions from Fcorruptible,short

token to Adv with encryption

32

of zero strings, This hybrid is computationally indistinguishable from H4 by the security of the
encryption scheme.

Hybrid H6: This hybrid is similar to Hybrid H5 except that when Adv chooses to corrupt a token
created by an honest party, Sim uses the ORAM simulator instead of the actual ORAM algorithm.
This hybrid is statistically indistinguishable from H6 by the property of ORAM simulator. This is
the ideal world interaction between Sim and Adv.

Combining the above result with the result in Section 6 gives the following corollary.

Corollary 8.2. Assuming OWFs, there exists a protocol that UC realizes Fabort
token functionality in

Fcorruptible,short
token -hybrid model using n corruptible tokens with short inputs and small size against an

adversary corrupting up to n− 1 tokens.

References

[Bea95] Donald Beaver. Precomputing oblivious transfer. CRYPTO ’95, pages 97–109, 1995.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 479–488. ACM, 1996.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Sym-
posium on, pages 136–145. IEEE, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In TCC ’07, pages 61–85. Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances
in Cryptology?Crypto 2001, pages 19–40. Springer, 2001.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for uc secure
computation using tamper-proof hardware. In Proceedings of the theory and applica-
tions of cryptographic techniques 27th annual international conference on Advances
in cryptology, pages 545–562. Springer-Verlag, 2008.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. Journal of Cryptol-
ogy, 19(2):135–167, 2006.

[CKS+14] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and
Hong-Sheng Zhou. (efficient) universally composable oblivious transfer using a mini-
mal number of stateless tokens. In Theory of Cryptography Conference, pages 638–662.
Springer, 2014.

33

[COPV13] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simultaneous
resettability from one-way functions. In Foundations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on, pages 60–69. IEEE, 2013.

[DFS16] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. Private circuits
iii: Hardware trojan-resilience via testing amplification. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 142–
153. ACM, 2016.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Annual International Cryptology Conference,
pages 378–394. Springer, 2005.

[DKMQN15] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias Nilges. General
statistically secure computation with bounded-resettable hardware tokens. In TCC
(1), pages 319–344, 2015.

[DSMRV13] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan
Venkitasubramaniam. Adaptive and concurrent secure computation from new adap-
tive, non-malleable commitments. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 316–336. Springer, 2013.

[FPS+11] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan
Visconti. Secure set intersection with untrusted hardware tokens. In Topics in Cryp-
tology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings, volume 6558 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2011.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Proceedings of the 7th
international conference on Theory of Cryptography, pages 308–326. Springer-Verlag,
2010.

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti.
Impossibility results for static input secure computation. In Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 424–442. Springer, 2012.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 218–229, 1987.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Proceed-
ings of the 27th Annual International Cryptology Conference on Advances in Cryp-
tology, CRYPTO’07, pages 323–341, Berlin, Heidelberg, 2007. Springer-Verlag.

34

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Composable security in the tamper-proof hardware model under minimal com-
plexity. In TCC ’16, pages 367–399. Springer, 2016.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In
Theory of Cryptography, pages 600–620. Springer, 2013.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer–efficiently. Lecture Notes in Computer Science, 5157:572–592, 2008.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In EUROCRYPT ’07, pages 115–128. Springer, 2007.

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-
party computation. In Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on, pages 394–403. IEEE, 2003.

[Lin10] Yehuda Lindell. Foundations of cryptography 89-856. 2010.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 179–188. ACM, 2009.

[MY04] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In
EUROCRYPT ’04, pages 382–400. Springer, 2004.

[NFR+17] Kartik Nayak, Christopher W Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam,
Elaine Shi, and Vipul Goyal. Hop: Hardware makes obfuscation practical. In NDSS
’17, 2017.

35

