On the Relevance of Feature Selection for Profiled Side-channel Attacks

Stjepan Picek¹, Annelie Heuser², Alan Jovic³, Axel Legay⁴

¹ Delft University of Technology, The Netherlands

² CNRS, IRISA, Rennes, France

³ University of Zagreb, Croatia

⁴ Inria, IRISA, Rennes, France

Abstract. In the process of profiled side-channel analysis there is a number of steps one needs to make. One important step that is often conducted without a proper attention is selection of the points of interest (features) within the side-channel measurement trace. Most of the related work start with an assumption that the features are selected and various attacks are then considered and compared to find the best approach. In this paper, we concentrate on the feature selection step and show that if a proper selection is done, most of the attack techniques offer satisfactory results. We investigate how more advanced feature selection techniques stemming from the machine learning domain can be used to improve the side-channel attack efficiency. Our results show that the so-called Hybrid feature selection methods result in the best classification accuracy over a wide range of test scenarios and number of features selected.

Keywords: Profiled side-channel attacks, feature selection, machine learning, L1 regularization

1 Introduction

Profiled side-channel attacks (SCAs) received a significant amount of attention in the last years due to the fact that this type of attacks defines the worst case security limit. Besides the more traditional choice of template attack, a number of machine learning (ML) techniques have been investigated [1–3]. The common knowledge from these results suggest that profiled side-channel analysis is extremely powerful with machine learning being a highly viable choice.

Contrary, feature selection, in particular ML based techniques, did not receive a significant attention. Early works on template attacks introduced SOST/SOSD [4] as feature selection methods but most of the recent works assume that feature selection has already been performed and that it has been done in a good, if not optimal way, by mostly using Pearson correlation (e.g., [1, 2, 5]). There is a number of papers considering profiled SCA, where the number of features is fixed and the analysis is conducted from the perspective that the only improvements can come from adding more traces or by selecting a more powerful classifier. As we show, feature selection should not be only considered as a method of selecting the most informative features, but also as a way of:

- enabling to train a model faster,
- reducing the complexity of a model,
- improving the accuracy of a model if effective features are selected,
- reducing overfitting,
- "correcting" the covariance matrix in template attack when the number of features is too large with respect to the number of instances.

What can be somewhat surprising is the fact that the SCA community (for now) did not take a closer look on the feature selection part of the classification process and what is the current state-of-the-art. Similar to the powerful classification methods coming from the ML domain, there are also powerful feature selection techniques one could utilize. To the best of our knowledge, there is only one paper focusing only on the feature selection for profiled SCA [6] but it does not consider machine learning techniques and compares only methods known for side-channel analysis⁵.

Note that, in leakage detection (see e.g. [7]) one is identifying data-dependent, but not necessarily model-dependent leakage information. Therefore, detecting features (points in the trace) is a somehow complementary task to leakage detection as leakage detection may not necessarily lead to a successful key recovery. We will therefore in this paper only concentrate on feature selection techniques. More precisely, we investigate how the efficiency of SCA distinguisher can increase due to feature selection techniques. When discussing features (also known as points of interest, points in time, variables, attributes) we can distinguish among relevant, irrelevant, and redundant features. The aim of this paper is to discuss techniques that will enable us to find subsets of features consisting of only relevant features. For this, we utilize a number of feature selection techniques ranging from "simple" ones like the Pearson correlation, which is de-facto standard in the side-channel community all the way to the various Wrapper and Hybrid methods from the ML domain. To the best of our knowledge, such advanced techniques have never been used in the context of SCA before. Our main contributions are:

- 1. We show the importance of feature selection conducted individually for each model under consideration. For instance, we show that if a feature selection is done for the Hamming weight scenario, then in general one should not use the same features when considering intermediate value model.
- 2. We investigate two broad feature selection classes (Wrapper and Hybrid methods) never before used in SCA where some of those techniques perform the best on the examined datasets.
- 3. We show that when having a higher number of features than the number of instances per class, template attack becomes unstable, as was already indicated by previous works (e.g., [8]), which does not hold for ML techniques. We show that instead of increasing the number of traces, or using only one pooled covariance matrix [8] another approach is to use one of the Wrapper

 $^{^{5}}$ as feature selection or distinguisher used as a feature selection technique.

or Hybrid techniques, which may even result in higher accuracies compared to the template attack using one pooled covariance matrix.

4. We show that even a very small subset of features, if selected properly, can obtain higher accuracies than a superset obtained with other selection techniques (that may contain redundant or incorrect features).

2 Background

Calligraphic letters (e.g., \mathcal{X}) denote sets, capital letters (e.g., X) denote random variables taking values in these sets, and the corresponding lowercase letters (e.g., x) denote their realizations. Let k^* be the fixed secret cryptographic key (byte) and the random variable T the plaintext or ciphertext of the cryptographic algorithm which is uniformly chosen. The measured leakage is denoted as X and we are particularly interested in multivariate leakage $\mathbf{X} = X_1, \ldots, X_D$, where D is the number of time samples or features (attributes) in machine learning terminology. Considering a powerful attacker who has a device with knowledge about the secret key implemented, a set of N profiling traces $\mathbf{X}_1, \ldots, \mathbf{X}_N$ is used in order to estimate the leakage model beforehand. Note that this set is multidimensional (i.e., it has dimension $D \times N$). In the attack phase, the attacker then measures additional traces $\mathbf{X}_1, \ldots, \mathbf{X}_Q$ from the device under attack in order to break the unknown secret key k^* .

2.1 Datasets

DPAcontest v2 [9] DPAcontest v2 provides measurements of an AES hardware implementation. Previous works showed that the most suitable leakage model (when attacking the last round of an unprotected hardware implementation) is the register writing in the last round, i.e.,

$$Y(k^*) = \underbrace{\operatorname{Sbox}^{-1}[C_{b_1} \oplus k^*]}_{\text{previous register value}} \oplus \underbrace{C_{b_2}}_{\text{ciphertext byte}},$$
(1)

where C_{b_1} and C_{b_2} are two ciphertext bytes, and the relation between b_1 and b_2 is given through the inverse ShiftRows operation of AES. In particular, we choose $b_1 = 12$ resulting in $b_2 = 8$ as it is one of the easiest bytes to attack⁶. In Eq. (1), $Y(k^*)$ consists of 256 values, as an additional model we applied the HW on this value resulting in 9 classes. These measurements are relatively noisy and the resulting model-based SNR (signal-to-noise ratio), i.e., $\frac{var(signal)}{var(noise)} = \frac{var(y(t,k^*))}{var(x-y(t,k^*))}$, lies between 0.0069 and 0.0096. We conduct our experiments by starting with the whole AES trace consisting of 3 253 features.

 $^{^{6}}$ see e.g., in the hall of fame on [9]

DPAcontest v4 [10] The 4th version provides measurements of a masked AES software implementation. As the mask is known, one can easily turn it into an unprotected scenario. As it is a software implementation, the most leaking operation is not the register writing, but the processing of the S-box operation and we attack the first round. Accordingly, the leakage model changes to

$$Y(k^*) = \operatorname{Sbox}[P_{b_1} \oplus k^*] \oplus \underbrace{M}_{\text{known mask}}, \qquad (2)$$

where P_{b_1} is a plaintext byte and we choose $b_1 = 1$. Compared to the measurements from version 2, the SNR is much higher and lies between 0.1188 and 5.8577. For our experiments we start with a preselected window of 4 000 features from the original trace.

2.2 Profiled Attacks

In this section, we introduce the methods we use in the classification tasks. Note that we opted to work with only a small set of techniques, since we aim to explore how to find the best possible subset of features, while the classification task should be considered as just a means of comparison among feature selection methods. Consequently, we try to be as "method-agnostic" as possible and we note that for each set of features one could probably find a classification algorithm performing slightly better.

Naive Bayes The Naive Bayes classifier is a method based on the Bayesian rule and works under a simplifying assumption that the predictor features (measurements) are mutually independent among the D features, given the class value Y. Existence of highly-correlated features in a dataset can thus influence the learning process and reduce the number of successful predictions. Additionally, Naive Bayes assumes s normal distribution for predictor features. A Naive Bayes classifier outputs posterior probabilities as a result of the classification procedure [11].

The space complexity for Naive Bayes algorithm for both training and testing phase is $O(|\mathcal{Y}|Dv)$, where $|\mathcal{Y}|$ is the number of classes, D is the number of features, and v is the average number of values for a feature. The time complexity for the training phase equals O(ND) and for the testing phase it is equal to $O(|\mathcal{Y}|D)$, with N being the number of training examples.

Support Vector Machines Support Vector Machine (SVM) is a kernel based machine learning family of methods that are used to accurately classify both linearly separable and linearly inseparable data [12]. The SVM algorithm is parametric and deterministic. The basic idea when the data are not linearly separable is to transform them to a higher dimensional space by using a transformation kernel function. In this new space, the samples can usually be classified with a higher accuracy. We use radial-based SVM, where the most significant parameters are the cost of the margin C and the radial kernel parameter γ . A low C makes the decision surface smooth, while a high C aims at classifying all training examples correctly. The parameter γ defines how much influence a single training example has where the larger γ is, the closer other examples must be to be affected. The time complexity for SVM with radial kernel is $O(DN^3)$ and the space complexity is $O(DN^2)$.

Template Attack Similar to the Naive Bayes classifier the template attack relies on the Bayes theorem but considers the features as dependent. In the stateof-the art, template attack relies mostly on a normal distribution. Accordingly, template attack assumes that each $P(\mathbf{X} = \mathbf{x}|Y = y)$ follows a (multivariate) Gaussian distribution that is parameterized by its mean and covariance matrix for each class Y. The authors of [8] propose to use only one pooled covariance matrix averaged over all classes Y to cope with statistical difficulties and thus a lower efficiency. Besides the standard approach, we additionally use this version of the template attack in our experiments. The time complexity for TA is $O(ND^2)$ in the training phase and $O(|\mathcal{Y}|D^2)$ in the testing phase while the space complexity is $O(|\mathcal{Y}|D^2v)$.

3 Feature Selection Techniques

When considering how to select the most important features, i.e., when dealing with the feature subset selection problem, an algorithm must find a way how to select some subset of features, while ignoring the rest of them. Such an algorithm can be classified into three broad classes of feature selection techniques: Filter methods, Wrapper methods, and Hybrid methods. Note that, the first three presented Filter methods have been used as feature selection techniques for sidechannel analysis in previous works, whereas the remaining methods have never been studied to find features in traces as far as we are aware.

3.1 Filter Selection Methods

The selection of features with Filter methods is independent of the classifier method. Features are selected on the basis of their scores obtained after running various types of statistical tests. We show a general depiction how Filter methods work in Figure 1.

Fig. 1: Filter methods

Pearson Correlation Coefficient Pearson correlation coefficient measures linear dependence between two variables x and y in the range [-1, 1], where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. Pearson correlation for a sample of the entire population is defined by [13]:

$$Pearson(x,y) = \frac{\sum_{i=1}^{N} ((x_i - \bar{x})(y_i - \bar{y}))}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}.$$
(3)

It should be mentioned that Pearson correlation was calculated in our case for the target class variables HW and intermediate value, which consists of categorical values that are interpreted as numerical values. The features are ranked in descending order of Pearson correlation coefficient.

SOSD In [4], the authors proposed as a selection method the sum of squared differences simply as:

$$SOSD(x,y) = \sum_{i,j>i} (\bar{x}_{y_i} - \bar{x}_{y_j})^2,$$
 (4)

where \bar{x}_{y_i} is the mean of the traces where the model equals y_i . Because of the square, SOSD is always positive. Another advantage of using the square is to enlarge big differences.

SOST SOST is the normalized version of SOSD [4] and is thus equivalent by the pairwise student T-test:

$$SOST(x,y) = \sum_{i,j>i} \left((\bar{x}_{y_i} - \bar{x}_{y_j}) / \sqrt{\frac{\sigma_{y_i}^2}{n_{y_i}} + \frac{\sigma_{y_j}^2}{n_{y_j}}} \right)^2$$
(5)

with n_{y_i} and n_{y_j} being the number of instances where the model equals to y_i and y_j , respectively.

Symmetric Uncertainty Symmetric Uncertainty (SU) ranks the quality of a feature using the expression [14]:

$$SU(X,Y) = 2\frac{H(X) - H(X|Y)}{H(X) + H(Y)},$$
(6)

where H(X) is the entropy of the feature, and H(X|Y) is the conditional entropy of the feature knowing the values of the class attribute (model) [15]. We estimated the entropies in Eq. (6) using histograms.

3.2 Wrapper Selection Methods

In Wrapper methods [16], there is a feature selection algorithm as a wrapper around a classifier. The feature selection algorithm conducts a search for a good subset by using the classifier algorithm as a part of the function evaluating feature subsets as depicted in Figure 2. Note that in the Wrapper techniques, the classifier algorithm is considered as a black box. The classifier is run on the dataset with different sets of features removed from the data. The subset of features with the highest evaluation is chosen as the final set on which to run the classifier [17].

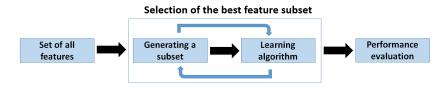


Fig. 2: Wrapper methods

More precisely, we use "best-first" forward direction search method to find feature subsets. This strategy uses greedy hill climbing with backtracking capabilities, starting from an empty feature subset and inspecting how the addition of a feature to the set influences the output of the classifier. The feature that increases the accuracy the most is kept in the selected set. When backtracking to a smaller set and examining all such paths through the feature set does not lead to better results, the search ends. The search may backtrack to at most k earlier branching decisions, which is a parameter of the search. Although the overall worst case time and space complexity of the search is exponential in the number of branching decisions k given a set of features D, i.e., $O(D^k)$, the complexity is reduced by keeping k small.

For our experiments we use two different classifiers in combination with wrapper selection techniques. First, the Naive Bayes classifier as explained in Section 2.2 [18, 19] and, second, SVM with a linear kernel. The details on SVM are given in Section 2.2 and here we note that utilizing a linear kernel is an efficient choice when the number of dimensions is high or we can assume there is a linear separation between data. Note that, since wrapper methods check a number of different subsets, the feature selection process is often treated as a high-dimensional problem.

3.3 Hybrid Selection Methods

Hybrid methods combine Filter and Wrapper techniques where the algorithms have their own built-in feature selection mechanisms. We depict a general diagram for Hybrid methods in Figure 3.

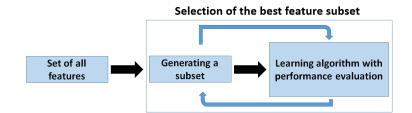


Fig. 3: Hybrid methods

L1-based Feature Selection In general, regularization encompasses methods that add a penalty term to the model, which then in turn reduces the overfitting and improves generalizations. L1 regularization works by adding a regularization term $\alpha \cdot R(\theta)$, where θ represents the parameters of the model, that is used to penalize large weights/parameters. For an *D*-dimensional input (i.e., the number of features equal to D) $R(\theta)$ is equal to $\sum_{i=1}^{D} |\theta_i|$. In the regularization term, α controls the trade-off between fitting the data and having small parameters. By adding a penalty for each non-zero coefficient, the expression forces weak features to have zero as coefficients, where a zero value means that the feature is omitted from the set. The usage of L1 regularization as a tool for feature selection is well known, for example the linear least-squares regression with L1 regularization (Lasso) algorithm [20]. There can be certain effects with L1 regularization when used for feature selection: most notably, out of a group of highly correlated features, L1 regularization will tend to select an individual feature [21]. In all our experiments, we use linear SVM with L1 for feature selection.

Stability Selection Stability selection is a method based on subsampling in combination with some classification algorithm (that can work with highdimensional data) [22]. The key concept of stability selection is the stability paths, which is the probability for each feature to be selected when randomly resampling from the data. In other words, a subsample of the data is fitted to the L1 regularization model where the penalty of a random subset of coefficients has been scaled. By repeating this procedure n times, the method will assign high scores to the features that are repeatedly selected.

We use multinomial logistic regression for this task and we set the number of randomized models to 5. Multinomial logistic regression uses a linear predictor function f(k, i) to predict the probability that observation i has the outcome k, of the form $f(k, i) = \beta_{0,k} + \beta_{1,k}x_{1,i} + \ldots + \beta_{M,k}x_{M,i}$ where $\beta_{M,k}x_{M,i}$ is a regression coefficient of the *m*th variable and the *k*th outcome. The β coefficients are estimated using the maximum likelihood estimation, which requires finding a set of parameters for which the probability of the observed data is the greatest.

4 Experimental Evaluation

In our experiments, we are interested in supervised (profiled) problems that have a large number of features D but where could exist a small subset D' of features that is sufficient to learn the mapping from the features X to the classes Y. Since our datasets have a very large number of features, we divide our experiments into two phases. The first phase concentrates on reducing the number of features to the smaller subsets of sizes [10, 25, 50, 75, 100] with the Filter methods, i.e. using Pearson correlation, SOSD, SOST, and Symmetric Uncertainty. Once we select the 100 most important features by utilizing those methods, then besides them we additionally use more computationally intensive techniques (two based on the Wrapper techniques, and two based on Hybrid methods) to find smaller subsets (see Section 3). Note that we use Symmetric Uncertainty as the source from where to reduce features with the Wrapper and Hybrid methods. Instead of the Symmetric Uncertainty any other technique could have been chosen; we opted to use it due to its stability and high performance over all datasets and models.

Both DPAcontest v4 and DPAcontest v2 datasets consist of 15 000 traces. We divide them in 2:1 ratio where we take the bigger set as the training set (10 000 traces) and the smaller set for testing (5 000 traces). On the training set, we conduct a 10-fold cross-validation and report the averaged results of individual folds. All the results in this section are presented as the accuracy (%) of the classifier where the accuracy is the number of correctly classified traces divided by the total number of traces. Note that for the intermediate model, Naive Bayes is used instead of SVM as an ML technique, since SVM is computationally more complex to conduct (as we have 256 classes instead of 9) and our focus lies on the feature selection techniques. All experiments are done with MATLAB, Python, and Weka tool [23].

For SVM with radial kernel we conduct tuning of the margin C and the radial kernel parameter γ . For the C parameter we explore values in range [1, 2, 5, 10, 20, 30, 40, 50, 60] and for γ in [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] range. For the DPAcontest v4 we select as the best parameter combination $\gamma = 0.4$ and C = 5. For DPAcontest v2 we use $\gamma = 0.05$ and C = 2. For all investigated Wrapper methods, we allow at most k = 5 earlier branching decisions. When using the Support Vector Machine Wrapper, we tune the parameter C in the range [0.01, 0.02, 0.05, 0.1, 0.5, 1, 5] and we select it to be equal to 1 for both DPAcontest v4 and v2. Finally, for the L1 regularization with linear SVM, we again tune the parameter C in the range [0.01, 0.02, 0.05, 0.1, 0.5, 1, 5] and we select the parameter C to be equal to 0.01.

Once the best feature subsets are selected, we run three profiled attacks for each feature selection technique in order to evaluate its efficiency. We use multiple profiled attacks in order to avoid potential effects that a certain feature selection technique could have on a specific attack. To verify this, we check whether the results for any attack significantly deviate from the other results. We emphasize that the goal here is not to compare the efficiency of attacks and consequently we do not give such an analysis. Finally, we note that for the Wrapper and

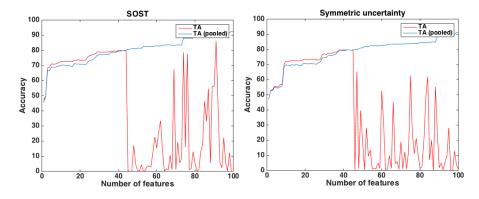


Fig. 4: SOST and Symmetric Uncertainty results for DPAcontest v4, HW model

Hybrid methods selecting the exact number of features can be difficult (since the methods can simply discard multiple features) and consequently subset sizes of [10, 25, 50, 75] represent an upper bound on the number of actually selected features.

4.1 DPAcontest v4

Tables 1 and 2 display the results for DPAcontest v4 with the HW model (i.e., $HW(Y(k^*))$) and intermediate value model (i.e., $Y(k^*)$), respectively. For each size of the feature subset, we give the best obtained solution in a cell with gray background color.

When considering the HW model, we see that SOST is the best option when having 100 features, closely followed by SOSD and Symmetric Uncertainty. Naturally, for a subset containing 100 features we do not expect significant difference between the techniques as it is very likely that all techniques select a very similar subset and even minor differences will not influence the accuracy highly. Still, Table 1 shows a smaller gap when using the Pearson correlation. For smaller numbers of features we see that the Hybrid methods are performing the best. Interestingly, taking 75 features with L1 regularization is nearly as accurate as taking 100 features with SOST and therefore one can reduce the complexity of the attack by considering a more advanced feature selection technique as preprocessing. Also, we cannot conclude that SOST is always superior to SOSD as stated in previous works.

One can observe that TA is only resulting in reasonable accuracy when considering less than 50 traces except when using the Naive Bayes wrapper that still gives good accuracies with 50 and 75 features. Indeed, for all other methods the accuracies look like randomly fluctuating. For example, for SOST we have around 70% for the subsets of size 10 and 25, then a drop down to 0.8%, followed by a rise to around 16% and a drop again to 0.0% for a subset of 100 features. The observation that the TA results in low accuracies (or success rates) when the

Table	1: Accura			74 - HW r	nodel
Classifier	10	Pearson co 25	50	75	100
ТА	57.66	59.38	10.72	5.14	0.14
TA (pooled)	55.18	55.98	81.73	83.77	88.88
SVM	59.44	66.10	80.90	90.92	94.89
		SOS	ST		
Classifier	10	25	50	75	100
ТА	72.63	76.61	0.80	15.97	0.00
TA (pooled)	70.19	73.49	81.35	88.06	92.30
SVM	73.83	83.05	93.38	96.08	97.84
		SOS			
Classifier	10	25	50	75	100
TA	73.15	76.99	28.23	1.04	33.25
TA (pooled)	70.05	74.79	77.57	85.21	90.30
SVM	74.11	83.37	90.26	95.72	97.58
Classifier	10 Sy	ymmetric U 25	J ncertainty 50	, 75	100
TA	72.19	73.35	19.23	62.62	0.76
TA (pooled)	69.87	70.39	81.09	83.77	91.30
SVM	73.32	81.60	93.14	95.32	97.54
S V M	13.32	81.00	93.14	95.52	91.54
Lin	near SVM w	vrapper ove 25	er SU with	100 featur 75	es
TA	73.29	83.03	8.64	4.62	
TA (pooled)	69.99	82.01	88.98	89.54	
SVM	74.26	90.02	95.84	96.70	
Classifier	ive Bayes w 10	25	50 with	75	es
ТА	71.65	72.71	76.27	70.53	
TA (pooled)	70.17	69.57	73.97	68.33	
SVM	73.48	74.78	80.38	74.86	
Classifier	10 L1 o	ver SU wit 25	h 100 featu 50	res 75	
ТА	72.19	76.93	24.89	0.86	
TA (pooled)	69.87	74.37	82.17	90.58	
SVM	83.92	90.28	95.16	97.08	
	stability sele				
Classifier	10	25	50 with 1	75	·
ТА	72.19	72.81	6.60	4.42	
TA (pooled)	69.87	71.23	80.95	90.88	
SVM	74.22	92.04	95.78	96.90	
				-	

Table 1: Accuracy for DPA contest v4 - HW model

number of features is high compared to the number of instances is in accordance with previous works [8]. We depict in Figure 4 the accuracies for template at-

Table 2: Accuracy for DPAcontest v4 - intermediate value model Pearson correlation

Classifier	10	Pearson co	rrelation 50	75	100
TA	6.96	0.20	0.02	0.08	0.00
TA (pooled)	5.42	8.62	27.03	49.98	60.64
Naive Bayes	5.16	7.88	13.30	18.46	22.38
		sos			
Classifier	10	25	50	75	100
ТА	18.51	0.20	0.02	0.00	0.02
TA (pooled)	18.53	37.94	60.56	72.23	74.71
Naive Bayes	17.65	28.49	29.17	34.27	34.49
Classifican	10	SOS		75	100
Classifier TA	10 26.75	25 0.14	50 0.10	75 0.00	0.06
	24.35	43.92	65.05	73.89	75.01
TA (pooled) Naive Bayes	13.79	23.29	31.99	30.29	28.81
maive Dayes		ymmetric U		30.29	20.01
Classifier	10	25	50	75	100
ТА	16.29	0.16	0.00	0.00	0.00
TA (pooled)	15.81	36.23	60.02	74.65	75.05
Naive Bayes	15.60	28.96	28.74	34.62	31.54
Lin	ear SVM w	vrapper ove	r SU with	100 featur 75	es
TA	26.75	20.15	0.02	0.06	
TA (pooled)	24.33	43.82	64.85	70.99	
Naive Bayes	13.76	23.34	32.06	32.64	
	ive Bayes w				es
Classifier TA	10	25	50 49.56	75 0.28	
	13.91	37.86			
TA (pooled)	4.85	33.01	43.64	53.10	
Naive Bayes	15.14	30.24	35.22	42.38	
Classifier	L1 o 10	ver SU with 25	100 featu 50	res 75	
ТА	28.61	0.02	0.18	0.04	
TA (pooled)	26.11	51.78	66.89	74.01	
Naive Bayes	15.36	28.82	32.26	33.68	
	tability sele				
Classifier	10	25	50	75	
TA	25.15	0.16	0.00	0.26	
TA (pooled)	21.41	47.36	64.25	73.07	
Naive Bayes	19.48	30.64	34.06	31.66	

tack and pooled template attack for SOST and Symmetric Uncertainty for each additional feature, which confirms our results given in the table. One can notice

that when using more than approximately 45 features the accuracy is not stable anymore, which stems from an imprecise estimation of the covariance matrices. More precisely, as we consider the HW model, the amount of instances within one class follows a binomial distribution, and thus HW classes 0 and 8 contain much less instances than the other HW classes. Now, as the estimation becomes unstable, in the testing phase TA classifies the instances to classes with unstable covariance matrices which naturally results in low accuracies. Interestingly, the Naive Bayes wrapper filters the features such that it becomes more efficient than the pooled TA. So, instead of using only one pooled covariance matrix, which reduces the precision for each class, we show that good feature selection can also help with instabilities and even give higher accuracies.

When using the intermediate value model (see Table 2), we see that for a larger number of features Symmetric Uncertainty is the best choice while for the smaller number of features L1 regularization is by far the best. From Tables 1 and 2 we see the obtained accuracies may differ significantly, which is to be expected due to the different models, but the question is what are the different selected features.

Figure 5 highlights (in white) the selected subset of features of sizes 10 and 25 for each of the methods over the complete preselected window of 4000 features. For the subset of 10 features one can observe that the area is approximately the same over all techniques. Interestingly, all techniques except Pearson correlation, SOST, and SU select an additional area for the intermediate value model compared to the HW model. When looking at the subset of 25 for the HW model we observe that indeed stability selection, which results in the highest accuracy for SVM using 25 features, is selecting an additional area of features that is not selected by the other methods. For the intermediate value model, in which L1 over SU is the best technique, we can make the same observation.

To take a look at this behavior in more detail, we depict Figure 5 and additionally Figure 6, which represents a zoom of the interesting area. First, even if the broad area for the subset of 10 features is the same, each technique selects distinct individual features. Finally, our previous observations about the best performing techniques for a subset of 10 and 25 features for both models are confirmed in Figure 6.

4.2 DPAcontest v2

When using the traces from the DPAcontest v2 (see Tables 3 and 4), we see that the situation changes considerably compared to the DPAcontest v4 due to the higher amount of noise. For Table 3, we emphasize that SVM obtained the highest accuracies, but we cannot consider this attack as the best performing method. This is due to the fact that the noise level is very high and consequently the classification between classes is not straightforward. More precisely, when considering the Hamming weight results (HW model) in extremely imbalanced classes (i.e., imbalanced population) we see they are strongly biased towards the HW class 4. As SVM (in the standard setting) is optimizing its classification with respect to the accuracy, the most effective principle is to put most of the

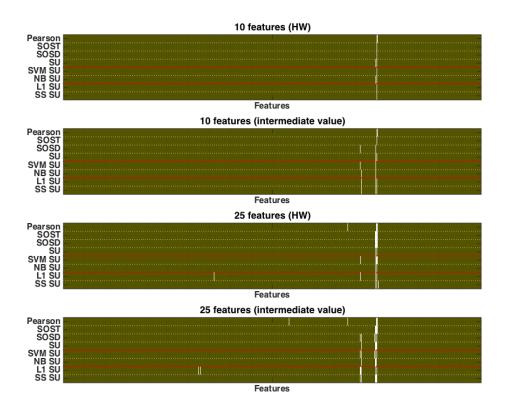


Fig. 5: Selected features (in white) over the complete preselected window of 4000 features from the original trace (DPAcontest v4). SVM SU denotes Support Vector Machine Wrapper, NB SU denotes Naive Bayes Wrapper, L1 SU denotes L1-based Feature Selection, and SS SU denotes Stability Selection.

records into the HW class 4. However, clearly this will not be beneficial in SCA setting.

When only looking at TA and TA pooled methods, we see that the Pearson correlation reaches the best solution for a subset of 75 features, which is only slightly higher than L1 over SU. For 100 features SU results in the highest accuracy, for 10 features SVM wrapper over SU performs the best, and L1 over SU performs the best for 25 and 50 features. Also, we noticed that in this setting the selected subsets of features for SOST and SOSD are equivalent (or highly similar).

When considering the intermediate value model, Table 4 shows that L1 over SU finds the best feature subsets for 10 25, and 75 features. The other Hybrid method, SS over SU find the best result for 50 features, and finally, for 100 features SOST/SOST reach the highest accuracy. We note that in this scenario the classification is relatively complex and accuracies are very low (and in some

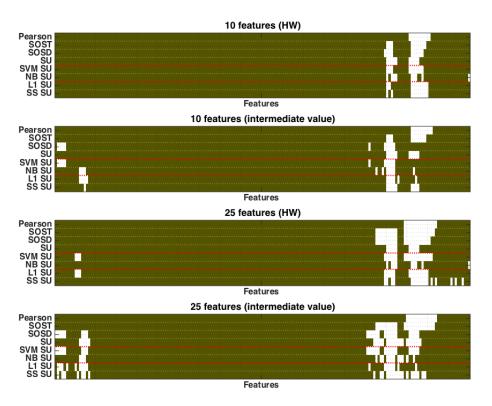


Fig. 6: Zoom in into Figure 5 (region with the most selected features)

cases also random). So again as for DPAcontest v4, we observe that Hybrid techniques (in particular L1 over SU) perform effectively as a feature selection method for the HW as well as the intermediate value model.

The selected features over the computation of the last round of AES is displayed in Figure 7. Compared to the DPAcontest v4, the features are much wider spread and one cannot observe a particular area which is common to all techniques as in Figure 6. This in particularly holds for the HW model and stems from the high class imbalance scenario.

Finally, we run statistical analysis to determine the difference in the performance of the tested feature selection algorithms. We investigate three scenarios: what is the best class of feature selection techniques for DPAcontest v2 and v4, and the best performing feature selection technique in general (note that we do not consider in our analysis the scenario with 100 features since Hybrid and Wrapper methods are not evaluated on it). We conduct nonparametric statistical analysis and as a measure of efficiency we use accuracy. Since we have several algorithms and test scenarios, we use a multiple comparison test – Friedman twoway analysis of variances. Based on it, we conclude that there are differences in the performance of algorithms in all three scenarios. When considering DPAcon-

			v2 - HW n	nodel
10	25 Pearson co	50	75	100
9.96	15.61	0.86	6.76	7.12
4.64	6.32	7.30	9.16	9.12
26.80	26.82	26.82	26.78	26.92
	sos	ST		
10	25	50	75	100
0.24	0.40	0.32	0.54	0.42
0.44	0.44	0.46	0.42	0.40
27.75	27.75	27.75	27.75	27.75
				100
				0.42
	-	0.46		0.40
27.75 S1	27.75 vmmetric I	27.75 Incertainty	27.75	27.75
10	25	50 50	, 75	100
9.80	15.13	9.06	8.90	3.74
7.36	8.50	8.20	8.20	9.28
26.82	26.82	26.82	26.82	26.82
				es
		-		
ive Bayes w 10	rapper ove 25		100 featur 75	es
2.72	3.38	4.92	2.62	
2.68	3.24	5.92	3.58	
26.82	26.82	26.82	26.82	
L1 o	ver SU wit	h 100 featu	ires	
10	25	50 50	75	
9.28	15.81	11.78	0.40	
7.18	7.50	8.50	9.14	
26.82	26.82	26.82	26.82	
•				;
26.82	26.82	26.82	26.82	
	10 9.96 4.64 26.80 10 0.24 0.44 27.75 10 0.24 0.44 27.75 10 9.80 7.36 26.82 10 10.80 5.66 26.82 10 2.68 26.82 10 2.72 2.68 26.82 10 9.28 7.18 26.82	Pearson co 10 25 9.96 15.61 4.64 6.32 26.80 26.82 10 25 0.24 0.40 0.44 0.44 27.75 27.75 10 25 0.24 0.40 0.44 0.44 27.75 27.75 Symmetric U 10 0.44 0.44 27.75 27.75 Symmetric U 10 25 26.82 9.80 15.13 7.36 8.50 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 9.28 15.81 7.18 7.50 26.82 26.82 9.28 15.81 7.18 7.50 <	Pearson correlation 10 25 50 9.96 15.61 0.86 4.64 6.32 7.30 26.80 26.82 26.82 SOST 10 25 50 0.24 0.40 0.32 0.44 0.44 0.46 27.75 27.75 27.75 10 25 50 0.24 0.40 0.32 0.44 0.44 0.46 27.75 27.75 27.75 27.75 27.75 27.75 27.75 27.75 27.75 9.80 15.13 9.06 7.36 8.50 8.20 26.82 26.82 26.82 26.82 26.82 26.82 10 25 50 2.72 3.38 4.92 2.6.82 26.82 26.82 2.6.82 26.82 26.82 2.6.82 26.82	10 25 50 75 9.96 15.61 0.86 6.76 4.64 6.32 7.30 9.16 26.80 26.82 26.82 26.78 SOST 10 25 50 75 0.24 0.40 0.32 0.54 0.44 0.44 0.46 0.42 27.75 27.75 27.75 27.75 10 25 50 75 0.24 0.40 0.32 0.54 0.44 0.44 0.46 0.42 27.75 27.75 27.75 27.75 9.80 15.13 9.06 8.90 7.36 8.50 8.20 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82

Table 3: Accuracy for DPA contest v2 - HW model

test v4 and v2, the best ranked class of feature selection techniques is Hybrid. When considering all feature selection methods over all test instances, the best

Table 4: Accuracy for DPAcontest v2 - intermediate value model Pearson correlation 25 50 75 100 100 26 100 27 100 20 1

10	Pearson co			100
10	25	50	75	100
				0.40
0.38	0.52	0.34	0.32	0.38
0.50	0.46	0.38	0.40	0.44
10			75	100
0.36	0.20	0.36	0.38	0.48
0.52	0.40	0.44	0.40	0.52
0.52	0.50		0.42	0.46
	SOS			
10	25	50	75	100
0.36	0.20	0.36	0.38	0.48
0.52	0.40	0.44	0.40	0.52
0.52	0.50	0.46	0.42	0.46
	25			100
	-			0.44
0.34	0.34	0.38	0.36	0.36
0.50	0.50	0.40	0.58	0.46
				es
ive Bayes v 10	vrapper ove	er SU with	100 teatur	
10	25	50	75	es
0.50				es
-	25	50	75	es
0.50	25 0.60	50 0.40	75 0.40	res
0.50 0.48 0.32	25 0.60 0.56 0.52	50 0.40 0.56 0.66	75 0.40 0.56 0.66	es
0.50 0.48 0.32	25 0.60 0.56	50 0.40 0.56 0.66	75 0.40 0.56 0.66	es
0.50 0.48 0.32	25 0.60 0.56 0.52 ver SU wit:	50 0.40 0.56 0.66 h 100 featu	75 0.40 0.56 0.66 ures	es
0.50 0.48 0.32 L1 o 10	25 0.60 0.56 0.52 ver SU with 25	50 0.40 0.56 0.66 h 100 featu	75 0.40 0.56 0.66 Ires 75	es
0.50 0.48 0.32 L1 o 10 7.08	25 0.60 0.56 0.52 ver SU wit: 25 27.27	50 0.40 0.56 0.66 h 100 featu 50 0.00	75 0.40 0.56 0.66 ires 75 0.00	es
0.50 0.48 0.32 L1 o 10 7.08 1.50 0.36 tability selection	25 0.60 0.52 ver SU with 25 27.27 3.22 0.58 ection over	50 0.40 0.56 0.66 h 100 feat 50 0.00 5.48 0.50 SU with 1	75 0.40 0.56 0.66 Irres 75 0.00 9.70 0.40 0.40	
0.50 0.48 0.32 L1 o 10 7.08 1.50 0.36 tability sele 10	25 0.60 0.52 ver SU wit 25 27.27 3.22 0.58 ection over 25	50 0.40 0.56 0.66 h 100 feat 50 0.00 5.48 0.50 SU with 1 50	75 0.40 0.56 0.66 Ires 75 0.00 9.70 0.40 0.40 Constantion 75	
0.50 0.48 0.32 L1 o 10 7.08 1.50 0.36 tability sele 10 5.54	25 0.60 0.56 0.52 ver SU wit 25 27.27 3.22 0.58 ection over 25 0.00	50 0.40 0.56 0.66 h 100 feat 50 0.00 5.48 0.50 SU with 1 50 0.00	75 0.40 0.56 0.66 1178 75 0.00 9.70 0.40 0.40 00 features 75 0.00	
0.50 0.48 0.32 L1 o 10 7.08 1.50 0.36 tability sele 10	25 0.60 0.52 ver SU wit 25 27.27 3.22 0.58 ection over 25	50 0.40 0.56 0.66 h 100 feat 50 0.00 5.48 0.50 SU with 1 50	75 0.40 0.56 0.66 Ires 75 0.00 9.70 0.40 0.40 Constantion 75	
	0.28 0.38 0.50 10 0.36 0.52 0.52 10 0.36 0.52 0.50	0.28 0.34 0.38 0.52 0.50 0.46 SOS 10 25 0.36 0.20 0.52 0.40 0.52 0.40 0.52 0.50 10 25 0.36 0.20 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.50 Symmetric U 10 10 25 0.34 0.44 0.34 0.34 0.50 0.50 Ever SVM wrapper over 10 25 0.36 0.36 0.32 0.52	0.28 0.34 0.40 0.38 0.52 0.34 0.50 0.46 0.38 SOST 10 25 50 0.36 0.20 0.36 0.52 0.40 0.44 0.52 0.40 0.44 0.52 0.50 0.46 SOSD 10 25 50 0.36 0.20 0.36 0.52 0.40 0.44 0.52 0.50 0.46 Symmetric Uncertainty 10 25 50 0.34 0.44 0.46 Symmetric Uncertainty 10 25 50 0.34 0.34 0.38 0.50 0.50 0.40 Image: SVM wrapper over SU with 10 25 50 0.36 0.36 0.36 <	0.28 0.34 0.40 0.34 0.38 0.52 0.34 0.32 0.50 0.46 0.38 0.40 SOST 10 25 50 75 0.36 0.20 0.36 0.38 0.52 0.40 0.44 0.40 0.52 0.40 0.44 0.40 0.52 0.50 0.46 0.42 SOSD 10 25 50 75 0.36 0.20 0.36 0.38 0.52 0.40 0.44 0.40 0.52 0.50 0.46 0.42 Symmetric Uncertainty 10 25 50 75 0.34 0.34 0.38 0.36 0.50 0.50 0.50 75 0.36 0.36 0.36 0.44 0.36 0.36 </td

ranked method is L1 over SU. Based on these results, we run post-hoc analysis to find where those differences exactly are and we use level of significance α

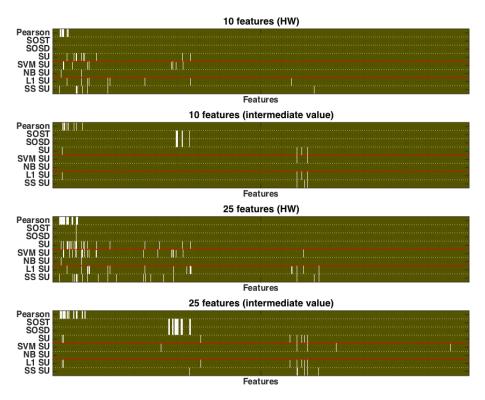


Fig. 7: Features selected in the last round of AES (DPAcontest v2)

of 0.05. When considering DPAcontest v4 and v2, Hybrid class is statistically better than both Filter and Wrapper classes. When considering all feature selection techniques, L1 over SU technique performs statistically better than all the other methods except Stability Selection over SU. Interestingly, when considering only Filter methods, the best performing one is Symmetric Uncertainty, which is again a method not used in SCA.

5 Conclusion & Future Work

In this paper, we addressed the question how to select the most informative features from the raw data and what is the influence of the feature selection step in the performance of the classification algorithm. Our results show that the proper selection of features has tremendous impact on the final classification accuracy. We see that often a small number of features using a proper feature selection technique can achieve approximately the same accuracy as some other technique using much larger number of features. We demonstrated how state-of-the-art techniques for feature selection from the ML area behave for side-channel analysis. We see that much more powerful techniques than those currently used in SCA community are applicable and achieve higher accuracies. Our results show that Hybrid techniques, which are combining Filter and Wrapper techniques, perform particularly well for the investigated datasets with both low and high noise. We especially emphasize the L1 regularization technique as the best performing one. Also, we observe that the Pearson correlation is rarely the most successful technique for feature subset selection, which is a common choice for feature selection in the SCA community.

We find that using Naive Bayes wrapper as a feature selection technique copes well with the known problem of instabilities in the covariance matrix for the template attack. Even more, in our experiments using this feature selection technique with TA is most of the time more efficient than using a pooled covariance matrix as proposed in the state-of-the-art.

Naturally, the feature selection techniques investigated here represent only a fraction of those in use today. One obvious future research direction is to explore further feature selection methods. Next, we took here several choices that could have been done differently. For instance, we used Symmetric Uncertainty as the first filter before applying Wrapper and Hybrid techniques. It would be interesting to see what further increase in accuracy can be obtained if for each scenario we use the best approach from SOSD, SOST, Pearson correlation, and Symmetric Uncertainty. Another straightforward extension of our work would be to study more deeply the complexity and convergence of the investigated feature selection techniques. Note that, we did not consider feature reduction techniques like PCA and LDA in this paper, as those techniques transform and reduce instead of select features. Future work may compare feature selection with feature reduction techniques in detail and determine which type may be superior in specific contexts.

References

- Heuser, A., Zohner, M.: Intelligent Machine Homicide Breaking Cryptographic Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.: COSADE. Volume 7275 of LNCS., Springer (2012) 249–264
- Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach based on machine learning. Int. J. Appl. Cryptol. 3(2) (June 2014) 97–115
- Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementations Using Deep Learning Techniques. In Carlet, C., Hasan, M.A., Saraswat, V., eds.: SPACE 2016, Proceedings. Volume 10076 of LNCS., Springer (2016) 3–26
- Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In Goubin, L., Matsui, M., eds.: Cryptographic Hardware and Embedded Systems -CHES 2006: 8th International Workshop, Yokohama, Japan, October 10-13, 2006., Berlin, Heidelberg, Springer Berlin Heidelberg (2006) 15–29
- Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer (December 2006) ISBN 0-387-30857-1, http://www. dpabook.org/.

- Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to Compare Selections of Points of Interest for Side-Channel Distinguishers in Practice? In Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M., eds.: ICICS 2014, Revised Selected Papers, Cham, Springer International Publishing (2015) 200–214
- Cooper, J., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test Vector Leakage Assessment (TVLA) Methodology in Practice (Sept 24–26 2013) International Cryptographic Module Conference (ICMC), Holiday Inn Gaithersburg, MD, USA.
- Choudary, O., Kuhn, M.G.: Efficient Template Attacks. In Francillon, A., Rohatgi, P., eds.: Smart Card Research and Advanced Applications - 12th International Conference, CARDIS 2013. Revised Selected Papers. Volume 8419 of LNCS., Springer (2013) 253–270
- TELECOM ParisTech SEN research group: DPA Contest (2nd edition) (2009-2010) http://www.DPAcontest.org/v2/.
- 10. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013-2014) http://www.DPAcontest.org/v4/.
- Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29(2) (1997) 131–163
- 12. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York, NY, USA (1995)
- James, G., Witten, D., Hastie, T., Tibsihrani, R.: An Introduction to Statistical Learning. Springer Texts in Statistics. Springer New York Heidelbert Dordrecht London (2001)
- Yu, L., Liu, H.: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In Fawcett, T., Mishra, N., eds.: Proceedings, Twentieth International Conference on Machine Learning. Volume 2. (2003) 856–863
- Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2005)
- John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Machine Learning: Proceedings of the Eleventh International, Morgan Kaufmann (1994) 121–129
- Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artif. Intell. 97(1-2) (December 1997) 273–324
- Cortizo, J.C., Giraldez, I.: Multi Criteria Wrapper Improvements to Naive Bayes Learning. In Corchado, E., Yin, H., Botti, V., Fyfe, C., eds.: Intelligent Data Engineering and Automated Learning – IDEAL 2006: 7th International Conference, 2006. Proceedings, Springer Berlin Heidelberg (2006) 419–427
- Gütlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers. In: Symposium on Computational Intelligence and Data Mining (CIDM). (2009) 332–339
- Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society, Series B 58 (1994) 267–288
- Ng, A.Y.: Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In: Proceedings of the Twenty-first International Conference on Machine Learning. ICML '04, New York, NY, USA, ACM (2004) 78–85
- Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society, Series B 72 (2010) 417–473
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1) (November 2009) 10–18