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Abstract. This paper studies discrete-log algorithms that use prepro-
cessing. In our model, an adversary may use a very large amount of
precomputation to produce an “advice” string about a specific group (e.g.,
NIST P-256). In a subsequent online phase, the adversary’s task is to
use the preprocessed advice to quickly compute discrete logarithms in
the group. Motivated by surprising recent preprocessing attacks on the
discrete-log problem, we study the power and limits of such algorithms.

In particular, we focus on generic algorithms—these are algorithms
that operate in every cyclic group. We show that any generic discrete-log
algorithm with preprocessing that uses an S-bit advice string, runs in
online time T , and succeeds with probability ε, in a group of prime order
N , must satisfy ST 2 = Ω̃(εN). Our lower bound, which is tight up to
logarithmic factors, uses a synthesis of incompressibility techniques and
classic methods for generic-group lower bounds. We apply our techniques
to prove related lower bounds for the CDH, DDH, and multiple-discrete-
log problems.

Finally, we demonstrate two new generic preprocessing attacks: one
for the multiple-discrete-log problem and one for certain decisional-type
problems in groups. This latter result demonstrates that, for generic algo-
rithms with preprocessing, distinguishing tuples of the form (g, gx, g(x2))
from random is much easier than the discrete-log problem.

1 Introduction

The problem of computing discrete logarithms in groups is fundamental to
cryptography: it underpins the security of widespread cryptographic protocols for
key exchange [35], public-key encryption [30,38], and digital signatures [53,60,79].

In the absence of an unconditional proof that computing discrete logarithms
is hard, one fruitful research direction has focused on understanding the hardness
of these problems against certain restricted classes of algorithms [6, 71, 83]. In
particular, Shoup considered discrete-log algorithms that are generic, in the sense
that they only use the group operation as a black box [83]. Generic algorithms
are useful in practice since they apply to every group. In addition, lower bounds
against generic algorithms are meaningful because, in popular elliptic-curve
groups, generic attacks are the best known [43,58].



The traditional notion of generic algorithms models online-only attacks, in
which the adversary simultaneously receives the description of a cyclic group
G = 〈g〉 and a problem instance gx ∈ G. In this model, when the attack algorithm
begins executing, the attacker has essentially no information about the group G.
Shoup [83] showed that, in this online-only setting, every generic discrete-log
algorithm that succeeds with good probability in a group of prime order N must
run in time at least N1/2.

In practice, however, an adversary may have access to the description of the
group G long before it has to solve a discrete-log problem instance. In particular,
the vast majority of real-world cryptosystems use one of a handful of groups,
such as NIST P-256, Curve25519 [14], or the DSA groups. In this setting, a
real-world adversary could potentially perform a preprocessing attack [32, 36, 51]
relative to a popular group: In an offline phase, the adversary would compute
and store a data structure (“advice string”) that depends on the group G. In
a subsequent online phase, the adversary could use its precomputed advice to
solve the discrete-log problem in the group G much more quickly than would be
possible in an online-only attack.

In recent work, Mihalcik [68], Lee, Cheon, and Hong [63], and Bernstein
and Lange [16] demonstrated the surprising power of preprocessing attacks
against the discrete-log problem. Building on earlier algorithms for the multiple-
discrete-logarithm problem [39,42,52], these authors construct generic algorithms
with preprocessing that compute discrete logarithms in every group of order N
using N1/3 bits of group-specific advice and roughly N1/3 online time. Since
these preprocessing algorithms are generic, they apply to every group, including
popular elliptic-curve groups. In contrast, Shoup’s result shows that, without
preprocessing, every generic discrete-log algorithm requires at least N1/2 time.
The careful use of a large amount of preprocessing—roughly N2/3 operations—is
what allows these preprocessing attacks to circumvent this lower bound.

As of now, there is no reason to believe that these N1/3 preprocessing attacks
are the best possible. For example, we know of no results ruling out a generic
attack that uses precomputation to build an advice string of size N1/8, which
can be used to compute discrete logs in online time N1/8.

The existence of such an attack would—at the very least—shake our confidence
in 256-bit elliptic-curve groups. An attacker who wanted to break NIST P-256, for
example, could perform a one-time precomputation to compute a 232-bit advice
string. Given this advice string, an attacker could compute discrete logarithms
on the P-256 curve in online time 232. The precomputed advice string would
essentially be a “trapdoor” that would allow its holder to compute discrete-logs
on the curve in seconds.

The possibility of such devastating discrete-log preprocessing attacks, and the
lack of lower-bounds for such algorithms, leads us to ask:

How helpful can preprocessing be to generic discrete-log algorithms?

In this paper, we extend the classic model of generic algorithms to capture
preprocessing attacks. To do so, we introduce the notion of generic algorithms
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with preprocessing for computational problems in cryptographic groups. These
algorithms make only black-box use of the group operation, but may perform a
large number of group operations during a preprocessing phase. Following prior
work on preprocessing attacks [32, 36, 40, 51], we measure the complexity of such
algorithms by (a) the size of the advice string that the algorithm produces in the
preprocessing phase, and (b) the running time of the algorithm’s online phase.

These two standard cost metrics do not consider the preprocessing time
required to compute the advice string. Ignoring the preprocessing cost only
strengthens the resulting lower bounds, but it leaves open the question of how
much preprocessing is really necessary to compute a useful advice string. Towards
the end of this paper, we take up this question as well by extending our model
to account for preprocessing time.

1.1 Our Results

We prove new lower bounds on generic algorithms with preprocessing that relate
the time, advice, and preprocessing complexity of generic discrete-log algorithms,
and algorithms for related problems. We also introduce new generic preprocess-
ing attacks for the multiple-discrete-log problem and for certain distinguishing
problems in groups.
Lower Bounds for Discrete Log and CDH. We prove in Theorem 2 that
every generic algorithm that uses S bits of group-specific precomputed advice
and that computes discrete logarithms in online time T with success probability
ε must satisfy ST 2 = Ω̃(εN), where the Ω̃(·) notation hides logarithmic factors
in N . When S = T the bound shows that, for constant ε, the best possible
generic attack must use roughly N1/3 bits of advice and runs in online time
roughly N1/3.

Our lower bound is tight, up to logarithmic factors, for the full range of
parameters S, T , and ε, since the known preprocessing attacks [16, 63, 68], which
we summarize in Sect. 7.1, give a matching upper bound. (These attacks sidestep
Shoup’s N1/2-time lower bound for generic discrete-log algorithms [83] by using
more than N1/2 time in their preprocessing phase.) As a consequence, beating
the existing S = T = O(N1/3) preprocessing algorithms on the NIST P-256
curve, for example, would require developing a new non-generic attack.

Our lower bound extends naturally to the computational Diffie-Hellman
problem, for which we also prove an ST 2 = Ω̃(εN) lower bound (Theorem 6),
and theM -instance multiple-discrete-log problem, for which we prove an ST 2/M+

T 2 = Ω̃(ε1/MMN) lower bound (Theorem 8). The attacks of Sect. 7 show that
these lower bounds are tight.
Lower Bound for DDH with Preprocessing. We also look at the more
subtle case of distinguishing attacks. We show in Theorem 9, that every generic
distinguisher with preprocessing that achieves advantage ε against the decisional
Diffie-Hellman problem (DDH) must satisfy ST 2 = Ω̃(ε2N). The quadratic
dependence on the error probability makes this bound weaker than the previous
ones. We know of no DDH distinguisher that matches this lower bound for all

3



parameter ranges (e.g., for ε = N−1/4), and we leave the question of whether
such a distinguisher exists as an open problem.
Lower Bound on Preprocessing Time. In addition, we prove lower bounds
on the amount of computation required to produce the advice string in the
preprocessing phase of a generic discrete-log algorithm. We show in Theorem 10
that any such algorithm that uses preprocessing time P , online time T , and
achieves success probability ε must satisfy: PT + T 2 = Ω(εN). Our lower bound
matches the preprocessing time used by the discrete-log preprocessing attacks of
Mihalcik [68] and Bernstein and Lange [16], and essentially rules out the existence
of very fast generic algorithms that also use modest amounts of preprocessing.
For example, any generic algorithm that runs in online time T = N1/8 must use
close to N7/8 preprocessing time to succeed with good probability—no matter
how large of an advice string it uses.
New Preprocessing Attacks. Finally, in Theorem 11, we introduce a new
preprocessing algorithm for the multiple-discrete-log problem that shows that
our lower bound is tight for constant ε. In addition, for the problem of distin-
guishing tuples of the form (g, gx, g(x2)) from random, Theorem 13 gives a new
algorithm that satisfies ST 2 = Õ(ε2N). The existence of such an algorithm is
especially surprising because solving the (g, gx, g(x2)) distinguishing problem is
as hard as computing discrete logarithms for online-only algorithms. In contrast,
our algorithm shows that this problem is substantially easier than computing
discrete logarithms for preprocessing algorithms: computing discrete logarithms
requires S = T = 1/ε = N1/4 while our new distinguishing attack requires
S = T = 1/ε = N1/5.

1.2 Our Techniques

The starting point of our lower bounds is an incompressibility argument, which
is also at the heart of classic lower bounds against preprocessing algorithms (also
known as “non-uniform algorithms”) for inverting one-way permutations [48,89,90]
and random functions [36]. At a high level, our approach is to show that if there
exists a generic discrete-log algorithm A that (a) uses few bits of preprocessed
advice and (b) uses few online group operations, then we can use such an algorithm
A to compress a random permutation.

Incompressibility. The first technical challenge is that a straightforward application
of incompressibility techniques does not suffice in the setting of generic groups.
To explain the difficulty, let us sketch the argument that a random permutation
oracle π is one-way, even against preprocessing adversaries [32,48,89,90]. The
argument builds a compression scheme by invoking A(x) on some point x in the
image of π and answering A’s queries to π. The key observation is that when A
produces its output y = π−1(x), we have learned some extra information about
π beyond the information that the query responses contain. In this way, each
invocation of A yields some “profit,” in terms of our knowledge of π. We can use
this profit to compress π.
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To apply this argument to generic groups, we could replace the random
permutation oracle π by an oracle that implements the group operation for a
random group. (We define the model precisely in Sect. 2.) The challenge is that
a group-operation oracle has extra structure that a random permutation oracle
does not. This extra structure fouls up the standard incompressibility argument,
since the query responses that the compression routine must feed to A might
themselves contain enough information to recover the discrete log that A will
later output. If this happens, the compression scheme will not “profit” at all from
invoking A, and we will not be able to use A to compress the oracle.

To handle this case, we notice that this sort of compression failure only occurs
when two distinct queries to the group oracle return the same string. By using a
slightly more sophisticated compression routine, which notices and compensates
for these “collision” events, we achieve compression even where the traditional
incompressibility argument would have failed. (Dodis et al. [37] use a similar
observation in their analysis of the RSA-FDH signature scheme. We discuss their
techniques further in Sect. 1.3.)

To keep track of when these collision events occur, we adopt an idea from
Shoup’s generic-group lower-bound proof [83], which does not use incompressibility
at all. Shoup’s idea is to keep a careful accounting of the information that the
adversary’s queries have revealed about the generic-group oracle at any point
during the execution. Our compression scheme exploits a similar accounting
strategy, which allows it to halt the adversary A as soon as the compressor
notices that continuing to run A would be “unprofitable.”

Handling Randomized Algorithms. The second technical challenge we face is
in handling algorithms that succeed with arbitrarily small probability ε. The
standard incompressibility methods invoke the algorithm A on many inputs,
and the compression routine succeeds only if all of these executions succeed. If
the algorithm A fails often, then we will fail to construct a useful compression
scheme.

The naïve way around this problem would be to amplifyA’s success probability
by having the compression scheme run the algorithm A many times on each input.
The problem is that amplifying the success probability in this way decreases the
“profit” that we gain from A, since the compression scheme has to answer many
more group-oracle queries in the amplified algorithm than in the unamplified
algorithm. As a result, this naïve amplification strategy yields an ST 2 = Ω̃(ε2N)
lower bound that is loose in its dependence on the success probability ε.

Our approach is to leverage the observation, applied fruitfully to the random-
permutation model by De et al. [32], that it is without loss of generality to assume
that the compression and decompression algorithms share a common string of
independent random bits. Rather than amplifying the success probability of A by
iteration, the compression scheme simply finds a set of random bits in the shared
random string that cause A to produce the correct output. The compression
scheme then writes this pointer out as part of the compressed representation of
the group oracle. This optimization yields the tight ST 2 = Ω̃(εN) lower bound.
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Along the way, we exploit the random self-reducibility of the discrete-log
problem to transform an average-case discrete-log algorithm, which succeeds on a
random instance with probability ε, to a worst-case algorithm, which succeeds on
every instance with probability ε. Using the random self-reduction substantially
simplifies the incompressibility argument, since it allows the compression routine
to invoke the algorithm A on arbitrary inputs.

Generalizing to Decisional Problems. The final technical challenge is to extend
our core incompressibility argument to give lower bounds for the decisional
Diffie-Hellman Problem (DDH). The difficulty with using a DDH algorithm to
build a compression scheme is that each execution of the DDH distinguisher only
produces a single bit of information. Furthermore, if the distinguishing advantage
ε is small, the distinguisher produces only a fraction of a bit of information. The
straightforward amplification would again work but would yield a very loose
ST 2 = Ω̃(ε4N) bound.

To get around this issue, we execute the distinguisher on large batches of input
instances. We judiciously choose the batch size to balance the profit from each
batch with the probability that all runs in a batch succeed. Handling collision
events in this case requires extra care. Putting these ingredients together, we
achieve an ST 2 = Ω̃(ε2N) lower bound for the DDH problem.

1.3 Related Work

This paper builds upon two major lines of prior work: one on preprocessing lower
bounds for symmetric-key problems, and the other on online lower bounds for
generic algorithms in groups. We prove preprocessing lower bounds for generic
algorithms and, indeed, our proofs use a combination of techniques from both
prior settings.

Incompressibility Methods. One prominent related area of research puts lower
bounds on the efficiency of preprocessing algorithms for inverting random functions
and random permutations. An early motivation was Hellman’s preprocessing algo-
rithm (“Hellman tables”) for inverting random functions [51]. Fiat and Naor [40]
later extended the technique to allow inverting general functions and Oechslin [73]
proposed practical improvements to Hellman’s construction.

Yao [90] used an incompressibility argument to show the optimality of Hell-
man’s method for inverting random permutations. Gennaro and Trevisan [48]
and Wee [89] proved related lower bounds, also using incompressibility methods.
Barkan et al. [9] showed that, in a restricted model of computation, Hellman’s
method is optimal for inverting random functions (not just permutations).

De et al. [32] demonstrated how to use randomized encodings, essentially an
incompressibility argument augmented with random oracles, to give alternative
proofs of preprocessing lower bounds on the complexity of inverting random
permutations and breaking general pseduo-random generators. We adopt the
powerful randomized encoding technique of De et al. in our proofs. Dodis et
al. [36] applied this technique to show that salting [69] defeats preprocessing
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attacks against certain computational tasks (e.g., collision finding) in the random-
oracle model [11]. Abusalah et al. [2] used the technique to construct proofs of
space from random functions.

Unruh [87] gave an elegant framework for proving the hardness of computa-
tional problems in the random-oracle model against preprocessing adversaries
(or against algorithms with “auxiliary input,” in his terminology). He proves
that if a computational problem is hard when a certain number of points of
the random oracle are fixed (“presampled”), then the problem is hard in the
random-oracle model against preprocessing adversaries using a certain amount
of oracle-dependent advice. This presampling technique gives an often simpler
alternative to incompressibility-based lower bounds. Coretti et al. [29] recently
introduced new variants of Unruh’s presampling technique that give tighter lower
bounds against preprocessing adversaries for a broad set of problems. After the
publication of this paper, Coretti, Dodis, and Guo [28] use presampling to provide
alternative, and often simpler, proofs of the preprocessing lower bounds that
appear in this work.

The work of Dodis, Haitner, and Tentes [37] is the first, to our knowledge,
that uses an incompressibility argument in the context of the generic-group
model, as we do. To paraphrase their result, they show that the security of the
RSA “full-domain hash” signature scheme [12] cannot be based on any “natural”
computational assumption via a certain type of black-box reduction that treats Z∗N
as a generic group. To do so, they construct an oracle (a “forging oracle”) relative
to which FDH is insecure and yet the underlying computational assumption
still holds. To prove the latter part of this statement, they use a Gennaro-
Trevisan-style incompressibility argument [48] to show that any algorithm that
breaks the computational assumption can be used to compress the generic-group
oracle. Our techniques are similar, in that we also prove lower bounds via the
incompressibility of a generic-group oracle. That said, the arguments of Dodis et
al. are substantially more intricate than our own, since their incompressibility
argument must hold even when the adversary is given access to the additional
forging oracle that might give the adversary extra power.

Generic-Group Lower Bounds. All of the aforementioned work studies precom-
putation attacks on one-way permutations and one-way functions, which are
essentially symmetric-key primitives. In the setting of public-key cryptography, a
parallel—and quite distinct—line of work studies lower bounds on algorithms
for the discrete-log problem and related problems in generic groups. All of these
lower bounds study online-only algorithms (i.e., that do not use preprocessing).

In particular, Shoup [83] introduced the modern generic-group model to
capture algorithms that make black-box use of a group operation. In Shoup’s
model, which draws on earlier treatments of black-box algorithms for groups [6,71],
the discrete-logarithm problem in a group of prime order N requires time Ω(N1/2)
to solve. Shoup’s model captures many popular discrete-log algorithms, including
Shanks’ Baby-Step Giant-Step algorithm [82], Pollard’s Rho and Kangaroo
algorithms [78], and the Pohlig-Hellman algorithm [77]. For computing discrete
logarithms on popular elliptic curves, variants of these algorithms run in time
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O(
√
N) and are the best known [13,44,88]. Optimizing the constant in the big-O

has great practical import; consult the 2016 survey of Galbraith and Gaudry [45]
for a discussion of recent progress along these lines.

Subsequent works used Shoup’s model to prove lower bounds against generic
algorithms for RSA-type problems [31], knowledge assumptions [34], the multiple-
discrete-log problem [92], assumptions in groups with pairings [18], and for
algorithms with access to additional oracles [65]. A number of works also prove
the security of specific cryptosystems in the generic-group model [24,25,33,41,56,
80,84]. Other work studies computational problems in generic rings, to analyze
generic algorithms for RSA-type problems [4, 62].

Preprocessing Attacks in Generic Groups. We design new preprocessing attacks
against the multiple-discrete-logarithm problem and against a large class of
distinguishing problems in groups. The works most relevant to our new algorithms
with preprocessing are Mihalcik’s master’s thesis [68], which surveys preprocessing
attacks on the discrete-logarithm problem, the paper of Lee, Cheon, and Hong [63],
who develop a discrete-log preprocessing attack in the context of the Maurer-
Yacobi [66] identity-based encryption system, which requires the key-generating
party to solve a discrete-log instance, and the paper of Bernstein and Lange [16],
which demonstrates preprocessing attacks—both generic and non-generic—on a
wide range of symmetric- and public-key primitives.

Bernstein and Lange [15] investigate the application of preprocessing attacks
to computing discrete logarithms in a short interval, as needed in the Boneh-
Goh-Nissim cryptosystem [21].

Generic Multiple-Discrete-Log Algorithms. There is a close connection between
preprocessing algorithms for the discrete-log problem, and algorithms for the
multiple-discrete-log problem—in which the task is to compute many discrete
logarithms at once. These algorithms work by taking long pseudo-random walks
on the elements of the group, such that the walks end in special (“distinguished”)
points [75]. Reaching the same distinguished point via two different walks im-
mediately yields the discrete logarithm in question. By storing and reusing
the distinguished points found while solving the first i discrete-log instances, a
multiple-discrete-log algorithm can more quickly solve the (i + 1)-th instance.
The recent preprocessing algorithms [16,63, 68] apply a similar idea, except that
they take input-independent walks and store the distinguished points as the
algorithm’s preprocessed “advice.”

The idea of reusing distinguished points in this way dates back to at least the
1999 work of Escott, Sager, Selkirk, and Tsapakidis [39], who also attribute it
to unpublished work of Silverman and Stapleton in 1997. Kuhn and Struik [61]
analyze this algorithm when used to solve M � N1/4 discrete logarithms in a
group of prime order N , and they find that it runs in time O(

√
MN). Fouque,

Joux, and Mavromati [42] show that this upper bound holds for all values of M .
Hitchcock, Montague, Carter, and Dawson [52] perform a concrete analysis of
this class of attacks and discuss practical implications to using common fixed
groups for discrete-log-based cryptosystems.

8



Non-generic discrete-log algorithms. In certain groups there are non-generic
discrete-log attacks that dramatically outperform the generic ones. The landscape
of non-generic discrete-log algorithms is vast, so we refer the reader to the 2000
survey of Odlyzko [72] and the 2014 survey of Joux et al. [54] for details. To
give a taste of these results: when computing discrete logarithms in finite fields
Fpn , the running time of the best discrete logarithms depend on the relative
size of p and n. When p � n, a recent algorithm of Barbulescu et al. [8]
computes discrete logarithms in quasi-polynomial time. When p� n, the best
methods are based on “index calculus” techniques and run in sub-exponential time
eO((log p)1/3(log log p)2/3) [50, 64]. The analysis of these algorithms is heuristic, in
that it relies on some unproved (but reasonable) number-theoretic assumptions.

In certain classes of elliptic-curve groups, there are non-generic algorithms for
the discrete-log problem that outperform the generic algorithms [47]; some such
algorithms run in sub-exponential time [67], or even in polynomial time [85]. In the
standard elliptic-curve groups used for key exchange (e.g., NIST P-256) however,
the generic preprocessing attacks discussed in this paper are still essentially the
best known.

Non-generic discrete-log algorithms also benefit from preprocessing. Copper-
smith demonstrated a sub-exponential-time preprocessing attack on the integer
factorization problem [27] that also yields a non-generic sub-exponential-time
preprocessing attack on the finite-field discrete-log problem [7, 16]. Adrian et
al. [3] show how to use such an attack compute discrete logs modulo a 512-bit
prime in less than a minute of online time.

Organization of This Paper. In Sect. 2, we introduce notation, our model of
computation, and a key lemma. In Sect. 3, we prove a lower bound on generic
algorithms with preprocessing for the discrete-logarithm and CDH problems. In
Sects. 4 and 5, we extend these bounds to the multiple-discrete-logarithm and
DDH problems. In Sect. 6, we investigate the amount of precomputation such
generic preprocessing algorithms require. In Sect. 7, we introduce new generic
preprocessing attacks. In Sect. 8, we conclude with open questions.

2 Background

In this section, we recall the standard model of computation in generic groups,
we introduce our model of generic algorithms with preprocessing, and we recall
an incompressibility lemma that will be essential to our proofs.

Notation. We use ZN to denote the ring of integers modulo N , [N ] indicates
the set {1, . . . , N}, and Z+ indicates the set of positive integers. Throughout this
paper, we take N to be prime, so ZN is also a field. We use the notation x← 5
to indicate the assignment of a value to a variable and, when S is a finite set, the
notation x←R S indicates that x is a sample from the uniform distribution over
S. For a probability distribution D, d ∼ D indicates that d is a random variable
distributed according to D. The statement f(x) =def x2 − x indicates the definition
of a function f . All logarithms are base two, unless otherwise noted.
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We use the standard Landau notation O(·), Θ(·), Ω(·), and o(·) to indicate the
asymptotics of a function. For example f(N) = O(g(N)) if there exists a constant
c > 0 such that for all large enough N , |f(N)| ≤ c · g(N). When there are many
variables inside the big-O, as in f(N) = O(N/ST ), all variables other than N are
implicit functions of N . The tilde notation Õ(·) and Ω̃(·) hides polylogarithmic
factors in N . So, we can say for example that S log2N = Õ(S).

Generic Algorithms. Following Shoup [83], we model a generic group using a
random injective function σ that maps the integers in ZN (representing the set of
discrete logarithms) to a set of labels L (representing the set of group elements).
We then write the elements of an order-N group as {σ(1), σ(2), . . . , σ(N)}, instead
of the usual {g, g2, · · · , gN}. We often say that i ∈ ZN is the “discrete log” of its
label σ(i) ∈ L.

The generic group oracle Oσ(·, ·) for a labeling function σ takes as input two
strings si, sj ∈ L and responds as follows:
– If the arguments to the oracle are in the image of σ, then we can write
si = σ(i) and sj = σ(j). The oracle responds with σ(i + j), where the
addition is modulo the group order N .

– If either of the arguments to the oracle falls outside of the image of σ, the
oracle returns ⊥.

Given such an oracle and a label σ(x), it is possible to compute σ(αx) for any
constant α ∈ ZN using O(logN) oracle queries, by repeated squaring.

Some authors define the group oracle Oσ with a second functionality that
maps labels σ(x) to their inverses σ(−x) in a single query. Our oracle can simulate
this inversion oracle in at most O(logN) queries. To do so: given an element
σ(x), compute the element σ((N − 1)x) = σ(−x). Since providing an inversion
oracle can decrease a generic algorithm’s running time by at most a logarithmic
factor, we omit it for simplicity.

A generic algorithm for ZN on L is a probabilistic algorithm that takes as
input a list of labels (σ(x1), . . . , σ(xL)) and has oracle access to Oσ. We measure
the time complexity of a generic algorithm by counting the number of queries it
makes to the generic group oracle.

Although the generic algorithms we consider may be probabilistic, we require
that for every choice of σ, inputs, and random tapes, every algorithm halts after
a finite number of steps. In this way, for every group order N ∈ Z+, we can
compute an upper bound on the number of random bits the algorithm uses by
iterating over all possible labelings, inputs, and random tapes. For this reason,
we need only consider finite probability spaces in our discussion.

Generic Algorithms with Preprocessing. A generic algorithm with prepro-
cessing is a pair of generic algorithms (A0,A1) for ZN on L such that:
– Algorithm A0 takes the label σ(1) as input, makes some number of queries

to the oracle Oσ (“preprocessing queries”), and outputs an advice string stσ.
– Algorithm A1 takes as input the advice string stσ and a list of labels

(σ(x1), . . . , σ(xL)), makes some number of queries to the oracle Oσ (“on-
line queries”), and produces some output.
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We typically measure the complexity of the algorithm (A0,A1) by (a) the size of
the advice string stσ that A0 outputs, and (b) the number of oracle queries that
algorithm A1 makes.

In Sect. 6, we consider generic algorithms with preprocessing for which the
running time of A0 (i.e., the preprocessing time) is also bounded. In all other
sections, we put no running time bound on A0, so without loss of generality, we
may assume in these sections that A0 is deterministic.
Incompressibility Arguments. We use the following proposition of De et
al. [32], which formalizes the notion that it is impossible to compress every
element in a set X to a string less than log |X | bits long, even relative to a
random string.

Proposition 1 (De, Trevisan, and Tulsiani [32]). Let E : X × {0, 1}ρ →
{0, 1}m and D : {0, 1}m × {0, 1}ρ → X be randomized encoding and decoding
procedures such that, for every x ∈ X , Prr←{0,1}ρ

[
D(E(x, r), r) = x

]
≥ δ. Then

m ≥ log |X | − log 1/δ.

Notice that the encoding and decoding algorithms of Proposition 1 take the
same random string r as input. Additionally, that bound on the string length m
is independent of the number of random bits that these routines take as input.
As a consequence, Proposition 1 holds even when the algorithms E and D have
access to a common random oracle.

3 Lower Bound for Discrete Logarithms

In this section we prove that every generic algorithm that uses S bits of group-
specific precomputed advice and that computes discrete logs in online time T
with probability ε must satisfy ST 2 = Ω̃(εN).

Theorem 2. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

Pr
σ,x,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε,

where the probability is taken over the uniformly random choice of the labeling σ,
the instance x ∈ ZN , and the coins of A1. Then ST 2 = Ω̃(εN).

Remark. The statement of Theorem 2 models the case in which the group
generator σ(1) is fixed, and the online algorithm must compute the discrete-log
of the instance σ(x) with respect to the fixed generator. Using a fixed generator
is essentially without loss of generality, since an algorithm that computes discrete
logarithms with respect to one generator can also be used to compute discrete
logarithms with respect to any generator by increasing its running time by a
factor of two. Because of this, we treat the generator as fixed throughout this
paper.

(After the publication of this paper, Bartusek and Zhandry [10] pointed out
that when considering discrete-log algorithms that succeed with sub-constant

11



probability ε, the fixed-generator and random-generator versions of the discrete-
log problem are not equally hard. They analyze the random-generator variant of
the discrete-log problem and they use presampling methods [28] to prove that
the complexity is ST 2 = Θ̃(

√
εN).)

Remark. Theorem 2 treats only prime-order groups. In the more general case of
composite-order groups a similar result holds, except that the bound is ST 2 =
Ω̃(εp), where p is the largest prime factor of the group order. Since the techniques
needed to arrive at this more general result are essentially the same as in the
proof of Theorem 2, we focus on the prime-order case for simplicity.

We first give the idea behind the proof of Theorem 2 and then present a
detailed proof.

Proof Idea for Theorem 2. Our proof uses an incompressibility argument. The
basic idea is to compress the random labeling function σ using a discrete-log
algorithm with preprocessing (A0,A1). To do so, we write A0’s S-bit advice about
σ into the compressed string. We then run A1 on many discrete-log instances
σ(x) and we write the T responses to A1’s queries into the compressed string. For
each execution of A1, we only need to write T values of σ into the compressed
string, but we get T + 1 values of σ back, since the output of A1(σ(x)) gives
us the value of x “for free.” If S and T are simultaneously small, then we can
compress σ using this method, which yields a contradiction.

However, this naïve technique might never yield any compression at all. The
problem is that the T responses to A1’s queries might contain “collision events,”
in which the response to one of A1’s queries is equal to a previously seen query
response. For example, say that A1 makes a query of the form Oσ(σ(x), σ(3))
and the oracle’s response is a string σ(7) that also appeared in response to a
previous query. In this case, just seeing the queries of A1 and their responses is
enough to conclude that x+ 3 = 7 mod N , which immediately yields the discrete
log x = 4. This is problematic because even if A1 eventually halts and outputs
x = 4, we have not received any “profit” from A1 since the T query responses
themselves already contain all of the information we need to conclude that x = 4.

To profit in spite of these collisions, our compression scheme halts the execution
of A1 as soon as it finds such a collision, since every collision event yields the
discrete log being sought. The profit comes from the fact that, as long as the list
of previous query responses is not too long, encoding a pointer to the collision-
causing response requires many fewer bits than encoding an arbitrary element in
the range of σ.

Our lower bound needs to handle randomized algorithms A = (A0,A1)
that succeed with arbitrarily small probability ε. Yet to use A to compress σ,
the algorithm A1 must succeed with very high probability. That is because the
compression routine may invoke A1 as many as N times, and each execution must
succeed for the compression scheme to succeed. The random self-reducibility of the
discrete-log problem allows us to convert an average-case algorithm that succeeds
on an ε fraction of instances (for a given labeling σ) to a worst-case algorithm
that succeeds with probability ε on every instance (for a given labeling σ).

12



We still need to handle the fact that ε may be quite small. The straightforward
way to amplify the success probability of A1 would be to construct an algorithm
A′1 that runs R independent executions of A1 and that succeeds with probability
at least 1−εR. We could then use the amplified algorithm (A0,A′1) to compress σ.

The problem in our setting is that this simple amplification strategy yields
a loose lower bound: if we run A1 for R iterations, and each iteration makes T
queries, our compression scheme ends up “paying” for RT queries instead of T
queries for each bit of “profit” it gets (i.e., for each output of A′1). Carrying this
argument through yields an ST 2 = Ω̃(ε2N) bound, which is worse than our goal
of Ω̃(εN).

Our idea is to leverage the correlated randomness between the compressor and
decompressor to our advantage. In our compression scheme, the compressor runs
A1 using R sets of independent random coins, sampled from the random string
shared with the decompressor. The compressor then writes into the compressed
representation a logR-bit pointer to a set of random coins (if one exists) that
caused A1 to succeed. Using this strategy, instead of paying for RT queries per
execution of A1, the compression scheme only pays for T queries, plus a small
pointer. We can then choose R large enough to ensure that at least one of the R
executions succeeds with extremely high probability.

We now turn to the proof.
We say that a discrete-log algorithm succeeds in the worst case if it succeeds

on every problem instance σ(x) for x ∈ ZN . We say that a discrete-log algorithm
succeeds in the average case if it succeeds on a random problem instance σ(x)
for x←R ZN .

We first use the random self-reducibility of the discrete-log problem to show
that an average-case discrete-log algorithm implies a worst-case discrete-log
algorithm. A lower bound on worst-case algorithms is therefore enough to prove
Theorem 2. This is formalized in the next lemma.

Lemma 3 (Adapted from Abadi, Feigenbaum, and Kilian [1]). Let N
be a prime. Let (A0,A1) be a pair of generic algorithms for ZN on L such that
A0 outputs an S-bit advice string and A1 makes at most T oracle queries. Then,
there exists a generic algorithm A′1 that makes at most T + O(logN) oracle
queries and, for every σ : ZN → L, if Prx,A1

[
AOσ1 (AOσ0 (σ(1)), σ(x)) = x

]
≥ ε,

then for every x ∈ ZN , PrA′
1

[
A′Oσ1 (AOσ0 (σ(1)), σ(x)) = x

]
≥ ε.

Proof. On input (stσ, σ(x)), algorithm A′1 executes the following steps: First,
it samples a random r ←R ZN and computes σ(x + r), using O(logN) group
operations. Then, it runs A1(stσ, σ(x+ r)). Finally, when A1 outputs a discrete
log x′, algorithm A′1 outputs x = x′ − r mod N .

Notice that A′1 invokes A1 on σ(x + r), which is the image of a uniformly
random point in ZN . Since A1 succeeds with probability at least ε over the
random choice of x ←R ZN and its coins, A′1 succeeds with probability ε, only
over the choice of its coins.
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To prove Theorem 2, we will use the generic algorithms (A0,A1) to construct
a randomized encoding scheme that compresses a good fraction of the labeling
functions σ. The following lemma gives us such a scheme.

Lemma 4. Let N be a prime. Let Σ = {σ1, σ2, . . . } be a subset of the labeling
functions from ZN to L. Let (A0,A1) be a pair of generic algorithms for ZN
on L such that for every σ ∈ Σ and every x ∈ ZN , A0 outputs an S-bit advice
string, A1 makes at most T oracle queries, and (A0,A1) satisfy

Pr
A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε .

Then, there exists a randomized encoding scheme that compresses elements of Σ
to bitstrings of length at most

log
|L|!

(|L| −N)!
+ S + 1− εN

6T (T + 1)(logN + 1)
,

and succeeds with probability at least 1/2.

We prove Lemma 4 in Sect. 3.1. Given the above two lemmas, we can prove
Theorem 2.

Proof of Theorem 2. We say that a labeling σ is “good” if (A0,A1) computes
discrete logs with probability at least ε/2 on σ. More precisely, a labeling σ is
“good” if:

Pr
x,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε/2 ,

where the probability is taken over the choice of x ∈ ZN as well as over the
random tape of A1. Let Σ be the set of good labelings. A standard averaging
argument [5, Lemma A.12] guarantees that an ε/2 fraction of injective mappings
from ZN to L are good. Then |Σ| ≥ ε/2 · |L|!/(|L| −N)!, where we’ve used the
fact that the number of injective functions from ZN to L is |L|!/(|L| −N)!.

Lemma 3 then implies that there exists a pair of generic algorithms (A0,A′1)
such that for every σ ∈ Σ and every x ∈ ZN , A′Oσ1 (AOσ0 (σ(1)), σ(x)) makes at
most T ′ = T + O(logN) queries, and outputs x with probability at least ε/2.
Lemma 4 then implies that we can use (A0,A′1) to compress any labeling σ ∈ Σ
to a string of bitlength at most

log
|L|!

(|L| −N)!
+ S + 1− (ε/2)N

6T ′(T ′ + 1)(logN + 1)
, (1)

where the encoding scheme works with probability at least 1/2. By Proposition 1,
this length must be at least log |Σ| − log 2. Thus, it must hold that

log
|L|

(|L| −N)!
+ S + 1− εN

12T ′(T ′ + 1)(logN + 1)
≥ log

|L|!
(|L| −N)!

− log
4

ε
.

Rearranging, we obtain

S ≥ εN

O(T 2) · polylog(N)
− log

8

ε
.
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We may assume without loss of generality that ε ≥ 1/N , since an algorithm that
just guesses the discrete log achieves this advantage. Therefore, log 8

ε = O(logN),
and we get

(S +O(logN))T 2 = Ω̃(εN) ,

which implies that ST 2 = Ω̃(εN).

3.1 Proof of Lemma 4

Recall that a randomized encoding scheme consists of an encoding and a decoding
routine, such that both routines take the same string r of random bits as input.
The encoding scheme we construct for the purposes of Lemma 4 operates on
labelings σ. That is, the encoding routine takes a labeling σ ∈ Σ and the random
bits r, and constructs a compressed representation of σ. Correspondingly, the
decoding routine takes this compressed representation and the same random bits
r, and reconstructs σ.

While the encoding routine runs, it builds up a table of pairs (f, σ(i)) ∈
(ZN [X,U1, U2, . . . ]×L). The decoder constructs a similar table during its execu-
tion. At any point during the encoding process, the table contains a representation
of the information about σ that the encoder has communicated to the decoder up
to the current point in the encoding process. The indeterminates X,U1, U2, . . .
that appear in this table represent discrete log values x, u1, u2, . . . ∈ ZN that the
decoder does not yet know.

During its execution, the decoder will eventually learn enough information to
recover the value of the indeterminates in the table. When this happens, both
the encoder and the decoder replace every occurrence of each indeterminate
with its value. Subsequently, both routines can reintroduce the indeterminates
X1, U1, U2, . . . , now representing a new set of unknown discrete logs into the
table. After this process continues for long enough, the table will contain N
constant polynomials and the contents of the table will fully determine σ.

We stress that the table is not part of the compressed representation of σ,
but is part of the internal state of both routines.
Simulating A1’s Random Tape. Since the algorithm A1 is randomized, each
time the encoder (or decoder) runs the algorithm A1, it must provide A1 with
a fresh random tape. Both routines take as input a common random bitstring,
and the encoder can reserve a substring of it to feed to each invocation of A1

as that algorithm’s random tape. Since A1 always terminates, the encoder can
determine an upper bound on the number of random bits that A1 will need for a
given group size N and can partition the common random string accordingly.

The decoder follows the same process, and the fact that the encoder and
decoder take the same random string r as input ensures thatA1 behaves identically
during the encoding and decoding processes.
Encoding Routine. The encoding routine, on input σ, uses two parameters
d,R ∈ Z+, which we will set later, and proceeds as follows:
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1. Compute stσ ← A0(σ(1)). The encoder can respond to all of the algorithm’s
oracle queries since the encoder knows all of σ. Write the S-bit output stσ
into the encoding.

2. Encode the image of σ as a subset of L using log
(|L|
N

)
bits, and append it to

the encoding.
3. Initialize the table of pairs to an empty list.
4. Repeat d times:

(a) Choose the first string in the lexicographical order of the image of σ that
does not yet appear in the table. Call this string σ(x) and add the pair
(X,σ(x)) to the table.

(b) Run A1(stσ, σ(x)) up to R times using independent randomness from
the encoder’s random string in each run. The encoder answers all of A1’s
oracle queries using its knowledge of σ. If A1 fails on all R executions,
abort the entire encoding routine. Otherwise, write into the encoding the
index r∗ ∈ [R] of the successful execution, using logR bits.

(c) Write a placeholder of log T zeros into the encoding. (The routine over-
writes these zeros with a meaningful value once this execution of A1

terminates.)
(d) Rerun A1(stσ, σ(x)) using the r∗-th random tape. While A1 is running,

it makes a number of queries and then outputs its guess of the discrete
log x. The encoding routine processes each of A1’s queries (σ(i), σ(j)) as
follows:
i. If either of the query arguments is outside of the range of σ, reply ⊥

and continue to the next query.
ii. If either (or both) of the arguments is missing from the table, then

this is an “unexpected” query input. For each such unexpected query
argument s, add to the table the pair (Ui, s), where i is the smallest
integer such that Ui does not already appear in the table.

iii. Otherwise, look up the linear polynomials fi, fj representing σ(i), σ(j)
in the table and compute the linear polynomial fi + fj representing
the response σ(i+ j). We then distinguish between three cases:
A. If (fi + fj , σ(i + j)) is already in the table, simply reply with

σ(i+ j).
B. If σ(i + j) does not appear in the table, then add σ(i + j) to

the encoding and reply with σ(i+ j). Writing σ(i+ j) into the
encoding requires log(N − `) bits, where ` is the number of labels
already in the table.

C. If σ(i+ j) appears in the table but its discrete log in the table is
a polynomial fk such that fk is not identical to the polynomial
fi + fj , encode the reply to this query as a pointer to the table
entry (fk, σ(i+ j)) and add this pointer the encoding.
Use the equation fk = fi + fj to solve for the first indeterminate
in the equation, and eliminate that indeterminate from the table
by replacing each of its appearances with the solution. Note that
the solution could be either a linear polynomial in the remaining
indeterminates or a constant value in ZN . Stop this execution of
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A1, and indicate this “early stop” by writing the actual number
of queries t ≤ T into its placeholder above. Go to Step 4f.

(e) When the execution A1(stσ, σ(x)) outputs x ∈ ZN , eliminate the inde-
terminate X from all the polynomials in the table, by replacing it with
its value x.

(f) Write down the discrete-log values of the remaining unresolved indetermi-
nates in the order in which they appear in the table. At the moment when
we encode the value of an indeterminate that appears as the (c+ 1)-th
entry in the table, the preceding c entries are all constants and encoding
the value of this indeterminate thus requires log(N − c) bits.

5. Append the remaining values that do not yet appear in the table to the
encoding in lexicographic order.

Decoding Routine. The decoder proceeds analogously to the encoder. A key
property of our randomized encoding scheme is that each position in the encoded
string corresponds to the same state of the table in both the encoding and the
decoding routines. In other words, when the decoding routine reads a certain
position in the encoded string, its internal table is identical to the internal table
the encoding routine had when it wrote to that position in the encoded string. The
table allows the decoder to correctly classify each query to the correct category.

Note that in the case of a collision query (case 4(d)iiiC above), the decoder can
use the collision to eliminate one of the indeterminates from the table. Specifically,
for a query (u, v) where u, v ∈ L, the decoder reads the reply w ∈ L from the
encoding string, looks up the polynomials fu, fv, and fw in the table, and solves
the equation fw = fu + fv mod N for the first indeterminate in the equation.
The solution in this case is either a linear polynomial with some of the other
indeterminates, or a constant.

The full description of the decoder appears in Appendix A.
Encoding Length. For convenience, let |Table| denote the maximum size of the
encoder’s table. We determine this value later in the analysis.

The encoding contains:
– the advice to the algorithm about the labeling σ (S bits),
– the encoding of the image of σ (log

(|L|
N

)
bits),

– for each of the d invocations of A1, the index r∗ of the random tape on which
it succeeded (d · logR bits in total) and a counter indicating the number of
queries for which to run each execution (d · log T bits in total),

– for the `-th label added to the table (0 ≤ ` < |Table|), if the entry

• corresponds to an indeterminate that has been resolved by the output of
A1, 0 bits,

• corresponds to an indeterminate that has been resolved by a collision
within the table, at most log |Table| bits,
• otherwise, log(N − `) bits,

– the remaining discrete log values, encoded using log(N − `) bits each, where
` ∈ {|Table|, . . . , N − 1}.
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The naïve encoding of σ would require writing down log(N−`) bits to express
the discrete log of the `-th label. Our encoding scheme does slightly better: at the
end of each of the d executions of A1, we either learn the discrete log of one label
(when A1 succeeds) or we find a collision in the table. When this happens, we get
log(N − `) bits of information on σ at a cost of at most logR+ log T + log |Table|
bits, where |Table| is the maximum size of the encoder’s table.

Since each execution of A1 adds at most 3T + 1 rows to the table (the
input, T query replies, and at most 2T unexpected query inputs), we have that
|Table| ≤ d · (3T +1). Setting d = bN/((2RT + 1)(3T + 1))c guarantees that each
of the d executions results in a net profit of at least

log
N − |Table|
RT |Table|

≥ log
N − d(3T + 1)

RdT (3T + 1)
≥ log

1− 1
2RT+1
RT

2RT+1

= log 2 = 1

bit. In this case, the total bitlength of the encoding is at most

S + log

(
|L|
N

)
+

N−1∑
`=0

log(N − `)− d = log
|L|!

(|L| −N)!
+ S − d

≤ log
|L|!

(|L| −N)!
+ S − N

(2RT + 1)(3T + 1)
+ 1

≤ log
|L|!

(|L| −N)!
+ S − N

6RT (T + 1)
+ 1 .

We need to choose R large enough to ensure that the encoding routine
fails with probability at most 1/2. If we choose R = (1 + logN)/ε, then the
probability that R invocations of A1 all fail is, by a union bound, at most
(1− ε)R ≤ e−εR ≤ 2−εR ≤ 2−1−logN ≤ 1/(2N). The encoding scheme invokes A1

on at most N different inputs, so by a union bound, the probability that any
invocation fails is at most 1/2. Overall, the encoding length is at most:

log
|L|!

(|L| −N)!
+ S + 1− εN

6T (T + 1)(logN + 1)
bits,

which completes the proof of Lemma 4.

3.2 Discrete Logarithms in Short Intervals

When working in groups of large order N , it is common to rely on the hardness
of the short-exponent discrete-log problem, rather than the standard discrete-log
problem [49, 59, 74, 76]. In the usual discrete-log problem, a problem instance
is a pair of the form (g, gx) ∈ G2 for x ←R ZN . The short-exponent problem
is identical, except that x is sampled at random from {1, . . . ,W} ⊂ ZN , for
some interval width parameter W < N . Using short exponents speeds up the
Diffie-Hellman key-agreement protocol when it is feasible to set the interval
width W to be much smaller than the group order N [74]. A variant of Pollard’s
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“Lambda Method” [46,78] solves the short-exponent discrete-log problem in every
group in time O(W 1/2), so W cannot be too small.

The following corollary of Theorem 2 shows that the short-exponent problem
is no easier for generic algorithms with preprocessing than computing a discrete-
logarithm in an order-W group.

Corollary 5 (Informal). Let A be a generic algorithm with preprocessing that
solves the short-exponent discrete-log problem in an interval of width W . If A
uses S bits of group-specific advice, runs in online time T , and succeeds with
probability ε, then ST 2 = Ω̃(εW ).

Proof. We claim that the algorithm A of the corollary solves the standard discrete-
log problem with probability ε′ = ε · (W/N). The reason is that a standard
discrete-log instance gx for x ←R ZN has a short exponent (i.e., x ∈ [W ]) with
probability W/N . Algorithm A solves these short instances with probability ε.
By Theorem 2, ST 2 = Ω̃(ε′N) = Ω̃(εW ).

As an application: decryption in the Boneh-Goh-Nissim cryptosystem [21]
requires solving a short-exponent discrete-log problem in an interval of width W ,
for a polynomially large width W . The designers of that system suggest using a
size-W table of precomputed discrete logs (i.e., S = Õ(W )) to enable decryption
in constant time. Corollary 5 shows that the best generic decryption algorithm
that uses a size-S table requires roughly

√
W/S time.

3.3 The Computational Diffie-Hellman Problem

A generic algorithm for the computational Diffie-Hellman problem takes as input
a triple of labels (σ(1), σ(x), σ(y)) and must output the label σ(xy). The following
theorem demonstrates that in generic groups—even allowing for preprocessing—
the computational Diffie-Hellman problem is as hard as computing discrete
logarithms.

Theorem 6 (Informal). Let A = (A0,A1) be a generic algorithm with pre-
processing for the computational Diffie-Hellman problem in a group of prime
order N . If A uses S bits of group-specific advice, runs in online time T , and
succeeds with probability ε, then ST 2 = Ω̃(εN).

We present only the proof idea, since the structure of the proof is very similar
to that of Theorem 2.

Proof Idea. The primary difference from the proof of Theorem 2, is that, we run
A1 on pairs of labels (σ(x), σ(y)), and a successful run of A1 produces the CDH
value σ(xy). Since we run A1 on two labels at once, the encoder’s table now has
two formal variables: X and Y .

In this case, whenever the encoder encounters a collision, it gets a single
linear relation on X and Y modulo the group order N . Since there are at most
N solutions (x0, y0) to a linear relation in X and Y over ZN , the encoder can
describe the solution to the decoder using log(N −|Table|) bits. The encoder gets
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some profit, in terms of encoding length, since it will get two discrete logs for the
cost of one discrete log and one pointer into the table (of length log |Table| bits).

The rest of the proof is as in Theorem 2.

3.4 Lower Bounds for Families of Groups

The lower bound of Theorem 2 suggests that one way to mitigate the risk of
generic preprocessing attacks is to increase the group size. Doubling the size of
group elements from logN to 2 logN recovers the same level of security as if
the attacker could not do any preprocessing. The downside of this mitigation
strategy is that increasing the group size also increases the cost of each group
operation and requires using larger cryptographic keys (e.g., when using the
group for Diffie-Hellman key exchange [35]).

One might ask whether it would be possible to defend against preprocessing
attacks without having to pay the price of using longer keys. One now-standard
method to defend against preprocessing attacks when using a common crypto-
graphic hash function H is to use “salts” [69]. When using salts, each user u of
the hash function H chooses a random salt value su from a large space of possible
salts. User u then uses the salted function Hu(x) =def H(su, x) as her hash function,
and the salt value u can be made public. Chung et al. [26] showed that this
approach can result in obtaining collision-resistant hashing against preprocessing
attacks, and Dodis et al. [36] demonstrated the effectiveness of this approach for
a variety of cryptographic primitives.

The analogue to salting in generic groups would be to have a large family of
groups (e.g., of elliptic-curve groups) {Gk}Kk=1 indexed by a key k. Rather than
having all users share a single group—as is the case today with NIST P-256—
different users and systems could use different groups Gk sampled from this large
family. In particular, pairs of users executing the Diffie-Hellman key-exchange
protocol could first jointly sample a group Gk from this large family and then
perform their key exchange in Gk.

We show that using group families in this way effectively defends against
generic preprocessing attacks, as long as the family contains a large enough
number of groups.

To model group families, we replace the labeling function σ : ZN → L with
a keyed family of labeling functions σkey : [K] × ZN → L. The keyed generic-
group oracle Oσkey(·, ·, ·) then takes a key k and two labels σ1, σ2 ∈ L and
returns σkey(k, x + y) if there exist x, y ∈ ZN such that σkey(k, x) = σ1 and
σkey(k, y) = σ2. The oracle returns ⊥ otherwise. In addition, when fed the pair
(k, ?), for a key k ∈ [K] and a special symbol ?, the oracle returns the identity
element in the kth group: σ(k, 1).

The following theorem demonstrates that using a large keyed family of groups
effectively defends against generic preprocessing attacks:

Theorem 7. Let N be a prime. Let (A0,A1) be a pair of generic algorithms for
[K]× ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
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queries, and

Pr
σ,k,x,A1

[
A
Oσkey
1

(
A
Oσkey
0 (), k, σ(k, x)

)
= x

]
≥ ε ,

where the probability is taken over the uniformly random choice of the labeling σkey,
the key k ∈ [K], the instance x ∈ ZN , and the coins of A1. Then ST 2 = Ω̃(εKN).

The proof of Theorem 7 appears in Appendix B. The structure of the proof
follows that of Theorem 2, except that we need some extra care to handle the
fact that an adversary may query the oracle at many different values of k in a
single execution.

4 Lower Bound for Computing Many Discrete Logarithms

A natural extension of the standard discrete-log problem is the multiple-discrete-
log problem [42, 55, 61, 91, 92], in which the adversary’s task is to solve M
discrete-log problems at once. This problem arises in the setting of multiple-
instance security of discrete-log-based cryptosystems. If an adversary has a list
of M public keys (gx1 , . . . , gxM ) in some group G = 〈g〉 of prime order N , we
would like to understand the cost to the adversary of recovering all M secret
keys x1, . . . , xM ∈ ZN .

Solving the multiple-discrete-log problem cannot be harder than solving M
instances of the standard discrete-log problem independently using Õ(M

√
N)

time overall. One can however do better: generic algorithms due to Kuhn and
Struik [61] and Fouque, Joux, and Mavromati [42] solve it in time Õ(

√
MN).

These algorithms achieve a speed-up over solving M discrete-log instances in
sequence by reusing some of the work between instances. Yun [92] showed that in
the generic-group model, these algorithms are optimal up to logarithmic factors
by proving an Ω(

√
NM)-time lower bound for online-only algorithms, subject to

the natural restriction that M = o(N).
Our methods give the more general ST 2 = Ω̃(ε1/MNM) generic lower bound

for the M -instance multiple-discrete-log problem with preprocessing. For the
special case of algorithms without preprocessing, our bound gives T = Ω̃(

√
NM),

which matches the above upper and lower bounds. An additional benefit of our
analysis it that it handles arbitrarily small success probabilities ε, whereas Yun’s
bound applies only to the ε = Ω(1) case.

Let x̄ = (x1, . . . , xM ) ∈ ZMN and, for a labeling σ : ZN → L, define the vector
σ(x̄) = (σ(x1), . . . , σ(xM )) ∈ LM . We restrict ourselves to the case of M ≤ T , as
otherwise the algorithm cannot even afford to perform a group operation on each
of its inputs.

Theorem 8. Let N be a prime. Let (A0,A1) be a pair of generic algorithms for
ZN on L such that A0 outputs an S-bit advice string, A1 makes at most T oracle
queries,

Pr
σ,x̄,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x̄)

)
= x̄

]
≥ ε,
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where the probability is taken over the random choice of the labeling σ, a random
input vector x̄ ∈ ZMN (for M ≤ T ), and the coins of A1. Then

ST 2/M + T 2 = Ω̃(ε1/MNM).

We prove this theorem in Appendix C.
The proof follows the proof of Theorem 2, except the encoder now runs A1

on M labels at a time. The encoder and decoder keep a table in M formal
variables (X1, . . . , XM ), representing the M discrete logs being sought. With
every “collision event,” we show that the number of formal variables in the table
can decrease by one until either (a) A1 outputs the M discrete logs, or (b) the
table has no more formal variables and the encoder halts A1.

5 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem [17] (DDH) is to distinguish tuples of the
form (g, gx, gy, gxy) from tuples of the form (g, gx, gy, gz), for random x, y, z ∈ ZN .
In this section, we show that every generic distinguisher with preprocessing for
the decisional Diffie-Hellman problem that achieves advantage ε must satisfy
ST 2 = Ω̃(ε2N). More formally:

Theorem 9. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and ∣∣∣Pr

[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(xy)

)
= 1
]

−Pr
[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(z)

)
= 1
]∣∣∣ ≥ ε ,

where the probabilities are over the choice of the label σ, the values x, y, z ∈ ZN ,
and the randomness of A1. Then ST 2 = Ω̃(ε2N).

The proof of Theorem 9 appears in Appendix D.
While the proof uses an incompressibility argument, extending the technique of

Theorem 2 to give lower bounds for decisional-type problems requires overcoming
additional technical challenges. Consider a DDH distinguisher with preprocessing
(A0,A1) that achieves advantage ε. The difficulty with using such an algorithm
to build a scheme for compressing σ is that each execution of A1 only produces
a single bit of output. When ε < 1, each execution of A1 produces even less—a
fraction of a bit of useful information.

To explain why getting only a single bit of output from A1 is challenging: the
encoder of Theorem 2 derandomized A1 by writing a pointer r∗ ∈ [R] to a “good”
set of random coins for A1 into the encoding, thus turning a faulty randomized
algorithm into a correct deterministic algorithm at the cost of slightly increasing
the encoding length. This derandomization technique does not apply immediately
here, since the logR-bit value required to point to the “good” set of random coins
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eliminates any profit in encoding length that we would have gained from the
fraction of a bit that A1 produces as output.

A straightforward amplification strategy—building an algorithm A′1 that calls
A1 many times and takes the majority output—would circumvent this problem,
but would yield an ST 2 = Ω̃(ε4N) lower bound that is loose in ε.

To achieve a tighter ST 2 = Ω̃(ε2N) bound, our strategy is to use A1 to
construct an algorithm A×B1 that executes A1 on a batch of B independent DDH
problem instances (one at a time), for some batch size parameter B ∈ Z+. The
algorithm A×B1 now produces B bits of output and succeeds with probability
εB. If we now choose R such that logR < B, we can now apply our prior
derandomization technique, since each execution of A×B1 will yield some profit in
our compression scheme.

Handling collisions in this case involves additional technicalities, since there
might (or might not) be a collision in each of the B sub-executions of A×B1 and
we need to be able to identify which execution encountered a collision without
squandering the small profit that A×B1 yields.

Putting everything together, we achieve an ST 2 = Ω̃(ε2N) lower bound for
the DDH problem.

6 Lower Bounds with Limited Preprocessing

Up to this point, we have measured the cost of a discrete-log algorithm with
preprocessing by (a) number of bits of preprocessed advice it requires and (b) its
online running time. In this section, we explore the preprocessing cost—the time
required to compute the advice string—and we prove tight lower bounds on the
preprocessing cost of generic discrete-log algorithms.

Let (A0,A1) be a generic discrete-log algorithm with preprocessing, as defined
in Sect. 2. For this section, we allow A0 to be randomized. We say that (A0,A1)
uses P preprocessing queries and T online queries if A0 makes P oracle queries
and A1 makes T oracle queries. In this section, we do not put any restriction on
the size of the state that A0 outputs—we are only interested in understanding
the relationship between the preprocessing time P and the online time T .

Remark. When P = Θ(N), there is a trivial discrete-log algorithm with pre-
processing (A0,A1) that uses T = 0 online queries and succeeds with constant
probability. In the preprocessing step, A0 computes a table of Θ(N) distinct pairs
of the form (i, σ(i)) ∈ ZN × L. On receiving a discrete-log instance σ(x), the
online algorithm A1 looks to see if σ(x) is already stored in its precomputed table
and outputs the discrete log x if so. This algorithm succeeds with probability
ε = P/N = Ω(1).

Remark. When P = o(
√
N), we can rule out algorithms that run in online time

T = o(
√
N) and succeed with constant probability. To do so, we observe that

every generic discrete-log algorithm that uses P preprocessing queries and T
online queries can be converted into an algorithm that uses no preprocessing
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queries and T ′ = (P + T ) online queries, such that both algorithms achieve the
same success probability.

Shoup’s lower bound [83] states that every generic discrete-log algorithm
without preprocessing that runs in time T ′ succeeds with probability at most
ε = O(T ′2/N). This implies that any algorithm with preprocessing P and online
time T succeeds with probability at most ε = O((T + P )2/N).

Put another way: Shoup’s result implies a lower bound of (T + P )2 = Ω(εN).
So any algorithm that makes only P = o(

√
N) preprocessing queries must use T =

Ω(
√
N) online queries to succeed with constant probability. Thus, an algorithm

that uses o(
√
N) preprocessing queries cannot asymptotically outperform an

online algorithm.

Given these two remarks, the remaining parameter regime of interest is when√
N < P < N . We prove:

Theorem 10. Let (A0,A1) be a generic discrete-log algorithm with preprocessing
for ZN on L that makes at most P preprocessing queries and T online queries.
If x ∈ ZN and a labeling function σ are chosen at random, then A succeeds with
probability ε = O((PT + T 2)/N).

As a corollary, we find that every algorithm that succeeds with probability ε
must satisfy PT+T 2 = Ω(εN). For example, an algorithm that uses P = O(N2/3)
preprocessing queries must use online time at least T = Ω(N1/3) to succeed with
constant probability.

The full proof appears in Appendix E, and we sketch the proof idea here.

Proof Idea for Theorem 10. We prove the theorem using a pair of probabilistic
experiments, following the general strategy of Shoup’s now-classic proof tech-
nique [83].

In both experiments, the adversary interacts with a challenger, who plays the
role of the generic group oracle Oσ. The challenger defines the labeling function
σ(·) lazily in response to the adversary’s queries. Both experiments follow similar
steps:

1. The challenger sends a label s1 ∈ L, representing σ(1), to the adversary.
2. The adversary makes P preprocessing group-oracle queries to the challenger.
3. The challenger sends the discrete-log instance sx ∈ L, representing σ(x), to

the adversary.
4. The adversary makes T online queries and outputs a guess x′ of x.

The difference between the two experiments is in how the challenger defines the
discrete log of the instance sx ∈ L.

In Experiment 0, the challenger chooses the discrete log x ∈ ZN of sx before
the adversary makes any online queries. The challenger in Experiment 0 is thus
a faithful (or honest) oracle.

In Experiment 1, the challenger chooses the discrete log x of σx after the
adversary has made all of its online queries. In this latter case, the challenger is
essentially “cheating” the adversary, since all of the challenger’s query responses
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are independent of x and the adversary cannot recover x with probability better
than random guessing. To complete the argument, we show that unless the
adversary makes many queries, it can only rarely distinguish between the two
experiments.

A detailed description of the experiments and their analysis appears in
Appendix E.

The Lower Bound is Tight. From Theorem 2, we know that a discrete-log
algorithm that succeeds with constant probability must use advice S and online
time T such that ST 2 = Ω̃(N). From Theorem 10, we know that any such
algorithm must also use preprocessing P such that PT + T 2 = Ω(N). The best
tradeoff we could hope for, ignoring the constants and logarithmic factors, is
PT +T 2 = ST 2, or P = ST . Indeed, the known upper bound with preprocessing
(see Sect. 7.1) matches this lower bound, disregarding low-order terms.
An Alternative Approach. Yun [92] has proved that any generic algorithm
that computes M = o(N) discrete log instances with constant probability must
run in online T such that T 2 = Ω(MN). In a personal communication, Dan
Bernstein notes that Yun’s lower bound against multiple-discrete-log algorithms
also yields lower bounds on the preprocessing time for discrete-log algorithms with
preprocessing. To see this, observe that a discrete-log algorithm with preprocessing
that uses preprocessing time P , uses online time T , and succeeds with probability
1 yields an M -discrete-log-algorithm (without preprocessing) that runs in time
T ′ = P +MT that also succeeds with probability 1. Combining this observation
with Yun’s lower bound indicates that (P +MT )2 = Ω(MN) for all M = o(N).
SettingM = max

{⌊
P
T

⌋
, 1
}
, one obtains PT+T 2 = Ω(N). Our lower bound gives

the same result via a slightly more direct route, and also applies to algorithms
that succeed with sub-constant probability.

7 Preprocessing Attacks on Discrete-Log Problems

In this section, we recall the known generic discrete-log algorithm with prepro-
cessing and we introduce two new generic attacks with preprocessing. Specifically,
we show an attack on the multiple-discrete-log problem that matches the lower
bound of Theorem 8, and we show an attack on certain decisional problems in
groups that matches the lower bound of Theorem 9.

These attacks are all generic, so they apply to every group, including popular
elliptic-curve groups. Our preprocessing attacks are not polynomial-time attacks—
indeed our lower bounds rule out such attacks—but they yield better-than-known
exponential-time attacks on these problems.

The analysis of the algorithms in these sections rely on the attacker having
access to a random function (i.e., a random oracle [11]), which the attacker
could instantiate with a standard cryptographic hash function, such as SHA-256.
Removing the attacks’ reliance on a truly random function remains a useful task
for future work.
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G

h = gx

Fig. 1. The discrete-log algorithm with preprocessing of Sect. 7.1 uses a random
function F to define a walk on the elements of G. The preprocessed advice consists
of the discrete logs of S points that lie at the end of length-Θ(T ) disjoint paths on
the walk. In the online phase, the algorithm walks from the input point until hitting a
stored endpoint, which occurs with good probability.

7.1 The Existing Discrete-Log Algorithm with Preprocessing

For the reader’s reference, we describe a variation of the discrete-log algorithm
with preprocessing, introduced by Mihalcik [68], Lee, Cheon, and Hong [63],
and Bernstein and Lange [16]. This discrete-log algorithm shows that the lower
bound of Theorem 2 is tight. Our algorithms for the multiple-discrete-log problem
(Sect. 7.2) and for distinguishing pseudo-random generators (Sect. 7.3) use ideas
from this algorithm.

The algorithm computes discrete logs in a group G of prime order N with
generator g. The algorithm takes as input parameters S, T ∈ Z+ such that
ST 2 ≤ N . The algorithm uses Õ(S) bits of precomputed advice about the group
G, uses Õ(T ) group operations in the online phase, and succeeds with probability
ε = Ω(ST 2/N).

Let F : G→ ZN be a random function, which we can instantiate in practice
using a standard hash function. We use the function F to define a walk on the
elements of G. Given a point h ∈ G, the walk computes α← F (h) and moves to
the point gαh ∈ G.

Given these preliminaries, the algorithm works as follows:
– Preprocessing phase. Repeat S times: pick r ←R ZN and, starting at gr ∈ G,

take the walk defined by F for T/2 steps. Store the endpoint of the walk gr′

and its discrete log r′ in a table: (r′, gr′).
At the end of the preprocessing phase, the algorithm stores this table of S
group elements along with their discrete logs, using O(S logN) bits.

– Online phase. Given a discrete-log instance h = gx, the algorithm takes T
steps along the random walk defined by F , starting from the point h (see
Fig. 1). If the walk hits one of the S points stored in the precomputed table,
this collision yields a linear relation on x in the exponent: gr′ = gx+α1+···+αk ∈
G. Solving this linear relation for x ∈ ZN reveals the desired discrete log.
The algorithm uses Õ(S) bits of group-specific advice and runs in online time

Õ(T ). The remaining task is to analyze its success probability.
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We first claim that, with good probability, the S walks in the preprocessing
phase touch at least ST/4 distinct points. To this end, observe that for every
walk in the preprocessing phase, the probability that it touches T/2 new points
is at least (1− ST/(2N))T/2 ≥ 1− ST 2/(4N), by Bernoulli’s inequality. Since
ST 2 ≤ N , we have that 1− ST 2/(4N) ≥ 1−1/4 = 3/4. Therefore, in expectation,
each walk touches at least 3T/8 new points and by linearity of expectation, the
overall expected number of touched points is at least 3ST/8. The number of
touched points is at most ST/2 and is at least 3ST/8, in expectation. We can
apply Markov’s inequality to an auxiliary random variable to conclude that the
number of touched points is greater than ST/4 with probability at least 1/2.

Next, observe that if at any of its first T/2 steps, the online walk hits any of
the points touched by one of the preprocessed walks, in the remaining T/2 steps
it will hit the stored endpoint of that preprocessed walk. It will then successfully
compute the discrete log. Moreover, as long as the online walk does not hit any of
these points, its steps are independent random points in G. If the number points
touched during preprocessing is at least ST/4, then the online walk succeeds with
probability at least 1−(1−(ST/(4N))T/2 ≥ 1−exp(−ST 2/(8N)) ≥ ST 2/(16N).
Overall, the probability of success ε is at least 1/2 · ST 2/(16N) = Ω(ST 2/N).

7.2 Multiple Discrete Logarithms with Preprocessing

We now demonstrate that a similar technique allows solving the multiple-discrete-
log problem more quickly using preprocessing. The algorithm is a modification
to the attack of Fouque et al. [42] to allow for precomputation, in the spirit of
the algorithm of Sect. 7.1.

This upper bound matches the lower bound of Theorem 8 for a constant ε, up
to logarithmic factors, which shows that the lower bound is tight for constant ε. To
recall, an instance of the multiple-discrete-log problem is a vector (gx1 , . . . , gxM )
for random xi ∈ ZN . The solution is the vector (x1, . . . , xM ). Then we have the
following theorem:

Theorem 11. There exists a generic algorithm with preprocessing for the M-
instance multiple-discrete-log problem in a group of prime order N that makes
use of a random function, uses Õ(S) bits of group-specific advice, runs in time
Õ(T ), succeeds with constant probability, and satisfies ST 2/M + T 2 = O(MN).

We prove the theorem in Appendix F.

7.3 Distinguishers with Preprocessing

In this section, we give a new distinguishing algorithm for certain decisional
problems in groups.

For concreteness, we first demonstrate how to use preprocessing to attack the
square decisional Diffie-Hellman problem (sqDDH) [57], which is the problem of
distinguishing tuples of the form (g, gx, gy) from tuples of the form (g, gx, g(x2))
for random x, y ∈ ZN . In groups for which DDH is hard, the best known attack
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against this assumption requires solving the discrete-log problem. Later on,
we show how to generalize the attack to a larger family of natural decisional
assumptions in groups.

Definition 12. We say that an oracle algorithm AO has advantage ε at distin-
guishing distributions D1 and D2 if

∣∣Pr[AO(d1) = 1] − Pr[AO(d2) = 1]
∣∣ = ε,

where the probability is over the randomness of the oracle and samples d1 ∼ D1

and d2 ∼ D2.

Theorem 13. There is a sqDDH distinguisher with preprocessing that makes
use of a random function, uses Õ(S) bits of group-specific advice, runs in time
Õ(T ), and achieves distinguishing advantage ε whenever ST 2 = Ω(ε2N).

Remark. A simple sqDDH distinguisher takes as input a sample (h0, h1) ∈ G2,
computes the discrete logarithm x = logg(h0) of the first group element and
checks whether h1 = g(x2) ∈ G. Theorem 2 indicates that such a distinguisher
using advice S and time T and achieving advantage ε must satisfy ST 2 = Ω̃(εN).
So, this attack allows the parameter setting S = T = 1/ε = N1/4. In contrast, the
distinguisher of Theorem 13 allows the better running time and advice complexity
roughly S = T = 1/ε = N1/5.

Remark. To see the cryptographic significance of Theorem 13, consider the
pseudo-random generator P (x) =def (gx, g(x2)) that maps ZN to G2. Theorem 13
shows that, for generic algorithms with preprocessing, it is significantly easier to
distinguish this PRG from random than it is to compute discrete logs.

Proof Sketch of Theorem 13. The attack that proves the theorem combines two
technical tools. The first tool is a general method for using preprocessing to
distinguish PRG outputs from random, which we adopt from Bernstein and
Lange [16]. (De et al. [32] rigorously analyze a more nuanced PRG distinguisher
with preprocessing.) The second tool, adopted from the attack of Sect. 7.1, is
the idea of taking a walk on the elements of the group, and applying the PRG
distinguisher only to the set of points that lie at the end of long walks.

The attack works because a walk that begins at a point of the form (gx, g(x2))
is likely to hit one of the precomputed endpoints quickly and applying the PRG
distinguisher yields an ε-biased output value. In contrast, an attack that begins
at a point of the form (gx, gy) will never hit a precomputed point and applying
the distinguisher yields a relatively unbiased output.

The algorithm (illustrated in Fig. 2) takes as input parameters S, T ∈ Z+.
As in the attack of Sect. 7.1, we use a random function to define a walk on a

graph. In this case, the vertices of the graph are pairs of group elements—so every
vertex is an element of G2. We also define the subset of vertices Y = {(gx, g(x2)) |
x ∈ ZN} ⊂ G2 that correspond to “yes” instances of the sqDDH problem. The
subset Y is very small relative to the set of all vertices G2, since |G2| = N2, while
|Y| = N .

To define the walk on the vertices of this graph, we use a random function
F that maps G2 → ZN . Given a point (h0, h1) ∈ G2, the walk computes α ←
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G2

Y
M

(h0, h1)

p1 p2 p3 p4

advice string

Fig. 2. The preprocessing phase of the sqDDH distinguisher takes walks on the elements
of Y ⊂ G2. Each walk terminates upon hitting the set of marked points M, which we
further partition into S “colors”. The advice consists of a string pc for each of the colors,
such that the sum

∑
H(pc,m) is maximized over all the endpoints of color c. In the

online phase (in red), the algorithm walks from the input point until hitting a marked
point.

F (h0, h1) and moves to the point (hα0 , h
(α2)
1 ) ∈ G2. Observe that if the walk

starts in Y (i.e., at a “yes” point), the walk remains inside of Y . If the walk starts
at a point outside of Y, the walk remains outside of Y.

Out of the N2 total vertices in the graph, we choose a set of distinguished
or “marked” points M, by marking each point independently at random with
probability 1/T . (In practice, we can choose the set of marked points using a hash
function.) To each point inM, we assign one of S different “colors,” again using
a hash function. So there are roughly N2/(ST ) points each with color 1, 2, . . . , S.

Given these preliminaries, the algorithm works as follows:
– Preprocessing phase. Choose N/3T 2 random points in Y . From each of these

points, take 2T steps of the walk on G2 that F defines. Halt the walk upon
reaching a marked point m ∈M. If the walk hits a marked point, store the
marked point along with its color c in a table.
Group the endpoints of the walks by color. For each of the colors c ∈ [S], find
the prefix string pc ∈ {0, 1}logN that maximizes the sum

∑
H(pc,m), where

H : {0, 1}logN ×G2 → {0, 1} is a random function and the sum is taken over
the stored marked points m of color c.
Store the prefix strings (p1, . . . , pS) as the distinguisher’s advice.

– Online phase. Given a sqDDH challenge (h0, h1) ∈ G2 as input, perform at
most 10T steps of the walk on G2 that the function F defines. As soon as
the walk hits a marked point m ∈ M of color c, return the value H(pc,m)
as output. If the walk never hits a marked point, output “0” or “1” with
probability 1/2 each.

The distinguisher uses Õ(S) bits of group-specific advice and runs in time
Õ(T ) as desired. So all we must argue is that the algorithm achieves distinguishing
advantage ε = Ω(

√
ST 2/N). We argue this last step in Appendix G.
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Attacking More-General Problems. The distinguishing attack of Theorem 13
applies to a general class of decisional problems in cyclic groups. Let (f1, . . . , f`)
be k-variate polynomials and let x̄ = (x1, . . . , xk) ∈ ZkN . Then we can define the
problem of distinguishing tuples of the form

(gx1 , . . . , gxk , gf1(x̄), . . . , gf`(x̄)) from (gx1 , . . . , gxk , gr1 , . . . , gr`),

for uniformly random x1, . . . , xk, r1, . . . , r` ∈ ZN .
The attack of Theorem 13 applies whenever there exists an index i, a linear

function L : Gk+` → G, and a constant c > 1 such that L(x̄, f1(x̄), . . . , f`(x̄)) =
xci . To apply the attack, first apply L(·) “in the exponent” to the challenge to get
a pair (gxi , gx

c
i ) ∈ G2 and then run the distinguisher on this pair of elements.

As an example, this attack can distinguish tuples of the form (gx1 , gx2 ,
g(x2

1), gx1x2 , g(x2
2)) from random. The attack uses i = 1, L(z1, z2, z3, z4, z5) = z3,

and c = 2. Note that this assumption is very closely related to the standard DDH
assumption, except that the challenge tuple includes the extra elements g(x2

1)

and g(x2
2).

Remark. Somewhat surprising is that the distinguishing attack of Theorem 13
does not translate to an equivalently strong attack for the DDH problem. The
immediate techical obstacle for this is the fact that the distinguishing advantage
of the generic PRG distinguisher reduces as the size of the seed space of the PRG
grows. That space is of size N in the sqDDH problem, but of size N2 in the DDH
case, which results in a weaker distinguisher.

8 Conclusion

We studied the limits of generic group algorithms with preprocessing for the
discrete-logarithm problem and related computational tasks.

In almost all cases, our lower bounds match the best known attacks up to
logarithmic factors in group order. The one exception is our lower bound for the
decisional Diffie-Hellman problem, in which our lower bound is ST 2 = Ω̃(ε2N),
but the attack requires computing a discrete logarithm with ST 2 = Õ(εN). When
the success probability ε is constant, these bounds match. For intermediate values
of ε, such as ε = N−1/4, it is not clear which bound is correct.

One useful task for future work would be to generalize our lower bounds
to more complex assumptions, such as Diffie-Hellman assumptions on pairing-
equipped groups [20], q-type assumptions [18], or the “uber” assumptions [19, 23].

In addition, our upper bounds of Sect. 7 make use of a public random function.
Making the attacks fully constructive by removing this heuristic, in the spirit of
Fiat and Naor [40] and De et al. [32], would be valuable as well.
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A Decoder for the Proof of Lemma 4

Given the encoded string, the decoding routine recovers σ as follows.

1. Read the S-bit advice string stσ from the encoding.
2. Read log

(|L|
N

)
bits from the encoding and decode the image of σ.

3. Initialize the table of pairs Table to the empty list.
4. Read σ(1) from the encoding and add (1, σ(1)) to the table.
5. Repeat d times:

(a) Choose the first string s in the lexicographical order of the image of σ
that does not yet appear in the table and add the pair (X, s) to the table.

(b) Read logR bits from the encoding and decode the value r∗ ∈ [R].
(c) Read log T bits from the encoding and decode the value t ∈ [T ].

35

https://doi.org/10.2307/2006496
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-44448-3_7
https://doi.org/10.1145/322217.322225
https://doi.org/10.1090/pspum/020/0316385
https://doi.org/10.1090/pspum/020/0316385
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45325-3_8
https://doi.org/10.1007/s001459900052
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1016/j.ins.2012.01.044
https://doi.org/10.1016/j.ins.2012.01.044
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/100216.100226
http://doi.acm.org/10.1145/100216.100226
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-662-46803-6_27
https://doi.org/10.1007/3-540-09519-5_73


(d) Run A1(stσ, s) for t queries using the r∗-th random tape allocated for
this instance of A1. Reply to each query (u, v) that A1 makes as follows.
i. If either u or v is outside the image of σ, reply ⊥.
ii. If either u or v is in the image of σ, yet it does not appear in the

table, add entries (Ui, u) and (Uj , v) to the table, where i and j are
the smallest integers such that the indeterminates Ui and Uj do not
already appear in the table.

iii. Look up in the table the polynomials fu, fv representing σ−1(u),
σ−1(v) in the table, and compute the linear polynomial fu + fv
representing the reply to the query. We then distinguish between the
same three cases as above:
A. If (fu + fv, w) is already in the table, simply reply with w and

continue to the next query.
B. If this is not the last (t-th) query of this execution, read log(N−`)

bits from the encoding, where ` is the number of labels in the
table, decode the bits as an element w of σ(ZN ) that is not in
the table, and reply with w. Add (fu + fv, w) to the table and
continue to the next query.

C. Finally, if this is the t-th query, read a (log |Table|)-bit pointer
from the encoding and look up the entry in the table (fw, w) that
it points to. Solve the equation fw = fu + fv mod N for the first
indeterminate the appears in it. Replace every occurrence of this
indeterminate in the polynomials in the table with the solution
of the equation, thus eliminating the variable from the table. Go
to step 5(d)v.

iv. If the execution A1(stσ, s) completes and outputs x, evaluate all of
the polynomials in the table at the point x.

v. Read the values of all remaining indeterminates in the table in the
order they appear in the table.

6. Read the remaining values that do not yet appear in the table from the
encoding.

B Proof of Theorem 7 (Families of Groups)

Proof. As in the previous sections, we begin by using an averaging argument to
get a subset Σ of all keyed group families σkey : [K]× ZN → L for which

Pr
k,x,A1

[
A1

(
A
Oσkey
0 (), k, σ(k, x)

)
= x

]
≥ ε/2 ,

and
|Σ| ≥ ε

2
· ||L|!

(|L| −N)!
.

Then, we can use the random self-reduction of Lemma 3 to construct an algorithm
A′1 that makes at most T +O(logN) oracle queries such that for every x ∈ ZN
it holds that

Pr
k,A1

[
A1

(
A
Oσkey
0 (), k, σ(k, x)

)
= x

]
≥ ε/2 .
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Note that the random self-reduction allows us to reduce only to instances having
the same key, so even though the algorithm A1 is a worst-case algorithm over
the choice of input x ∈ ZN , it is still only an average-case algorithm over the
choice of key.

We can now use A′1 to construct a randomized encoding scheme for all
σkey ∈ Σ. Note that one cannot simply encode σkey(k, ·) independently for each
key k ∈ [K] because in general A1(k, σkey(k, x)) may query the group oracle on
other keys k′ 6= k.

For a fixed labeling σkey : [K] × ZN → L, let {εk}k∈[K] be the success
probabilities of A1 for all possible keys. By definition, it holds that

∑K
k=1 εk/K ≥

ε/2. Moreover, we may assume without the loss of generality that εk ≥ 1/N . Let

Rk =
log(KN) + 1

εk
, Dk =

N

(2RkT + 1)
− 3T , D =

K∑
k=1

Dk.

The encoder then proceeds as follows:

1. Compute stσkey ← A
Oσkey
0 () and write this value into the encoding.

2. For each key k ∈ [K], write the images σkey(k, ·) into the encoding.
3. Compute {ε}k∈[K] by means of trivial derandomization of A1 (note that the

encoder is computationally unbounded). Write the values {Rk}k∈[K] into the
encoding, using K(logN + log(log(KN) + 1)) bits.

4. Initialize K empty tables of discrete logs {Tablek}k∈[K].
5. While

∑K
k=1 |Tablek| ≤ D:

(a) Take the smallest k ∈ [K] such that |Tablek| ≤ Dk.
(b) Take the first string s in the lexicographical order of the image of σkey(k, ·)

which is still not in Tablek. Add (X, s) to Tablek, where X is a formal
variable representing the discrete log of s.

(c) Execute A1(A0, k, s) up to Rk times, using independent random coins
each time (e.g., by means of partitioning the shared random tape as in
Sect. 3). If all executions fail to compute the discrete log of s, abort.
Otherwise, write the index of the first successful execution to the encoding.

(d) As in Sect. 3, add the execution trace of the successful execution to the
encoding. The execution trace may contain replies to oracle queries
for all possible keys. It may also contain queries on unexpected labels,
which do not appear in the table at the time of query. If an unexpected
label appears in a query with the same key k as the input, the encoder
introduces additional indeterminates to the table Tablek. However, if the
unexpected label appears in a query with a different key k′, the encoder
writes its discrete log value into the encoding.
Therefore, the only table that can contain indeterminates during an
execution on an input key k is Tablek. Thus, a non-trivial collision may
only occur in Tablek.
The trace ends either when A1 makes the first non-trivial collision query
or when it successfully outputs the correct value of the discrete log of s.
In both cases, the decoder will be able to use this trace to recover the
value of one of the indeterminates in the table.
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6. Add the values missing in each of the tables {Tablek}k∈[K] in lexicographic
order.

The Chernoff bound implies that all Rk attempts of a single execution fail
with probability at most 1/(2KN), and taking a union bound over at most KN
executions guarantees that the encoding routine fails with probability at most
1/2.
Encoding Length. Non-colliding queries, as well as unexpected queries may
belong to keys different than the one A1 is given as input, and for those tables
it might happen that |Tablek′ | > Dk. However, regardless of the table size, the
encoding of the replies to those queries will be of the same length as in the
standard encoding: log (N − |Tablek′ |) bits for each value.

Each execution of A1 adds to the collection of tables {Tablek}k∈[K] at most
3T + 1 entries overall: the input to the execution, T replies and at most 2T
unexpected query labels. Therefore the total number of executions is at least

d =
D

3T + 1
=

K∑
k=1

N

(2RkT + 1)(3T + 1)
−K 3T

3T + 1
≥

K∑
k=1

N

6RkT (T + 1)
−K

≥
∑K
k=1 εkN

6T (T + 1)(logN + 1)
−K =

εKN

12T (T + 1)(logN + 1)
−K .

Moreover, each execution is guaranteed to save the log(N − |Tablek|) bits
needed to encode the discrete log of one of the indeterminates, due to either
the output of A1 or to a collision. This profit comes at a cost of at most
logRk + log T + log |Tablek| additional bits. Since at the beginning of each
iteration, the table corresponding to the input key is bounded, we know that

logRk + log T + log |Tablek| ≤ log
RkTN

2RkT + 1
≤ logN − 1 ,

where we have used the fact that the iteration itself can add at most 3T additional
entries to the table Tablek on top of theDk entries at the beginning of the iteration.
The last inequality implies that each of the d iterations saves at least one bit
from the encoding.

We therefore obtain a randomized encoding of set Σ of length at most

S +K log

(
|L|
N

)
+K(logN + log(log(KN) + 1)) +K

N−1∑
i=1

log(N − i)− d

= K log
|L||

(|L| −N)!
+ S +O(K logN)− Ω̃(εKN)

T 2
.

Proposition 1 then gives us the bound

ST 2 = Ω̃(εKN) .
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C Proof of Theorem 8 (Multiple Discrete Logs)

As in the proof of Theorem 2, we prove the theorem using a randomized encoding
scheme.

As in Theorem 2, we first define the set of “good” labelings Σ and argue
that it must have size at least ε/2 · |L|!/(|L| −N)!. We then apply the random
self-reducibility of discrete log to convert a time-T average-case discrete-log
algorithm into a time T ′ = T + O(M logN) worst-case discrete-log algorithm.
We then construct a randomized encoding scheme that compresses every element
of Σ, which is a generalization of the scheme constructed in Lemma 4.

We make two major changes to the encoder from Lemma 4. First, the encoding
scheme runs A1 on batches of M labels at a time: (σ(x1), . . . , σ(xM )). At the
start of the encoder’s execution, there are now M formal variables X1, . . . , XM

in the table, which represent the discrete logs of the M labels on which A1 is
executing. (In contrast, the encoder of Lemma 4 begins with a single formal
variable X in the table.) In addition, there may be formal variables U1, U2, . . .
in the table representing the discrete-log values of “unexpected” query inputs, as
in the encoder of Lemma 4.

Second, the encoder runs each execution A1 until the latter either (a) outputs
the discrete logs (x1, . . . , xM ) ∈ ZMN , or (b) causes M “collision events.” As
before, we define a collision event to be one in which A1 makes an oracle query
(σ(i), σ(j)) such that:
– the discrete logs of σ(i) and σ(j) are represented by polynomials fi and fj

in the encoder’s table,
– the response string σ(i+ j) is in the encoder’s table, and
– the discrete logarithm of the response string stored in the table is a polynomial

unequal to fi + fj .
With each collision event, the number of free variables in the table decreases

by one. After M collision events, the encoder resolve all of the free variables in
the table to constants by writing their values into the encoding explicitly. The
encoder then halts A1.

As before, the encoder handles the fact that algorithm A1 succeeds only with
probability ε by running it R = (1 + logN)/ε times on each input (using fresh
randomness in each run), and including in the encoding the index r∗ of the
first successful execution. This ensures that the encoding scheme succeeds with
probability at least 1/2.

The encoder, which is quite similar to the one in the proof of Lemma 4, runs
A1 on d batches of M instances. The encoder then writes the values of σ that
are still undetermined directly into the encoded string using a naïve encoding.

The source of the “profit” for the encoding (in terms of its length) is that
each of the d iterations encodes M discrete logs using a string that is shorter
than than the standard encoding. Specifically, each iteration encodes M discrete
logs using at most logR bits to indicate the index r∗ of the good random tape,
log
(
T
M

)
bits to indicate the colliding queries, andM log |Table| bits to indicate the

replies to the colliding queries within the table of previous replies. (Here |Table|
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refers to the maximum size to which the encoder’s table ever grows.) Replies to
non-colliding queries, unexpected query inputs, and the values remaining after
the d iterations, are all encoded using the standard encoding.

Each iteration therefore results in a profit of at least

M log(N − |Table|)− logR− log

(
T

M

)
−M log |Table|

= M

(
log(N − |Table|)− logR

1
M − log

3T

M
− log |Table|

)
= M log

(N − |Table|)M
3R1/MT |Table|

bits,

where we applied the inequality
(
T
M

)
≤ (eT/M)M ≤ (3T/M)M .

Starting with a table that contains only σ(1), each iteration adds at most
3T +M values to the table (via M inputs, at most 2T unexpected query inputs
and T query outputs). After d iterations the table grows to a size of at most
d(3T +M) + 1 ≤ 5T , where the last inequality follows from the fact that M ≤ T .
Setting

d =

⌊
NM

35R
1
M T 2

⌋
≥ ε

1
MNM

35(1 + logN)
1
M T 2

− 1

guarantees that

|Table| ≤ NM

7R
1
M T

and subsequently

log
(N − |Table|)M
3R1/MT |Table|

≥ log
(6N/7)M

3NM/7
≥ 1 .

The profit from each iteration is therefore at least M bits, and the overall profit
of d iterations is dM − S bits.

The encoding scheme succeeds with probability 1/2, and it compresses all
labelings in the set Σ, which is a set of size ε/2 of all labelings. By Proposition 1,
the profit of such an encoding scheme can be at most log 2

ε + 1, which implies

dM − S ≤ log
2

ε
+ 1 ,

or (
ε

1
MNM

35(1 + logN)
1
M T 2

− 1

)
M − S ≤ 2 + log(1/ε) .

Using the fact that log(1/ε) ≤ logN , we get

ST 2/M + T 2 = Ω̃(ε1/MNM) .
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D Proof of Theorem 9 (DDH)

The core idea of the proof is in the construction of the following randomized
encoding scheme for labeling functions.

Lemma D.1. Let N be a prime and let Σ = {σ1, σ2, . . . } be a set of labeling
functions from ZN to L. Let (A0,A1) be a pair of generic algorithms such that
algorithm A0 outputs an S-bit state, algorithm A1 makes at most T oracle queries,
and for every σ ∈ Σ and every x, y, z ∈ ZN , AOσ1 (AOσ0 (σ(1)), σ(x), σ(y), σ(z))
agrees with a DDH oracle with probability 1/2 + ε over the coins of A1. Then,
there exists a randomized encoding scheme that compresses elements of Σ to
bitstrings of length at most

log
|L|!

(|L| −N)!
+ S − Ω̃

(
ε2N

T 2

)
.

and fails with probability at most 1/2.

Before proving Lemma D.1, we show how to use the lemma to prove Theorem 9.

Proof of Theorem 9. Without loss of generality, we may assume that algorithm
A0 is deterministic, as it is not bounded in its running time or its number of
queries, and thus can be trivially derandomized.

A standard averaging argument implies that there exists a set Σ such that
for every σ ∈ Σ, it holds that∣∣∣∣ Pr

x,y,z,A

[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(xy)

)
= 1
]

− Pr
x,y,z,A

[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(z)

)
= 1
]∣∣∣∣ ≥ ε/2 ,

and
|Σ| ≥ ε

2
log

|L|!
(|L| −N)!

.

Next, we use the random self-reducibility of the DDH problem [70,86] to convert
the average-case algorithm to a worst-case one. Specifically, using a random
self-reduction we construct an algorithm A′1 that makes T ′ = T + O(logN)
oracle queries, and for every σ ∈ Σ and every x, y, z ∈ ZN , it holds that,
for stσ ← A0(σ(1)), A′1(stσ, σ(x), σ(y), σ(z)) agrees with a DDH oracle with
probability 1/2 + ε/2, over the choice of its coins only.

Using Lemma D.1, we can then obtain a randomized encoding scheme for
every σ ∈ Σ, that succeeds with probability 1/2 and produces encodings of
bitlength at most

log
|L|!

(|L| −N)!
+ S − Ω̃

(
ε2N

T 2

)
.

By Proposition 1, it must hold that ST 2 ≥ Ω̃
(
ε2N

)
.
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Proof of Lemma D.1

As before, we use algorithms (A0,A1) to produce a short encoding of a labeling
function σ. We begin the encoding with the advice string AOσ0 (σ(1)) and an
encoding of the image of σ as a subset of L using log

(|L|
N

)
bits.

The DDH algorithm in this section outputs only a single bit, rather than
the discrete log of any of its inputs, so the encoding scheme must leverage A1’s
output to save one bit from the encoding length of σ. The basic idea is that the
encoder will encode the two product terms σ(x1 · y1) and σ(x2 · y2) of two DDH
triplets (σ(x1), σ(y1), σ(x1 · y1)) and (σ(x2), σ(y2), σ(x2 · y2)) as an unordered set
{σ(x1 · y1), σ(x2 · y2)} and the decoder will recover their correct order by running
the DDH algorithm A1. Encoding the two elements as an unordered set saves
one bit for every two DDH triplets, which is the source of profit for our encoding.

At each iteration, the encoder takes the four next unencoded labels σ(x1),
σ(y1), σ(x2), σ(y2) in lexicographical order and computes s1 = σ(x1 · y1), s2 =
σ(x2 · y2). The encoder and the decoder build up a table of pairs (f, s) ∈
Z[X1, Y1, X2, Y2, U1, U2, . . . ]× L, that represents the partial information about
σ that has been encoded or decoded up to that point. During each iteration, the
indeterminates correspond to the unknown discrete logs of the two DDH triplets
of that iteration and, as in Sect. 3.1, to discrete logs of any unexpected query
arguments.

The encoder first executes A1 on the DDH triplet (σ(x1), σ(y1), s), where s is
the first label in lexicographical order out of s1 and s2. We distinguish between
the following two cases.

Case I: Execution with Collisions. As in the proof of Theorem 2, we define
a “collision event” to be a case in which (a) the response to one of the adversary’s
queries is a label that already appears in the encoder’s table and (b) the label’s
discrete log in the table is represented by a different formal polynomial than the
query response.

A collision occurs during execution on the triplet (σ(x1), σ(y1), s) if the
algorithm A1 issues a query that collides with an element that already appears
in the table at the time of query. In the DDH encoder, we must handle queries
that collide with the DDH challenge elements s1 and s2. Such collisions could
happen if as soon as the encoder picks x1, y1, x2, y2, the value s1 = σ(x1 · y1) (or
similarly σ(x2 · y2)) already appears in the table.

If any collision occurs, the encoder proceeds as following:

1. Write to the encoding the “time of collision” as a number t between 1 and
T + 2, where the first two time-slots represent the elements s1 and s2.

2. Write to the encoding the execution trace of A1 on the DDH triplet (σ(x1),
σ(x2), s), where s is the first label in lexicographical order out of s1 and s2.
The execution trace starts with the two elements s1 and s2 and ends after t
queries. In the beginning of the execution, the encoder adds the corresponding
entries (X1 · Y1, s1) and (X2 · Y2, s2) to the table. As in Sect. 3.1, if during
the execution, the encoder encounters unexpected query arguments, it adds
additional indeterminates U1, U2, . . . to the table.
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3. Indicate the entry in the table with which the t-th query collides.
4. The collision induces an equation with some or all of the indeterminates
X1, Y1, X2, Y2, U1, U2, . . . If this equation is linear in at least one of the
indeterminates, then the encoder solves it for the first such indeterminate,
and eliminates from the table all of its occurrences.
If, on the other hand, the equation is a degree-two equation in four inde-
terminates X1, Y1, X2, Y2 (note that there cannot be quadratic terms with
the indeterminates U1, U2, . . . ), then by the Schwartz-Zippel Lemma [81,93],
this equation has at most 2N3 solutions. The encoder indicates the actual
solution x1, y1, x2, y2 using 3 logN + 1 bits.

5. The encoder terminates the execution, and writes down the discrete-log values
of the remaining unresolved indeterminates.

Case II: Collision-Free Execution. If the execution of algorithm A1 on
the DDH triplet (σ(x1), σ(x2), s) does not contain any collision, we encode it
differently. In this case, the encoder writes to the encoding the discrete logs
x1, y1, x2, y2 and the unordered set {s1, s2}. It then writes to the encoding the
execution trace of A1 on this DDH triplet.

When the decoder reads this part of the encoding, it recovers the table entries
(x1, σ(x1)), (y1, σ(y1)), (x2, σ(x2)), (y2, σ(y2)) as well as two elements s, s′ ∈ L,
yet it does not know the correct mapping between x1 · y1, x2 · y2 and s, s′. The
decoder then runs the DDH algorithm A1 on the DDH triplet (σ(x1), σ(y1), s)
and replies to its oracle queries using the trace that the encoder has provided it
with in the encoding. When A1 completes, it outputs a bit, which the decoder
uses to recover the correct mapping between x1 · y1, x2 · y2 and s, s′.

Batching. Until now, we have assumed that the execution of A1 on (σ(x1),
σ(x2), s) outputs the correct bit. However, algorithm A1 is only guaranteed to
be correct with probability 1/2 + ε. One option to deal with this issue would
have been to use standard error reduction, namely execute the algorithm O(1/ε2)
times on each input, using independent randomness each time and then take
the majority vote on its outputs. However, this would increase the algorithm’s
effective running time to O(T/ε2), which would weaken the resulting lower bound.

Instead, we group our executions into batches of size B, where each execution
within the batch handles two DDH triplets. We run each batch R times, using
independent randomness each time, until every one of the R executions within the
batch either (a) successfully outputs the correct DDH bit or (b) makes a collision
query. If none of the R attempts is successful, the entire encoding routine fails.

For each batch, the encoding algorithm, writes the following information into
the encoding:

1. The index r∗ ∈ [R] of the successful attempt.
2. The number of executions within this attempt that have collisions, written

as a unary string, terminated with a single ‘0’ bit. For example, if there were
five collisions, write “111110” into the encoding. If there were no collisions,
just write “0.”

3. The indices of the executions that have collisions.
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4. The encodings of each of the executions within the batch.

Overall, the encoder processes d batches, after which it encodes the remaining
values of σ using the standard encoding.

Success Probability. The encoding succeeds if we find a good random tape r∗
in one of the R attempts we make for each batch. Each attempt of the entire
batch succeeds with probability at least (1/2 + ε)B. Therefore, at least one of
R attempts succeeds with probability 1− (1− (1/2 + ε)B)R > 1− e−R(1/2+ε)B .
Taking

R = (1 + logN)/(1/2 + ε)B (2)

implies this probability is at least 1− 1/(2N). The number of batches cannot be
more than N , so by a union bound the encoding succeeds with probability at
least 1/2.

Encoding Length. An execution that does not contain a collision encodes the
labels s1 = σ(x1 · y1), s2 = σ(x2 · y2) using log

(
N−`

2

)
bits instead of log(N − `) +

log(N − `− 1) bits, where ` is the number of labels already in the table. Such
an execution therefore saves one bit compared to the standard encoding.

An execution that contains a collision saves on the encoding of the discrete
log of at least one indeterminate. Such an execution adds to the encoding its own
index within the batch, the index of the collision query within the execution, the
answer to the collision query within the table of existing values, and the index of
the solution to the equation within the set of all solutions. We also let it account
for one of the bits in the unary encoding of the number of collisions. The overall
cost is

logB + log T + log |Table|+ ((3 logN) + 1) + 1

bits instead of at least 4 log(N − |Table|) bits. Therefore, each execution results
in a profit of

log
(N − |Table|)4

4BT |Table|N3
(3)

bits. To bound the size of the table, note that each of the d batches contains B
executions, each of which adds to the table at most 3T + 6 entries: two DDH
triplets, up to T query replies and up to 2T unexpected query inputs. Therefore
the table grows to a size of at most 6dB(T + 2). Setting

d =
N

72B2T (T + 2)
(4)

implies that the table grows to a size of at most N/(12BT ), which in its turn
implies that N − |Table| ≥ 11N/12. This means that the profit in (3) is at least

log
(11N/12)4

4BT ·N/(12BT ) ·N3
≥ log

114

4 · 123
≥ 1 .

So far, we have set our parameters such that each of the B executions within
a batch results in a profit of at least one bit. However, the encoding of each
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batch also includes r∗, written using logR bits, which we must take into account.
Additionally, we need to account for the final bit of the unary encoding of the
number of collisions. Using our choice of R from (2), we get that the profit of
each batch is

B − logR− 1 ≥ B − log log(2N) +B log(1/2 + ε)− 1

≥ − log log(2N) + εB − 1 ,

where we’ve used the fact that log(1/2 + ε) = −1 + log(1 + 2ε) ≥ −1 + ε. Setting

B =
log log(2N) + 2

ε

implies that each batch results in a profit of at least 1 bit. Plugging this into (4),
we get that the number of batches is

d = Ω

(
ε2N

T 2 log logN

)
,

and the overall length of our encoding is

S + log

(
|L|
N

)
+

N−1∑
i=0

log(N − i)− d = log
|L|!

(|L| −N)!
+ S − d

= log
|L|!

(|L| −N)!
+ S − Ω̃

(
ε2N

T 2

)
.

E Proof of Theorem 10 (Limited Preprocessing)

Proof. The proof uses a pair of probabilistic experiments. As the experiments
proceed, the challenger maintains a table representing all of the information that
the adversary has about σ, given the challenger’s query responses.

In particular, fix a formal variable X, representing the value of the discrete
log that the adversary is trying to recover. Each row in the challenger’s table
contains a label `i ∈ L and a linear polynomial ZN [X] representing the label’s
discrete log as a function of X. After the t-th query, the table consists of elements
(f1, `1), . . . , (ft, `t) ∈ (ZN [X]× L).

In Experiment 0, the values f1, . . . , ft are all constant polynomials in ZN [X]
(i.e., the fis are all constants in ZN ). In Experiment 1, the values f1, . . . , ft may
be linear polynomials in the formal variable X.

Experiment 0: Interaction with Real Oracle σ. At the start of the prepro-
cessing phase, the challenger sets s1 ←R L, representing the value σ(1), and sends
s1 to the adversary A0. The challenger’s adds the single pair (1, s1) to its table.

Preprocessing Phase. The adversary A0 makes P preprocessing queries. Upon
receiving a query, the challenger processes it as follows:
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– First, the challenger checks if both query arguments are in the list of labels
`1, . . . , `t in the table. If either argument is not in the table, we say that it is
an “unexpected” label.

– For each unexpected label, the challenger defines the label’s discrete log to
be a random value in ZN consistent with the simulation so far. Let there be
t elements in the table, and let `t+1 be the unexpected label. The challenger
samples a random constant ft+1 ←R ZN such that ft+1 is different from all
other constants in the table. The challenger then adds the pair (ft+1, `t+1)
to the table.

– Again, let t be the number of pairs in the table (t might have increased if we
had to handle unexpected arguments). Now the query is of the form (`α, `β),
such that both arguments appear in the table. Define ft+1 ← fα + fβ ∈
ZN [X].

• If ft+1 = fi for some i ∈ {1, . . . , t}, set `t+1 ← `i.
• Otherwise, sample `t+1 ←R L \ {`1, . . . , `t}.

– Respond with `t+1 and add the pair (ft+1, `t+1) to the table.

Online Phase. After the P preprocessing queries, the challenger chooses x←R ZN .

– If x is already defined in the table, the challenger reads its label sx from the
table.

– Otherwise, the challenger sets sx to be a random label in L different from all
labels in the table and adds the pair (x, sx) to the table. Note here that x
is a constant in ZN , not a formal variable. So, in Experiment 0, the table
maps only constants in ZN to labels in L.

The challenger sends the label sx to the adversary A1 as the discrete-log instance.
The adversary now makes T additional queries and we respond to the queries as
in the preprocessing phase. The adversary then outputs a guess x′ of x and we
say that the adversary wins if x = x′.

Experiment 1: Interaction with Oblivious Oracle Oσ. Experiment 1 is
identical to Experiment 0, except that (a) the challenger adds the pair (X, sx)
to the table at the start of the experiment, where X is a formal variable, and
(b) the challenger chooses x←R ZN independently and uniformly at random after
the adversary has made its T online queries. Thus, in Experiment 1, the oracle
is oblivious of x until the end of the experiment, and the adversary’s view is
independent of x.

First, notice that the challenger in Experiment 0 exactly implements a group
operation oracle for a random labeling function σ : ZN → L. So the adversary’s
success probability in Experiment 0 is exactly the adversary’s discrete-log success
probability. Next, notice that the adversary’s view in Experiment 1 is independent
of the discrete log x that the challenger has chosen. Because of this, the adversary’s
success probability in Experiment 1 can be no higher than 1/N , the probability
of guessing x at random.
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Let Wb the probability that the adversary wins in Experiment b ∈ {0, 1}.
We know that W1 ≤ 1/N . To prove the theorem, we need only show that
|Pr[W0]− Pr[W1]| ≤ O((PT + T 2)/N).

Towards this goal, we define a collision event C on the probability space
shared by both experiments. We say that C occurs if there are two unequal
polynomials fi and fj in the challenger’s table such that fi(x) = fj(x) ∈ ZN ,
where x is the discrete-log value chosen during the experiment. There are two
types of collisions:

1. A collision between a polynomial added to the table during preprocessing
and a polynomial added during the online phase.

2. A collision between two polynomials added during the online phase.

(The polynomials added to the table during preprocessing cannot collide, since
they are all distinct constants.) For a fixed pair of unequal polynomials, the
probability that they collide, over a choice of a random z ∈ ZN , is at most 1/N ,
by the Schwartz-Zippel Lemma [81,93]. Each preprocessing query adds at most
three constant polynomials to the table, and each online query adds at most two
constant polynomials and one linear polynomial to the table. There are then at
most 3P + 2T distinct constant polynomials and T distinct linear polynomials in
the table. There are then (3P + 2T )T +

(
T
2

)
= O(PT + T 2) possible colliding

pairs (fi, fj) in the table. A union bound yields that Pr[C] ≤ O(PT + T 2)/N .
We claim that W0 ∧ C̄ occurs if and only if W1 ∧ C̄ occurs. To see why: if

the table never contains a pair of colliding polynomials then the behavior of the
challenger is identical in both games. By the Difference Lemma [22, Theorem
4.5], this implies that |Pr[W0]− Pr[W1]| ≤ Pr[C] ≤ O((PT + T 2)/N).

F Proof of Theorem 11 (Attack on Multiple Discrete
Logs)

Proof Sketch of Theorem 11. The algorithm takes as input parameters S, T ∈ Z+

such that ST 2/M + T 2 = Θ(MN). As in the algorithm of Sect. 7.1, we use a
random function F : G→ ZN to define a walk on the elements of the group G.

Given these preliminaries, the algorithm works as follows:
– Preprocessing phase. Pick S distinct elements of G at random. For each of

the elements, take a walk of length T/(2M) on G that F defines. Store the
S endpoints of these walks along with their discrete logs.

– Online phase. Let the problem instance be (h1, . . . , hM ) = (gx1 , . . . , gxM ).
The algorithm repeats the following steps O(M) times:
1. The algorithm computes a product of the group elements: h =

∏
i h

ri
i ,

for random ri ∈ ZN .
2. Starting at the point h, the algorithm follows the walk on G determined

by F for T/M steps.
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3. If the walk ever collides with a previous walk or a stored precomputed
point, the collision yields a random linear relation on (x1, . . . , xM ). The
algorithm stores this relation. (Note: In practice, an implementation
would detect collisions using the distinguished-points technique [75].)

If the relations collected during the O(M) walks yield a full-rank linear
system on theM variables (x1, . . . , xM ), solving the system yields the desired
discrete logs. Otherwise, the algorithm fails. To avoid linear dependence
between relations, one can eliminate one variable after each step and apply
the random reduction of step 1 above only to the uneliminated variables).

To analyze the complexity of the algorithm: The online algorithm takes O(M)
walks, each of T/M steps. Each step requires a logarithmic number of queries,
so the total running time is Õ(T ). The space usage is Õ(S) for the discrete logs
of the S stored points.

Finally, we compute the success probability. Consider first the case in which
T 2 = Θ(MN). In this case, any two of the O(M) walks in the online phase,
each of which is of length T/M , have a probability T 2/(M2N) = Ω(1/M) to
collide. We have Ω(M2) pairs, so we will have M collisions in expectation, for
an appropriate choice of the constants, giving M linear relations.

Next consider the case where ST 2/M = Θ(MN). In particular, assume that
S ≤ NM2/T 2. We observe that the S walks in the preprocessing phase must
touch at least ST/(eM) distinct points in expectation. To see this, consider any
such walk. The probability that it does not hit any of the previous walks is
at least (1 − ST

MN )(T/M) ≈ exp(− ST 2

M2N ) ≥ 1/e. Such a walk touches T/M new
points. By linearity of expectation, the expected number of touched points is at
least ST/(eM).

Finally, we need to show that the O(M) walks in the online phase generate
at least M linear relations with good probability. Consider now any of the
online walks, each of length T/M . If in one of its first T/(2M) steps such
a walk hits any of the ST/(eM) points touched in the preprocessing phase,
then in the remaining T/(2M) of its steps it will hit a stored precomputed
point. This is because any touched point is at a distance of at most T/(2M)
from a stored point. Furthermore, as long as the online walk does not hit a
touched point, its next step is an independent random point. Therefore, the
probability that any single online walk collides with a preprocessed walk is at least
1− (1− ST/(eMN))T/(2M) ≥ 1− (1− ST 2/(eM2N)) = ST 2/(eM2N) = Ω(1).

If we take κ ·M online walks, for a suitably large constant κ, the expected
number of successful walks will be at least 2M . With constant probability, we
will have at least M successful walks, which will yield M linear relations on the
variables (x1, . . . , xM ). Given these M linear relations, we can recover all M
discrete logs.
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G Companion Analysis to Proof of Theorem 13
(Distinguisher with Preprocessing)

Analysis of Preprocessing Phase. We say that a walk in the preprocessing
phase is unsuccessful if (i) it hits either a marked point or a point on any of
the previous walks in fewer than T steps, or (ii) it does not hit a marked point
within 2T steps.

To compute the probability of bad event (i), consider one of the walks in
the preprocessing phase. There are N/T marked points in Y in expectation. In
addition, all previous walks in the preprocessing phase could have explored at most
2T ·N/(3T 2) = 2N/(3T ) points. So there are at most (1 + 2/3)N/T = 5N/(3T )
points that a walk must avoid in its first T steps. The probability of bad event
(i) is then at most 1− (1− 5/(3T ))T ≈ 1− e−5/3.

To compute the probability of bad event (ii): for a walk to be more than 2T
steps long, it must avoid the set of N/T marked points for 2T consecutive steps.
The probability of bad event (ii) is then at most (1− 1/T )2T ≈ e−2.

By a union bound, the probability of either bad event occurring is at most
1− e−5/3 + e−2 < 0.95. So each walk in the preprocessing phase succeeds with
probability at least 1/20. Therefore, by linearity of expectation, the expected
number of successful walks is at least N/(60T 2). A successful walk touches at
least T new points, and so, in expectation, the total number of points touched by
successful walks is at least N/(60T ). Note that the total number points touched
by any of the walks—successful or not—is at most 2N/(3T ).
Analysis of Online Phase (“yes” case). To calculate the distinguishing
advantage ε of our algorithm A, we first compute the probability that A outputs
“1” on a “yes” instance hyes ∈ Y.

Towards analyzing Pr[A(hyes) = 1], consider a walk that starts at a random
point in the set Y and continues for 10T steps. We say that a walk is “good” if it
hits a preprocessed marked point before hitting any non-preprocessed marked
point. We say that a walk is “bad” otherwise.

For an online walk to be good, it is sufficient for the walk to hit, during its
first 8T steps, any of the (at least) N/(60T ) points touched by the successful
preprocessed walks, before hitting any of the (at most) 2N/(3T ) points on an
unsuccessful walk, or the (at most) N/T non-preprocessed marked points. We
can decompose this event into 8T disjoint sub-events (E1, . . . , E8T ) as follows:
for 1 ≤ i ≤ 8T , event Ei occurs if during its first i− 1 steps, the walk avoids all
marked points as well as points touched by preprocessed walks, and in step i,
the walk hits a point touched by the successful preprocessed walks. Note that as
long as the walk avoids points touched by preprocessed walks, each step moves
to an independent random point. We have that

Pr[Ei] ≥ Pr
[

Avoid set of 5N/(3T )
points in first i− 1 steps

]
· Pr

[
Hit set of N/(60T )
points in ith step

]
≥ (1− 5/(3T ))i−1 ·

(
1

60T

)
.
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The probability that the walk is good is therefore:

Pr[Walk is good] ≥ Pr

[
8T⋃
i=1

Ei

]

≥ 1

60T
·

8T∑
i=1

(1− 5/(3T ))
i−1

=
1− (1− 5/(3T ))

8T

60T (1− (1− 5/(3T )))

=
1− (1− 5/(3T ))

8T

100

= 1/100(1− e−40/3)

≥ 1/101.

We now compute the probability that A outputs “1”.

The number of preprocessed chain endpoints is at most N/(3T 2). In the
preprocessing phase, we chose the prefix string pc to maximize the probability
that H(pc, ·) outputs “1” when fed a preprocessed point. For each choice of pc,
the value H(pc,m) follows the Binomial distribution with ngood ≤ N/(3ST 2)
trials and success probability p = 1/2. With overwhelming probability there
exists a prefix string pc that causes

∑
H(pc,m) to achieve at least one standard

deviation √ngood/2 above the mean of ngood/2. Then

Pr[H(pc,m) = 1 |Walk is good ] ≥
ngood/2 +

√
ngood/2

ngood
≥ 1/2 +

√
3ST 2

4N
.

There are two ways for a walk to be bad:

– The walk never hits a marked point, in which case the online algorithm
outputs a random bit.

– The walk hits a non-preprocessed marked point, in which case the online
algorithm outputs the value of the hash function H on the point. This value
is independent of the preprocessing phase (since the algorithm never queried
H on this point), so the output is “1” with probability 1/2 over the random
choice of H.

We then conclude that

Pr[A(hyes) = 1 |Walk is bad] = 1/2 .
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The overall probability that A outputs “1” on a random point hyes in Y is:

Pr[A(hyes) = 1] = Pr[A(hyes) = 1 |Walk is good] · Pr[Walk is good]

+ Pr[A(hyes) = 1 |Walk is bad] · Pr[Walk is bad]

≥

(
1

2
+

√
3ST 2

4N

)
· 1

101
+

1

2
·
(

1− 1

101

)

≥ 1

2
+Ω

(√
ST 2

N

)
.

Analysis of Online Phase (“no” case). The output of A on a random point
hno in G2 \ Y is either the value of H on a non-preprocessed marked point (since
none of the points in G2 \ Y are preprocessed), or a random bit (if the walk
does not hit a marked point). In both cases, the algorithm A outputs the bit “1”
with probability 1/2, independently of the preprocessing phase. For a random
instance in hrand ←R G2:

Pr[A(hrand) = 1] = Pr[A(hrand) = 1 | hrand ∈ Y] · Pr[hrand ∈ Y]

+ Pr[A(hrand) = 1 | hrand 6∈ Y] · Pr[hrand 6∈ Y]

≤ Pr[hrand ∈ Y] + Pr[A(hrand) = 1 | hrand 6∈ Y]

=
1

N
+

1

2
.

Distinguishing Advantage. Overall,

ε =
∣∣Pr[A(hyes) = 1]− Pr[A(hrand) = 1]

∣∣
≥

(
1

2
+Ω

(√
ST 2

N

))
−
(

1

2
+

1

N

)

≥ Ω

(√
ST 2

N

)
.
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