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Cryptographic Pairings
Kristin Lauter and Michael Naehrig

During more than 15 years as a Principal Researcher at Microsoft Research,
Peter L. Montgomery contributed substantially to building the public key crypto-
graphy libraries for Microsoft. The field of Elliptic Curve Cryptography (ECC)
was scarcely 15 years old, and pairing-based cryptography had been recently
introduced, when Peter started working on implementing and optimizing crypt-
ographic pairings on elliptic and hyperelliptic curves.

By pairings on elliptic curves in the cryptographic setting, we are referring
to bilinear maps from the group of points on an elliptic curve to the multi-
plicative group of a finite field, most notably the Weil pairing. Cryptographic
pairings became a hot topic after the introduction of solutions for various
interesting cryptographic primitives, including identity-based non-interactive
key agreement [55], one-round tripartite Diffie–Hellman key exchange [44,
45], identity-based encryption [16] and short signatures [18, 19]. A flood of
other cryptographic applications and constructions followed, such as attribute-
based encryption [54], functional encryption [20], and homomorphic encryp-
tion [17], to name a few. Pairings originally played a key role in the earlier
Menezes-Okamoto-Vanstone [49] and Frey-Rück [31] attacks on supersingu-
lar elliptic curves, which had instead negative implications for cryptographic
primitives using such curves. All cryptographic applications of pairings rely
on the ability to find suitable elliptic curve parameters and the existence of ef-
ficient algorithms to compute in the groups involved in the pairing operation
and for the pairing computation itself.

This chapter is based on the three papers, [27], [28] and [48] on pairing
computation, which Peter coauthored with one or both of the authors. The text
contains excerpts from those works, lightly edited with adjustments made to
unify notation and embed into the context of this chapter.

One of Peter’s guiding principles was to always write and prove everything
in the most general possible case, which led him, for example, to insist on
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giving formulas for the often pesky case of characteristic two. The code he
wrote was usually intended to be most general in the sense that it should allow
to be compiled and run efficiently and securely on a wide variety of possible
processors. And he produced side-channel resistant implementations without
even mentioning the existence of such attacks. In his implementations of el-
liptic curve cryptography, Peter often used Montgomery multiplication for the
base field arithmetic, assuming operations would be carried out modulo general
primes, and would not rely on generalized Mersenne primes or other primes
with special reduction, for example. Peter used to significantly speed up mod-
ular inversion in his implementations, which led to a low ratio for the cost of
inversion to multiplication.

Several other signature ideas from Peter’s work played a role in optimiz-
ing algorithms for pairing computation. In addition to fast modular inversion,
Peter also introduced the widely used simultaneous inversion trick [52, Sec-
tion 10.3.1.] (see Chapter 1), which can be applied to pairing computation as
explained in Section 9.3 on page 14. In general, achieving a low ratio of inver-
sion to multiplication cost through this collection of tricks in various settings
favors affine coordinates, which is relevant, for example, in application sce-
narios such as the computation of multiple pairings, products of pairings, and
parallelized pairings, as well as for pairings at very high security levels. These
applications are all explained in Section 9.3.

In another direction, the Montgomery ladder [52] (see Chapter 4) used in
the ECM factoring method (see Chapter 8) does not need the y-coordinate of
the elliptic curve points and allows the efficient computation of scalar multi-
plication using x-coordinates only. In Section 9.4 on page 22, we present the
double-and-add trick from [27], which saves a multiplication in combined op-
erations by not computing the intermediate y-coordinate. Also, the squared
Weil and Tate pairings, presented in Section 9.5 on page 26, achieve cancel-
lation of vertical line function contributions because they only depend on the
x-coordinates, which are equal for a point and its negative.

A common theme throughout this chapter is the comparison of affine ver-
sus projective coordinates in the elliptic curve operations involved during a
pairing computation. While early papers on pairing implementation naturally
started out using affine coordinates [8, 33], it is now understood that for a sin-
gle pairing computation at the 128-bit and 192-bit security levels, projective
coordinates are advantageous, see the results in [12, 3, 1, 2].
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9.1 Preliminaries

We start by introducing notation and describing the basic concepts needed
to talk about cryptographic pairings and their computation, such as elliptic
curves, their group law, pairings and pairing-friendly elliptic curves. To ease
the exposition, the material is not presented in the most general setting, but
rather focused on special cases that are most common and representative of
the general ideas. For more details, we point the reader to [60, 13, 25, 26, 32].

9.1.1 Elliptic curves

Let p > 3 be a prime and Fq be a finite field of characteristic p. Throughout the
whole chapter, we consider E to be an elliptic curve defined over Fq, given by a
short Weierstrass equation E : y2 = x3+ax+b, where a, b ∈ Fq and 4a3+27b2 ,

0. The point at infinity on E is denoted by O. The curve E can be viewed as
the set of affine solutions (x, y) of the curve equation with coordinates in an
algebraic closure of Fq together with the special point O. The set of Fq-rational
points on E is given by E(Fq) = {(x, y) ∈ Fq × Fq | y2 = x3 + ax + b} ∪ {O},
and the number of such points is n = #E(Fq) = q + 1 − t, where t is bounded
by |t| ≤ 2

√
q.

The group law
There exists an abelian group law + on E, which is given as follows. The point
O is the neutral element, i.e., P1+O = P1 for any point P1 ∈ E. If P1 , O, write
P1 = (x1, y1). Then, the inverse element of P1 is the point −P1 = (x1,−y1), i.e.,
(x1, y1) + (x1,−y1) = O. Given another point P2 = (x2, y2) ∈ E \ {O,−P1},
define

λ =

(y2 − y1)/(x2 − x1) if P1 , P2,

(3x2
1 + a)/(2y1) if P1 = P2.

(9.1)

Then P3 = (x3, y3) = P1+P2 is given by x3 = λ2−x1−x2 and y3 = λ(x1−x3)−y1.
Computing the sum of two affine Fq-rational points requires a division in the

field Fq. This operation is usually significantly more costly than all the other
operations, such as addition, subtraction and multiplication. Therefore, elliptic
curve group operations are often computed using a projective coordinate sys-
tem, in which an additional third coordinate keeps track of all denominators
such that field inversions are avoided altogether until the very end of the com-
putation. This comes at the cost of additional field multiplications and other
lower-cost operations. There are various forms of projective coordinate sys-
tems suitable for different scenarios.
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Embedding degree and torsion points
Let r be a prime with r | n, and let k be the embedding degree of E with
respect to r, i. e. k is the smallest positive integer with r | qk − 1. This means
that the multiplicative group F∗qk contains as a subgroup the group µr of r-
th roots of unity. The embedding degree k is an important parameter, since
it determines the field extensions over which the groups that are involved in
pairing computation are defined.

For m ∈ Z, let [m] : E → E be the multiplication-by-m map, which maps
a point P ∈ E to the sum of m copies of P. The kernel of [m] is the set of
m-torsion points on E; it is denoted by E[m] and we write E(Fq` )[m] for the set
of Fq` -rational m-torsion points (` > 0). From now on it is assumed that k > 1,
in which case E[r] ⊆ E(Fqk ), i.e., all r-torsion points are defined over Fqk .

9.1.2 Pairings

In order to describe the pairing functions relevant to cryptography, we need to
introduce divisors on E. A divisor D on E is a formal sum of points with integer
coefficients, i.e., D =

∑
P∈E nP(P) with only finitely many of the nP different

from zero; this finite set of non-zero nP-values is the support of the divisor D.
A divisor is called a principal divisor, if it is the divisor of a function f on E.
In that case the coefficient nP reflects the multiplicity of P as a zero (if nP > 0)
or pole (nP < 0) of f . Two divisors are equivalent if they differ by a principal
divisor. For P1 ∈ E, let DP1 be a divisor that is equivalent to (P1) − (O). Let
fr,P1 be a function on E with divisor r(P1) − r(O). Evaluating a function f at a
divisor

∑
nP(P) means to evaluate

∏
f (P)np .

The Weil pairing
The first applications of pairings in cryptography used the Weil pairing

er = E[r] × E[r]→ µr ⊆ F
∗

qk , (P,Q) 7→ fr,P(DQ)/ fr,Q(DP).

For the computation of fr,Q(DP), we can take DQ = (Q) − (O) and need to
choose a suitable point R such that DP = (P + R) − (R) has support disjoint
from {O,Q} (and similarly for fr,P(DQ)).

The Tate pairing
Most pairings that are suitable for use in practical cryptographic applications
are derived from the reduced Tate pairing

tr = E(Fq)[r] × E(Fqk )[r]→ µr ⊆ F
∗

qk , (P,Q) 7→ fr,P(DQ)(qk−1)/r.

In the case k > 1, to which we restrict in this chapter, one can omit the auxiliary
point in the divisor DQ and compute fr,P(Q)(qk−1)/r instead (see [8, 9, Thm. 1]).
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Miller’s algorithm
To evaluate the functions occurring in the Weil and the Tate pairing, one fol-
lows an iterative approach based on Miller’s formulas [50]. For an integer
m ∈ Z and a point P ∈ E(Fqk )[r] define the function fm,P to be a function
with divisor m(P)− ([m]P)− (m− 1)(O). Note that this notation coincides with
the one used above for m = r because then [r]P = O. The value of the function
fr,P at the point Q can be computed in a square-and-multiply-like fashion via
function values fm,P(Q) for m < r with the help of certain line functions. Let
P1, P2,Q ∈ E such that P1 , O, P2 < {O,−P1}, and E , O. Then the line
through P1 = (x1, y1) and P2 = (x2, y2), evaluated at Q = (xQ, yQ) is given by

lP1,P2 (Q) = (yQ − y1) − λ(xQ − x1),

where λ is the value of the slope computed during the computation of P1+P2 as
in Equation (9.1) on page 3. In the case that P2 = −P1, we have the vertical line
function value vP1 (Q) = lP1,−P1 (Q) = xQ − x1. Define the quotient gP1,P2 (Q) =

lP1,P2 (Q)/vP1+P2 (Q). Then, for m1,m2 ∈ Z, Miller’s formulas hold as follows:

fm1+m2,P(Q) = fm1 (Q) fm2 (Q)g[m1]P,[m2]P(Q),

fm1m2,P(Q) = f m2
m1

(Q) fm2,[m1]P(Q) = f m1
m2

(Q) fm1,[m2]P(Q).

Specializations of these formulas yield fm+1,P(Q) = fm,P(Q)g[m]P,P(Q), and
f2m,P(Q) = f 2

m,P(Q)g[m]P,[m]P(Q), which lead to Miller’s algorithm to compute
fr,P(Q) as shown in Algorithm 1 on page 5. Note that as written here, in the last
iteration of the algorithm, since r0 = 1, the point addition in line 5 computes
the point at infinity O in an exceptional case. The value of the function gR,P in
this step is defined as gR,P(Q) = vP(Q).

Algorithm 1 Miller’s algorithm

Input: P,Q ∈ E[r], r = (r`−1, r`−2, . . . , r0)2, r`−1 = 1
Output: fr,P(Q) representing a class in F∗qk/(F∗qk )r

1: R← P, f ← 1
2: for i from ` − 1 downto 0 do
3: f ← f 2 · gR,R(Q), R← [2]R
4: if (mi = 1) then
5: f ← f · gR,P(Q), R← R + P
6: end if
7: end for
8: return f

Unlike scalar multiplication algorithms for exponentiation in elliptic curve
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groups, which multiply curve points by varying scalars that are often secret val-
ues in the respective cryptographic protocols, Miller’s algorithm works along-
side a scalar multiplication with a fixed scalar, namely r. In other words, the
exponentiation carried out in Miller’s algorithm is always to the same public
number. Significant savings can be obtained by choosing this system parameter
with a low Hamming weight (or low weight in a signed binary representation)
in order to have as few as possible of the addition steps in line 5 of Algorithm 1.

The final exponentiation to the power (qk − 1)/r in the Tate pairing after
the Miller loop represents a large part of the computation. It maps classes
in F∗qk/(F∗qk )r to unique representatives in µr and is an exponentiation with a
known fixed, special exponent. Parts of it are carried out in special subgroups
of the multiplicative group F∗qk . This leads to various improvements over a
general exponentiation with an exponent of that size, leading to a significant
speedup (see, for example [59, 35, 39]).

The ate pairing
Often the most efficient choices for implementation are variants of the ate pair-
ing [41], which is a certain power of the reduced Tate pairing and is defined on
special subgroups of E[r].

Let φq be the q-power Frobenius endomorphism on E, i.e., φq(x, y) = (xq, yq).
Define two groups of prime order r by G1 = E[r] ∩ ker(φq − [1]) = E(Fq)[r]
and G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk )[r]. The group G1 contains only points
defined over the base field Fq, while the points in G2 are minimally defined
over Fqk . The ate pairing is the map

aT : G2 ×G1 → µr, (Q, P) 7→ fT,Q(P)(qk−1)/r, (9.2)

where T = t − 1. The group G2 has a nice representation by an isomorphic
group of points on a twist E′ of E, which is a curve that is isomorphic to E.
Here, we are interested in those twists which are defined over a subfield of Fqk

such that the twisting isomorphism is defined over Fqk . Such a twist E′ of E is
given by an equation E′ : y2 = x3 + (a/α4)x + (b/α6) for some α ∈ Fqk with
isomorphism ψ : E′ → E, (x, y) 7→ (α2x, α3y). If ψ is minimally defined over
Fqk and E′ is minimally defined over Fqk/d for a d | k, then we say that E′ is
a twist of degree d. If a = 0, let d0 = 4; if b = 0, let d0 = 6, and let d0 = 2
otherwise. For d = gcd(k, d0) there exists exactly one twist E′ of E of degree d
for which r | #E′(Fqk/d ) (see [41]). Define G′2 = E′(Fqk/d )[r]. Then the map ψ is
a group isomorphism G′2 → G2 and we can represent all elements in G2 by the
corresponding preimages in G′2. Likewise, all arithmetic that needs to be done
in G2 can be carried out in G′2. The advantage of this is that points in G′2 are
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defined over a smaller field than those in G2. Using G′2, we may now view the
ate pairing as a map G′2 ×G1 → µr, (Q′, P) 7→ fT,ψ(Q′)(P)(qk−1)/r.

Algorithm 2 shows Miller’s algorithm in the just described setting for an ate-
like pairing to compute fm,ψ(Q′)(P) for some integer m > 0. In this algorithm
and throughout the rest of this chapter, we assume that k is even and therefore
the denominator elimination technique applies (see [8, 9]), which means that
the denominators in the above defined fraction gQ′1,Q

′
2
(P) of line functions can

be omitted without changing the pairing value. This is why Algorithm 2 only
uses the line functions lQ′1,Q

′
2
(P).

Algorithm 2 Miller’s algorithm for even k and ate-like pairings

Input: Q′ ∈ G′2, P ∈ G1,m = (ml−1,ml−2, . . . ,m0)2, ml−1 = 1
Output: fm,ψ(Q′)(P) representing a class in F∗qk/(F∗qk )r

1: R′ ← Q′, f ← 1
2: for i from ` − 1 downto 0 do
3: f ← f 2 · lψ(R′),ψ(R′)(P), R′ ← [2]R′

4: if (mi = 1) then
5: f ← f · lψ(R′),ψ(Q′)(P), R′ ← R′ + Q′

6: end if
7: end for
8: return f

Miller’s algorithm builds up the function value fm,ψ(Q′)(P) along a scalar
multiplication computing [m]Q′ (which is the value of R′ after the Miller loop).
Step 3 is called a doubling step, it consists of squaring the intermediate value
f ∈ Fqk , multiplying it with the function value given by the tangent to E at
R = ψ(R′), and doubling the point R′. Similarly, an addition step is computed
in step 5 of Algorithm 2.

The most efficient variants of the ate pairing are so-called optimal ate pair-
ings [61]. They are optimal in the sense that they minimize the size of m and
with that the number of iterations in Miller’s algorithm to log(r)/ϕ(k), where
ϕ is the Euler totient function and log is the logarithm to base 2. For such min-
imal values of m, the function fm,ψ(Q′) alone usually does not give a bilinear
map. To get a pairing, these functions need to be adjusted by multiplying with
a small number of line function values (see [61] for details).

9.1.3 Pairing-friendly elliptic curves

Secure and efficient implementation of pairings can be done only with a care-
ful choice of the underlying elliptic curve. The curve needs to be pairing-
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friendly, i.e., the embedding degree k needs to be small, while r should be
larger than

√
q. A survey of methods to construct such curves can be found

in [29]. For security reasons, the parameters need to have certain minimal sizes
which imply suitable values for the embedding degree k for specific security
levels.

The requirement for an elliptic curve to have small embedding degree is
a strong condition that restricts the set of possible curves to a small subset
of elliptic curves. Because of the possibility of a transfer attack on the dis-
crete logarithm problem like the Menezes-Okamoto-Vanstone [49] or the Frey-
Rück [31, 30] attacks, such curves are excluded from being used in elliptic
curve-based protocols that do not require a pairing function. In general, an ar-
bitrary elliptic curve over a finite field with a large prime divisor of the group
order will have a large embedding degree. This means that pairing-friendly
curves are special and rare and finding a curve that satisfies the required prop-
erties can be a challenge.

The most popular choices for pairing-friendly curves come from polynomial
families of curves. In these families, the base field prime and the prime group
order are parameterized by rational polynomials that ensure all conditions are
satisfied. Concrete parameters are obtained by searching for an integer param-
eter such that the above polynomials evaluate to prime integers at the parame-
ter. A corresponding elliptic curve can then be constructed using the complex
multiplication method, or a simpler algorithm that tests for the correct group
order in certain special cases.

As explained in subsection 9.1.2 on page 6, it is often advantageous to
choose curves with twists of degree 4 or 6, so-called high-degree twists, since
this results in higher efficiency due to the more compact representation of the
group G2. To achieve security levels of 128 bits or higher, embedding degrees
of 12 and larger are advantageous. Because the degree of the twist E′ is at
most 6, this means that when computing ate-like pairings at such security lev-
els, all field arithmetic in the doubling and addition steps in Miller’s algorithm
takes place over a proper extension field of Fq.

9.2 Finite field arithmetic for pairings

This section takes a closer look at the field arithmetic needed for pairing al-
gorithms. As above, let Fq be a finite field of characteristic p > 3, and let Fqm

be an extension of degree m of Fq for m | k. Note that mostly, pairing-friendly
elliptic curves are defined over a prime field, i.e., q = p. Algorithm 2 on page 7
shows that a pairing algorithm requires arithmetic in the base field and also in
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some of the field extensions Fqm . A crucial building block with major influence
on the overall efficiency of pairing-based protocols is multiplication modulo
the prime p. An obvious influence of Peter’s work is the use of Montgomery
arithmetic for modular operations.

Another aspect that has been inspired by Peter’s way of thinking is the treat-
ment of inversions. As indicated above, usually the cost for a field inversion is
larger than that for a field multiplication, which in turn is larger than that for an
addition and a subtraction. What the exact ratios between these are, depends
on the setting, i.e., the shape of the base field prime, the extension degree,
the algorithms used, and the computer architecture they are implemented for.
When writing code that has to have a constant execution time, independent of
secret input data, inversions are often even computed using a field exponentia-
tion based on Fermat’s little theorem. Thus, in implementations of prime fields,
inversions are usually very expensive, in which case it does not make sense to
use affine coordinates. Pairing implementations using some form of projective
coordinates can get away with a single inversion in a pairing evaluation. But
still, there are certain scenarios discussed later, in which it is more efficient
to work in affine coordinates when doing the elliptic curve operations during
the pairing algorithm. Furthermore, divisions are still needed, for example, to
scale curve points to a unique affine representation in the non-pairing opera-
tions. After a brief discussion on multiplication, this section describes in some
detail the circumstances that allow to achieve relatively low inversion costs.

9.2.1 Montgomery multiplication

The base field primes for pairing-friendly elliptic curves can generally not be
chosen to have a specific implementation-friendly form as is done for plain
elliptic curve cryptography to obtain faster modular multiplications. For ex-
ample, elliptic curve implementations for key exchange or digital signatures
often use curves defined over fields with special prime shapes such as Soli-
nas primes, Montgomery-friendly primes or pseudo-Mersenne primes. Such
choices make modular reduction very efficient. Since the parameters of pairing-
friendly curves have to satisfy the additional embedding degree condition,
adding a condition on the prime shape would be too restrictive. Therefore,
base field primes for those curves do not have a special structure that can be
exploited to speed up modular reduction.

As a consequence, Montgomery multiplication and Montgomery reduction
(see Chapter 2) are a good choice for efficient implementation of modular arith-
metic, and are the method used in speed-record pairing implementations [12,
3, 1].
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9.2.2 Multiplication in extension fields

The field extension Fqk required in the pairing algorithm is usually constructed
as a tower of small-degree field extensions (preferably extensions of degree 2
and 3, see the notion of pairing-friendly fields in [47]), depending on the factor-
ization of the embedding degree k. Benger and Scott [10] discuss how to best
choose such towers in the pairing setting. Multiplication in each intermediate
extension is implemented using the Karatsuba or the Toom-Cook method [47].

The line function values that occur in Miller’s algorithm when using the
group G′2 on a high-degree twist are sparse elements of Fqk , i.e., some of their
coefficients when written as a polynomial over Fq are always zero. Therefore,
multiplications with these values can exploit special, more efficient multiplic-
ation routines.

9.2.3 Finite field inversions

Itoh and Tsujii [43] describe a method for computing the inverse of an ele-
ment in a binary field using normal bases and Kobayashi et al. [46] generalize
the technique to large-characteristic fields in polynomial basis and use it for
elliptic-curve arithmetic. It is a standard way to compute inverses in optimal
extension fields (see [6, 38] and [24, Sections 11.3.4 and 11.3.6]).

It can be applied in the following setting. Let Fq` = Fq(α) where α has
minimal polynomial X` − ω for some ω ∈ F∗q and assume gcd(`, q) = 1. Then,
the inverse of β ∈ F∗q` can be computed as

β−1 = βv−1 · β−v,

where v = (q` − 1)/(q − 1) = q`−1 + · · · + q + 1. Note that βv is the norm of β
and thus lies in the base field Fq. So the cost for computing the inverse of β is
the cost for computing βv−1 and βv, one inversion in the base field Fq to obtain
β−v, and the multiplication of βv−1 with β−v. The powers of β are obtained by
using the q-power Frobenius automorphism on F`q.

We give a brief estimate of the cost of the above. Let Mqm , Sqm , Iqm , addqm ,
subqm , and negqm denote the costs for multiplication, squaring, inversion, addi-
tion, subtraction, and negation in the field Fqm . The cost for a multiplication by
a constant ω ∈ Fqm is denoted by M(ω). We assume the same costs for addition
of a constant as for a general addition. Denote the inversion to multiplication
cost ratio by Rqm = Iqm/Mqm .

A Frobenius computation using a look-up table of `− 1 precomputed values
in Fq consisting of powers of ω costs at most ` − 1 multiplications in Fq (see
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[46, Section 2.3], note gcd(`, q) = 1). According to [40, Section 2.4.3] the
computation of βv−1 via an addition chain approach, using a look-up table for
each required power of the Frobenius, costs at most blog(` − 1)c + h(` − 1)
Frobenius computations and fewer multiplications in Fq` . Here h(m) denotes
the Hamming weight of an integer m. Knowing that βv ∈ Fq, its computation
from βv−1 and β costs at most ` base field multiplications, one multiplication
with ω, and ` − 1 base field additions. The final multiplication of β−v with βv−1

can be done in ` base field multiplications. This leads to the following upper
bound for the cost of an inversion in Fq` :

Iq` ≤ Iq + (blog(` − 1)c + h(` − 1))(Mq` + (` − 1)Mq)

+2`Mq + M(ω) + (` − 1)addq. (9.3)

Let M(`) be the minimal number of multiplications in Fq needed to multiply
two different, non-trivial elements in Fq` not lying in a proper subfield of Fq` .
Then the following lemma bounds the ratio of inversion to multiplication costs
in Fq` from above by 1/M(`) times the ratio in Fq plus an explicit constant.
Thus the ratio in the extension improves by roughly a factor of M(`).

Lemma 9.1 Let Fq be a finite field, ` > 1, Fq` = Fq(α) with α` = ω ∈ F∗q.
Then using the above inversion algorithm in Fq` leads to

Rq` ≤ Rq/M(`) + C(`),

where C(`) = blog(`−1)c+ h(`−1) + 1
M(`)

(
3`+ (`−1)(blog(`−1)c+ h(`−1))

)
.

Proof Since M(`) is the minimal number of multiplications in Fq needed for
multiplying two elements in Fq` , we can assume that the actual cost for the
latter is Mq` ≥ M(`)Mq. Using Inequality (9.3), we deduce

Rq` = Iq`/Mq` ≤ Iq/(M(`)Mq) + C̃(`) = Rq/M(`) + C̃(`),

where C̃(`) = blog(` − 1)c + h(` − 1) + (2` + (` − 1)(blog(` − 1)c + h(` −
1)))/M(`) + (Mω + (`− 1)addq)/(M(`)Mq). Since M(ω) ≤Mq and addq ≤Mq,
we get Mω + (` − 1)addq ≤ `Mq and thus C̃(`) ≤ C(`). �

In Table 9.1 we give values for the factor 1/M(`) and the additive constant C(`)
that determine the improvements of Rq` over Rq for several small extension
degrees `. We take the numbers for M(`) from the formulas given in [53].

For small-degree extensions, the inversion method can be easily made ex-
plicit. We state and analyze it for quadratic and cubic extensions in the follow-
ing two examples.
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Table 9.1 Constants that determine the improvement of Rq` over Rq

` 2 3 4 5 6 7

1/M(`) 1/3 1/6 1/9 1/13 1/17 1/22

C(`) 3.33 4.17 5.33 5.08 6.24 6.05

Example 9.2 (Quadratic extensions) Let Fq2 = Fq(α) with α2 = ω ∈ Fq. An
element β = b0 + b1α , 0 can be inverted as

1
b0 + b1α

=
b0 − b1α

b2
0 − b2

1ω
=

b0

b2
0 − b2

1ω
−

b1

b2
0 − b2

1ω
α.

In this case the norm of β is given explicitly by b2
0 − b2

1ω ∈ Fq. The inverse of
β thus can be computed in one inversion, two multiplications, two squarings,
one multiplication by ω, one subtraction and one negation, all in Fq, i.e., Iq2 =

Iq + 2Mq + 2Sq + M(ω) + subq + negq.
We assume that we multiply Fq2 -elements with Karatsuba multiplication,

which costs Mq2 = 3Mq + M(ω) + 2addq + 2subq. As in the general case above,
we assume that the cost for a full multiplication in the quadratic extension is at
least Mq2 ≥ 3Mq, i.e., we restrict to the average case where both elements have
both of their coefficients different from 0. Thus we can give an upper bound on
the I/M-ratio in Fq2 depending on the ratio in Fq as

Rq2 = Iq2/Mq2 ≤ (Iq/3Mq) + 2 = Rq/3 + 2,

where we roughly assume that Iq2 ≤ Iq + 6Mq. This bound shows that for
Rq > 3 the ratio becomes smaller in Fq2 . For large ratios in Fq it becomes
roughly Rq/3.

Example 9.3 (Cubic extensions) Let Fq3 = Fq(α) with α3 = ω ∈ Fq. Similar
to the quadratic case we can invert β = b0 + b1α + b2α

2 ∈ F∗q3 by

1
b0 + b1α + b2α2 =

b2
0 − ωb1b2

N(β)
+
ωb2

2 − b0b1

N(β)
α +

b2
1 − b0b2

N(β)
α2

with N(β) = b3
0 + b3

1ω+ b3
2ω

2 − 3ωb0b1b2. We start by computing ωb1 and ωb2

as well as b2
0 and b2

1. The terms in the numerators are obtained by a two-way
Karatsuba multiplication and additions and subtractions via 3Mq computing
b0b2, ωb1b2 and (ωb2 + b0)(b2 + b1). The norm can be computed by three
more multiplications and two additions. Thus the cost for the inversion is Iq3 =

Iq + 9Mq + 2Sq + 2M(ω) + 4addq + 4subq. A Karatsuba multiplication can be
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done in Mq3 = 6Mq + 2M(ω) + 9addq + 6subq. We use Mq3 ≥ 6Mq, assume
Iq3 ≤ Iq + 18Mq and obtain

Rq3=Iq3/Mq3 ≤ (Iq/Mq)/6 + 3 = Rq/6 + 3.

Inversions in towers of field extensions
Baktir and Sunar [7] introduce optimal tower fields as an alternative for optimal
extension fields, where they build a large field extension as a tower of small
extensions instead of one big extension. They describe how to use the above
inversion technique recursively by passing down the inversion in the tower,
finally arriving at the base field. They show that this method is more efficient
than computing the inversion in the corresponding large extension with the
Itoh-Tsujii inversion directly. For towers of field extensions of degree two and
three as those occurring in pairing-friendly fields, the inversion can be done
using the two examples given above.

9.2.4 Simultaneous inversions

The inverses of s field elements a1, . . . , as can be computed simultaneously
with Montgomery’s well-known inversion-sharing trick [52, Section 10.3.1.]
at the cost of one inversion and 3(s − 1) multiplications. It is based on the
following idea: to compute the inverse of two elements a and b, one computes
their product ab and its inverse (ab)−1. The inverses of a and b are then found
by a−1 = b·(ab)−1 and b−1 = a·(ab)−1, with an overall cost of just one inversion
and three multiplications.

In general, for s elements one first computes the products ci = a1 · · · · · ai

for 2 ≤ i ≤ s with s − 1 multiplications and inverts cs. Then we have a−1
s =

cs−1c−1
s . We get a−1

s−1 by c−1
s−1 = c−1

s as and a−1
s−1 = cs−2c−1

s−1 and so forth (see
[24, Algorithm 11.15]), where we need 2(s−1) more multiplications to get the
inverses of all elements.

Since this method works for general field elements, i.e., it is not restricted
to a specific extension degree, we leave out the indices in the notation of the
inversion and multiplication costs and their ratio. The cost for s inversions is
replaced by I + 3(s−1)M. Let Ravg,s denote the ratio of the cost of s inversions
to the cost of s multiplications. It is bounded above by

Ravg,s = I/(sM) + 3(s − 1)/s ≤ R/s + 3,

i.e., when the number s of elements to be inverted grows, the ratio Ravg,s gets
closer to 3. Note that most of the time, this method improves the efficiency
of an implementation whenever applicable. However, in large field extensions,
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the inversion method described above in Section 9.2.3 on page 10 might lead
to an I/M-ratio that already is less than 3. In this case using the sharing trick
at the highest level of the field extension would make the average ratio worse.
But a combination of both methods, such as reducing the inversions down to
the ground field and sharing them there, can further increase efficiency.

9.3 Affine coordinates for pairing computation

The previous section elaborated on two techniques that achieve a low inver-
sion to multiplication cost ratio, namely working in extension fields and doing
several inversions at once if possible. There exist scenarios in which one of
the two or both techniques can be applied and lead to affine coordinates being
the most efficient choice. Affine coordinates are useful for curve operations in
the group G′2 including those needed in the Miller loop, whenever a pairing-
friendly curve is chosen such that G′2 is defined over an extension field of
larger degree. This might occur for high security pairings or whenever high-
degree twists cannot be used. The second technique of simultaneous inversion
becomes possible whenever several pairings or a product of several pairings
is computed such that inversions can be synchronized and be done simulta-
neously. This section states the costs for the doubling and addition steps in
Miller’s algorithm for affine coordinates and explains use cases of the above
two techniques for achieving low inversion cost.

9.3.1 Costs for doubling and addition steps

We begin by describing the evaluation of line functions in affine coordinates
for ate-like pairings as in Section 9.1.2 on page 6, i.e., a point P on E, P , O,
is given by two affine coordinates as P = (xP, yP). Let R1,R2, S ∈ E with
R1 , −R2 and R1,R2, S , O. Then the function of the line through R1 and R2

(tangent to E if R1 = R2) evaluated at S is given by

lR1,R2 (S ) = yS − yR1 − λ(xS − xR1 ),

where λ = (3x2
R1

+a)/2yR1 if R1 = R2 and λ = (yR2 −yR1 )/(xR2 − xR1 ) otherwise.
The value λ is also used to compute R3 = R1 + R2 on E by xR3 = λ2 − xR1 − xR2

and yR3 = λ(xR1 − xR3 ) − yR1 . If R1 = −R2, then we have xR1 = xR2 and
lR1,R2 (S ) = xS − xR1 .

Let the notation be as described in Section 9.1.2, in particular we use a twist
E′ of degree d to represent the group G2 by the group G′2. Let e = k/d, then
G′2 = E′(Fqe )[r]. Let P ∈ G1, R′,Q′ ∈ G′2 and let R = ψ(R′),Q = ψ(Q′).
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Furthermore, we assume that the field extension Fqk is given by Fqk = Fqe (α)
where α ∈ Fqk is the same element as the one defining the twist E′, and we have
αd = ω ∈ Fqe . This means that each element in Fqk is given by a polynomial of
degree d− 1 in α with coefficients in Fqe and the twisting isomorphism ψ maps
(x′, y′) to (α2x′, α3y′).

Doubling steps in affine coordinates
We need to compute

lR,R(P) = yP − α
3yR′ − λ(xP − α

2xR′ ) = yP − αλ
′xP + α3(λ′xR′ − yR′ )

and R′3 = [2]R′, where xR′3 = λ′2 − 2xR′ and yR′3 = λ′(xR′ − xR′3 ) − yR′ . We have
λ′ = (3x2

R′ + a/α4)/2yR′ and λ = (3x2
R + a)/2yR = αλ′. Note that [2]R′ , O in

the pairing computation.
The slope λ′ can be computed with Iqe + Mqe + Sqe + 4addqe , assuming that

we compute 3x2
R′ and 2yR′ by additions. To compute the double of R′ from the

slope λ′, we need at most Mqe + Sqe + 4subqe . We obtain the line function value
with a cost of eMq to compute λ′xP and Mqe +subqe +negqe for d ∈ {4, 6}. When
d = 2, note that α2 = ω ∈ Fqe and thus we need (k/2)Mq+Mqk/2 +M(ω)+2subqk/2

for the line.
We summarize the operation counts in Table 9.2 on page 16. We restrict to

even embedding degree and 4 | k for b = 0 as well as to 6 | k for a = 0 be-
cause these cases allow using the maximal-degree twists and are likely to be
used in practice. We compare the affine counts to costs of the fastest formu-
las using projective coordinates taken from [42] and [23]. For an overview of
the most efficient explicit formulas known for elliptic-curve operations see the
Explicit-Formulas Database [11]. We transfer the formulas in [42] to the ate
pairing using the trick in [23] where the ate pairing is computed entirely on
the twist. In this setting we assume field extensions are constructed in a way
that favors the representation of line function values. This means that the twist
isomorphism can be different from the one described in this chapter. Still, in
the case d = 2, evaluation of the line function cannot be done in kMq; instead
two multiplications in Fqk/2 need to be done (see also the discussion in the re-
spective sections of [23]). Furthermore, we assume that all precomputations
are done as described in the above papers and small multiples are computed by
additions.

Addition steps in affine coordinates
The line function value has the same shape as for doubling steps. Note that we
can replace R′ by Q′ in the line and compute

lR,Q(P) = yP − α
3yQ′ − λ(xP − α

2xQ′ ) = yP − αλ
′xP + α3(λ′xQ′ − yQ′ )



16

Table 9.2 Operation counts for the doubling step in the ate-like Miller loop
omitting 1Sqk + 1Mqk . The elements a, b ∈ Fq are the curve coefficients, k is

the embedding degree with respect to the prime subgroup order r, and d is the
degree of the twist such that the group G′2 is defined over Fqe where e = k/d.

DBL d coord. Mq Iqe Mqe Sqe M( · ) addqe subqe negqe

ab , 0 2 affine k/2 1 3 2 1M(ω) 4 6 −

2 | k Jac. [42] − − 3 11 1M(a/ω2) 6 17 −

b = 0 4 affine k/4 1 3 2 − 4 5 1
4 | k W(1,2) [23] k/2 − 2 8 1M(a/ω) 9 10 1

a = 0 6 affine k/6 1 3 2 − 4 5 1
6 | k proj. [23] k/3 − 2 7 1M(b/ω) 11 10 1

and R′3 = R′ + Q′, where xR′3 = λ′2 − xR′ − xQ′ and yR′3 = λ′(xR′ − xR′3 ) − yR′ .
The slope λ′ now is different, namely λ′ = (yR′ − yQ′ )/(xR′ − xQ′ ). Note that
R′ = −Q′ does not occur when computing Miller function values of degree less
than r. The cost for doing an addition step is the same as that for a doubling
step, except that the cost to compute the slope λ′ is now Iqe + Mqe + 2subqe .

Table 9.3 compares the costs for affine addition steps to those in projective
coordinates. Again, we take these operation counts from the literature (see [4,
23, 22] for the explicit formulas and details on the computation). Concerning
the field and twist representations and line function evaluation, similar remarks
as for doubling steps apply here.

The multiplication withω in the case d = 2 can be done as a precomputation,
since Q′ is fixed throughout the pairing algorithm. Since other formulas do not
have multiplications by constants, we omit this column in Table 9.3.

Affine versus projective
Doubling and addition steps for computing pairings in affine coordinates in-
clude one inversion in Fqe per step. The various projective formulas avoid the
inversion, but at the cost of doing more of the other operations. How much
higher these costs are exactly, depends on the underlying field implementation
and the ratio of the costs for squaring to multiplication.

A rough estimate of the counts in Table 9.3 shows that the cost traded for
the inversion in the projective addition formulas is equivalent to at least several
Mqe . For doubling steps, it is smaller, but still equivalent to a few Mqe in all
cases. Since doubling steps are much more frequent in the pairing computation
(especially when a low Hamming weight for the degree of the used Miller



Cryptographic Pairings 17

Table 9.3 Operation counts for the addition step in the ate-like Miller loop
omitting 1Mqk . The elements a, b ∈ Fq are the curve coefficients, k is the

embedding degree with respect to the prime subgroup order r, and d is the
degree of the twist such that the group G′2 is defined over Fqe where e = k/d.

ADD d coord. Mq Iqe Mqe Sqe addqe subqe negqe

ab , 0 2 affine k/2 1 3 1 − 8 −

2 | k Jacobian [4] − − 8 6 6 17 −

b = 0 4 affine k/4 1 3 1 − 7 1
4 | k W(1,2) [23] k/2 − 9 5 7 8 1

a = 0 6 affine k/6 1 3 1 − 7 1
6 | k proj. [22, 23] k/3 − 11 2 1 7 −

function is chosen), the traded cost in the doubling case is the most relevant to
consider.

The subsection concludes with two examples that give specific upper bounds
on Iqe such that affine coordinates are more efficient than projective ones.

Example 9.4 Let ab , 0, i.e., d = 2. The cost that has to be weighed
against the inversion cost for a doubling step is 9Sqk/2 − (k/2)Mq + M(a/ω2) −

M(ω) + 2addqk/2 + 11subqk/2 . Clearly, (k/2)Mq < Sqk/2 , and we assume M(ω) ≈

M(a/ω2) and addqk/2 ≈ subqk/2 . We see that if an inversion costs less than
8Sqk/2 + 13addqk/2 , then affine coordinates are better than Jacobian.

Example 9.5 In the case a = 0, d = 6, similar to the previous example, we
deduce that if an inversion in Fqk/6 is less than 5Sqk/6−Mqk/6 +(k/6)Mq+M(b/ω)+

12addqk/6 , then affine coordinates beat the projective ones.

In order to fully assess the effect of using affine instead of projective coor-
dinates, one needs to know the exact cost that is traded for the inversion. This
strongly depends on the specific algorithms chosen to implement the opera-
tions in the extension fields. For example, the relative costs between multipli-
cations and squarings can differ significantly. Commonly used values in the
literature are Sq = Mq or Sq = 0.8Mq when q is a prime, see [11]. Using
Karatsuba multiplication and squaring in a quadratic extension leads to a ratio
of Sq2 ≈ (2/3)Mq2 . Therefore, we do not specify these costs any further and
leave the evaluation for a point when a specific scenario and an implementation
is chosen.
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9.3.2 Working over extension fields

This subsection illustrates the usefulness of affine coordinates when the exten-
sion degree e is relatively large.

To implement pairings at a given security level, on the one hand one needs to
find a pairing-friendly elliptic curve such that r and qk have a certain minimal
size (e.g. given by current estimates for the runtimes of algorithms to solve
the ECDLP). On the other hand, for efficiency it is desirable that they are not
much larger than necessary. For a pairing-friendly elliptic curve E over Fq with
embedding degree k with respect to a prime divisor r | #E(Fq), we define the
ρ-value of E as ρ = log(q)/ log(r). This value is a measure of the base field size
relative to the size of the prime-order subgroup on the curve. The value ρk is
the ratio of the sizes of qk and r. For a given curve the value ρk describes how
well security is balanced between the curve groups and the finite field group.

An overview of construction methods for pairing-friendly elliptic curves is
given in [29]. In Table 9.4, we list suggestions for curve families by their con-
struction in [29] for high-security levels of 128, 192, and 256 bits. The last
column in Table 9.4 shows the field extensions in which inversions are done
to compute the line function slopes. We not only give families of curves with
twists of degree 4 and 6, but also more generic families such that the curves
only have a twist of degree 2. Of course, in the latter case the extension field,
in which inversions for the affine ate pairing need to be computed, is larger
than when dealing with higher-degree twists. Because curves with twists of
degree 4 and 6 are special (they have j-invariants 1728 and 0), there might be
reasons to choose the more generic curves. Note that curves from the given
constructions are all defined over prime fields. Therefore we use the notation
Fp in Table 9.4.

Remark The conclusion to underline from the discussion in this section, is
that, using the improved inversions in towers of extension fields described here,
there are at least two scenarios where most implementations of the ate pairing
would be more efficient using affine coordinates.

When higher security levels are required, so that k is large. For example
256-bit security with k = 28, so that most of the computations for the ate
pairing take place in the field extension of degree 7, even using a degree-4 twist
(second-to-last line of Table 9.4). In that case, the I/M ratio in the degree-7
extension field would be roughly 22 times less (plus 6) than the ratio in the base
field (see the last entry in Table 9.1 on page 12). The costs for doubling and
addition steps given in the second lines of Tables 9.2 on page 16 and 9.3 on the
previous page for degree-4 twists show that the cost of the inversion avoided in
a projective implementation should be compared with roughly 6Sq7 + 5addq7 +
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Table 9.4 Extension fields for which inversions are needed when computing
ate-like pairings for different examples of pairing-friendly curve families

suitable for the given security levels.

security construction in [29] curve k ρ ρk d extension

128

Ex. 6.8 a = 0 12 1.00 12.00 6 Fp2

Ex. 6.10 b = 0 8 1.50 12.00 4 Fp2

Section 5.3 a, b , 0 10 1.00 10.00 2 Fp5

Constr. 6.7+ a, b , 0 12 1.75 21.00 2 Fp6

192
Ex. 6.12 a = 0 18 1.33 24.00 6 Fp3

Ex. 6.11 b = 0 16 1.25 20.00 4 Fp4

Constr. 6.3+ a, b , 0 14 1.50 21.00 2 Fp7

256
Constr. 6.6 a = 0 24 1.25 30.00 6 Fp4

Constr. 6.4 b = 0 28 1.33 37.24 4 Fp7

Constr. 6.24+ a, b , 0 26 1.17 30.34 2 Fp13

5subq7 extra for a doubling (and an extra 6Mq7 + 4Sq7 + 7addq7 + subq7 for an
addition step). In most implementations of the base field arithmetic, the cost of
these 16 or 17 operations in the extension field would outweigh the cost of one
improved inversion in the extension field.

When special high-degree twists are not being used. In this scenario there are
two reasons why affine coordinates will be better under most circumstances.
First, the costs for doubling and addition steps given in the first lines of Ta-
bles 9.2 and 9.3 for degree-2 twists are not nearly as favorable towards pro-
jective coordinates as the formulas in the case of higher degree twists. For
degree-2 twists, both the doubling and addition steps require roughly at least
9 extra squarings and 13 or 15 extra field extension additions or subtractions
for the projective formulas. Second, the degree of the extension field where the
operations take place is larger. See the bottom row for each security level in
Table 9.4, so we have extension degree 6 for 128-bit security up to extension
degree 13 for 256-bit security.

9.3.3 Simultaneous inversions in pairing computation

This subsection discusses different scenarios, in which the simultaneous inver-
sion technique from Section 9.2.4 on page 13 can be applied and might lead to
a low-enough I/M ratio to favor affine coordinates.

Sharing inversions in a single pairing computation
Schroeppel and Beaver [56] demonstrate the use of the inversion-sharing trick
to speed up a single scalar multiplication on an elliptic curve in affine coordi-
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nates. They suggest postponing addition steps in the double-and-add algorithm
to exploit the inversion sharing. In order to do that, the double-and-add algo-
rithm must be carried out by going through the binary representation of the
scalar from right to left. First, all doublings are carried out and the points that
will be used to add up to the final result are stored. When all these points have
been collected, several additions can be done at once, sharing the computation
of inversions among them.

Miller’s algorithm can also be done from right to left. The doubling steps
are computed without doing the addition steps. The required field elements and
points are stored in lists and addition steps are done in the end. The algorithm
is summarized in Algorithm 3. Unfortunately, addition steps cost much more
than in the conventional left-to-right algorithm as it is given in Algorithm 2
on page 7. In the right-to-left version, each addition step in line 10 needs a
general Fqk -multiplication and a multiplication with a line function value. The
conventional algorithm only needs a multiplication with a line. These huge
costs cannot be compensated for by using affine coordinates with the inversion-
sharing trick.

Algorithm 3 Right-to-left version of Miller’s algorithm with postponed addi-
tion steps for even k and ate-like pairings
Input: Q′ ∈ G′2, P ∈ G1,m = (ml−1,ml−2, . . . ,m0)2, ml−1 = 1
Output: fm,ψ(Q′)(P) representing a class in F∗qk/(F∗qk )r

1: R′ ← Q′, f ← 1, j← 0
2: for i from 0 to ` − 1 do
3: if (mi = 1) then
4: AR′ [ j]← R′, A f [ j]← f , j← j + 1
5: end if
6: f ← f 2 · lψ(R′),ψ(R′)(P), R′ ← [2]R′

7: end for
8: R′ ← AR′ [0], f ← A f [0]
9: for ( j← 1; j ≤ h(m) − 1; j + +) do

10: f ← f · A f [ j] · lψ(R′),ψ(AR′ [ j])(P), R′ ← R′ + AR′ [ j]
11: end for
12: return f

Parallelizing a single pairing
However, the right-to-left algorithm can be parallelized, and this could lead to
more efficient implementations by taking advantage of many-core machines.
Grabher, Großschädl, and Page [34, Algorithm 2] use a version of Algorithm 3
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to compute a single pairing by doing addition steps in parallel on two different
cores. They divide the lists with the saved function values and points into two
halves and compute two intermediate values which are in the end combined
in a single addition step. For their specific implementation, they conclude that
this is not faster than the conventional non-parallel algorithm. Still, this idea
might be useful for two or more cores, in case multiple cores can be used with
less overhead. It is straightforward to extend this algorithm to more cores.

The parallelized algorithm can be combined with the shared inversion trick
when doing the addition steps in the end. The improvements achieved by this
approach strongly depend on the Hamming weight of the value m in Miller’s
algorithm. If it is large, then savings are large, while for very sparse m there is
almost no improvement. Therefore, when it is not possible to choose m with
low Hamming weight, combining the parallelized right-to-left algorithm for
pairings with the shared inversion trick can speed up the computation. The
communication overhead in order to gather data from intermediate computa-
tions on different cores to compute the inverse at one core imposes a non-trivial
performance penalty and it remains to be seen whether this approach is worth-
while. Grabher et al. [34] note that when multiple pairings are computed, it is
better to parallelize by performing one pairing on each core.

Multiple pairings and products of pairings
Many protocols involve the computation of multiple pairings or products of
pairings. For example, multiple pairings need to be computed in the searchable
encryption scheme of Boneh et al. [15]; and the non-interactive proof systems
proposed by Groth and Sahai [37] need to check pairing product equations. In
these scenarios, we propose sharing inversions when computing pairings with
affine coordinates. In the case of products of pairings, this has already been
proposed and investigated by Scott [57, Section 4.3] and Granger and Smart
[36]. See also the more recent work [58] by Scott.

Multiple pairings
Assume we want to compute s pairings on points Q′i and Pi, i.e., a priori we
have s Miller loops to compute fm,ψ(Q′i )(Pi). We carry out these loops simulta-
neously, doing all steps up to the first inversion computation for a line function
slope for all of them. Only after that, all slope denominators are inverted si-
multaneously, and we continue with the computation for all pairings until the
next inversion occurs. The s Miller loops are not computed sequentially, but
rather sliced at the slope denominator inversions. The costs stay the same, ex-
cept that now the average inversion-to-multiplication cost ratio is 3 + Rqe/s,
where e = k/d and d is the twist degree.
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So when computing sufficiently many pairings so that the average cost of
an inversion is small enough, using the sliced-Miller approach with inversion
sharing in affine coordinates is faster than using the projective coordinates ex-
plicit formulas described in Section 9.3.1 on page 14.

Products of pairings
For computing a product of pairings, more optimizations can be applied, in-
cluding the above inversion-sharing. Scott [57, Section 4.3] suggests using
affine coordinates and sharing the inversions for computing the line function
slopes as described above for multiple pairings. Furthermore, since the Miller
function of the pairing product is the product of the Miller functions of the sin-
gle pairings, in each doubling and addition step the line functions can already
be multiplied together. In this way, we only need one intermediate variable f
and only one squaring per iteration of the product Miller loop. Of course in the
end, there is only one final exponentiation on the product of the Miller function
values. Granger and Smart [36] show that by using these optimizations the cost
for introducing an additional ate pairing to the product can be as low as 13%
of the cost of a single ate pairing.

9.4 The double-add operation and parabolas

This section consists largely of lightly edited material from Sections 3, 5, and 6
of [27]. In [27], an improvement to the double-and-add operation on an elliptic
curve was introduced, and a related idea was applied to improve the analogous
operation in pairing computations on elliptic curves. In affine coordinates, the
technique allows one to perform a doubling and an addition, 2P + Q, on an
elliptic curve E using only 1M + 2S + 2I (plus an extra squaring when P = Q).
This is achieved as follows: to compute 2P + Q, where P = (x1, y1) and
Q = (x2, y2), first find (P + Q), but omit its y-coordinate since it is not needed
for the next stage. This saves one field multiplication. Next compute (P+Q)+P.
This way, two point additions are performed while saving one multiplication.
This trick also works when P = Q, i.e., when tripling a point.

9.4.1 Description of the algorithm

Suppose P = (x1, y1) and Q = (x2, y2) are distinct points on E different
from O, and x1 , x2. The details for other cases are given in Figure 1 of
[27]. That figure also covers special cases, where an input or an intermediate
result is the point O. Recall from Section 9.1.1 and Equation (9.1) on page 3
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that the point P + Q is then given by (x3, y3), where x3 = λ2
1 − x1 − x2 and

y3 = (x1 − x3)λ1 − y1 with λ1 = (y2 − y1)/(x2 − x1).
To add (P + Q) to P, add (x1, y1) to (x3, y3) using the above rule (assuming

x3 , x1). The result has coordinates (x4, y4), where x4 = λ2
2 − x1 − x3 and

y4 = (x1 − x4)λ2 − y1 with λ2 = (y3 − y1)/(x3 − x1).
The computation of y3 can be omitted because it is used only in the compu-

tation of λ2, which can be computed without knowing y3 as

λ2 = −λ1 − 2y1/(x3 − x1).

Omitting the y3 computation saves one field multiplication. Each λ2 formula
requires a field division, so the overall saving is this one field multiplication.

This trick can also be applied to save one multiplication when computing 3P,
the triple of a point P , O, where the λ2 computation will need the slope of
a line through two distinct points 2P and P. It can be used twice to save two
multiplications when computing 3P+Q = ((P+Q)+P)+P. Thus 3P+Q can be
computed using one multiplication, three squarings, and three divisions. Such
a sequence of operations would be performed repeatedly if an exponent were
written in ternary form and left-to-right exponentiation were used. Ternary re-
presentation performs worse than binary representation for large random expo-
nents k, but the operation of triple and add was explored further in the context
of double-base chains in [21, Section 5].

9.4.2 Application to scalar multiplication

The above double-and-add operation can be applied to scalar multiplications
on an elliptic curve in affine coordinates. In the naive left-to-right method of
binary exponentiation, the double-and-add trick can be applied repeatedly at
each stage of the computation. More efficient variants could use a combination
of the left-to-right or right-to-left m-ary exponentiation with sliding window
methods, addition-subtraction chains, signed representations, etc. When using
affine coordinates, the double-and-add trick can be used on top of these meth-
ods for m = 2 to obtain savings, depending upon the window size that is used.

Note that we discuss the double-and-add technique in a historic manner and
neglect the protection of scalar multiplication against side channels such as
making sure that the algorithm runs in constant time.

Another application, in which the double-and-add operation occurs more
frequently than in single scalar multiplication is multi-exponentiation, for ex-
ample a simultaneous three-fold scalar multiplication k1P1+k2P2+k3P3, where
the three exponents k1, k2, and k3 have approximately the same length. One al-
gorithm creates an 8-entry table with the precomputed points O, P1, P2, P2 +
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P1, P3, P3 + P1, P3 + P2, P3 + P2 + P1. Subsequently it uses one elliptic curve
doubling followed by the addition of a table entry, for each bit in the exponents
[51]. For random scalars ki and a binary scalar decomposition, about 7/8 of the
doublings will be followed by an addition other than O.

9.4.3 Application to pairings

The double-and-add technique can be extended to the function evaluation in
Miller’s algorithm and thus can be applied to pairing computation as well.
The key observation is that one can replace consecutive evaluations of line
functions by the evaluation of a parabola, and thus obtain an analogue to the
double-and-add operation in the form of a Miller formula.

Using the double-and-add trick with parabolas
We use notation as in the paragraph on Miller’s algorithm in Section 9.1.2 on
page 4. For two integers b, c, instead of computing f2b+c,P(Q) and [2b + c]P
from ( fb,P(Q), [b]P) and ( fc,P(Q), [c]P) via f2b,P(Q) = f 2

b,P(Q)g[b]P,[b]P and
[2]([b]P), and then f2b+c,P(Q) = f2b,P(Q) fc,P(Q)g[2b]P,[c]P and [2b]P + [c]P, we
now describe an alternative approach that computes the result directly, produc-
ing only the x-coordinate of the intermediate point [b]P + [c]P. To combine
the two steps, one constructs a parabola through the points [b]P, [b]P, [c]P,
−[2b + c]P.

To form f2b+c,P(Q), combine forming fb+c,P(Q) with fb+c+b,P(Q) as follows.
We omit the notation for evaluation at Q and simply write f2b+c etc. and use
the notation lP for the vertical line function lP,−P through P and −P. We have

f2b+c,P = fb+c,P · fb,P · g[b+c]P,[b]P

= ( fb,P · fc,P · g[b]P,[c]P) · ( fb,P · g[b+c]P,[b]P)

=
f 2
b,P · fc,P
l[2b+c]P

·
l[b]P,[c]P · l[b+c]P,[b]P

l[b+c]P
.

Now, one can replace the second fraction l[b]P,[c]P · l[b+c]P,[b]P/l[b+c]P by the
parabola whose formula is given in the next paragraph.

Equation for the parabola
If R and S are points on E, then there is a (possibly degenerate) parabolic
equation passing through R twice (i.e., tangent at R) and also passing through
S and −[2]R − S . Using the notation R = (x1, y1) and S = (x2, y2) with
R + S = (x3, y3) and 2R + S = (x4, y4), a formula for this parabola is

(y + y3 − λ1(x − x3))(y − y3 − λ2(x − x3))
x − x3

. (9.4)
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The left half of the numerator of (9.4) is a line passing through R, S , and −R−S
whose slope is λ1. The second half of the numerator is a line passing through
R+S , R, and −[2]R−S , whose slope is λ2. The denominator is a (vertical) line
through R + S and −R − S . The quotient has zeros at R, R, S , −[2]R − S and a
pole of order four at O.

One can simplify Equation (9.4) by expanding it in powers of x − x3, using
the Weierstrass equation for E to eliminate references to y2 and y2

3.

y2 − y2
3

x − x3
− λ1(y − y3) − λ2(y + y3) + λ1λ2(x − x3)

= x2 + xx3 + x2
3 + a + λ1λ2(x − x3) − λ1(y − y3) − λ2(y + y3) (9.5)

= x2 + (x3 + λ1λ2)x − (λ1 + λ2)y + (x2
3 + a − λ1λ2x3 + (λ1 − λ2)y3).

Knowing that (9.5) passes through R = (x1, y1), one succinct formula for the
parabola is

(x − x1)(x + x1 + x3 + λ1λ2) − (λ1 + λ2)(y − y1). (9.6)

In the previous section we can now replace l[b]P,[c]P · l[b+c]P,[b]P/l[b+c]P by the
parabola (9.6) with R = [b]P and S = [c]P. Formula (9.6) for the parabola
does not reference y3 and is never identically zero since its x2 coefficient is 1.

The following example shows how in the case of affine coordinates, the
double-and-add operation can help to make the pairing algorithm more effi-
cient.

Example 9.6 Assume that we are computing an ate-like pairing in the same
setting as in Section 9.3.1 on page 14. Let ab , 0, i.e., d = 2, let k be even
such that we can use denominator elimination, and note that ω = α2. Now,
assume that we are at a position in the Miller loop, where we are computing
a doubling step followed by an addition step. This means that the two steps
compute f[2]R′+Q′,ψ(Q′)(P) from fR′,ψ(Q′)(P) and R′. Let us first analyse the cost
when doing this the usual way. We simply add the costs for doubling and addi-
tion from Tables 9.2 on page 16 and 9.3 on page 17, respectively. The resulting
cost is kMq + 2Iqk/2 + 6Mqk/w + 3Sqk/2 + 1M(ω) + 4addqk/2 + 14subqk/2 plus the
squaring cost Sqk for the standard Miller loop squaring and two multiplications
2Mqk with line functions, which are regular field multiplications in Fqk because
line functions are not sparse in this case.

Next assume that we are using the parabola technique instead of the usual
two steps. The squaring cost Sqk in the large field remains, but we only have to
do one multiplication Mqk with the parabola. Carrying out the analysis the
same way as in Section 9.3.1, one sees that it is possible to compute the
parabola and the point [2]R′ + Q′ with cost (k/2)Mq + 2Iqk/2 + 6Mqk/w + 2Sqk/2 +
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2M(ω) + M(ω2) + 5addqk/2 + 8subqk/2 + addq + subq. Overall, the parabola tech-
nique saves Mqk + (k/2)Mqk/2 + Sqk/2 , clearly the add and sub costs are lower,
but it uses two more multiplications by ω and ω2, respectively. In this spe-
cific setting, the parabola method is indeed more efficient than the standard
Miller loop with only doubling and addition steps. This effect becomes more
pronounced for larger embedding degrees.

9.5 Squared pairings

For applications to cryptography, the idea of using the squared Weil or Tate
pairing instead of the usual pairings was introduced in [28]. Peter was very
fond of the idea of squared pairings. The denominator cancellation, which im-
proves efficiency, was one very nice consequence, but that was also achieved
independently in a different way in [8, 9]. However, an often unrecognized part
of the history is that the squared Weil pairing may be viewed as a precursor to
the definition of the ate pairing and optimal pairings which are in the same vein
as the squared pairing. Namely, those more recent definitions consider a higher
power of the Tate pairing and achieve greater efficiency by reducing the Miller
loop length. The following exposition of the squared Weil and Tate pairings is
a lightly edited version of Sections 2 and 3 from [28].

9.5.1 The squared Weil pairing

The squared pairing idea was introduced in [28] as a construction of new pair-
ings, called the squared Weil pairing and squared Tate pairing. An analogous
pairing for hyperelliptic curves was also introduced. In each case, a direct for-
mula for evaluating the pairing was given, along with proofs that the values
coincide with the value of the original pairing (Weil or Tate) squared. Here we
present only the construction of the new pairing, and omit the proofs of cor-
rectness. These alternate pairings had the advantage of being more efficient to
compute than Miller’s algorithm for the original Weil and Tate pairings. The
squared pairing also has the advantage that it is guaranteed to output the correct
answer and does not depend on inputting a randomly chosen point. In contrast,
Miller’s algorithm may restart, since the randomly chosen point can cause the
algorithm to fail.

Algorithm for er(P,Q)2

Given two r-torsion points P and Q on E, we want to compute er(P,Q)2. Start
with an addition-subtraction chain for r. That is, after an initial 1, every element
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in the chain is a sum or difference of two earlier elements, until an r appears.
Well-known techniques give a chain of length O(log(r)). For each j in the
addition-subtraction chain, form a tuple t j = [[ j]P, [ j]Q, n j, d j] such that

n j

d j
=

f j,P(Q) f j,Q(−P)
f j,P(−Q) f j,Q(P)

. (9.7)

Start with t1 = [P, Q, 1, 1]. Given t j and tk, the following procedure gets t j+k.

1 Compute the points [ j]P + [k]P = [ j + k]P and [ j]Q + [k]Q = [ j + k]Q.
2 Find coefficients of the line l[ j]P,[k]P(X) = c0 + c1x(X) + c2y(X).
3 Find coefficients of the line l[ j]Q,[k]Q(X) = c′0 + c′1x(X) + c′2y(X).
4 Set

n j+k = n jnk(c0 + c1x(Q) + c2y(Q)) (c′0 + c′1x(P) − c′2y(P)),

d j+k = d jdk(c0 + c1x(Q) − c2y(Q)) (c′0 + c′1x(P) + c′2y(P)).

A similar construction gives t j−k from t j and tk. The vertical lines through [ j +

k]P and [ j + k]Q do not appear in the formulas for n j+k and d j+k, because the
contributions from Q and −Q (or from P and −P) are equal. When j + k = r,
this simplifies to n j+k = n jnk and d j+k = d jdk, since c2 and c′2 will be zero.

When nr and dr are non-zero, then the computation

nr

dr
=

fr,P(Q) fr,Q(−P)
fr,P(−Q) fr,Q(P)

has been successful, and we have the correct output. If, however, nr or dr is
zero, then some factor such as c0 + c1x(Q) + c2y(Q) must have vanished. That
line was chosen to pass through [ j]P, [k]P, and −[ j + k]P, for some j and k.
It does not vanish at any other point on the elliptic curve. Therefore this factor
can vanish only if Q = [ j]P or Q = [k]P or Q = −[ j + k]P. In all of these cases
Q will be a multiple of P, ensuring er(P,Q) = 1.

Overall, the squared Weil pairing advances from ti and t j to ti+ j with 12 field
multiplications and 2 field divisions in the generic case, compared to 18 field
multiplications and 2 field divisions for Miller’s general method. When i = j,
each algorithm needs 2 additional field multiplications due to the elliptic curve
doublings.

9.5.2 The squared Tate pairing

Assume P ∈ E(Fq)[r], and Q ∈ E(Fqk ), with neither being the identity and P
not equal to a multiple of Q. Define

vr(P,Q) :=
(

fr,P(Q)
fr,P(−Q)

)(qk−1)/r

,
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where fr,P is as above, and call vr the squared Tate pairing. To justify this
terminology, it was shown in [28] that vr(P,Q) = tr(P,Q)2.

Algorithm for vr(P,Q)
Given an r-torsion point P on E and a point Q on E, we want to compute
vr(P,Q). As before, start with an addition-subtraction chain for r. For each j in
the addition-subtraction chain, form a tuple t j = [[ j]P, n j, d j] such that

n j

d j
=

f j,P(Q)
f j,P(−Q)

. (9.8)

Start with t1 = [P, 1, 1]. Given t j and tk, the following procedure gets t j+k.

1 Compute the points [ j]P + [k]P = [ j + k]P.
2 Find the line function g[ j]P,[k]P(X) = c0 + c1x(X) + c2y(X).
3 Set

n j+k = n j · nk · (c0 + c1x(Q) + c2y(Q)),

d j+k = d j · dk · (c0 + c1x(Q) − c2y(Q)).

A similar construction gives t j−k from t j and tk. The vertical lines through [ j +

k]P and [ j + k]Q do not appear in the formulas for n j+k and d j+k, because
the contributions from Q and −Q are equal. When j + k = r, one can further
simplify this to n j+k = n j · nk and d j+k = d j · dk, since c2 will be zero. When
nr and dr are non-zero, then the computation of (9.8) with j = r is successful,
and after raising to the (qk − 1)/r-th power, we have the correct output. If
some nr or dr were zero, then some factor such as c0 + c1x(Q) + c2y(Q) must
have vanished. That line was chosen to pass through [ j]P, [k]P, and −[ j + k]P,
for some j and k. It does not vanish at any other point on the elliptic curve.
Therefore this factor can vanish only if Q = [ j]P or Q = [k]P or Q = −[ j+k]P
for some j and k. In all of these cases Q would be a multiple of P, contrary to
our assumption.
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