
Post-quantum IND-CCA-secure KEM without
Additional Hash

Haodong Jiang1,2, Zhenfeng Zhang2,3, Long Chen2,3, Hong Wang1, and Zhi
Ma1,4

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China

2 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, China

3 University of Chinese Academy of Sciences, Beijing, China
4 CAS Center for Excellence and Synergetic Innovation Center in Quantum

information and Quantum Physics,USTC, Hefei, Anhui, China
hdjiang13@gmail.com, {chenlong,zfzhang}@tca.iscas.ac.cn

Abstract. With the gradual progress of NIST’s post-quantum cryptog-
raphy standardization, several practical post-quantum secure key encap-
sulation mechanism (KEM) schemes have been proposed. Generally, an
IND-CCA-secure KEM is usually achieved by introducing an IND-CPA-
secure (or OW-CPA-secure) public-key encryption (PKE) scheme, then
applying some generic transformations to it. All these generic transfor-
mations are constructed in the random oracle model (ROM). To fully
assess the post-quantum security, security analysis in the quantum ran-
dom oracle model (QROM) is preferred. However, current works either
lacked a QROM security proof or just followed Targhi and Unruh’s proof
technique (TCC-B 2016) and modified the original transformations by
adding an additional hash to the ciphertext to achieve the QROM secu-
rity.
In this paper, by using a novel proof technique, we present QROM se-
curity reductions for two widely used generic transformations without
suffering any ciphertext overhead. Meanwhile, the security bounds are
much tighter than the ones derived by utilizing Targhi and Unruh’s
proof technique. Thus, our QROM security proofs not only provide a
solid post-quantum security guarantee for previous KEM schemes, but
also simplify the constructions and reduce the ciphertext sizes. We also
provide QROM security reductions for Hofheinz-Hövelmanns-Kiltz mod-
ular transformations (TCC 2017), which can help to obtain a variety of
combined transformations with different requirements and properties.

Keywords: quantum random oracle model · key encapsulation mecha-
nism · IND-CCA security · generic transformation

1 Introduction

In December 2016, National Institute of Standards and Technology (NIST)
launched a Post-Quantum Cryptography Project and published a call for sub-
missions of quantum-resistant public-key cryptographic algorithms including

digital-signature, public-key encryption (PKE), and key encapsulation mech-
anism (KEM) (or key exchange) [1]. Triggered by that, there has been a rapid
growth of interest in post-quantum cryptographic schemes.

As a foundational cryptography primitive, KEM is efficient and versatile. It
can be used to construct, in a black-box manner, PKE (the KEM-DEM paradigm
[2]), key exchange and authenticated key exchange [3, 4]. Compared with design-
ing a full PKE scheme, the KEM construction is usually somewhat easier or more
efficient. Recently, to make the KEM scheme secure against quantum computers,
many researchers devoted to the KEM constructions based on the hardness of
certain problems over lattices [5–11] and code theory [12, 13].

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [14] is wide-
ly accepted as the standard security notion for many cryptography applications.
However, the security is usually much more difficult to prove than IND-CPA
(indistinguishability against chosen-plaintext attacks) security. Mostly, generic
transformations [15, 16] are used to create an IND-CCA-secure KEM from some
weakly secure (OW-CPA or IND-CPA) PKEs, see [5–9, 12].

In his “A Designer’s Guide to KEMs” paper [15], Dent provided several
generic transformations from weakly secure PKE schemes to IND-CCA-secure
KEMs. In particular, [15, Table 5] can be viewed as the KEM variant of Fujisaki-
Okamoto (FO) transformation [17, 18], and is widely used in constructing post-
quantum IND-CCA-secure KEMs, e.g., [6–8]. Recently, considering the draw-
backs of previous analysis of FO transformation, such as a non-tight security
reduction and the need for a perfectly correct scheme, Hofheinz, Hövelmanns
and Kiltz [16] revisited the FO transformation and provided a fine-grained and
modular toolkit of transformations. By combining these modular transforma-
tions, they obtained several variants of FO transformation. Subsequently, Bos
et al. [5] and Barreto et al. [12] used one of these variants to construct IND-
CCA-secure KEMs, Kyber (module-lattice-based) and CAKE (code-based), re-
spectively. Specially, Kyber is part of the CRYSTALS (Cryptographic Suite for
Algebraic Lattices) package that will be submitted to the NIST call for post-
quantum standards.

Note that all above mentioned transformations are constructed in the ran-
dom oracle model (ROM). When the KEM scheme is instantiated, the random
oracle is usually replaced by a hash function, which a quantum adversary may
evaluate on a quantum superposition of inputs. As a result, to fully assess post-
quantum security, we should analyze security in the quantum random oracle
model (QROM), as introduced in [19]. However, proving security in the QROM
is quite challenging, as many classical ROM proof techniques will be invalid.

Among current works about post-quantum KEMs, they either lacked a QROM
security proof [6, 8, 10] or just followed Targhi and Unruh’s proof idea [20, 21]
and modified the original transformations by adding an additional hash to the ci-
phertext to achieve QROM security [5, 7, 11, 12, 16]. Intuitively, for 128-bit post-
quantum security, such a modification merely increases the ciphertext size by 256
bits [22]. However, we note that the QROM security proof in [20, 21] requires
the additional hash function to be length-preserving (that has the same domain

2

and range size). Thus, for some schemes where the message space is strictly
larger than the output space of the hash function, the increasement of the ci-
phertext size is significant. Hülsing et al. [7] tried several ways to circumvent
this issue, unfortunately all straight forward approaches failed. For their specific
NTRU-based KEM, additional 1128 bits are needed in the decapsulation, which
accounts for 11% of the final encapsulation size.

In the ROM, this additional hash is clearly redundant for the constructions
of IND-CCA-secure KEM [15, 16]. To use Targhi and Unruh’s proof technique
to accomplish the QROM security proof, [5, 7, 11, 12, 16] deliberately introduced
an additional length-preserving hash to the ciphertext, which increased the ci-
phertext size and complicated the implementation. Thus, a natural question is
that: can we improve the QROM security proof without suffering any ciphertext
overhead for these constructions? In this paper, we present a positive answer.

1.1 Our Contributions

1. We prove the QROM security of two generic transformations (variants of FO
transformation) by reducing the IND-CCA security of KEM to the OW-CPA
security of the underlying PKE.

One is the transformation FO�⊥ in [16], we denote such a construction by
FO-I in our paper. In [16], Hofheinz et al. proved the security of FO-I in
the ROM. When considering the QROM security, they followed Targhi and
Unruh’s proof idea, and modified FO-I by adding an additional hash to the
ciphertext. Kyber [5] and CAKE [12] were exactly constructed by using this
modified transformation. Thus, with our security proof, Kyber and CAKE
can be simplified by cutting off that additional hash, leading to performance
improvement in terms of speed and sizes.

The other is FO�⊥m in [16], the transformation [15, Table 5] with implicit rejec-
tion (meaning that a pseudorandom key is returned when an invalid cipher-
text is submitted to the decapsulation algorithm). We denote this transfor-
mation by FO-II in our paper. This transformation was widely used in [6–8].
But, these works either lacked a QROM security proof [6, 8] or just followed
Targhi and Unruh’s work [21] and modified the original transformation by
adding an additional hash to the ciphertext to achieve the QROM security
[7]. Thus, our QROM security proof provides a solid post-quantum security
guarantee for these KEM schemes without additional ciphertext overhead.

2. For our security reductions, the advantage of the adversary B against the
IND-CCA security of KEM AdvIND-CCA

KEM (B) is approximately bounded by q ·√
AdvOW-CPA

PKE (A), which is much tighter than q
3
2 · [AdvOW-CPA

PKE (A)]
1
4 achieved

by [5, 12, 16], where AdvOW-CPA
PKE (A) is the advantage of the adversary A a-

gainst the OW-CPA security of PKE and q is the total number of B’s queries
to various oracles.

3. We provide QROM security reductions for some fine-grained and modular
transformations in [16]. Hofheinz et al. [16] provided seven fine-grained mod-

ular transformations T , U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m, which can be

3

used to obtain some combined transformations with different requirements
and properties. But, they just presented QROM security proofs for the trans-
formations T , QU�⊥m and QU⊥m. Different from U�⊥, U⊥, U�⊥m and U⊥m, the

transformations QU�⊥m and QU⊥m have an additional length-preserving hash
in the ciphertext, thus the proof idea in [20, 21] can be used to prove the
QROM security. As they pointed [21], such a proof technique quite relies on

the additional hash. Therefore, QROM security reductions for U�⊥, U⊥, U�⊥m
and U⊥m are missing in [16].
In this paper, we first define two new security notions, one-way against
quantum plaintext checking attacks (OW-qPCA) and one-way against quan-
tum plaintext and (classical) validity checking attacks (OW-qPVCA) (quan-
tum plaintext checking attacks mean that the adversary can make quantum
queries to the plaintext checking oracle). Then, we provide QROM secu-

rity reductions for T from OW-qPCA to OW-CPA, U�⊥ from IND-CCA to
OW-qPCA, U⊥ from IND-CCA to OW-qPVCA, U�⊥m from IND-CCA to OW-
CPA and U⊥m from IND-CCA to OW-VA (one-way against validity checking
attacks).

1.2 Techniques

As explained by Targhi and Unruh [21], their proof technique strongly relies
on the additional hash. In their paper, they discussed the QROM security of a
variant of FO transformation from OW-CPA-secure PKE to IND-CCA-secure
PKE. To implement the security reduction, one needs to simulate the decryption
oracle without possessing the secret key. In classical proof, a RO-query list is used
to simulate such an oracle. In the QROM, the simulator has no way to learn the
actual content of adversarial RO queries, therefore such a RO-query list does
not exist. Targhi and Unruh circumvented this issue by adding an additional
length-preserving hash (modeled as a RO) to the ciphertext. In the security
reduction, this additional RO is simulated by a k-wise independent function.
For every output of this RO, the simulator can recover the corresponding input
by inverting this function. Thereby, the simulator can answer the decryption
queries without a secret key.

When considering the generic transformations from weakly secure PKE scheme
to IND-CCA-secure KEM, one needs to simulate the decapsulation oracle Decaps
without the secret key. Indeed, obviously, we can modify the scheme by adding
an additional length-preserving hash to the ciphertext so that the simulator can
carry out the decryption. Thus, using the key-derivation-function (KDF, mod-
eled as a random oracle H), he can easily simulate the Decaps oracle.

In [19, Theorem 6], Boneh et al. proved the QROM security of a generic
hybrid encryption scheme [23], built from an injective trapdoor function and
symmetric key encryption scheme. Inspired by their proof idea, we present a
novel approach to simulate the Decaps oracle.

The high level idea is that we associate the random oracle H (KDF in the
KEM) with a secret random function H ′ by setting H = H ′◦g such that H ′(·) =

4

Decaps(sk, ·). We demand that the function g should be indistinguishable from
an injective function for any efficient quantum adversary. Thus, in the view of
the adversary against the IND-CCA security of KEM, H is indeed a random
oracle. Meanwhile, we can simulate the Decaps oracle just by using H ′. Note
that in our simulation of the Decaps oracle, we circumvent the decryption
computation. Thereby, there is no need to read the content of adversarial RO
queries, which makes it unnecessary to add an additional length-preserving hash
to the ciphertext.

1.3 Discussion

Tightness. Having a tight security reduction is a desirable property for prac-
tice cryptography, especially in large-scale scenarios. A tight security reduction
can ensure that breaking the scheme (within the respective adversarial mod-
el) is at least as hard as breaking the underlying hard computational problem.
While, a non-tight security reduction requires to adapt the system parameters
accordingly, which results in less efficient schemes.

In the ROM, if we assume that the underlying PKE scheme in transforma-
tions FO-I and FO-II is IND-CPA-secure, we can obtain a tight reduction from
IND-CCA security of KEM to IND-CPA security of PKE [16]. Specially, if the
PKE scheme in FO-II is instantiated with a Ring-LWE-based PKE scheme [24],
the IND-CCA security of KEM can be reduced to the security of the underlying
Ring-LWE problem [6]. Albrecht et al. [6] pointed out that it is an important
open problem whether one can achieve QROM security for a Dent-like KEM
construction with a tight reduction and without suffering any ciphertext over-
head. In our work, although we present a series of QROM security reductions
for the Dent-like KEM constructions without suffering any ciphertext overhead,
these reductions are non-tight like previous QROM security reductions [5, 7, 11,
12, 16, 19, 21]. For the tight ROM security reductions in [6, 16], all the simulators
need to make an elaborate analysis of the RO-query inputs and determine which
one of the query inputs can be used to break the one-way security of the un-
derlying PKE scheme [16] or solve a decision Ring-LWE problem [6]. However,
in the QROM, such a proof technique will be invalid for the reason that there
is no way for the simulators to learn the RO-query inputs [25, 26]. Thus, in the
QROM, it is still an important open problem that whether one can develop a
novel proof technique to obtain a tight reduction for the KEM constructions
discussed in this paper.

Implicit rejection. For most of the previous generic transformations from
OW-CPA-secure (or IND-CPA-secure) PKE to IND-CCA-secure KEM, explicit
rejection is adopted, i.e., an abnormal symbol ⊥ is returned when an invalid
ciphertext is submitted to the decapsulation algorithm. In [16], Hofheinz et al.
presented several transformations with implicit rejection (the decapsulation al-
gorithm returns a pseudorandom key for the invalid ciphertext). These two differ-
ent versions (explicit rejection and implicit rejection) have their own merits. The

5

transformation with implicit rejection [16] does not require the underlying PKE
scheme to be γ-spread [17, 18] (meaning that the ciphertexts generated by the
probabilistic encryption algorithm have sufficiently large entropy), which may
allow choosing better system parameters for the same security level. Whereas,
the ones with explicit rejection have a relatively simple decapsulation algorithm.

In our paper, we just give QROM security reductions for the transformations
with implicit rejection. It is not obvious how to extend our QROM security
proofs for the transformation with explicit rejection, since the simulator has no
way to tell if the submitted ciphertext is valid. In classical ROM, we usually
assume the underlying PKE scheme is γ-spread. Then, we can recognize invalid
ciphertexts just by testing if they are in the RO-query list, as the probability that
the adversary makes queries to the decapsulation oracle with a valid ciphertext
which is not in the RO-query list is negligible [6, 16–18]. Unfortunately, in the
QROM, the adversary makes quantum queries to the RO, above RO-query list
dose not exist. Thus, the ROM proof technique for the recognition of invalid
ciphertexts is invalid in the QROM. Here, we leave it as an open problem to
prove the QROM security of the transformations FO-I and FO-II with explicit
rejection.

1.4 Related Works

In concurrent and independent work, [27] gives a QROM security reduction from
IND-CCA security of KEM to IND-CPA security of PKE with quadratic loss,

i.e., AdvIND-CCA
KEM (B) ≤ q ·

√
AdvIND-CPA

PKE (A). First, [27] presents a tight QROM

reduction for U⊥m from the IND-CCA security of KEM to the PR-CPA security
of the underlying PKE, where PR-CPA security5 is a new security notion for
a deterministic PKE scheme proposed by [27]. Then, [27] gives a transforma-
tion THalf (a variant of T) that converts an IND-CPA-secure PKE into PR-
CPA-secure PKE, where the underlying IND-CPA-secure PKE is required to be
perfectly correct and have sufficiently large plaintext space. And, the QROM
security reduction for THalf suffers from loose reduction with quadratic loss.
Thus, taking the transformations THalf and U⊥m together, [27] also obtains a
QROM security reduction with quadratic loss from IND-CCA security of KEM
to IND-CPA security of PKE.

2 Preliminaries

Symbol description. Denote K, M, C and R as key space, message space,
ciphertext space and randomness space, respectively. For a finite set X, we de-

note the sampling of a uniform random element x by x
$← X, and we denote the

5 A deterministic PKE scheme is PR-CPA-secure, if there exit an efficient fake key-
generation algorithm and a fake encryption algorithm such that, (1) real and fake
encryption keys are indistinguishable, (2) random real and fake ciphertexts on a fake
key are indistinguishable, (3) the probability that a random fake ciphertext on a fake
key falls in the range of a real ciphertext on the fake key is negligible.

6

sampling according to some distribution D by x←D. By x =?y we denote the
integer that is 1 if x = y, and otherwise 0. Pr[P : G] is the probability that the
predicate P holds true where free variables in P are assigned according to the
program in G. Denote deterministic (probabilistic) computation of an algorithm
A on input x by y := A(x) (y ← A(x)). AH means that the algorithm A gets
access to the oracle H.

2.1 Quantum Random Oracle Model

In the ROM, we assume the existence of a random functionH, and give all parties
oracle access to this function. The algorithms comprising any cryptographic
protocol can use H, as can the adversary. Thus we modify the security games for
all cryptographic systems to allow the adversary to make random oracle queries.

When a random oracle scheme is implemented, some suitable hash functionH
is included in the specification. Any algorithm (including the adversary) replaces
oracle queries with evaluations of this hash function. In quantum setting, because
a quantum algorithm can evaluate H on an arbitrary superposition of inputs,
we must allow the quantum adversary to make quantum queries to the random
oracle. We call this the quantum random oracle model [19]. Unless otherwise
specified, the queries to random oracles are quantum in our paper.

Tools. Next we state four lemmas that we will use throughout the paper. The
first three lemmas have been proved in other works, and we prove the last one
in Appendix B. Most of the background in quantum computation needed to
understand this paper is just for above proof. Therefore, we present the necessary
background in Appendix A. Here, we just recall two basic facts about quantum
computation.

– Fact 1. Any classical computation can be implemented on a quantum com-
puter.

– Fact 2. Any function that has an efficient classical algorithm computing it
can be implemented efficiently as a quantum-accessible oracle.

Lemma 1 (Simulating the random oracle [28, Theorem 6.1]). Let H
be an oracle drawn from the set of 2q-wise independent functions uniformly at
random. Then the advantage any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (One-way to hiding [29, Lemma 6.2]). Let ΩH be the set of all
functions H : {0, 1}n → {0, 1}m. DΩH is a distribution on ΩH . Let H be an
oracle sampled from DΩH . Consider an oracle algorithm A that makes at most q
queries to H. Let B be an oracle algorithm that on input x does the following: pick

i
$← {1, . . . , q} and y

$← {0, 1}m, run AH(x, y) until the i-th query, measure the
argument of the query in the computational basis, and output the measurement
outcome. (When A makes less than i queries, B outputs ⊥ /∈ {0, 1}n.)

7

Let

P 1
A := Pr[b′ = 1 : H←DΩH , x

$← {0, 1}n, b′ ← AH(x,H(x))]

P 2
A := Pr[b′ = 1 : H←DΩH , x

$← {0, 1}n, y $← {0, 1}m, b′ ← AH(x, y)]

PB := Pr[x′ = x : H←DΩH , x
$← {0, 1}n, x′ ← BH(x)].

Then ∣∣P 1
A − P 2

A

∣∣ ≤ 2q
√
PB .

Note. In [29, Lemma 6.2], H is a random oracle, i.e., H
$← ΩH . But, it is easy to

verify that their proof can be extended to the generic case where H is sampled
from any given distribution DΩH .

Lemma 3 (Generic search problem [30, 31]). Let Z be a finite set. F : Z →
{0, 1} is the following function: For each z, F (z) = 1 with probability pz (pz ≤ γ),
and F (z) = 0 else. If an oracle algorithm A makes at most q classical queries to
F , the probability Pr[F (z) = 1 : z ← AF] is at most qγ. When quantum queries
are allowed, the upper bound of this probability is 2q

√
γ.

Note. [30, Lemma 37] and [31, Theorem 1] just consider the specific case where
all pzs are equal to γ. But in our security proof, we need to consider the case
where pz ≤ γ and pzs are independent from each other. Fortunately, it is not
difficult to verify that the proof of [30, Lemma 37] can be extended to this generic
case.

Lemma 4. Let ΩH (ΩH′) be the set of all functions H : {0, 1}n1 × {0, 1}n2 →
{0, 1}m (H ′ : {0, 1}n2 → {0, 1}m). Let H

$← ΩH , H ′
$← ΩH′ . Consider an

oracle algorithm AH that makes at most q queries to H. Denote E1 as the event
that AH outputs 1. The probability of the event E1 is Pr[E1] = Pr[b′ = 1 :

H
$← ΩH , x

$← {0, 1}n1 , b′ ← AH(x,H(x, ·))]. Reprogram H at (x,·) and let
H(x, ·) = H ′(·). x is chosen uniformly at random and independent from the
AH ’s view. Let E2 be the event that AH still outputs 1 even after the random
oracle H is reprogrammed. The probability of the event E2 is Pr[E2] = Pr[b′ =

1 : H
$← ΩH , x

$← {0, 1}n1 , H ′
$← ΩH′ , b′ ← AH(x,H ′(·))]. Then

|Pr[E1]− Pr[E2]| ≤ 2q
1√
2n1

.

Proof. See Appendix B. ut

2.2 Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme PKE =
(Gen,Enc,Dec) consists of a triple of polynomial time (in the security parameter
λ) algorithms and a finite message spaceM. Gen, the key generation algorithm,

8

is a probabilistic algorithm which on input 1λ outputs a public/secret key-pair
(pk, sk). The encryption algorithm Enc, on input pk and a message m ∈ M,
outputs a ciphertext c ← Enc(pk,m). If necessary, we make the used random-

ness of encryption explicit by writing c := Enc(pk,m; r), where r
$← R (R is

the randomness space). Dec, the decryption algorithm, is a deterministic algo-
rithm which on input sk and a ciphertext c outputs a message m := Dec(sk, c)
or a special symbol ⊥/∈M to indicate that c is not a valid ciphertext. We follow
the definition of correctness in [16]. The public-key encryption scheme PKE is
δ-correct if

E[max
m∈M

Pr[Dec(sk, c) 6= m : c← Enc(pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen.

Game OW-ATK

1 : (pk, sk)← Gen

2 : m∗
$←M

3 : c∗ ← Enc(pk,m∗)

4 : m′ ← AOATK(pk, c∗)

5 : return m′ =?m∗

Pco(m,c)

1 : if m /∈M
2 : return ⊥
3 : else return

4 : Dec(sk, c) =?m

Val(c)

1 : m := Dec(sk, c)

2 : if m ∈M
3 : return 1

4 : else return 0

Fig. 1: Games OW-ATK (ATK ∈ {CPA, VA, qPCA, qPVCA}) for PKE, where OATK

is defined in Definition 2. In games qPCA and qPVCA, the adversary A can query the
Pco oracle with quantum state.

We now define four security notions for public-key encryption: one-way a-
gainst chosen plaintext attacks (OW-CPA), one-way against validity checking
attacks (OW-VA), one-way against quantum plaintext checking attacks (OW-
qPCA) and one-way against quantum plaintext and (classical) validity checking
attacks (OW-qPVCA).

Definition 2 (OW-ATK-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. For ATK ∈ {CPA,VA, qPCA,
qPVCA}, we define OW-ATK games as in Fig. 1, where

OATK :=

⊥ ATK = CPA

Val(·) ATK = VA
Pco(·, ·) ATK = qPCA

Pco(·, ·),Val(·) ATK = qPVCA.

Define the OW-ATK advantage function of an adversary A against PKE as
AdvOW-ATK

PKE (A) := Pr[OW-ATKAPKE = 1].

9

Remark. We note that the security game OW-qPCA (OW-qPVCA) is the same
as OW-PCA (OW-PVCA) except the adversary A’s queries to the Pco oracle. In
OW-qPCA (OW-qPVCA) game,A can make quantum queries to the Pco oracle,
while in OW-PCA (OW-PVCA) game only the classical queries are allowed.
These two new security notations will be used in the modular analysis of FO
transformation in Sec. 4.

Game IND-CCA

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (K∗0 , c
∗)← Encaps(pk)

4 : K∗1
$← K

5 : b′ ← ADecaps(c∗,K∗b)

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2: IND-CCA game for KEM.

Definition 3 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps. The key generation al-
gorithm Gen outputs a key pair (pk, sk). The encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c) where c is said to be an encapsulation of
the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk, c) ∈ K or a special symbol ⊥/∈ K to indicate that c is not a
valid encapsulation.

We now define a security notion for KEM: indistinguishability against chosen
ciphertext attacks (IND-CCA).

Definition 4 (IND-CCA-secure KEM). We define the IND-CCA game as
in Fig. 2 and the IND-CCA advantage function of an adversary A against KEM
as AdvIND-CCA

KEM (A) :=
∣∣Pr[IND-CCAAKEM = 1]− 1

2

∣∣.
We also define OW-ATK security of PKE and IND-CCA security of KEM in

the QROM, where adversary A can make quantum queries to a random oracle
H. Following the work [16], we also make the convention that the number qH
of the adversarial queries to H counts the total number of times H is executed
in the experiment. That is, the number of A’s explicit queries to H plus the
number of implicit queries to H made by the experiment.

10

3 Security Proofs for Two Generic KEM Constructions
in the QROM

In this section, we revisit two generic transformations from OW-CPA-secure

PKE to IND-CCA-secure KEM. One is the transformation FO�⊥ in [16], which we

call FO-I in our paper (see Fig. 3). The other is FO�⊥m in [16], the transformation
[15, Table 5] with implicit rejection, which is denoted by FO-II (see Fig. 4). These
two transformations are widely used in the post-quantum IND-CCA-secure KEM
constructions [5–8, 12]. But, there are no QROM security proofs for them. To
achieve QROM security, they followed Targhi and Unruh’s proof idea [20, 21]
and modified FO-I [5, 12, 16] and FO-II [6, 7, 16] by adding an additional length-
preserving hash function to the ciphertext. Here, we present two QROM security
proofs for FO-I and FO-II respectively without suffering any ciphertext overhead.

Gen′

1 : (pk, sk)← Gen

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Fig. 3: IND-CCA-secure KEM-I=FO-I[PKE,G,H]

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M→ R, H : {0, 1}∗ →
{0, 1}n and a pseudorandom function f with key space Kprf , we associate KEM-
I=FO-I[PKE,G,H] and KEM-II=FO-II[PKE,G,H,f]6 shown in Fig. 3 and Fig.
4, respectively. The following two theorems establish that IND-CCA securities
of KEM-I and KEM-II can both reduce to the OW-CPA security of PKE, in the
QROM.

6 FO-II is the generic version of FO�⊥m in [16]. In their work, such a pseudorandom
function f is instantiated with H(s, ·) (s is a random seed and contained in the
secret key sk′).

11

Gen′

1 : (pk, sk)← Gen

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 4: IND-CCA-secure KEM-II=FO-II[PKE,G,H,f]

Theorem 1 (PKE OW-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM− I, issuing at most qD queries to the
decapsulation oracle Decaps, at most qG queries to the random oracle G and
at most qH queries to the random oracle H, there exists an OW-CPA adversary
A against PKE such that AdvIND-CCA

KEM-I (B) ≤ 2qH
1√
M + 4qG

√
δ + 2(qG + qH) ·√

AdvOW-CPA
PKE (A).

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing at
most qD queries to Decaps, at most qG queries toG and at most qH queries toH.
Denote ΩG, ΩH and ΩH′ as the sets of all functions G :M→R, H :M×C → K
and H ′ : C → K, respectively. Consider the games in Fig. 5.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-I (B).

Game G1. In game G1, we change the Decaps oracle that H2(c) is returned
instead of H(s, c) for an invalid encapsulation c. Apparently, such a change will
be unnoticed by B unless he makes queries to H on (s, ·). However, in quantum
setting, there is no well defined concept for the event that H(s, ·) is queried when
B can query H in superposition. Since B’s view is independent of (the uniform
secret) s, we can use Lemma 4 to obtain∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ 2qH ·
1√
M

.

Game G2. Note that in game G1, H(m, c) = H3(m, c). In game G2, if H-
query input (m, c) satisfies g(m) = c (g(·) = Enc(pk, ·;G(·))), the response
is replaced by Hg

1 (m) = H1 ◦ g(m) = H1(g(m)) = H1(c). If the function g is
injective, the output distribution of H is the same as the one in G1. Note that
B cannot distinguish g from an injective function unless he can find a collision
that g(m1) = g(m2) (m1 6= m2). A collision implies that m1’s or m2’s ciphertext

12

can not be decrypted correctly with the deterministic algorithm Dec. Define E
as the event that B finds a plaintext m such that Dec(sk, g(m)) 6= m. Note that
B can get access to g at most qG times. Thus, in classical ROM, by using the
union bound, we can directly obtain that Pr[E] ≤ qGδ. For quantum setting7, we
define g′ :M→ {0, 1} such that g′(m) = 0 if Dec(sk, g(m)) = m, and otherwise
g′(m) = 1. And, if B can find a plaintext m such that Dec(sk, g(m)) 6= m with
at most qG quantum queries to g, we can easily construct another adversary
B′ who can find a plaintext m such that g′(m) = 1 with at most qG quantum
queries to g′. Considering that the PKE scheme is δ-correct, we can derive the
upper bound of Pr[E] by utilizing Lemma 3, Pr[E] ≤ 2qG

√
δ. Then,∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

GAMES G0 −G4

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : H1, H2
$← ΩH′ ;H3

$← ΩH

3 : m∗
$←M

4 : r∗ := G(m∗) //G0−G3

5 : r∗
$←R //G4

6 : c∗ := Enc(pk,m∗; r∗)

7 : k∗0 := H(m∗, c∗)

8 : k∗0
$← K //G4

9 : k∗1
$← K

10 : b
$← {0, 1}

11 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

12 : return b′ =?b

H(m, c)

1 : if Enc(pk,m;G(m)) = c //G2 −G4

2 : return H1(c) //G2 −G4

3 : return H3(m, c)

Decaps (c 6= c∗) //G0 −G2

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c) //G0

7 : K := H2(c) //G1 −G2

Decaps (c 6= c∗) //G3 −G4

1 : return K := H1(c)

Fig. 5: Games G0-G4 for the proof of Theorem 1

Game G3. In game G3, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗),

7 In quantum query model, distinguishing the function g from an injective function
is also equivalent to detecting a collision in g, see [32]. And, finding a collision for
g by making quantum queries is a well-defined and widely-studied problem [33,
34]. Note that a collision implies an incorrect decryption. Therefore, we can bound∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ by the probability of finding an incorrect decryption.

13

K := H1(c) is returned as the response. Let m′ := Dec(sk, c) and consider the
following two cases.

Case 1: Enc(pk,m′;G(m′)) = c. In this case, H(m′, c) = H1(c). Thus, both
Decaps oracles in games G2 and G3 return the same value.

Case 2: Enc(pk,m′;G(m′)) 6= c. Random values H2(c) and H1(c) are returned
in game G2 and game G3 respectively. In game G2, H2 is a random function
independent of the oracles G and H, thus H2(c) is uniform at random in B’s
view. In game G3, B’s queries to H can only help him get access to H1 at ĉ
such that Enc(pk, m̂;G(m̂)) = ĉ for some m̂. Consequently, if B can not find
a m′′ such that Enc(pk,m′′;G(m′′)) = c, H1(c) is also a fresh random key
just like H2(c) in his view. Since m′′ 6= m′, finding such a m′′ is exactly the
event E. That is, in this case, if E does not happen, the output distributions
of the Decaps oracles in G2 and G3 are same in B’s view.

As a result, G2 and G3 only differ when E happens. Therefore,∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]
∣∣ ≤ Pr[E] ≤ 2qG

√
δ.

Game G4. In game G4, r∗ and k∗0 are chosen uniformly at random from R and
K, respectively. In this game, bit b is independent from B’s view. Hence,

Pr[GB4 ⇒ 1] =
1

2
.

GAMES G5

1 : i
$← {1, . . . , qG + qH}, (pk, sk)← Gen,G

$← ΩG

2 : H1
$← ΩH′ , H3

$← ΩH

3 : m∗
$←M

4 : r∗
$←R

5 : c∗ := Enc(pk,m∗; r∗)

6 : k∗
$← K

7 : run BG,H,Decaps(pk, c∗, k∗) until the i−th query to G×Hg
1

8 : measure the argument m̂

9 : return m̂ =?m∗

H(m, c)

1 : if Enc(pk,m;G(m)) = c

2 : return H1(c)

3 : else return H3(m, c)

Decaps (c 6= c∗)

1 : return K := H1(c)

Fig. 6: Game G5 for Theorem 1

14

Note that in this game we reprogram the oracles G and H on inputs m∗ and
(m∗, c∗) respectively. Similarly, in classical setting, this will be unnoticed unless
the event Query that B queries G on m∗ or H on (m∗, c∗) happens. Then we
can argue that G2 and G3 are indistinguishable until Query happens. In quan-
tum setting, due to the quantum queries to G and H, the case is complicated.
Note that (m∗, c∗) is a valid plaintext-ciphertext pair, i.e., g(m∗) = c∗. There-
fore, H(m∗, c∗) = H1(c∗) = H1(g(m∗)). Actually, we just reprogram G and Hg

1

(Hg
1 (·) = H1(g(·))) at input m∗. As a result, we use Lemma 2 to obtain an upper

bound for
∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣.
Use the random oracle G × Hg

1 (where (G × Hg
1)(m) = (G(m), Hg

1 (m))) to
answer the queries made by B to G and Hg

1 . Note that Hg
1 and H3 are internal

random oracles that B can have access to only by querying the oracle H. Then,
the number of total queries to G ×Hg

1 is at most qG + qH . Define game G5 as

following: pick i
$← {1, . . . , qG + qH}, run the game G4 until B’s i-th query to

G×Hg
1 , measure the argument of the query in the computational basis, output

the measurement outcome (when B makes less than i queries, output ⊥). The
game G5 is shown in Fig. 6. Then, by using Lemma 2, we obtain∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣ ≤ 2(qG + qH)
√

Pr[GB5 ⇒ 1].

Next, we construct an adversary A against the OW-CPA security of the PKE
scheme such that AdvOW-CPA

PKE (A) = Pr[GB5 ⇒ 1]. The adversary A on input (1λ,
pk, c) does the following:

1. Run the adversary B in Game G5.
2. Use a 2qG-wise independent function and two different 2qH -wise independent

functions to simulate the random oracles G, H1 and H3 respectively. The
random oracle H is simulated in the same way as the one in game G5.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 6.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

5. Select i
$← {1, . . . , qG+qH}, measure the argument m̂ of i-th query to G×Hg

1

and output m̂.

According to Lemma 1, AdvOW-CPA
PKE (A) = Pr[GB5 ⇒ 1]. Finally, combing this

with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-I (B) ≤ 2qH

1√
M

+ 4qG
√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE (A).

ut

Theorem 2 (PKE OW-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM− II, issuing at most qD classical
queries to the decapsulation oracle Decaps and at most qG (qH) queries to ran-
dom oracle G (H), there exists a quantum OW-CPA adversary A against PKE
and an adversary A′ against the security of PRF with at most qD classical queries

such that AdvIND-CCA
KEM-II (B) ≤ AdvPRF(A′)+4qG

√
δ+2(qH +qG) ·

√
AdvOW-CPA

PKE (A).

15

Proof. Let B be an adversary against the IND-CCA security of KEM-II, issuing
at most qD classical queries to Decaps, at most qG queries to G and at most
qH queries to H. Consider the sequence of games given in Fig. 7. Let ΩH′′ be
the set of all functions H ′′ :M→K and we follow the same notations ΩG, ΩH
and ΩH′ in Theorem 1.

GAMES G0 −G4

1 : (pk, sk′)← Gen′

2 : G
$← ΩG, H1

$← ΩH′′

3 : H2, H3
$← ΩH′

4 : m∗
$←M

5 : r∗ := G(m∗) //G0−G3

6 : r∗
$←R //G4

7 : c∗ := Enc(pk,m∗; r∗)

8 : k∗0 := H(m∗) //G0 −G3

9 : k∗0
$← K //G4

10 : k∗1
$← K

11 : b
$← {0, 1}

12 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

13 : return b′ =?b

H(m)

1 : return H1(m) //G0 −G1

2 : g(·) := Enc(pk, ·;G(·))//G2 −G4

3 : return H2(g(m)) //G2 −G4

Decaps (c 6= c∗) //G0 −G2

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : K := H(m′)

5 : else return

6 : return K := f(k, c) //G0

7 : return K := H3(c) //G1 −G2

Decaps (c 6= c∗) //G3 −G4

1 : return K := H2(c)

Fig. 7: Games G0 −G4 for the proof of Theorem 2

Game G0. Game G0 is exactly the IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-II (B).

Game G1. In game G1, the Decaps oracle is changed that the pseudorandom
function f is replaced by a random function H3. Thus, the private key k, con-
tained in the secret key sk′, is never used in G1. Because B’s queries to Decaps
are just classical, B can make classical queries to f at most qD times. B’s views in
G0 and G1 are same unless there exists some adversary A′ who can distinguish
f from the random function H3 with at most qD classical queries to f . Then,∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ AdvPRF(A′).

16

Game G2. In game G2, H1 is substituted with H2 ◦ g (g(·) := Enc(pk, ·;G(·))).
If the function g is injective, H2◦g is a perfect random function. Note that B can
not distinguish g from an injective function unless he can find a collision that
g(m1) = g(m2) (m1 6= m2). A collision implies that the event E that B finds a
plaintext m such that Dec(sk, g(m)) 6= m happens. Using the same method in
Theorem 1, we obtain Pr[E] ≤ 2qG

√
δ. Thus,∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Game G3. In game G3, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗),
K := H2(c) is returned as the response. Using the same analysis in Theorem 1,
we know that G2 and G3 only differ when E happens. Hence,∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Game G4. In game G4, r∗ and k∗0 are chosen uniformly at random from R and
K, respectively. In this game, bit b is independent from B’s view. Hence,

Pr[GB4 ⇒ 1] =
1

2
.

GAMES G5

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk′)← Gen′

3 : G
$← ΩG

4 : H2
$← Ω′H

5 : m∗
$←M

6 : r∗
$←R

7 : c∗ := Enc(pk,m∗; r∗)

8 : k∗
$← K

9 : run BG,H,Decaps(pk, c∗, k∗)

10 : until the i−th query to G×H
11 : measure the argument m̂

12 : return m̂ =?m∗

H(m)

1 : g(·) := Enc(pk, ·;G(·))
2 : return H2(g(m))

Decaps (c 6= c∗)

1 : return K := H2(c)

Fig. 8: Game G5 for Theorem 2

Next, we use Lemma 2 to obtain an upper bound for
∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣.
Use the random oracle G ×H(where (G ×H)(m) = (G(m), H(m))) to answer

17

the queries made by B to G and H. Then, the number of total queries to G×H
is at most qG + qH . Define game G5 as following: pick i

$← {1, . . . , qG + qH}, run
the game G4 until B’s i-th query to G×H, measure the argument of the query
in the computational basis, output the measurement outcome (when B makes
less than i queries, output ⊥). The game G5 is shown in Fig. 8. Then, by using
Lemma 2, we obtain

∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]
∣∣ ≤ 2(qG + qH)

√
Pr[GB5 ⇒ 1].

Then, we construct an adversary A against the OW-CPA security of PKE
such that AdvOW-CPA

PKE (A) = Pr[GB5 ⇒ 1]. The adversary A on input (1λ, pk, c)
does the following:

1. Run the adversary B in game G5.

2. Use a 2qG-wise independent function and a 2qH -wise independent function
to simulate random oracles G and H2 respectively. The random oracle H is
simulated by H2 ◦ g. Use G×H to answer B’s queries to both G and H.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 8.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

5. Select i
$← {1, . . . , qG + qH}, measure the argument m̂ of the i-th query to

G×H and output m̂.

It is obvious that AdvOW-CPA
PKE (A) = Pr[GB5 ⇒ 1]. Combing this with the bounds

derived above, we can conclude that

AdvIND-CCA
KEM-II (B) ≤ AdvPRF(A′) + 4qG ·

√
δ + 2(qH + qG) ·

√
AdvOW-CPA

PKE (A).

ut

Remark. For the reduction from the IND-CCA security of KEM to the OW-CPA
security of PKE, we inevitably reprogram the quantum random oracles G and H.
Lemma 2 (one-way to hiding, O2H) is a practical tool to argue the indistinguisha-
bility between games where the random oracles are reprogrammed. [16] analyzed

the QROM security of QFO�⊥m (a Targhi-Unruh variant of FO-II) by two steps.
First, they presented a QROM security reduction from the OW-PCA security of
a intermediate scheme PKE′ to the OW-CPA security of the underlying PKE. In
this step, the random oracle G was reprogrammed, thus by using the O2H lemma

they obtained8 that AdvOW-PCA
PKE′ (C) ≤ q

√
AdvOW-CPA

PKE (A). In the second step, they

reduced the IND-CCA security of KEM to OW-PCA security of PKE′, where the
random oracles H and H ′ (the additional hash) were reprogrammed. Again, by

8 The bounds here are informal. Concretely, the negligible terms and constant coeffi-
cients are not considered and the numbers of adversarial queries to different oracles
are replaced by the total number q of adversarial queries to various oracles.

18

using the O2H lemma, they gained AdvIND-CCA
KEM (B) ≤ q

√
AdvOW-PCA

PKE′ (C). Finally,

combing above two bounds, they obtained the security bound of KEM,

AdvIND-CCA
KEM (B) ≤ q 3

2 · [AdvOW-CPA
PKE (A)]

1
4 . (1)

Direct combination of the modular analyses leads to twice utilization of O2H
lemma, which makes security bound highly non-tight. In our security reduc-
tions for FO-I and FO-II, we just reduce the IND-CCA security of KEM to
OW-CPA security of underlying PKE scheme directly without introducing the
intermediate scheme PKE′. Specifically, the quantum random oracles G and H
are reprogrammed simultaneously, thus the O2H lemma is used just once in
our reductions. Our derived security bound is approximately AdvIND-CCA

KEM (B) ≤
q ·
√
AdvOW-CPA

PKE (A), which is much tighter than the bound (1).

4 Modular Analysis of FO transformation in the QROM

In [16], Hofheinz et al. introduced seven modular transformations T , U�⊥, U⊥,

U�⊥m, U⊥m, QU�⊥m and QU⊥m. But, they just presented QROM security reductions

for the transformations T , QU�⊥m and QU⊥m. Different from the transformations

U�⊥, U⊥, U�⊥m and U⊥m, the transformations QU�⊥m and QU⊥m have an additional
length-preserving hash in the ciphertext, thus they can follow the proof technique
in [20, 21] to give QROM security reductions for them. As they pointed [21],
their QROM security reductions quite rely on this additional hash. And, QROM
security reductions for U�⊥, U⊥, U�⊥m and U⊥m are missing in [16].

In this section, we revisit the transformations U�⊥, U⊥, U�⊥m and U⊥m, and
argue their QROM security without any modification to the constructions. [16]
has shown that the transformation T can turn OW-CPA-secure PKE into OW-
PCA-secure PKE in the QROM. In Section 4.1, we first show that the resulting
PKE scheme by applying T to OW-CPA-secure PKE is also OW-qPCA-secure.
The QROM security reduction for U�⊥ (U⊥) from IND-CCA security of KEM
to OW-qPCA (OW-qPVCA) security of PKE is given in Section 4.2 (4.3). In

Section 4.4, we show that U�⊥m (U⊥m) transforms any OW-CPA-secure (OW-VA-
secure) deterministic PKE into an IND-CCA-secure KEM in the QROM.

4.1 T : from OW-CPA to OW-qPCA in the QROM

To a public-key encryption PKE=(Gen,Enc,Dec) with message space M and
randomness space R, and a hash function G : M → R, we associate PKE′ =
T [PKE, G]. The algorithms of PKE′=(Gen,Enc′,Dec′) are defined in Fig. 9.

Theorem 3 (PKE OW-CPA
QROM⇒ PKE′ OW-qPCA). If PKE is δ-correct,

for any OW-qPCA B against PKE′, issuing at most qG quantum queries to
the random oracle G and at most qP quantum queries to the plaintext check-
ing oracle Pco, there exists an OW-CPA adversary A against PKE such that

Adv
OW−qPCA
PKE′ (B) ≤ 2qG ·

√
δ + (1 + 2qG) ·

√
AdvOW-CPA

PKE (A).

19

The proof is essentially the same as the one of [16, Theorem 4.4] except the
argument about the difference in B’s success probability between game G0 and
game G1. Game G0 is exactly the original OW-qPCA game. In game G1, the Pco
oracle is replaced by a simulation that Enc(pk,m;G(m)) =?c is returned for the
query input (m, c). As pk is public and G is a quantum random oracle, such a
Pco simulation can be queried on a quantum superposition of inputs. Note that
B’s views in game G0 and game G1 are totally identical unless he can find a
plaintext m such that Dec(sk,Enc(pk,m,G(m))) 6= m. Thus, using Lemma 3,
we can obtain that

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2qG ·

√
δ. Then, following the

security reduction for [16, Theorem 4.4], we can easily prove Theorem 3.

Enc′(pk,m)

1 : c = Enc(pk,m;G(m))

2 : return c

Dec′(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc(pk,m′;G(m′)) = c

3 : return m′

4 : else return ⊥

Fig. 9: OW-qPCA-secure PKE′ = T [PKE, G]

4.2 U�⊥: from OW-qPCA to IND-CCA in the QROM

To a public-key encryption PKE′=(Gen′,Enc′,Dec′) and a hash function H, we

associate KEM− III = U�⊥[PKE′, H]. The algorithms of KEM-III=(Gen,Encaps,Decaps)
are defined in Fig. 10.

Gen

1 : (pk, sk)← Gen′

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ =⊥
4 : return K := H(s, c)

5 : else return

6 : K := H(m′, c)

Fig. 10: IND-CCA-secure KEM− III = U�⊥[PKE′, H]

Theorem 4 (PKE′ OW-qPCA
QROM⇒ KEM-III IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM− III, issuing at most qD (clas-
sical) queries to the decapsulation oracle Decaps and at most qH queries to

20

the quantum random oracle H, there exists a quantum OW-qPCA adversary
A against PKE′ that makes at most qH queries to the Pco oracle such that

AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
M + 2qH ·

√
Adv

OW−qPCA
PKE′ (A).

Proof. Let B be an adversary against the IND-CCA security of KEM-III, issuing
at most qD queries to Decaps and at most qH queries to H. We follow the
notations ΩG, ΩH and ΩH′ in Theorem 1. Consider the games in Fig. 11.

GAMES G0 −G4

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : H1, H2
$← ΩH′ ;H3

$← ΩH

3 : m∗
$←M

4 : c∗ ← Enc(pk,m∗)

5 : k∗0 := H(m∗, c∗)

6 : k∗0
$← K //G4

7 : k∗1
$← K

8 : b
$← {0, 1}

9 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

10 : return b′ =?b

H(m, c)

1 : if Pco(m, c) = 1 //G2 −G4

2 : return H1(c) //G2 −G4

3 : return H3(m, c)

Decaps (c 6= c∗) //G0 −G2

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ 6=⊥ return K := H(m′, c)

4 : else return

5 : K := H(s, c) //G0

6 : K := H2(c) //G1 −G2

Decaps (c 6= c∗) //G3 −G4

1 : return K := H1(c)

Fig. 11: Games G0-G4 for the proof of Theorem 4

Game G0. Since game G0 is exactly the IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-III (B).

Game G1. In game G1, the Decaps oracle is changed that H2(c) is returned
instead of H(s, c) for the invalid encapsulation c. Considering that B’s view is
independent from (the uniform secret) s, we can use Lemma 4 to obtain∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ 2qH ·
1√
M

.

Game G2. In game G2, H is changes that H1(c) is returned instead of H3(m, c)
when (m, c) satisfies Pco(m, c) = 1 (i.e., Dec′(sk, c) = m). Note that it is
impossible that Pco(m1, c) = Pco(m2, c) = 1 for m1 6= m2 because Dec′ is

21

a deterministic algorithm. Further, as H1 is a random function independent of
H3, H in game G2 is also a uniformly random function like the one in game G1.
Thus,

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1].

Game G3. In game G3, the Decaps oracle is changed that it makes no use of the
secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗), K :=
H1(c) is returned as the response. In order to show that the output distributions
of Decaps are identical in games G2 and G3, we consider the following cases for
a fixed ciphertext c and m′ := Dec′(sk, c).

Case 1: m′ 6= ⊥. Note that H(m′, c) = H1(c) on account of Pco(m′, c) = 1.
Therefore, the two Decaps oracles in games G2 and G3 return the same
value.

Case 2: m′ = ⊥. Random values H2(c) and H1(c) in K are returned in games
G2 and G3, respectively. In game G2, H2 is a random function independent
of G and H. In game G3, B’s queries to H can only help him get access to
H1 at c such that Dec′(sk, c) = m̂ for some m̂ 6= ⊥. Therefore, B never sees
H1(c) by querying G and H. Hence, in B’s view, H1(c) is totally uniform at
random like H2(c). As a result, the Decaps oracle in game G3 has the same
output distribution as the one in game G2.

We have shown that B’s views are identical in both games and

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].

Game G4. In game G4, k∗0 is chosen uniformly at random from K. In this game,
bit b is independent from B’s view. Hence,

Pr[GB4 ⇒ 1] =
1

2
.

Next, we use Lemma 2 to bound
∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣. Define game

G5 as following: pick i
$← {1, . . . , qH}, run the game G4 until B’s i-th query to

H, measure the argument of the query in the computational basis, output the
measurement outcome (when B makes less than i queries, output ⊥). The game
G5 is shown in Fig. 12. Then, by using Lemma 2, we obtain

∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]
∣∣ ≤ 2qH

√
Pr[GB5 ⇒ 1].

22

GAMES G5

1 : i
$← {1, . . . , qG + qH}, (pk, sk)← Gen

2 : H1
$← ΩH′ , H3

$← ΩH

3 : m∗
$←M

4 : c∗←Enc(pk,m∗)

5 : k∗
$← K

6 : run BG,H,Decaps(pk, c∗, k∗) until the i−th query to H

7 : measure the argument m̂‖ĉ
8 : return m̂ =?m∗ ∧ ĉ =?c∗

H(m, c)

1 : if Pco(m, c) = 1

2 : return H1(c)

3 : else return H3(m, c)

Decaps (c 6= c∗)

1 : return K := H1(c)

Fig. 12: Game G5 for Theorem 4

Then, we construct an adversary A against the OW-qPCA security of the
PKE′ scheme such that Adv

OW−qPCA
PKE′ (A) = Pr[GB5 ⇒ 1]. The adversary A on

input (1λ, pk, c) does the following:

1. Run the adversary B in game G5.

2. Use two different 2qH -wise independent functions to simulate the random
oracles H1 and H3 respectively. The random oracle H is simulated9 in the
same way as the one in game G5.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 12.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

5. Select i
$← {1, . . . , qH}, measure the argument m̂‖ĉ of the i-th query to H

and output m̂.

According to Lemma 1, AdvOW−qPCA
PKE′ (A) = Pr[GB5 ⇒ 1]. Finally, combing

this with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
M

+ 2qH ·
√
Adv

OW−qPCA
PKE′ (A).

ut
9 To simulate the quantum random oracle H, we need to make quantum queries to the
Pco oracle. This is the reason why we require the scheme PKE′ to be OW-qPCA-
secure.

23

4.3 U⊥: from OW-qPVCA to IND-CCA in the QROM

To a public-key encryption PKE′=(Gen′,Enc′,Dec′) and a hash function H,
we associate KEM− IV = U⊥[PKE′, H]. We remark that U⊥ is essentially the
transformation [15, Table 2], a KEM variant of the REACT/GEM transforma-
tions [35, 36]. The algorithms of KEM-IV=(Gen,Encaps,Decaps⊥) are defined
in Fig. 13.

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps⊥(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥
4 : else return

5 : K := H(m′, c)

Fig. 13: IND-CCA-secure KEM− IV = U⊥[PKE′, H]

Theorem 5 (PKE′ OW-qPVCA
QROM⇒ KEM-IV IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM− IV, issuing at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH queries to the quan-
tum random oracle H, there exists an OW-qPVCA adversary A against PKE′

that makes at most qH queries to the Pco oracle and at most qD queries to the

Val oracle such that AdvIND-CCA
KEM-IV (B) ≤ 2qH ·

√
Adv

OW−qPVCA
PKE′ (A).

The only difference between KEM-III and KEM-IV is the response to the
invalid ciphertext in the decapsulation algorithm. When the ciphertext c is in-
valid, the decapsulation algorithm in KEM-III returns a random key related to
c. In this way, whatever the ciphertext (valid or invalid) is submitted, the return
values have the same distribution. As a result, A can easily simulate the decap-
sulation oracle Decaps without recognition of the invalid ciphertexts. While the
decapsulation algorithm in KEM-IV returns ⊥ when the submitted c is invalid.
Thus, in order to simulate Decaps, A needs to judge if the ciphertext c is valid.
As we assume that the scheme PKE′ is OW-qPVCA-secure, A can query the
Val oracle to fulfill such a judgement. Then, it is easy to verify that by using
the same proof method in Theorem 4 we can obtain the desired security bound.

4.4 U�⊥
m/U⊥

m: from OW-CPA/OW-VA to IND-CCA for
Deterministic Encryption in the QROM

The transformation U�⊥m (U⊥m) is a variant of U�⊥ (U⊥) that derives the KEM key
as K = H(m) instead of K = H(m, c). To a deterministic public-key encryption
scheme PKE′ = (Gen′, Enc′, Dec′) with message space M, a hash function

24

H :M→K, and a pseudorandom function f with key space Kprf , we associate
KEM-V=U�⊥m[PKE′,H,f] and KEM-VI=U⊥m[PKE′,H] shown in Fig. 14 and Fig.
15, respectively.

We note that for a deterministic PKE scheme the OW-PCA security is e-
quivalent to the OW-CPA security as we can simulate the Pco oracle via re-
encryption during the proof. Thus, combing the proofs of Theorem 2, Theorem
4 and Theorem 5, we can easily obtain the following two theorems.

Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if m′ 6= ⊥
4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 14: IND-CCA-secure KEM-V=U�⊥m[PKE′,H,f]

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec(sk, c)

2 : if m′ 6= ⊥
3 : return K := H(m′)

4 : else return ⊥

Fig. 15: IND-CCA-secure KEM-VI=U⊥m[PKE′,H]

Theorem 6 (PKE′ OW-CPA
QROM⇒ KEM-V IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM−V, issuing at
most qE quantum queries to the encryption oracle10, at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH quantum queries
to the random oracle H, there exists a quantum OW-CPA adversary A against
PKE′ and an adversary A′ against the security of PRF with at most qD classical

queries such that AdvIND-CCA
KEM-V (B) ≤ AdvPRF(A′)+4qE

√
δ+2qH ·

√
AdvOW-CPA

PKE′ (A).

10 For the deterministic scheme PKE′, given public key pk, quantum adversary B can
execute the encryption algorithm Enc′ in a quantum computer.

25

Theorem 7 (PKE′ OW-VA
QROM⇒ KEM-VI IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM−VI, issuing at
most qE quantum queries to the encryption oracle, at most qD (classical) queries
to the decapsulation oracle Decaps and at most qH quantum queries to the
random oracle H, there exists a quantum OW-VA adversary A against PKE′

who makes at most qD queries to the Val oracle such that AdvIND-CCA
KEM-VI (B) ≤

2qE
√
δ + 2qH ·

√
AdvOW-VA

PKE′ (A).

References

1. NIST: National institute for standards and technology. Postquantum crypto
project (2017) http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

2. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1) (2003) 167–226

3. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In Mu, Y., Susilo, W., Seberry, J., eds.: Infor-
mation Security and Privacy, 13th Australasian Conference– ACISP 2008. Volume
5107 of LNCS., Springer-Verlag (2008) 69–83

4. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Designs, Codes and Cryptography
76(3) (2015) 469–504

5. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: Crystals–kyber: a cca-secure module-lattice-based kem.
Technical report, Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.
iacr. org/2017/634

6. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure
ring-lwe based key encapsulation with short ciphertexts. In Foley, S.N., Gollmann,
D., Snekkenes, E., eds.: 22nd European Symposium on Research in Computer
Security–ESORICS 2017. Volume 10492 of LNCS., Springer (2017) 29–46

7. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsu-
lation from ntru. In Fischer, W., Homma, N., eds.: Cryptographic Hardware and
Embedded Systems – CHES 2017. Volume 10529 of LNCS., Springer-Verlag (2017)
232–252

8. Stam, M.: A key encapsulation mechanism for ntru. In Smart, N.P., ed.: Proceed-
ings of the 10th international conference on Cryptography and Coding. Volume
3796 of LNCS., Springer-Verlag (2005) 410–427

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: Ntru prime:
reducing attack surface at low cost. SAC 2017 (to appear) (2017) http://eprint.
iacr.org/2016/461.

10. Peikert, C.: Lattice cryptography for the internet. In Mosca, M., ed.: Interna-
tional Workshop on Post-Quantum Cryptography–PQCrypto 2014. Volume 8772
of LNCS., Springer (2014) 197–219

11. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on splwe. In Hong, S., Park, J.H., eds.: International
Conference on Information Security and Cryptology–ICISC 2016. Volume 10157 of
LNCS., Springer (2016) 51–74

26

12. Barreto, P.S.L.M., Gueron, S., Gueneysu, T., Misoczki, R., Persichetti, E., Sendri-
er, N., Tillich, J.P.: Cake: Code-based algorithm for key encapsulation. Cryptology
ePrint Archive, Report 2017/757 (2017) http://eprint.iacr.org/2017/757.

13. Bernstein, D.J., Chou, T., Schwabe, P.: Mcbits: Fast constant-time code-based
cryptography. In Bertoni, G., Coron, J., eds.: Cryptographic Hardware and Em-
bedded Systems–CHES 2013. Volume 8086 of LNCS., Springer (2013) 250–272

14. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Feigenbaum, J., ed.: Advances in Cryptology-
CRYPTO 1991. Volume 576 of LNCS., Springer (1992) 433–444

15. Dent, A.W.: A designer’s guide to kems. In Paterson, K.G., ed.: Cryptography
and Coding: 9th IMA International Conference. Volume 2898 of LNCS., Springer-
Verlag (2003) 133–151

16. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference-TCC 2017 (to appear).
(2017) http://eprint.iacr.org/2017/604.

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In Wiener, M.J., ed.: Advances in Cryptology-CRYPTO 1999.
Volume 99 of LNCS., Springer (1999) 537–554

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1) (2013) 1–22

19. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In Lee, D.H., Wang, X., eds.: Advances in
Cryptology - ASIACRYPT 2011. Volume 7073 of LNCS., Springer (2011) 41–69

20. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In Oswald, E., Fischlin, M., eds.: Advances in Cryptology - EUROCRYPT
2015. Volume 9057 of LNCS., Springer (2015) 755–784

21. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and oaep
transforms. In Hirt, M., Smith, A.D., eds.: Theory of Cryptography Conference-
TCC 2016-B. Volume 9986 of LNCS., Springer (2016) 192–216

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Miller,
G.L., ed.: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing–STOC 1996, ACM (1996) 212–219

23. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V., eds.: Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security–CCS 1993, ACM (1993) 62–73

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In Gilbert, H., ed.: Advances in Cryptology–EUROCRYPT 2010.
Volume 6110 of LNCS., Springer (2010) 1–23

25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Physical review
letters 100(23) (2008) 230502

26. De Martini, F., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L.,
Sciarrino, F.: Experimental quantum private queries with linear optics. Physical
Review A 80(1) (2009) 010302

27. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. Technical report, Cryptology ePrint Archive,
Report 2017/1005, 2017. http://eprint. iacr. org/2017/1005

28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In Safavi-Naini, R., Canetti, R., eds.: Advances in Cryptology - CRYPTO
2012. Volume 7417 of LNCS., Springer (2012) 758–775

27

29. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
62(6) (2015) 49:1–49:76

30. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science–FOCS 2014, IEEE (2014) 474–483

31. Cheng, C., Chung, K., Persiano, G., Yang, B., eds.: Mitigating multi-target attacks
in hash-based signatures. In Cheng, C., Chung, K., Persiano, G., Yang, B., eds.:
Public-Key Cryptography–PKC 2016. Volume 9614 of LNCS., Springer (2016)

32. Yuen, H.: A quantum lower bound for distinguishing random functions from ran-
dom permutations. Quantum Information & Computation 14(13-14) (2014) 1089–
1097

33. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Information & Computation 15(7-8) (2015) 557–567

34. Targhi, E.E., Tabia, G.N., Unruh, D.: Quantum collision-resistance of non-
uniformly distributed functions. In Takagi, T., ed.: International Workshop on
Post-Quantum Cryptography–PQCrypto 2016. LNCS, Springer (2016) 79–85

35. Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryp-
tosystem transform. In Naccache, D., ed.: Topics in CryptologyCT-RSA 2001.
Volume 2020 of LNCS., Springer (2001) 159–174

36. Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen,
C.: Gem: A generic chosen-ciphertext secure encryption method. In Preneel, B.,
ed.: Topics in CryptologyCT-RSA 2002. Volume 2271 of LNCS., Springer (2002)
263–276

37. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Number 2. Cambridge University Press (2000)

38. Unruh, D.: Quantum position verification in the random oracle model. In Garay,
J.A., Gennaro, R., eds.: Advances in Cryptology–CRYPTO 2014. Volume 8617 of
LNCS., Springer (2014) 1–18

A Quantum Computation

We give a short introduction to quantum computation. For a more thorough
discussion, please see [37].

A quantum system A is a complex Hilbert spaceH with an inner product 〈·|·〉.
The state of a quantum system is given by a vector |Ψ〉 of unit norm (〈Ψ |Ψ〉 = 1).
Given quantum systems A and B over spacesHA andHB , respectively, we define
the joint or composite quantum system through the tensor product HA ⊗ HB .
The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is denoted by |ϕA〉 ⊗ |ϕB〉
or simply |ϕA〉|ϕB〉. A n-qubit system lives in the joint quantum system of n
two-dimensional Hilbert spaces. The standard orthonormal computational basis
B = {|x〉} for such a system is given by |x1〉 ⊗ · · · ⊗ |xn〉 for x = x1 · · ·xn.
Any (classical) bit string x is encoded into a quantum state by |x〉. Denote
TD(|Ψ〉, |ϕ〉) as the trace distance between quantum states |Ψ〉 and |ϕ〉.

Quantum measurement. Given a state |ϕ〉, we can measure |ϕ〉 in the basis B,

obtaining the value x with probability |〈x|ϕ〉|2. Thus, to each |ϕ〉, we associate

a distribution Dϕ where Dϕ(x) = |〈x|ϕ〉|2. The normalization constant and the
fact that B is an orthonormal basis ensure that Dϕ is exactly a valid distribution.
After measurement, the system is in state |x〉.

28

Quantum algorithm. A quantum algorithm A over a Hilbert space H with a
standard orthonormal basis B is specified by unitary transformation U . The
input to A is the initial state |x0〉. Then U is applied to the system, and the
final state is obtained |ϕ〉 = U |x0〉. At last, A’s output is obtained by performing
a measurement on |ϕ〉.

Quantum algorithm usually operates on a product space S ⊗K ⊗ V , where
S represents the work space, K the input space, and V the output space. Given
a function H : K → V , define the standard orthonormal basis B as the set
|s, k, v〉 for s ∈ S, k ∈ K, and v ∈ V . Define the unitary transformation OH over
the Hilbert space spanned by B as the transformation that takes |s, k, v〉 into
|s, k, v ⊕H(k)〉. OH is unitary, its own inverse, and Hermitian.

A quantum algorithm A making q quantum queries to H is then specified
by a sequence of unitary transformations U0, . . . , Uq. The evaluation of A then
consists of alternately applying Ui and OH to the initial state U0|x0〉. The final
state of the algorithm is

UqOH . . . U1OHU0|x0〉.

We say that a quantum algorithm is efficient if q is a polynomial, and al-
l the Uis are composed of a polynomial number of universal basis gates (the
Hadamard, CNOT, and phase shift gates are commonly used).

B Proof of Lemma 4

Proof. Assume that A uses three quantum systems S, K and V for its state,
oracle input and oracle output, where K has two subsystems K = K1 ⊗ K2.
K1, K2 and V have n1, n2 and m qubits respectively. Then an execution of
A leads to the final state (UOH)q|ΨxH′〉, where |ΨxH′〉 is the initial state, OH |
s, k1⊗k2, v〉 := |s, k1⊗k2, v⊕H(k1, k2)〉, and U is A’s state transition operation.
We assume that all the transition operations Ui are identical and equal to U
(the proof in the general case is essentially identical). A’s output is produced by
applying a measurement M to A’s final state.

Define |Ψ iHxH′〉 := (UOH)i|ΨxH′〉. Then, we can obtain

Pr[E1] =
∑
HxH′

αbHxH′ ,

where bHxH′ = Pr[M outputs 1 on state |Ψ qHxH′〉], α = 2−m2(n1+n2)−n1−m2n2
.

Reprogram H at (x, ·). Denote HxH′ as the function that HxH′(x, ·) = H ′(·)
and HxH′ = H everywhere else. Thus,

Pr[E2] =
∑
HxH′

αbHxH′xH′ .

According to [37, Theorem 9.1], we know that

|Pr[E1]− Pr[E2]| ≤
∑
HxH′

α
∣∣bHxH′ − bHxH′xH′

∣∣ ≤ ∑
HxH′

αDq, (2)

29

where Di := TD(|Ψ iHxH′〉, |Ψ iHxH′xH′〉) is the trace distance between quantum

states |Ψ iHxH′〉 and |Ψ iHxH′xH′〉.
Note that D0 = TD(|ΨxH′〉, |ΨxH′〉) = 0 and

Di = TD(UOH |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′xH′〉)

≤ TD(UOH |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′〉) + TD(UOHxH′ |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′xH′〉)

≤ Di−1 + TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉).

Hence,

Dq ≤
q∑
i=1

TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉) (3)

Let OH′ |a, k1⊗k2, v〉 := |a, k1⊗k2, v⊕H ′(k2)〉. Qx is the projector projecting
K1 onto |x〉 (i.e., Qx = I⊗|x〉〈x|⊗I⊗I). Then, OHxH′ = OH(1−Qx)+OH′Qx.
By using [38, Lemma 12], we can get that

TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉)
= TD(OH(1−Qx)|Ψ i−1HxH′〉+OHQx|Ψ i−1HxH′〉, OH(1−Qx)|Ψ i−1HxH′〉+OH′Qx|Ψ i−1HxH′〉)
≤ 2

∥∥OHQx|Ψ i−1HxH′〉
∥∥ = 2

∥∥Qx|Ψ i−1HxH′〉
∥∥ . (4)

Combing the equations (2, 3, 4), we obtain that

|Pr[E1]− Pr[E2]| ≤
∑
HxH′i

2α
∥∥Qx|Ψ i−1HxH′〉

∥∥ (∗)
≤ 2q

√ ∑
HxH′i

α

q

∥∥Qx|Ψ i−1HxH′〉
∥∥2,

where (*) uses Jensen’s inequality.

Define algorithm B as follows: pick i
$← {1, . . . , q}, measure the quantum

system K1 of A’s i-th query state |Ψ i−1HxH′〉, obtain x̂ and output x̂ =?x. Thus,

Pr[B ⇒ 1] is exactly
∑

HxH′i

α
q

∥∥Qx|Ψ i−1HxH′〉
∥∥2. Because x is chosen uniformly at

random and independent from A’s view, Pr[B ⇒ 1] = 1
2n1

. Therefore,

|Pr[E1]− Pr[E2]| ≤ 2q
1√
2n1

.

ut

30

