EC-OPRF: Oblivious Pseudorandom Functions using Elliptic Curves

Jonathan Burns^{*}, Daniel Moore, Katrina Ray, Ryan Speers and Brian Vohaska^{*}

Ionic Research math@ionicsecurity.com

Abstract

We introduce a secure elliptic curve oblivious pseudorandom function (EC-OPRF) which operates by hashing strings onto an elliptic curve to provide a simple and efficient mechanism for computing an oblivious pseudorandom function (OPRF). The EC-OPRF protocol enables a semi-trusted server to receive a set of cryptographically masked elliptic curve points from a client, secure those points with a private key, and return the resulting set to the client for unmasking. We also introduce extensions and generalizations to this scheme, including a novel mechanism that provides forward secrecy, and discuss the security and computation complexity for each variant. Benchmark tests for the implementations of the EC-OPRF protocol and one of its variants are provided, along with test vectors for the original protocol.

1 Introduction

In this paper, we propose a construction for a cryptographically secure oblivious pseudorandom function (OPRF) based on elliptic curve cryptography. As with other OPRF constructions, selected information is concealed from each of the two parties involved in the PRF. Colloquially speaking, a user Alice transfers an encoded input to a semi-trusted party Ted – who performs a calculation and sends the result to Alice – which Alice then uses to finalize the PRF evaluation. Throughout this process, two things hold: (a) Ted can neither determine Alice's original input nor compute her final output, and (b) Alice does not gain sufficient information to compute the PRF independently. More formally, we rely on the definition of an OPRF from [11], that it is a secure two-party protocol which for some pseudorandom function family f_r has the functionality $g(r, w) = (\lambda, f_r(w))$. The client holds the input w, the server holds a key r, the client outputs $f_r(w)$, and the server outputs nothing (designated by λ).

Such OPRF constructions can be utilized for a variety of applications including dynamic hashing, constructing deterministic yet memory-less authentication schemes, message-locked encryption key generation to enable de-duplication of encrypted files, and others as identified in [13], [11], and [2]. Other constructions proposed have been based on the Decisional Diffie-Hellman assumption (DDH) [11] and via Oblivious Polynomial Evaluation [18]. Similar techniques could be based on Chaum's blind signature scheme [8] similar to what we discuss in Section 5.2. We propose a method based on the security of elliptical curve discrete log problem.

In Section 2, we present the conventions used throughout the paper. The algorithm for the EC-OPRF protocol and its potential extensions are introduced in Section 3. Section 4 provides a detailed example of the EC-OPRF protocol, and includes test vectors for each step. Section 5 demonstrates how the EC-OPRF protocol can be generalized to arbitrary commutative groups – e.g., cylic groups – and offers a construction based on the RSA protocol, and Section 5.3 compares the performance metrics from the C++ implementations of the EC-ORPF protocol with one of its variants.

^{*}These authors contributed equally.

2 Preliminaries

In this section, we introduce definitions which will be used throughout this paper along with suggestions for choosing secure functions and parameters.

2.1 Definitions and Notations

Parties

- Let Alice be a client that initiates the OPRF protocol.
- Let *Ted* be a semi-trusted third party that salts queries from Alice.
- Let *Claude* be a cloud-based service, which may be either a passive or active participant in the protocol.

Elliptic curves

• For a prime p, let E(a, b, p) be an elliptic curve over GF(p) with order r defined by

$$y^2 = x^3 + ax + b$$

for integers a, b such that $4a^3 + 27b \neq 0.^1$

• Let $c * X = \underbrace{X + X + \dots + X}_{c \ times}$ denote the multiplication of a scalar integer c with a point X on an elliptic curve.

Hash and Pseudorandom functions

- Let $H: \{0,1\}^* \to E$ be a secure hash function, i.e., the digest H(w) of the binary string w is a point on the elliptic curve E^2 .
- Let $P: E \to \{0,1\}^*$ be a pseudorandom function, i.e., P(X) is the random binary string derived from the elliptic curve point $X \in E$. This is used in the **Random** step in Section 3 to convert an elliptic curve point to a fixed size block.

Client parameters

- Let $W = \{w_0, ..., w_{l-1}\}$ be the set of binary strings in a collection.
- Let $M = \{m_0, \ldots, m_{l-1}\}$ be a set of random integer scalars, called *masks*, corresponding to the input strings $\{w_0, \ldots, w_{l-1}\}$, which have multiplicative inverses $M^{-1} = \{m_0^{-1}, \ldots, m_{l-1}^{-1}\}$ modulo r, respectively.

Server parameters

- Let the scalar integer s be Ted's private key ("salt").³
- Let the scalar integer t be Claude's private key ("pepper").

 $^{^1\}mathrm{For}$ the purpose of our implementation, we choose the curve NIST P-384 unless otherwise specified.

 $^{^{2}}$ Our implementation composes the SHA-256 hash with the 'Try-And-Increment' hash [6] (see Algorithm 1).

 $^{^{3}}$ This is not a public salt such as is used to confound table-based attacks, but instead this is a private key.

2.2 Hash function *H*

The EC-OPRF protocol requires a secure hash function H which consumes an input string and produces a point on the elliptic curve E(a, b, p), where the mapping onto the curve provides confusion of the input string, and the function is non-invertible.

In practice, H can be constructed as the composition of a secure hash function $F_1: W \to GF(p)$ and an injection $F_2: GF(p) \to E(a, b, p)$, i.e., $H(w_i) = F_2(F_1(w_i))$ for each w_i in W. In this case, the security of the hash function H is equivalent to the security (including confusion and non-invertibility) of F_1 , so a secure cryptographic hash function such as SHA-256, RIPEMD-160, or BLAKE 2 should be used. For F_2 , there are several known methods for mapping an integer onto an elliptic curve [7, 14], e.g., the 'Try-and-Increment' method [6], the 'Twisted' curves method [9], the Boneh-Franklin admissible encoding for supersingular curves [5], the Shallue-Woestijne-Ulas algorithm [19], and the Brier method [7].

Of the methods mentioned above, the Boneh-Franklin admissible encoding, the 'Twisted' curves method, and the Brier method are indifferentiable from a random oracle [1, 14]. However, the Boneh-Franklin admissible encoding is a bijection over supersingular elliptic curves, which are susceptible to the MOV attack [17], and require substantially larger parameters to ensure the same level of security provided by ordinary elliptic curves. Similarly, the 'Twisted' curves method maps each input to either a point on the elliptic curve or one of its twisted curves, but this effectively doubles the computation time of the protocol since each computation must be carried on both curves [9]. In the example given in Section 4, H is defined as the composition of SHA-256 for F_1 and the 'Try-and-Increment' method for F_2 (see Algorithm 1 for details).

Algorithm 1 Secure hash function $H(w_i)$ Input: A string w_i and an elliptic curve E(a, b, p)Output: A point G_i on E(a, b, p)1: $x_i \leftarrow SHA-256(w_i) \pmod{p}$ 2: while $x_i^3 + ax_i + b$ is not a quadratic residue modulo p do3: $x_i \leftarrow x_i + 1$ 4: end while5: $y_i \leftarrow (x_i^3 + ax_i + b)^{1/2}$ 6: return $G_i = (x_i, y_i)$

Note that in Algorithm 1, if you exceed a security parameter (e.g., some number of iterations in the while loop) and the point is not a quadratic residue, then you re-start the algorithm with a different w_i (e.g., by incrementing the input value by one).

2.3 Elliptic curve E

The choice of the elliptic curve E(a, b, p) used throughout this paper affects the security, speed, and utility of the overall protocol. For instance, the order r of E(a, b, p) bounds the number of possible outputs. Choosing a curve where r is small increases the probability of collisions among the outputs, and weakens the security of the protocols that are dependent on the difficulty of the elliptic curve discrete logarithm problem.

For general purposes, we recommend that a secure and peer-reviewed elliptic curve should be chosen for use in this protocol. Examples include NIST curves as defined in [15] (e.g., NIST P-384) and [4] (e.g., Curve41417). When speed and memory are critical, several specialized elliptic curve families may also be appropriate (see [3, 12]), e.g., Edwards curves, Inverted Edwards curves, or Montgomery curves.

The parameters a, b, p, and r for the NIST P-384 curve are given in Table 1, and the P-384 curve is used throughout the example presented in Section 4.

3 Algorithm Description

This section defines the EC-OPRF protocol and offers optional extensions to it.

3.1 EC-OPRF

An oblivious pseudorandom function, such as the one described here, can be thought of as a keyed hash – with the properties that the first party holding the input to hash does not disclose the input to the second party, and the second party retains the key for the hash and does not disclose it to the first party.

1. (Hash) The client (i.e., Alice) first takes the collection of inputs $W = \{w_0, \ldots, w_{l-1}\}$ and computes the hash H of each (see Algorithm 1), namely

$$G_i = H(w_i),\tag{1}$$

to form the set $G = (G_0, ..., G_{l-1})$.

2. (Mask) For each G_i in G, the client then generates a random integer m_i as a mask for G_i , and computes the scalar multiplication

$$M_i = m_i * G_i,\tag{2}$$

and sends the list $M = (M_0, \ldots, M_{l-1})$ to the server (i.e., Ted).⁴

3. (Salt) The server then salts each M_i in M with its private key s as

$$S_i = s * M_i, \tag{3}$$

and returns the list $S = (S_0, \ldots, S_{l-1})$ back to the client.

4. (Unmask) Upon receipt of S, the client applies each inverse mask $m_i^{-1} \pmod{r}$ to S_i and obtains

$$U_i = m_i^{-1} * S_i = m_i^{-1} * (s * M_i) = m_i^{-1} * (s * (m_i * G_i)) = s * G_i,$$
(4)

the server's salted version of the hashed point G_i (corresponding to the input w_i).

Note that for any input w the output $U_i = s * G_i$ is well defined in terms of s and G_i , and cannot be solely computed by either the client or server. While Alice has access to G_i and $s * G_i$, recovering Ted's sis the elliptic curve discrete log problem and is known to be difficult to compute [16]. The server only has access to s and $m * H(w_i)$ and thus can not compute either w_i or $H(w_i)$. Hence, the EC-OPRF protocol is indeed oblivious.

3.2 Extensions

The OPRF from the previous section results in a secure two-party computation that can be used in calculations by the original user or used as a component for an external application. Section 3.2.1 describes how the protocol can be extended to provide forward secrecy for a third party application, and Section 3.2.2 provides additional security alternatives such as using the signed hash as a seed for a pseudorandom function.

3.2.1 Key Rotation

There are often security or regulatory requirements for updating keys used in cryptographic services which can either be based on time or frequency of use. In this section, a scheme is presented which provides, via key rotation, forward secrecy while maintaining a minimal state. To illustrate this, we describe a scenario involving three parties: the client (Alice), the salting server (Ted), and a recipient "cloud" server (Claude). See Figure 1 for a schematic outline of the three party system. As in Section 3.1 above, Alice chooses an input w_i and coordinates with Ted to compute $U_i = s * G_i$. Alice will use the result of the protocol as input to an external application hosted by Claude, so she sends him the unmasked point U_i . Claude can either use this value directly or apply an additional signature using a private integer t:

⁴Although it is possible for the server to recompute y_i from x_i and $sgn(y_i)$, sending both coordinates of M_i is more computationally efficient (at the expense of bandwidth).

Figure 1: Example flow between the EC-OPRF parties

5. (Pepper) The cloud based server receives the unmasked points $U = (U_0, \ldots, U_{l-1})$ and calculates each

$$R_i = t * U_i = (t \cdot s) * G_i, \tag{5}$$

which are used as tokens for a hosted application.

If Claude actively participates in the scheme by performing the **Pepper** step, a key rotation can be initiated by either the salting server, Ted, or another trusted party. The key rotation authority can initiate an update by generating a random integer k, calculating, $k^{-1} \pmod{r}$, and securely distributing the values k and k^{-1} to Ted and Claude, respectively, who update their private constants accordingly:

Ted:
$$\hat{s} \leftarrow k \cdot s$$
 and Claude: $\hat{t} \leftarrow k^{-1} \cdot t$.

It is straightforward to verify that the final keyed hash remains unchanged after performing the key rotation:

$$\hat{R}_i = (\hat{t} \cdot \hat{s}) * G_i = ((k^{-1} \cdot t) \cdot (k \cdot s)) * G_i = (t \cdot s) * G_i = R_i.$$

The keys s and t can be rolled repeatedly without storing the random constants k and k^{-1} . Ted learns nothing about Claude's computed key \hat{t} when he receives k, and likewise Claude learns nothing about Ted's computed key \hat{s} even though k^{-1} can be computed from k.

Messages sent across the channel between Alice and Ted are obsured by a random scalar mask, so the input w_i maps to a different elliptic curve point each time the protocol is run. However, the message becomes fixed after performing the **Unmask** step, making the channel between Alice and Claude susceptible to statistical active attacks. However, periodically changing Ted's key s to \hat{s} causes the point $U_i = s * G_i$ to become $\hat{U}_i = \hat{s} * G_i$, potentially prohibiting the sample space to grow large enough to build a reliable statistical model.

3.2.2 Client Side PRF

This extension relies on another definition, a *pseudorandom function* (PRF) P.

The client-side application of the PRF to the server's salted, unmasked elliptic curve points can be added as the final step in EC-OPRF protocol. An implementation of the EC-OPRF protocol with this extension could apply HMAC-SHA-256 to the *x*-coordinate of the elliptic curve point. Figure 2 shows an example system which incorporates this extension.

Figure 2: Example flow between components with a client-side PRF

To implement this, an additional step may be added after the **Unmask** step given in the algorithm. In this additional step, **Random**, the client applies the PRF P to each element of U, ensuring that a trusted one-way function has been utilized. The final output of the EC-OPRF is $R = (R_0, \ldots, R_{l-1})$ where:

$$R_i = P(U_i)$$

This extension is incompatible with the key rotation extension described above, as in this extension the client converts the point to a block, meaning that Claude can not preform the operations required for the key rotation extension.

4 Example

Alice the client wishes to randomize the contents of his collection of words using Ted the server's private key s to salt the randomization. The contents of Alice's collection should be kept secret from Ted, while keeping Ted's key s hidden from Alice. This can be accomplished using the EC-OPRF protocol.

Client hashing and masking

Hash. Before the protocol begins, Ted and Alice agree to base their computations on the NIST approved P-384 elliptic curve E(a, b, p) with the parameters found in Table 1.

Name	Description	Hex Value
	Coofficient	ffffffff ffffffff ffffffff ffffffff ffff
a	Coefficient	fffffff ffffffe fffffff 00000000 00000000
b Coefficient	Coofficient	b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112
	Coefficient	0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef
m	Drimo	ffffffff ffffffff ffffffff ffffffff ffff
p	riine	fffffff ffffffe fffffff 00000000 00000000
r	Ordor	ffffffff ffffffff ffffffff ffffffff ffff
	Order	c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

Table 1: Parameters of the NIST P-384 elliptic curve $y^2 = x^3 + ax + b$ over GF(p).[15]

If Alice wants to randomize the collection

$$W = ($$
 "see", "spot", "run" $).$

she will first hash the inputs with H and mask them with M. To compute H, Alice starts by hashing the inputs W with F_1 , which in this case is SHA-256 reduced modulo p. The output of $F_1(w_i)$ is shown in Table 2.

Input		$F_1(w$	$_i) = SHA-2$	$256(w_i)$ (m	od p)	
	00000000	00000000	0000000	00000000	aa9e9b5c	907d50fe
see $\rightarrow w_0$	b410f2a8	4e81ab72	c5ae6724	d57ccc53	650f9361	d33dc734
anot \ au	00000000	00000000	0000000	00000000	be2bdbb3	100e4119
spot $\rightarrow w_1$	1874Ъ192	057ae741	8f549e9d	4ec8b3eb	1a3ada7b	9453d365
	00000000	00000000	0000000	0000000	acba2551	2100f80b
$r un \rightarrow w_2$	56fc3ccd	14c65be5	5d94800c	da77585c	5f41a887	e398f9be

Table 2: Computation of F_1 for the inputs W.

Now that each input of W has been assigned to an element of GF(p), Alice can finish the computation of $H(w_i)$ using the 'Try-and-Increment' method for F_2 , which associates each element with a point on the elliptic curve E(a, b, p). The output of composing F_2 with F_1 is $G_i = H(w_i)$, and is shown in Table 3. Note that for each w_i , the x coordinate of G_i is almost identical to the values of $F_1(w_i)$, which indicates that Algorithm 1 terminates after only a few 'tries', indicating that a high number of the elements in GF(p) are quadratic residues of the chosen curve.

EC Point			G_{i}	$i = H(w_i)$	$=F_2(F_1(w_1))$;))	
	~	0000000	0000000	0000000	0000000	aa9e9b5c	907d50fe
C_{2}	ı	b410f2a8	4e81ab72	c5ae6724	d57ccc53	650f9361	d33dc736
G_0	21	cf810efb	16aa6de4	7e8a4532	c23f3b2b	4961fca2	943f3f41
	g	15ab492c	c3ae278e	4d8626fb	11c8078c	c859291f	e45b708d
	œ	00000000	00000000	0000000	0000000	be2bdbb3	100e4119
C_{1}	x	1874b192	057ae741	8f549e9d	4ec8b3eb	1a3ada7b	9453d36a
U1	21	04a82d48	a75fa977	9a69b6bb	09558892	e448ef12	a4763d73
	g	1173de19	3392b3f9	a2d4a9a3	eb76b6f5	47fc25e1	1369dc58
	œ	00000000	00000000	00000000	0000000	acba2551	2100f80b
G_2 –	J	56fc3ccd	14c65be5	5d94800c	da77585c	5f41a887	e398f9c3
	21	747d6333	cfd7724a	6dd810dc	7c845200	d18a8200	2aca7ae3
	9	db9f4140	401778d1	c4a964d7	aa49d30a	c527158c	67bb44a1

Table 3: Composition of F_2 with F_1 to compute H for the input W.

Mask. Since Alice wants to conceal the contents of her collection, she will mask each of her points before sending them to Ted. In particular, Alice multiplies each point G_i with a randomly generated scalar integer m_i (Table 4), and sends the resulting list M (Table 5) to Ted.

Scalar			Random I	Mask (m_i)		
m_0	ee1c8974	956313c3	14379d6e	714ce2af	3aa3fabe	105f7da6
	70d8ad2c	97148b08	b7da6e93	02d6d251	169bc8b8	472e9ad0
m	9b7491c6	ceb651cd	a592fd50	5c10aaa0	cbe4dfc4	662fb223
m_1	67Ъ46627	3ad1af51	886e4006	0c08c09f	7fe8ce6f	4c181fe7
m_2	e259c5b6	9e130b72	251e926e	815ba6c7	8343b3f2	cc044ec5
	b7c928c6	a8d2445c	d40c254c	d351ebc7	ba4bcccf	be79d63d

Table 4: The list m of scalar integer masks, chosen randomly by Alice for each input of W.

EC Point			$M_i = i$	$m_i * G_i$	
	m	5e231c9b 0b685	fbc 9cdb11b1	48009ba d08d7da8	8 b2a4419a
М.	\mathcal{X}	472ad7ff 2bbdb	d63 ad955361	814b5b1 3681d9f2	f 5c4cb73c
1110		d91c2360 27ce5	56c 6dfec798	65870078 127a97f	4 Oceffe4f
	y	d6ea1b39 4abbf	944 d86cb381	4f173fbc 4978c36	d c2b1432f
	m	3dd6a1c7 76248	97a 4376c0ae	b939432a 9f64f47	9 b51f2c89
M	\mathcal{X}	8f0f30cc 2d2c0	df8 88ca48a6	807cb66d d6a2b20	9 54056a54
11/1		4a3ec4c0 35c3f	b83 988b48d7	e341b8c1 02d762e	7 623a2928
	y	04661903 81e19	e4d c774bd04	447224db 3c9b986	4 b1a06965
	m	27bdf67b f939c	04a 294be47f	00be8a5d 2ac735d	5 3ceeed38
M_2 –	\mathcal{X}	0d93cd59 68137	1d7 177e0297	6f7b08e3 cfc502c	1 5077df99
		5ddc13d9 3ed47	05a 8c185c04	690e70d7 73649ce	1 fb7ed356
	y	9c68d925 4023a	bbb dd2a0b28	2f16d479 e2d89ac	f c918606f

Table 5: Alice's hashed and masked elliptic curve points M.

Server salting

Salt. Ted receives the list M, salts the points with his private key s (Table 6) by computing $S_i = s * M_i$ (Table 7), and replies to Alice with the list S.

Scalar	Random Salt (s)						
	379c5eaf	bd99f838	23fa59e6	cfe61a73	785fdcc5	7cceb654	
s	b35ed9f8	3d996f18	6a03d019	304dc3ce	9caf73c1	587b3e94	

Table 6: Ted's private key s used to salt M.

EC Point				$S_i = s$	$s * M_i$		
	~	1b11424c	a9777bde	4f16010d	94665c1f	154d2514	42a8d64b
S.	x	3c0eca92	bfe21c24	12c4ac56	330edb49	3f3bfcee	ca79b9f8
\mathcal{D}_0		cc178f90	807f2507	165ccd2f	a508c6ba	dde1abbd	374c6956
	g	261c34b5	1a9de437	4d5d021c	731f15f6	dd4d3712	2c6def90
	~	39f476df	09ca72f9	d45befa7	8eb68279	b2a06325	6e3f1569
S.	J.	d4bd2e1b	bd2add9f	399d8c16	e4d96a08	fbf07780	55b5a8de
D_1 .		5f7405ff	1ff521cc	19275b95	48b8e9a9	86c0643e	93b8c6b9
	g	577edbfc	64dcb67d	e755c1ab	b1c87c61	47d971b1	2f59bacf
	œ	484b1519	cc83bf60	42f843d7	dc9853f8	9904eebc	da3ac2a1
S.	A	9ec5e4f5	11e27f33	ffe8bcb6	88fe746a	5e5310e9	b8a6ef9e
52	21	eb302d0a	bbd68e07	8e0e9bc3	389d1d8b	909030e5	292def15
	g	7ce021c1	79fc86b6	d481a6b1	fb0e9972	a523f0c6	a21c0dbb

Table 7: Resulting points S from salting points M with Ted's private key s.

Client unmasking

Unmask. Now that Ted has salted the masked points, Alice can unmask each point. For each random scalar m_i , Alice computes the inverse mask $m_i^{-1} \pmod{r}$ shown in Table 8, and multiplies the resulting scalar with its respective point S_i to obtain $U_i = m_i^{-1} * S_i$ shown in Table 9.

Scalar			m_i^{-1} ($\mod r)$		
m_0^{-1}	d0216c93	1290f984	5596a916	ca6208be	8dfbaa02	311112d4
	dd4f726c	95665d07	3f11e3d7	6cd2f2a0	4a1c6584	163ebecb
m_1^{-1}	dfb76a82	4d721faa	28670a21	be9246ef	32ee3dde	e4fe8ecc
	4e2c4d91	110c6e15	40a2bc4d	17153221	46107a7d	fb3e85ec
m_2^{-1}	fca7d3b4	cbd0a157	b761fa3f	b05aa618	7bb02d4a	f4d375dc
	c6d2b06b	a42437c3	51cd7a75	9ca387f6	a81dddb9	5a2edd4a

Table 8: Multiplicative inverses m^{-1} of Alice's mask set m modulo r.

EC	Point	$U_i = m_i^{-1} * S_i$						
	~	6723853e	b2079a61	144f7ccc	96d2a29c	73db81a8	f454defb	
II.	x	e85fee0d	a92cb33a	ab52ca23	51e01a9a	a965793e	41c9cfe1	
$U_0 =$		6899ae01	8468f7dd	26f9f0cd	29545a87	a27dd036	51136609	
	g	1e7cca7c	00637994	64b7c6a5	fa4dc5c9	c82cecfc	976dbdcc	
	~	5403ca6a	59b8ca57	ccf2f8b9	c3eb8bb7	7443d1b3	2692a0cf	
U_{*}	J.	9eea1a80	0e8744bb	3cde0e3e	6ec27d0c	49bcfb77	b8a14f74	
v_1		ce7c86b2	e4b9d6ad	512adb4e	b9fc283d	2ee0b00e	8a8247bb	
	g	61e7a77b	be874990	24bb21a8	e3e1c818	4e3ad89c	114e7e34	
	œ	a51b0851	Obe9eebc	c13665e9	971bad76	36a96353	41daf84b	
U_{2}	A	cc1a9202	27ef156b	53c51eb3	8287675f	0fbc3840	168973dd	
02		35d17c05	42238c0c	0d350598	ec09efa6	3349f4a8	21dcf98a	
	g	ba875d3b	fb915c6c	d3c81a5e	92999f45	b831ffcd	30225c72	

Table 9: Points U unmasked by the Alice's mask m^{-1} .

5 Generalizations

The EC-OPRF protocol described in Section 3 is based on elliptic curve arithmetic, but the underlying protocol naturally extends to other abelian groups. For instance, the elliptic curve group E(a, b, p) over GF(p) can be replaced by the cyclic group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to give a protocol similar to the RSA algorithm. See Section 5.2 for details. It should be noted that the EC-OPRF protocol makes full use of the abelian group axioms. In particular, both commutativity and invertibility are essential to the **Unmask** step.

5.1 Masking Alternatives

The **Mask** and **Unmask** steps in the EC-OPRF involve scalar multiplication of an elliptic curve point, which can be computationally expensive. As an alternative, Alice and Ted agree upon a base point $B \in E$ as part of the initial elliptic curve parameters, and Ted uses B to compute T = s * B and then publicizes B and T. The alternative algorithm proceeds as before, but with the **Mask** and **Unmask** steps defined as follows:

2. (Mask) For each G_i in G, Alice generates a random integer m_i as a mask for G_i , and computes the point addition

$$M_i = (G_i) + (m_i * B)$$

and sends the list $M = (M_0, \ldots, M_{l-1})$ to Ted.

Ted proceeds to salt each point in M as before (see Section 3.1), but the S values are computed as

 $S_i = s * M_i = s * (G_i + m_i * B) = s * G_i + (s \cdot m_i) * B = s * G_i + m_i * T.$

While Ted is computing S, Alice can pre-compute the values $(-m_i) * T$ to accelerate the unmasking step:

4. (Unmask) Upon receipt of S, Alice removes the mask using the point addition

$$U_i = S_i + (-m_i) * T = s * G_i + (m_i - m_i) * T = s * G_i$$

to once again arrive at the secured version (U_i) of the hashed point G_i .

The final **Pepper** step, performed by Claude, uses scalar multiplication as before.

Avoiding the two scalar multiplications and the multiplicative inverse calculations in the **Unmask** step yields a near 100x speed increase (excluding pre-computation time), which can be measured as the difference between the computation time listed for the client unmask and server salt steps in Table 10.

In this alternative, Ted and Claude can still perform a key rotation, but Ted will also have to update his public point T – at which time an eavesdropper will be able to detect that a key rotation has taken place.

5.2 OPRFs based on cyclic groups

Without loss of generality, we consider arithmetic over the cyclic group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for some integer n, known to Alice, Ted, and Claude. Initially, Ted and Claude choose private integers s and t, respectively.

5.2.1 DH-OPRF

The security of the DH-OPRF protocol relies upon the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, so we take *n* to be a large prime. This construction can then follow:

- 1. (Hash) For an input w, Alice hashes w with a cryptographically secure hash function $H : \{0, 1\}^* \to \mathbb{Z}_n$ according to $w \mapsto H(w) \neq 0 \pmod{n}$.
- 2. (Mask) Alice chooses a random $m \in \mathbb{Z}$ relatively prime to $\varphi(n)$, and sends Ted $G \equiv H(w)^m \pmod{n}$.
- 3. (Salt) Ted uses his private s to reply to Alice with $S \equiv G^s = H(w)^{ms} \pmod{n}$.
- 4. (Unmask) Alice calculates $d \equiv m^{-1} \pmod{\varphi(n)}$ from her mask m, and sends Claude $U \equiv S^d \pmod{n}$. Note that $U = H(w)^{(m^{-1}m)s} \equiv H(w)^s \pmod{n}$.
- 5. (Pepper) Claude computes $R \equiv U^t = H(w)^{st} \pmod{n}$.

Similarly, a key rotation between Ted and Claude can be accomplished if Ted chooses a random integer k relatively prime to $\varphi(n)$ and sends Claude $k^{-1} \pmod{\varphi(n)}$. Ted and Claude update their respective private keys as

$$\hat{s} \leftarrow s \cdot k \pmod{n}$$
 and $\hat{t} \leftarrow t \cdot k^{-1} \pmod{n}$

and the final keyed hash $\hat{R} = H(w)^{(s\,k)(t\,k^{-1})} \equiv H(w)^{st} \equiv R \pmod{n}$ remains unchanged.

5.2.2 RSA-OPRF

Just as in Section 5.1, the **Mask** and **Unmask** steps can be accelerated by replacing several costly exponentiation steps with integer multiplication, at the cost of Ted publicizing an addition public key.

Before the RSA-OPRF begins, Ted generates large primes p and q, computes $n = p \cdot q$ and $\varphi(n) = (p-1)(q-1)$, chooses a key $s \in \mathbb{Z}$ relatively prime with $\varphi(n)$, and computes the value e such that $e \equiv s^{-1} \pmod{\varphi(n)}$. Ted then shares the public values n and e with Alice (and optionally n with Claude). For completeness, the analogous updates to the **Mask**, **Salt**, and **Unmask** steps within the RSA context are as described below:

2. (Mask) Alice chooses a random $m \in \mathbb{Z}$ that is relatively prime to n, and sends Ted

$$G \equiv m^e \cdot H(w) \pmod{n},$$

where e is Ted's public exponent.

3. (Salt) Ted uses his private exponent s to sign Alice's message with

$$S \equiv G^s = (m^e \cdot H(w))^s = m^{e \cdot s} \cdot H(w)^s \equiv m \cdot H(w)^s \pmod{n},$$

which follows the fact that $e \cdot s \equiv 1 \pmod{\varphi(n)}$.

4. (Unmask) Alice calculates $m^{-1} \pmod{n}$ from her mask m, and sends Claude

$$U \equiv m^{-1} \cdot S = (m^{-1} \cdot m) \cdot H(w)^s \equiv H(w)^s \pmod{n}.$$

Note that steps 2-4 describe Chaum's blind signature scheme [8]. After the **Unmask** step, Alice can send U to Claude, who can enable key rotation by applying the **Pepper** step and computing $R \equiv U^t = H(w)^{st}$ (mod n). As in Section 5.2.1, the key rotation takes place when Ted – or a trusted party with knowledge of the secret $\varphi(n)$ – generates a $k \in \mathbb{Z}$ relatively prime to $\varphi(n)$, computes $k^{-1} \pmod{\varphi(n)}$, and distributes k and k^{-1} to Ted and Claude, respectively. Once again, Ted and Claude update their respective private keys as

$$\hat{s} \leftarrow s \cdot k$$
 and $\hat{t} \leftarrow t \cdot k^{-1}$,

and Ted additional updates his public exponent to $\hat{e} \leftarrow \hat{s}^{-1} \pmod{\varphi(n)}$.

5.3 Comparison of EC-OPRF and RSA-OPRF

We implemented the EC-OPRF using the alternative masking scheme introduced in Section 5.1 and compared this with the RSA-OPRF algorithm introduced in Section 5.2.2 by running the following performance comparison.

Benchmark tests were conducted using implementations written in C++, utilizing core cryptographic components from Crypto++ [10], and run on a Windows 7 virtual machine with 2 GB of RAM and 2 CPUs. Our RSA-OPRF (based on Section 5.2.2) was implemented using a 2048-bit key, and the EC-OPRF (based on Section 5.1) was implemented using the NIST curve secp256k1. The code was compiled using Microsoft Visual Studio in the Win32 (x86) release configuration with the /02 flag to optimize for speed. The results from these computational experiments are shown in Table 10.

Party	Step	EC-OPRF (sec)	RSA-OPRF (sec)
Client	Hash + Mask	0.831	0.687
Server	Salt	10.850	26.908
Client	Unmask	0.160	0.206

Table 10: Speeds for 10,000 repetitions of the EC-OPRF (alternative masking) and RSA-OPRF protocols.

We observe that this implementation of the EC-OPRF offers a substantial overall speed reduction as compared to the RSA-OPRF, and only offers a slight time increase on the client side, which is beneficial when optimizing for many clients and a few servers, as it distributes the computational load to the clients.

We also see a significant improvement in the network bandwidth usage by the EC-OPRF construction as compared to other constructions. For example, Table 11 demonstrates that EC-OPRF uses 25% of the network bandwidth compared to RSA-OPRF.

	Public Key	Phrase	Phrase
	(PEM)	(raw)	(Base 64)
EC-OPRF	174 bytes	512 bytes	684 bytes
RSA-OPRF	451 bytes	2048 bytes	2731 bytes

Table 11: Network Bandwidth Comparison of EC-OPRF and RSA-OPRF

6 Summary

In this paper, we have built a cryptographically secure OPRF based on elliptic curve arithmetic inspired by an existing blind signature scheme. The EC-OPRF output is a value that is signed by one or more semi-trusted parties, and can be used as a primitive within other applications. We have provided a detailed construction for the EC-OPRF protocol, an example with test vectors, and a brief statistical analysis of the benchmark tests for an implementation written in C++. Further, an extension to the protocol was introduced that provides forward secrecy – while maintaining a minimal storage overhead. Several additional variants to EC-OPRF protocol were considered, which include a method that speeds up the client side calculations via modifications to the masking steps, and other generalizations based on commutative groups. In particular, we explored the analogous DH-OPRF and RSA-OPRF constructions. The computational complexity, precomputation requirements, and security conditions were discussed for each of the protocol variations, and we showed that the C++ implementation of the EC-OPRF is faster and more space efficient than the RSA-OPRF protocol.

Acknowledgements

The authors thank Dan Boneh for several helpful conversations.

References

- Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, Federico Olmedo, and Santiago Zanella-Beguelin. Verified indifferentiable hashing into elliptic curves. In 1st International Conference on Principles of Security and Trust, POST 2012, volume 7215, pages 209–228. Springer, January 2012.
- [2] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Dupless: Server-aided encryption for deduplicated storage. In *Proceedings of the 22Nd USENIX Conference on Security*, SEC'13, pages 179–194, Berkeley, CA, USA, 2013. USENIX Association.
- [3] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Kaoru Kurosawa, editor, Advances in Cryptology ASIACRYPT 2007: 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007. Proceedings, pages 29–50, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
- [4] Daniel J. Bernstein and Tanja Lange. Security dangers of the nist curves, 2013.
- [5] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001: 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001 Proceedings, pages 213–229, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
- [6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. Journal of Cryptology, 17(4):297–319, 2004.
- [7] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 237–254, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
- [8] David Chaum. Blind signatures for untraceable payments. In Advances in cryptology, pages 199–203. Springer, 1983.
- [9] Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David Pointcheval. The twist-augmented technique for key exchange. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006: 9th International Conference on Theory and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. Proceedings, pages 410–426. Springer Berlin Heidelberg, 2006.

- [10] Wei Dai. Crypto++ library. https://www.cryptopp.com.
- [11] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious pseudorandom functions. In *Theory of Cryptography Conference*, pages 303–324. Springer, 2005.
- [12] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic curves with efficient endomorphisms. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001: 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001 Proceedings, pages 190–200, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
- [13] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random functions (extended abstract). In George Robert Blakley and David Chaum, editors, Advances in Cryptology: Proceedings of CRYPTO 84, pages 276–288, Berlin, Heidelberg, 1985. Springer.
- [14] Thomas Icart. How to hash into elliptic curves. In Advances in cryptology CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 303–316, 2009.
- [15] Cameron F. Kerry. Fips pub 186-4 federal information processing standards publication digital signature standard (dss), 2013.
- [16] Kristin E. Lauter and Katherine E. Stange. The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography: 15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, pages 309–327, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
- [17] A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. *IEEE Transactions on Information Theory*, 39(5):1639–1646, 1993.
- [18] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC '99, pages 245–254, New York, NY, USA, 1999. ACM.
- [19] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational points on elliptic curves over finite fields. In Florian Hess, Sebastian Pauli, and Michael Pohst, editors, Algorithmic Number Theory: 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006. Proceedings, pages 510–524, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.