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Abstract. In the process of profiled side-channel analysis there is a
number of steps one needs to make. One important step that is often
conducted without a proper attention is selection of the points of interest
(features) within the side-channel measurement trace. Most of the related
work start with an assumption that the features are selected and various
attacks are then considered and compared to find the best approach. In
this paper, we concentrate on the feature selection step and show that if
a proper selection is done, most of the attack techniques offer satisfactory
results. We investigate how more advanced feature selection techniques
stemming from the machine learning domain can be used to improve the
side-channel attack efficiency. Our results show that the so-called Hybrid
feature selection methods result in the best classification accuracy over
a wide range of test scenarios and number of features selected.

Keywords: Profiled side-channel attacks, feature selection, machine learning,
L1 regularization

1 Introduction

Profiled side-channel attacks (SCAs) received a significant amount of attention
in the last years due to the fact that this type of attacks defines the worst
case security limit. Besides the more traditional choice of template attack, a
number of machine learning (ML) techniques have been investigated [1–3]. The
common knowledge from these results suggest that profiled side-channel analysis
is extremely powerful with machine learning being a highly viable choice.

Contrary, feature selection, in particular ML based techniques, did not receive
a significant attention. Early works on template attacks introduced SOST/SOSD
[4] as feature selection methods but most of the recent works assume that feature
selection has already been performed and that it has been done in a good, if
not optimal way, by mostly using Pearson correlation (e.g., [1, 2, 5]). There is a
number of papers considering profiled SCA, where the number of features is fixed
and the analysis is conducted from the perspective that the only improvements
can come from adding more traces or by selecting a more powerful classifier. As



we show, feature selection should not be only considered as a method of selecting
the most informative features, but also as a way of:

– enabling to train a model faster,
– reducing the complexity of a model,
– improving the accuracy of a model if effective features are selected,
– reducing overfitting,
– “correcting” the covariance matrix in template attack when the number of

features is too large with respect to the number of instances.
What can be somewhat surprising is the fact that the SCA community (for

now) did not take a closer look on the feature selection part of the classification
process and what is the current state-of-the-art. Similar to the powerful classi-
fication methods coming from the ML domain, there are also powerful feature
selection techniques one could utilize. To the best of our knowledge, there is only
one paper focusing only on the feature selection for profiled SCA [6] but it does
not consider machine learning techniques and compares only methods known for
side-channel analysis5.

Note that, in leakage detection (see e.g. [7]) one is identifying data-dependent,
but not necessarily model-dependent leakage information. Therefore, detecting
features (points in the trace) is a somehow complementary task to leakage detec-
tion as leakage detection may not necessarily lead to a successful key recovery.
We will therefore in this paper only concentrate on feature selection techniques.
More precisely, we investigate how the efficiency of SCA distinguisher can in-
crease due to feature selection techniques. When discussing features (also known
as points of interest, points in time, variables, attributes) we can distinguish
among relevant, irrelevant, and redundant features. The aim of this paper is
to discuss techniques that will enable us to find subsets of features consisting
of only relevant features. For this, we utilize a number of feature selection tech-
niques ranging from “simple” ones like the Pearson correlation, which is de-facto
standard in the side-channel community all the way to the various Wrapper and
Hybrid methods from the ML domain. To the best of our knowledge, such ad-
vanced techniques have never been used in the context of SCA before. Our main
contributions are:
1. We show the importance of feature selection conducted individually for each

model under consideration. For instance, we show that if a feature selection
is done for the Hamming weight scenario, then in general one should not use
the same features when considering intermediate value model.

2. We investigate two broad feature selection classes (Wrapper and Hybrid
methods) never before used in SCA where some of those techniques perform
the best on the examined datasets.

3. We show that when having a higher number of features than the number of
instances per class, template attack becomes unstable, as was already indi-
cated by previous works (e.g., [8]), which does not hold for ML techniques.
We show that instead of increasing the number of traces, or using only one
pooled covariance matrix [8] another approach is to use one of the Wrapper

5 as feature selection or distinguisher used as a feature selection technique.
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or Hybrid techniques, which may even result in higher accuracies compared
to the template attack using one pooled covariance matrix.

4. We show that even a very small subset of features, if selected properly,
can obtain higher accuracies than a superset obtained with other selection
techniques (that may contain redundant or incorrect features).

2 Background

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote random
variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. Let k∗ be the fixed secret cryptographic key
(byte) and the random variable T the plaintext or ciphertext of the cryptographic
algorithm which is uniformly chosen. The measured leakage is denoted as X and
we are particularly interested in multivariate leakage X = X1, . . . , XD, where
D is the number of time samples or features (attributes) in machine learning
terminology. Considering a powerful attacker who has a device with knowledge
about the secret key implemented, a set of N profiling traces X1, . . . ,XN is used
in order to estimate the leakage model beforehand. Note that this set is multi-
dimensional (i.e., it has dimension D × N). In the attack phase, the attacker
then measures additional traces X1, . . . ,XQ from the device under attack in
order to break the unknown secret key k∗.

2.1 Datasets

DPAcontest v2 [9] DPAcontest v2 provides measurements of an AES hard-
ware implementation. Previous works showed that the most suitable leakage
model (when attacking the last round of an unprotected hardware implementa-
tion) is the register writing in the last round, i.e.,

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (1)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and
b2 is given through the inverse ShiftRows operation of AES. In particular, we
choose b1 = 12 resulting in b2 = 8 as it is one of the easiest bytes to attack6.
In Eq. (1), Y (k∗) consists of 256 values, as an additional model we applied the
HW on this value resulting in 9 classes. These measurements are relatively noisy

and the resulting model-based SNR (signal-to-noise ratio), i.e., var(signal)
var(noise) =

var(y(t,k∗))
var(x−y(t,k∗)) , lies between 0.0069 and 0.0096. We conduct our experiments by

starting with the whole AES trace consisting of 3 253 features.

6 see e.g., in the hall of fame on [9]
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DPAcontest v4 [10] The 4th version provides measurements of a masked
AES software implementation. As the mask is known, one can easily turn it into
an unprotected scenario. As it is a software implementation, the most leaking
operation is not the register writing, but the processing of the S-box operation
and we attack the first round. Accordingly, the leakage model changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (2)

where Pb1 is a plaintext byte and we choose b1 = 1. Compared to the mea-
surements from version 2, the SNR is much higher and lies between 0.1188 and
5.8577. For our experiments we start with a preselected window of 4 000 features
from the original trace.

2.2 Profiled Attacks

In this section, we introduce the methods we use in the classification tasks. Note
that we opted to work with only a small set of techniques, since we aim to ex-
plore how to find the best possible subset of features, while the classification
task should be considered as just a means of comparison among feature selec-
tion methods. Consequently, we try to be as “method-agnostic” as possible and
we note that for each set of features one could probably find a classification
algorithm performing slightly better.

Naive Bayes The Naive Bayes classifier is a method based on the Bayesian
rule and works under a simplifying assumption that the predictor features (mea-
surements) are mutually independent among the D features, given the class
value Y . Existence of highly-correlated features in a dataset can thus influence
the learning process and reduce the number of successful predictions. Addition-
ally, Naive Bayes assumes s normal distribution for predictor features. A Naive
Bayes classifier outputs posterior probabilities as a result of the classification
procedure [11].

The space complexity for Naive Bayes algorithm for both training and testing
phase is O

(
|Y|Dv

)
, where |Y| is the number of classes, D is the number of

features, and v is the average number of values for a feature. The time complexity
for the training phase equals O

(
ND

)
and for the testing phase it is equal to

O
(
|Y|D

)
, with N being the number of training examples.

Support Vector Machines Support Vector Machine (SVM) is a kernel based
machine learning family of methods that are used to accurately classify both lin-
early separable and linearly inseparable data [12]. The SVM algorithm is para-
metric and deterministic. The basic idea when the data are not linearly separable
is to transform them to a higher dimensional space by using a transformation
kernel function. In this new space, the samples can usually be classified with a
higher accuracy. We use radial-based SVM, where the most significant param-
eters are the cost of the margin C and the radial kernel parameter γ. A low C
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makes the decision surface smooth, while a high C aims at classifying all train-
ing examples correctly. The parameter γ defines how much influence a single
training example has where the larger γ is, the closer other examples must be
to be affected. The time complexity for SVM with radial kernel is O

(
DN3

)
and

the space complexity is O
(
DN2

)
.

Template Attack Similar to the Naive Bayes classifier the template attack re-
lies on the Bayes theorem but considers the features as dependent. In the state-
of-the art, template attack relies mostly on a normal distribution. Accordingly,
template attack assumes that each P (X = x|Y = y) follows a (multivariate)
Gaussian distribution that is parameterized by its mean and covariance matrix
for each class Y . The authors of [8] propose to use only one pooled covariance
matrix averaged over all classes Y to cope with statistical difficulties and thus
a lower efficiency. Besides the standard approach, we additionally use this ver-
sion of the template attack in our experiments. The time complexity for TA
is O

(
ND2

)
in the training phase and O

(
|Y|D2

)
in the testing phase while the

space complexity is O
(
|Y|D2v

)
.

3 Feature Selection Techniques

When considering how to select the most important features, i.e., when dealing
with the feature subset selection problem, an algorithm must find a way how to
select some subset of features, while ignoring the rest of them. Such an algorithm
can be classified into three broad classes of feature selection techniques: Filter
methods, Wrapper methods, and Hybrid methods. Note that, the first three
presented Filter methods have been used as feature selection techniques for side-
channel analysis in previous works, whereas the remaining methods have never
been studied to find features in traces as far as we are aware.

3.1 Filter Selection Methods

The selection of features with Filter methods is independent of the classifier
method. Features are selected on the basis of their scores obtained after running
various types of statistical tests. We show a general depiction how Filter methods
work in Figure 1.

Fig. 1: Filter methods
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Pearson Correlation Coefficient Pearson correlation coefficient measures
linear dependence between two variables x and y in the range [−1, 1], where 1 is
total positive linear correlation, 0 is no linear correlation, and −1 is total negative
linear correlation. Pearson correlation for a sample of the entire population is
defined by [13]:

Pearson(x, y) =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

. (3)

It should be mentioned that Pearson correlation was calculated in our case for
the target class variables HW and intermediate value, which consists of categor-
ical values that are interpreted as numerical values. The features are ranked in
descending order of Pearson correlation coefficient.

SOSD In [4], the authors proposed as a selection method the sum of squared
differences simply as:

SOSD(x, y) =
∑
i,j>i

(x̄yi
− x̄yj

)2, (4)

where x̄yi
is the mean of the traces where the model equals yi. Because of the

square, SOSD is always positive. Another advantage of using the square is to
enlarge big differences.

SOST SOST is the normalized version of SOSD [4] and is thus equivalent by
the pairwise student T-test:

SOST (x, y) =
∑
i,j>i

(
(x̄yi
− x̄yj

)/

√
σ2
yi

nyi

+
σ2
yj

nyj

)2

(5)

with nyi and nyj being the number of instances where the model equals to yi
and yj , respectively.

Symmetric Uncertainty Symmetric Uncertainty (SU) ranks the quality of a
feature using the expression [14]:

SU(X,Y ) = 2
H(X)−H(X|Y )

H(X) +H(Y )
, (6)

where H(X) is the entropy of the feature, and H(X|Y ) is the conditional en-
tropy of the feature knowing the values of the class attribute (model) [15]. We
estimated the entropies in Eq. (6) using histograms.
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3.2 Wrapper Selection Methods

In Wrapper methods [16], there is a feature selection algorithm as a wrapper
around a classifier. The feature selection algorithm conducts a search for a good
subset by using the classifier algorithm as a part of the function evaluating
feature subsets as depicted in Figure 2. Note that in the Wrapper techniques,
the classifier algorithm is considered as a black box. The classifier is run on
the dataset with different sets of features removed from the data. The subset of
features with the highest evaluation is chosen as the final set on which to run
the classifier [17].

Fig. 2: Wrapper methods

More precisely, we use “best-first” forward direction search method to find
feature subsets. This strategy uses greedy hill climbing with backtracking capa-
bilities, starting from an empty feature subset and inspecting how the addition
of a feature to the set influences the output of the classifier. The feature that
increases the accuracy the most is kept in the selected set. When backtracking to
a smaller set and examining all such paths through the feature set does not lead
to better results, the search ends. The search may backtrack to at most k earlier
branching decisions, which is a parameter of the search. Although the overall
worst case time and space complexity of the search is exponential in the number
of branching decisions k given a set of features D, i.e., O

(
Dk
)
, the complexity

is reduced by keeping k small.
For our experiments we use two different classifiers in combination with

wrapper selection techniques. First, the Naive Bayes classifier as explained in
Section 2.2 [18, 19] and, second, SVM with a linear kernel. The details on SVM
are given in Section 2.2 and here we note that utilizing a linear kernel is an
efficient choice when the number of dimensions is high or we can assume there
is a linear separation between data. Note that, since wrapper methods check a
number of different subsets, the feature selection process is often treated as a
high-dimensional problem.

3.3 Hybrid Selection Methods

Hybrid methods combine Filter and Wrapper techniques where the algorithms
have their own built-in feature selection mechanisms. We depict a general dia-
gram for Hybrid methods in Figure 3.
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Fig. 3: Hybrid methods

L1-based Feature Selection In general, regularization encompasses methods
that add a penalty term to the model, which then in turn reduces the overfitting
and improves generalizations. L1 regularization works by adding a regularization
term α · R(θ), where θ represents the parameters of the model, that is used to
penalize large weights/parameters. For an D-dimensional input (i.e., the number

of features equal to D) R(θ) is equal to
∑D

i=1 |θi|. In the regularization term, α
controls the trade-off between fitting the data and having small parameters. By
adding a penalty for each non-zero coefficient, the expression forces weak features
to have zero as coefficients, where a zero value means that the feature is omitted
from the set. The usage of L1 regularization as a tool for feature selection is well
known, for example the linear least-squares regression with L1 regularization
(Lasso) algorithm [20]. There can be certain effects with L1 regularization when
used for feature selection: most notably, out of a group of highly correlated
features, L1 regularization will tend to select an individual feature [21]. In all
our experiments, we use linear SVM with L1 for feature selection.

Stability Selection Stability selection is a method based on subsampling
in combination with some classification algorithm (that can work with high-
dimensional data) [22]. The key concept of stability selection is the stability
paths, which is the probability for each feature to be selected when randomly
resampling from the data. In other words, a subsample of the data is fitted to
the L1 regularization model where the penalty of a random subset of coefficients
has been scaled. By repeating this procedure n times, the method will assign
high scores to the features that are repeatedly selected.

We use multinomial logistic regression for this task and we set the number of
randomized models to 5. Multinomial logistic regression uses a linear predictor
function f(k, i) to predict the probability that observation i has the outcome
k, of the form f(k, i) = β0,k + β1,kx1,i + . . . + βM,kxM,i where βM,kxM,i is a
regression coefficient of the mth variable and the kth outcome. The β coefficients
are estimated using the maximum likelihood estimation, which requires finding
a set of parameters for which the probability of the observed data is the greatest.
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4 Experimental Evaluation

In our experiments, we are interested in supervised (profiled) problems that have
a large number of features D but where could exist a small subset D′ of features
that is sufficient to learn the mapping from the features X to the classes Y . Since
our datasets have a very large number of features, we divide our experiments
into two phases. The first phase concentrates on reducing the number of features
to the smaller subsets of sizes [10, 25, 50, 75, 100] with the Filter methods, i.e.
using Pearson correlation, SOSD, SOST, and Symmetric Uncertainty. Once we
select the 100 most important features by utilizing those methods, then besides
them we additionally use more computationally intensive techniques (two based
on the Wrapper techniques, and two based on Hybrid methods) to find smaller
subsets (see Section 3). Note that we use Symmetric Uncertainty as the source
from where to reduce features with the Wrapper and Hybrid methods. Instead
of the Symmetric Uncertainty any other technique could have been chosen; we
opted to use it due to its stability and high performance over all datasets and
models.

Both DPAcontest v4 and DPAcontest v2 datasets consist of 15 000 traces. We
divide them in 2:1 ratio where we take the bigger set as the training set (10 000
traces) and the smaller set for testing (5 000 traces). On the training set, we
conduct a 10-fold cross-validation and report the averaged results of individual
folds. All the results in this section are presented as the accuracy (%) of the
classifier where the accuracy is the number of correctly classified traces divided
by the total number of traces. Note that for the intermediate model, Naive Bayes
is used instead of SVM as an ML technique, since SVM is computationally more
complex to conduct (as we have 256 classes instead of 9) and our focus lies on the
feature selection techniques. All experiments are done with MATLAB, Python,
and Weka tool [23].

For SVM with radial kernel we conduct tuning of the margin C and the
radial kernel parameter γ. For the C parameter we explore values in range
[1, 2, 5, 10, 20, 30, 40, 50, 60] and for γ in [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
range. For the DPAcontest v4 we select as the best parameter combination
γ = 0.4 and C = 5. For DPAcontest v2 we use γ = 0.05 and C = 2. For
all investigated Wrapper methods, we allow at most k = 5 earlier branching
decisions. When using the Support Vector Machine Wrapper, we tune the pa-
rameter C in the range [0.01, 0.02, 0.05, 0.1, 0.5, 1, 5] and we select it to be equal
to 1 for both DPAcontest v4 and v2. Finally, for the L1 regularization with linear
SVM, we again tune the parameter C in the range [0.01, 0.02, 0.05, 0.1, 0.5, 1, 5]
and we select the parameter C to be equal to 0.01.

Once the best feature subsets are selected, we run three profiled attacks for
each feature selection technique in order to evaluate its efficiency. We use multiple
profiled attacks in order to avoid potential effects that a certain feature selection
technique could have on a specific attack. To verify this, we check whether the
results for any attack significantly deviate from the other results. We emphasize
that the goal here is not to compare the efficiency of attacks and consequently
we do not give such an analysis. Finally, we note that for the Wrapper and
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Fig. 4: SOST and Symmetric Uncertainty results for DPAcontest v4, HW model

Hybrid methods selecting the exact number of features can be difficult (since
the methods can simply discard multiple features) and consequently subset sizes
of [10, 25, 50, 75] represent an upper bound on the number of actually selected
features.

4.1 DPAcontest v4

Tables 1 and 2 display the results for DPAcontest v4 with the HW model (i.e.,
HW (Y (k∗))) and intermediate value model (i.e., Y (k∗)), respectively. For each
size of the feature subset, we give the best obtained solution in a cell with gray
background color.

When considering the HW model, we see that SOST is the best option when
having 100 features, closely followed by SOSD and Symmetric Uncertainty. Nat-
urally, for a subset containing 100 features we do not expect significant difference
between the techniques as it is very likely that all techniques select a very similar
subset and even minor differences will not influence the accuracy highly. Still,
Table 1 shows a smaller gap when using the Pearson correlation. For smaller
numbers of features we see that the Hybrid methods are performing the best.
Interestingly, taking 75 features with L1 regularization is nearly as accurate as
taking 100 features with SOST and therefore one can reduce the complexity of
the attack by considering a more advanced feature selection technique as pre-
processing. Also, we cannot conclude that SOST is always superior to SOSD as
stated in previous works.

One can observe that TA is only resulting in reasonable accuracy when con-
sidering less than 50 traces except when using the Naive Bayes wrapper that
still gives good accuracies with 50 and 75 features. Indeed, for all other methods
the accuracies look like randomly fluctuating. For example, for SOST we have
around 70% for the subsets of size 10 and 25, then a drop down to 0.8%, followed
by a rise to around 16% and a drop again to 0.0% for a subset of 100 features.
The observation that the TA results in low accuracies (or success rates) when the
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Table 1: Accuracy for DPAcontest v4 - HW model
Pearson correlation

Classifier 10 25 50 75 100

TA 57.66 59.38 10.72 5.14 0.14

TA (pooled) 55.18 55.98 81.73 83.77 88.88

SVM 59.44 66.10 80.90 90.92 94.89

SOST
Classifier 10 25 50 75 100

TA 72.63 76.61 0.80 15.97 0.00

TA (pooled) 70.19 73.49 81.35 88.06 92.30

SVM 73.83 83.05 93.38 96.08 97.84

SOSD
Classifier 10 25 50 75 100

TA 73.15 76.99 28.23 1.04 33.25

TA (pooled) 70.05 74.79 77.57 85.21 90.30

SVM 74.11 83.37 90.26 95.72 97.58

Symmetric Uncertainty
Classifier 10 25 50 75 100

TA 72.19 73.35 19.23 62.62 0.76

TA (pooled) 69.87 70.39 81.09 83.77 91.30

SVM 73.32 81.60 93.14 95.32 97.54

Linear SVM wrapper over SU with 100 features
Classifier 10 25 50 75

TA 73.29 83.03 8.64 4.62

TA (pooled) 69.99 82.01 88.98 89.54

SVM 74.26 90.02 95.84 96.70

Naive Bayes wrapper over SU with 100 features
Classifier 10 25 50 75

TA 71.65 72.71 76.27 70.53

TA (pooled) 70.17 69.57 73.97 68.33

SVM 73.48 74.78 80.38 74.86

L1 over SU with 100 features
Classifier 10 25 50 75

TA 72.19 76.93 24.89 0.86

TA (pooled) 69.87 74.37 82.17 90.58

SVM 83.92 90.28 95.16 97.08

Stability selection over SU with 100 features
Classifier 10 25 50 75

TA 72.19 72.81 6.60 4.42

TA (pooled) 69.87 71.23 80.95 90.88

SVM 74.22 92.04 95.78 96.90

number of features is high compared to the number of instances is in accordance
with previous works [8]. We depict in Figure 4 the accuracies for template at-

11



Table 2: Accuracy for DPAcontest v4 - intermediate value model
Pearson correlation

Classifier 10 25 50 75 100

TA 6.96 0.20 0.02 0.08 0.00

TA (pooled) 5.42 8.62 27.03 49.98 60.64

Naive Bayes 5.16 7.88 13.30 18.46 22.38

SOST
Classifier 10 25 50 75 100

TA 18.51 0.20 0.02 0.00 0.02

TA (pooled) 18.53 37.94 60.56 72.23 74.71

Naive Bayes 17.65 28.49 29.17 34.27 34.49

SOSD
Classifier 10 25 50 75 100

TA 26.75 0.14 0.10 0.00 0.06

TA (pooled) 24.35 43.92 65.05 73.89 75.01

Naive Bayes 13.79 23.29 31.99 30.29 28.81

Symmetric Uncertainty
Classifier 10 25 50 75 100

TA 16.29 0.16 0.00 0.00 0.00

TA (pooled) 15.81 36.23 60.02 74.65 75.05

Naive Bayes 15.60 28.96 28.74 34.62 31.54

Linear SVM wrapper over SU with 100 features
Classifier 10 25 50 75

TA 26.75 20.15 0.02 0.06

TA (pooled) 24.33 43.82 64.85 70.99

Naive Bayes 13.76 23.34 32.06 32.64

Naive Bayes wrapper over SU with 100 features
Classifier 10 25 50 75

TA 13.91 37.86 49.56 0.28

TA (pooled) 4.85 33.01 43.64 53.10

Naive Bayes 15.14 30.24 35.22 42.38

L1 over SU with 100 features
Classifier 10 25 50 75

TA 28.61 0.02 0.18 0.04

TA (pooled) 26.11 51.78 66.89 74.01

Naive Bayes 15.36 28.82 32.26 33.68

Stability selection over SU with 100 features
Classifier 10 25 50 75

TA 25.15 0.16 0.00 0.26

TA (pooled) 21.41 47.36 64.25 73.07

Naive Bayes 19.48 30.64 34.06 31.66

tack and pooled template attack for SOST and Symmetric Uncertainty for each
additional feature, which confirms our results given in the table. One can notice
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that when using more than approximately 45 features the accuracy is not stable
anymore, which stems from an imprecise estimation of the covariance matrices.
More precisely, as we consider the HW model, the amount of instances within
one class follows a binomial distribution, and thus HW classes 0 and 8 contain
much less instances than the other HW classes. Now, as the estimation becomes
unstable, in the testing phase TA classifies the instances to classes with unstable
covariance matrices which naturally results in low accuracies. Interestingly, the
Naive Bayes wrapper filters the features such that it becomes more efficient than
the pooled TA. So, instead of using only one pooled covariance matrix, which
reduces the precision for each class, we show that good feature selection can also
help with instabilities and even give higher accuracies.

When using the intermediate value model (see Table 2), we see that for a
larger number of features Symmetric Uncertainty is the best choice while for the
smaller number of features L1 regularization is by far the best. From Tables 1
and 2 we see the obtained accuracies may differ significantly, which is to be
expected due to the different models, but the question is what are the different
selected features.

Figure 5 highlights (in white) the selected subset of features of sizes 10 and 25
for each of the methods over the complete preselected window of 4 000 features.
For the subset of 10 features one can observe that the area is approximately the
same over all techniques. Interestingly, all techniques except Pearson correlation,
SOST, and SU select an additional area for the intermediate value model com-
pared to the HW model. When looking at the subset of 25 for the HW model
we observe that indeed stability selection, which results in the highest accuracy
for SVM using 25 features, is selecting an additional area of features that is not
selected by the other methods. For the intermediate value model, in which L1
over SU is the best technique, we can make the same observation.

To take a look at this behavior in more detail, we depict Figure 5 and addi-
tionally Figure 6, which represents a zoom of the interesting area. First, even if
the broad area for the subset of 10 features is the same, each technique selects
distinct individual features. Finally, our previous observations about the best
performing techniques for a subset of 10 and 25 features for both models are
confirmed in Figure 6.

4.2 DPAcontest v2

When using the traces from the DPAcontest v2 (see Tables 3 and 4), we see
that the situation changes considerably compared to the DPAcontest v4 due to
the higher amount of noise. For Table 3, we emphasize that SVM obtained the
highest accuracies, but we cannot consider this attack as the best performing
method. This is due to the fact that the noise level is very high and consequently
the classification between classes is not straightforward. More precisely, when
considering the Hamming weight results (HW model) in extremely imbalanced
classes (i.e., imbalanced population) we see they are strongly biased towards the
HW class 4. As SVM (in the standard setting) is optimizing its classification
with respect to the accuracy, the most effective principle is to put most of the
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Fig. 5: Selected features (in white) over the complete preselected window of 4 000
features from the original trace (DPAcontest v4). SVM SU denotes Support
Vector Machine Wrapper, NB SU denotes Naive Bayes Wrapper, L1 SU denotes
L1-based Feature Selection, and SS SU denotes Stability Selection.

records into the HW class 4. However, clearly this will not be beneficial in SCA
setting.

When only looking at TA and TA pooled methods, we see that the Pearson
correlation reaches the best solution for a subset of 75 features, which is only
slightly higher than L1 over SU. For 100 features SU results in the highest
accuracy, for 10 features SVM wrapper over SU performs the best, and L1 over
SU performs the best for 25 and 50 features. Also, we noticed that in this setting
the selected subsets of features for SOST and SOSD are equivalent (or highly
similar).

When considering the intermediate value model, Table 4 shows that L1 over
SU finds the best feature subsets for 10 25, and 75 features. The other Hybrid
method, SS over SU find the best result for 50 features, and finally, for 100
features SOST/SOST reach the highest accuracy. We note that in this scenario
the classification is relatively complex and accuracies are very low (and in some
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Fig. 6: Zoom in into Figure 5 (region with the most selected features)

cases also random). So again as for DPAcontest v4, we observe that Hybrid
techniques (in particular L1 over SU) perform effectively as a feature selection
method for the HW as well as the intermediate value model.

The selected features over the computation of the last round of AES is dis-
played in Figure 7. Compared to the DPAcontest v4, the features are much wider
spread and one cannot observe a particular area which is common to all tech-
niques as in Figure 6. This in particularly holds for the HW model and stems
from the high class imbalance scenario.

Finally, we run statistical analysis to determine the difference in the perfor-
mance of the tested feature selection algorithms. We investigate three scenarios:
what is the best class of feature selection techniques for DPAcontest v2 and v4,
and the best performing feature selection technique in general (note that we
do not consider in our analysis the scenario with 100 features since Hybrid and
Wrapper methods are not evaluated on it). We conduct nonparametric statistical
analysis and as a measure of efficiency we use accuracy. Since we have several
algorithms and test scenarios, we use a multiple comparison test – Friedman two-
way analysis of variances. Based on it, we conclude that there are differences in
the performance of algorithms in all three scenarios. When considering DPAcon-
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Table 3: Accuracy for DPAcontest v2 - HW model
Pearson correlation

Classifier 10 25 50 75 100

TA 9.96 15.61 0.86 6.76 7.12

TA (pooled) 4.64 6.32 7.30 9.16 9.12

SVM 26.80 26.82 26.82 26.78 26.92

SOST
Classifier 10 25 50 75 100

TA 0.24 0.40 0.32 0.54 0.42

TA (pooled) 0.44 0.44 0.46 0.42 0.40

SVM 27.75 27.75 27.75 27.75 27.75

SOSD
Classifier 10 25 50 75 100

TA 0.24 0.40 0.32 0.54 0.42

TA (pooled) 0.44 0.44 0.46 0.42 0.40

SVM 27.75 27.75 27.75 27.75 27.75
Symmetric Uncertainty

Classifier 10 25 50 75 100

TA 9.80 15.13 9.06 8.90 3.74

TA (pooled) 7.36 8.50 8.20 8.20 9.28

SVM 26.82 26.82 26.82 26.82 26.82

Linear SVM wrapper over SU with 100 features
Classifier 10 25 50 75

TA 10.80 15.23 4.26 3.82

TA (pooled) 5.66 7.18 8.40 8.84

SVM 26.82 26.82 26.82 26.82

Naive Bayes wrapper over SU with 100 features
Classifier 10 25 50 75

TA 2.72 3.38 4.92 2.62

TA (pooled) 2.68 3.24 5.92 3.58

SVM 26.82 26.82 26.82 26.82

L1 over SU with 100 features
Classifier 10 25 50 75

TA 9.28 15.81 11.78 0.40

TA (pooled) 7.18 7.50 8.50 9.14

SVM 26.82 26.82 26.82 26.82

Stability selection over SU with 100 features
Classifier 10 25 50 75

TA 10.64 15.29 1.90 1.42

TA (pooled) 7.66 7.40 7.82 8.40

SVM 26.82 26.82 26.82 26.82

test v4 and v2, the best ranked class of feature selection techniques is Hybrid.
When considering all feature selection methods over all test instances, the best
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Table 4: Accuracy for DPAcontest v2 - intermediate value model
Pearson correlation

Classifier 10 25 50 75 100

TA 0.28 0.34 0.40 0.34 0.40

TA (pooled) 0.38 0.52 0.34 0.32 0.38

Naive Bayes 0.50 0.46 0.38 0.40 0.44

SOST
Classifier 10 25 50 75 100

TA 0.36 0.20 0.36 0.38 0.48

TA (pooled) 0.52 0.40 0.44 0.40 0.52

Naive Bayes 0.52 0.50 0.46 0.42 0.46

SOSD
Classifier 10 25 50 75 100

TA 0.36 0.20 0.36 0.38 0.48

TA (pooled) 0.52 0.40 0.44 0.40 0.52

Naive Bayes 0.52 0.50 0.46 0.42 0.46

Symmetric Uncertainty
Classifier 10 25 50 75 100

TA 0.34 0.44 0.46 0.50 0.44

TA (pooled) 0.34 0.34 0.38 0.36 0.36

Naive Bayes 0.50 0.50 0.40 0.58 0.46

Linear SVM wrapper over SU with 100 features
Classifier 10 25 50 75

TA 0.36 0.36 0.36 0.44

TA (pooled) 0.32 0.52 0.38 0.40

Naive Bayes 0.38 0.42 0.42 0.46

Naive Bayes wrapper over SU with 100 features
Classifier 10 25 50 75

TA 0.50 0.60 0.40 0.40

TA (pooled) 0.48 0.56 0.56 0.56

Naive Bayes 0.32 0.52 0.66 0.66

L1 over SU with 100 features
Classifier 10 25 50 75

TA 7.08 27.27 0.00 0.00

TA (pooled) 1.50 3.22 5.48 9.70

Naive Bayes 0.36 0.58 0.50 0.40

Stability selection over SU with 100 features
Classifier 10 25 50 75

TA 5.54 0.00 0.00 0.00

TA (pooled) 1.60 2.70 5.86 8.82

Naive Bayes 0.48 0.46 0.54 0.58

ranked method is L1 over SU. Based on these results, we run post-hoc analysis
to find where those differences exactly are and we use level of significance α
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Fig. 7: Features selected in the last round of AES (DPAcontest v2)

of 0.05. When considering DPAcontest v4 and v2, Hybrid class is statistically
better than both Filter and Wrapper classes. When considering all feature se-
lection techniques, L1 over SU technique performs statistically better than all
the other methods except Stability Selection over SU. Interestingly, when con-
sidering only Filter methods, the best performing one is Symmetric Uncertainty,
which is again a method not used in SCA.

5 Conclusion & Future Work

In this paper, we addressed the question how to select the most informative
features from the raw data and what is the influence of the feature selection
step in the performance of the classification algorithm. Our results show that
the proper selection of features has tremendous impact on the final classification
accuracy. We see that often a small number of features using a proper feature
selection technique can achieve approximately the same accuracy as some other
technique using much larger number of features.
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We demonstrated how state-of-the-art techniques for feature selection from
the ML area behave for side-channel analysis. We see that much more power-
ful techniques than those currently used in SCA community are applicable and
achieve higher accuracies. Our results show that Hybrid techniques, which are
combining Filter and Wrapper techniques, perform particularly well for the in-
vestigated datasets with both low and high noise. We especially emphasize the
L1 regularization technique as the best performing one. Also, we observe that
the Pearson correlation is rarely the most successful technique for feature subset
selection, which is a common choice for feature selection in the SCA community.

We find that using Naive Bayes wrapper as a feature selection technique
copes well with the known problem of instabilities in the covariance matrix for
the template attack. Even more, in our experiments using this feature selec-
tion technique with TA is most of the time more efficient than using a pooled
covariance matrix as proposed in the state-of-the-art.

Naturally, the feature selection techniques investigated here represent only a
fraction of those in use today. One obvious future research direction is to explore
further feature selection methods. Next, we took here several choices that could
have been done differently. For instance, we used Symmetric Uncertainty as
the first filter before applying Wrapper and Hybrid techniques. It would be
interesting to see what further increase in accuracy can be obtained if for each
scenario we use the best approach from SOSD, SOST, Pearson correlation, and
Symmetric Uncertainty. Another straightforward extension of our work would
be to study more deeply the complexity and convergence of the investigated
feature selection techniques. Note that, we did not consider feature reduction
techniques like PCA and LDA in this paper, as those techniques transform and
reduce instead of select features. Future work may compare feature selection
with feature reduction techniques in detail and determine which type may be
superior in specific contexts.
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