Differential Attacks on LILLIPUT cipher

Valérie Nachef ${ }^{1}$, Nicolas Marrière ${ }^{1}$, and Emmanuel Volte ${ }^{1}$
Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France
valerie.nachef@u-cergy.fr
nicolas.marriere@u-cergy.fr
emmanuel.volte@u-cergy.fr

Abstract

In SAC 2013, Berger et al. defined Extended Generalized Feistel Networks (EGFN) and analyzed their security. Later, they proposed a cipher based on this structure: LILLIPUT . Impossible differential attacks and integral attacks have been mounted on LILLIPUT. We propose a tool which has found some classical, impossible and improbable differential attacks by using the variance method. It has highlighted unusual differential conditions which lead to efficient attacks by the complexity. Moreover, it is the first time we apply the generic variance method to a concrete cipher.

Key words: Differential cryptanalysis, Improbable differential cryptanalysis, Automated research of attacks

1 Introduction

Lightweight cryptography has become an important field of research with the development of IoT. As a solution, a lot of symmetric block ciphers have been built. Some of them are SPN ciphers like SERPENT [5], PRESENT [9] or more recently SKINNY [2]. Others are Feistel ciphers like SIMON [1], CLEFIA [18] or PICCOLO [17]. In this context, a new variant of generalized Feistel network has been designed: the Extended Generalized Feistel Network [4] (EGFN). It is based on a matrix representation and provides an efficient diffusion. In comparison to the generalized Feistel networks, the distinctive feature in the EGFN is a linear layer after the confusion step. Moreover, an efficient differential analysis method remains unknown [15] because of this linear layer. A cipher based on the EGFN structure called LILLIPUT [3] has been designed. It is a 30 rounds block cipher. Several kinds of attacks on LILLIPUT have been provided as shown in Table 1.

Differential attacks [7] consist in putting a specific difference in inputs and looking how it propagates through the cipher into the outputs in order to highlight a bias. Differential cryptanalysis is an efficient statistical attack and some attacks are derived from it: truncated differential ones [11], boomerang ones [22] or impossible differential ones [6] for example. A differential analysis based on the variance method [13] has been made on the EGFN [12]. In this article, we have applied this method to LILLIPUT.

Our contribution. In this paper, we provide some differential cryptanalysis attacks on LILLIPUT. Indeed, we provide some differential distinguishers. These attacks are

Table 1. Best Attacks on LILLIPUT.

Variety	Distinguisher	Key recovery	Source
Impossible differential	9 rounds	N/A	$[16]$
Division property	13 rounds	17 rounds	$[15]$
Differential	8 rounds	12 rounds	Section 4

NCPA (Non-Adaptive Chosen Plaintext Attack) ones. These are based on the variance method [13] that was already used on the EGFN and on some generalized Feistel network [14,21]. For the first time, we apply this generic method to a concrete cipher. These differential attacks do not rely on the key schedule, the structure of LILLIPUT is the only way used. One can see in [15] that there are 15 active sboxes for LILLIPUT reduced to 8 rounds. The involved sboxes work on 4 -bits words. Since the differential probability of an active sbox is at most 2^{-3}, then the differential probability is at most 2^{-45}. In this paper, we will see an implemented differential attack with complexity of 2^{-25}. This is why this method is interesting. Moreover, we have made a tool in Python to process an automated research of differential attacks. There are generic tools devoted to different kinds of attacks: meet-in-the-middle and impossible differential attacks in [10], or only for impossible differential attacks in [16], in [23] or in [24] for example. Contrary to others generic tools, our program is designed to apply the variance method to a concrete cipher. It can be used on some block ciphers and allows to get differential attacks, impossible differential attacks and improbable differential attacks. Indeed, we have found empirically some improbable differential attacks [20, 19] and we provide explanations of how it works. Improbable differential cryptanalysis is a statistical cryptanalytic technique for which some attacks have been invalidated [8] when built from an impossible distinguisher. In the theory, an improbable differential attack is like a classical differential attack but the expected differences occur less for a permutation generated by the studied cipher than for a random permutation. In this paper, the attacks we describe work in practice and we provide simulations of them.

This paper is organized as follow: In Section 2, we will describe LILLIPUT. Then in Section 3 we will detail the general structure of our attacks and describe the tool that allows to find attacks. Section 4 is devoted to the presentation of distinguishing attacks up to 8 rounds. Conclusion is given in Section 5 .

2 LILLIPUT

The input is denoted by 16 nibbles of 4-bits: $I=\left[I_{16}, I_{15}, \cdots, I_{1}\right]$. Similarly, the output is denoted by: $S=\left[S_{16}, S_{15}, \cdots, S_{1}\right]$. We describe one round of LILLIPUT in the figure 1 .

We can see there are three steps in a round:

- NonLinearLayer step with the sbox. There is only one 4-bits sbox in LILLIPUT and it is descibred in the table 2.
- LinearLayer step: this is a step with some xor operations between the left side branches and the right side.

Fig. 1. One round of LILLIPUT.

- PermutationLayer: there is a permutation step and we have described the modification of the different branches in the table 3.

One can notice that there are two sides and the left side branches go to the right side through the permutation step and vice versa.

Table 2. Sbox of LILLIPUT.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \text { Input branch } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C \\
\hline
\end{array}
$$

LILLIPUT is an instance of Extended Generalized Feistel Network, a generic family of Feistel schemes. Because of the LinearLayer, there are no efficient known methods to make a differential study of this scheme.

Table 3. Permutation of LILLIPUT.

Input	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Output	14	10	15	9	11	12	13	16	5	6	4	2	3	7	1	8

As previously said, differential attacks on EGFN have already been proposed. These attacks are based on the variance method [13] that we will use on LILLIPUT as well. However, we can not use the same differential trails or use the same kind of relations between inputs and outputs because in LILLIPUT the sbox is a bijection. In order to find a solution, we have made a tool in Python which has tested many kinds of differential relations and it has highlighted a specific and unusual sort of conditions which are not intuitive.

3 Structure of the attacks

3.1 Variance method

Our attacks are based on variance method [13]. With this method, we can make a further analysis than a classical differential attack. The aim of the attack is to distinguish a permutation obtained with LILLIPUT from a random permutation. Just like the authors of the variance method, we will generate a lot of pairs of messages and count how many of them satisfy specific differential relations between inputs and outputs. The number of such pairs is denoted by $\mathscr{N}_{\text {perm }}$ for a random permutation and by \mathscr{N}_{L} for a LILLIPUT permutation.

Then, the attack is a success if $\mathscr{N}_{\text {perm }}$ is significantly different from \mathscr{N}_{L}. If it is smaller, we obtain an impossible or an improbable differential attack and if it is greater, we have a classical differential one. But if \mathscr{N}_{L} and $\mathscr{N}_{\text {perm }}$ have the same order, then the attack can be successful thanks to the expectation and standard deviation functions if $\left|\mathbb{E}\left(\mathscr{N}_{L}\right)-\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)\right|>\max \left(\sigma\left(\mathscr{N}_{\text {perm }}\right), \sigma\left(\mathscr{N}_{L}\right)\right)$, where \mathbb{E} stands for the expectation function and σ for the standard deviation function. In that case, the attacks work thanks to the Chebychev formula, which states that for any random variable X, and any $\alpha>$ 0 , we have $\mathbb{P}(|X-\mathbb{E}(X)| \geq \alpha \sigma(x)) \leq \frac{1}{\alpha^{2}}$. Using this formula, it is then possible to construct a prediction interval for \mathscr{N}_{L} for example, in which future computations will fall, with a good probability. It is important to notice that for our attacks, it is enough to compute $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right), \mathbb{E}\left(\mathscr{N}_{L}\right)$ and $\sigma\left(\mathscr{N}_{\text {perm }}\right)$. For more details about the variance method see [13], Chapter 5 for example.

Moreover, for all attacks we will see, the condition on the outputs is an equality on 4 bits. So, it is easy to check that if m is the number of messages for a given attack, then for a random permutation: $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right) \simeq \frac{m \cdot(m-1)}{2} \times \frac{1}{2^{4}}$ and $\sigma\left(\mathscr{N}_{\text {perm }}\right) \simeq \sqrt{\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)}$.

3.2 Conditions on the inputs and the outputs

There are 16 branches in LILLIPUT. Our attacks are differential ones, so we look for differential trails. Due to the structure of LILLIPUT, we look for attacks by putting conditions to the left side $\left[I_{16}, \cdots, I_{9}\right]$ of the inputs and looking some conditions on the left
side $\left[S_{16}, \cdots, S_{9}\right]$ of the outputs. Indeed, one can check that, if we found an interesting distinguisher which uses the right side of the output, it leads to a distinguisher which uses the left side of the output and reaches one more round. It is because in a round the right side goes to the left side with probability 1 without changes.

We have found by hand distinguishers up to 4 rounds and for more rounds with the tool. Most attacks are based on a common structure. Each pair (m_{1}, m_{2}) of messages that we study has to verify that: m_{1} and m_{2} are equal on all branches but some on the left side. Moreover, on the branches involved, the non-zero differences have to be equal. For example, this condition on branch number 9 will be written $I_{9}\left(m_{1}\right) \oplus I_{9}\left(m_{2}\right)=\Delta$ or if more simply $\Delta I_{9}=\Delta$.

On the outputs, if $c_{1}=\operatorname{LILLIPUT}\left(m_{1}\right)$ and $c_{2}=\operatorname{LILLIPUT}\left(m_{2}\right)$ we will look at the xor between some branches of $c=c_{1} \oplus c_{2}$. For example, if we are interested in the branches S_{12} and S_{10}, we will compute $S_{12} \oplus S_{10}$ on c and it is denoted by $\Delta S_{12} \oplus$ ΔS_{10}. One can notice that if one is interested in only one branch, it leads to a classical differential attack.

3.3 Complexity

In our differential attacks we use structures of messages. Let $\left(m_{1}, m_{2}\right)$ be a pair of messages. As we have said earlier, there are 2 properties the pairs have to follow. First, m_{1} and m_{2} are equal on all branches but some on the left side. Then, for the non zero branches of $m_{1} \oplus m_{2}$, the difference has to be the same. Thus, a structure is based on a message m that is randomly chosen. As we want the same difference on some branches, it leads to 15 more messages. Indeed, the non zero difference can be $\Delta \in[1 \cdots 15]$ because branches have 4 bits. So, a structure has 16 messages, and it leads to $16 \times$ $15 / 2=120$ pairs.

For example, if we are interested in the branches I_{10} and I_{13}, a pair will be $\left(m_{1}, m_{2}\right)$ such that: $m_{1} \oplus m_{2}=[0,0,0, \Delta, 0,0, \Delta, 0,0,0,0,0,0,0,0,0]$. There are exactly $2^{4 \times 14}$ of such structures.

The main drawback of our attacks is the data complexity. Indeed for a given attack which requires 2^{7} messages, the number of pairs is $\frac{2^{7} \times\left(2^{7}-1\right)}{2}=8,128$. With our kinds of attacks, because we need the same Δ difference on several branches, we need 68 structures of 120 pairs ($68 \times 120=8,160$ pairs) and it corresponds to $68 \times 16=1,088$ messages instead of 2^{7}. But, thanks to these new conditions, one can see special relations between internal variables which can be used to build a differential attack.

3.4 Automated research of attacks

To extend this kind of attacks, we have implemented a tool ${ }^{1}$ in Python to process an exhaustive research of such conditions. We describe it in the algorithm 1.

In order to optimise this algorithm, we test on a small number of samples and if we found an interesting result, then we test again in a more meaningful number of samples. It appears that the most efficient attacks are based on having 2 branches involved on the

[^0]```
Algorithm 1 Automated research of attacks
 for all inputCondition=Combination of branches in the left side of inputs: do
 Generate a sample of pairs which verify the condition on the input: Equal on all branches
 but the inputCondition.
 for all outputCondition=Combination of branches in the left side of outputs: do
 Count how many pairs verify the outputCondition: the xor between some branches of
 the difference of the outputs equals to 0 .
 if this result is significantly different than the one expected for a random permutation.
 then
 We have found a distinguisher.
 end if
 end for
 end for
```

inputs and 2 branches involved on the ouput. We detail the best attacks we have found in Section 4.

## 4 Distinguishing attacks

In this Section, we will describe the different distinguishers we have found by hand or thanks to the tool. We have made simulations of these attacks. Input is denoted by: $I_{16}, \cdots, I_{1}$. After the first NonLinearLayer and LinearLayer steps and before the permutation, the output is: $X_{8}^{1}, X_{7}^{1}, X_{6}^{1}, X_{5}^{1}, X_{4}^{1}, X_{3}^{1}, X_{2}^{1}, X_{1}^{1}, I_{8}, I_{7}, I_{6}, I_{5}, I_{4}, I_{3}, I_{2}, I_{1}$. Here $X_{1}^{1}, \ldots, X_{8}^{1}$ denote the internal variable that appear at round 1. More generally, $X_{j}^{i}$, $1 \leq j \leq 16$ represent the internal variable that are introduced at round $i$. In the sequel, to simplify the notation, we always denote by $f$ the round functions. But the even though we always use the same bijective sbox, since the entry is xored with a sub-key, for the same round we note that $f\left(X_{j}^{i}\right)=f\left(X_{k}^{i}\right)$ does not mean that $X_{j}^{i}=X_{k}^{i}$.

### 4.1 First rounds

In the first rounds, we can mount differential attacks with probability 1 on LILLIPUT with only 1 or 2 messages. So let $\left(m_{1}, m_{2}\right)$ be a couple of messages. We will note $c_{1}=\operatorname{LILLIPUT}\left(m_{1}\right), c_{2}=\operatorname{LILLIPUT}\left(m_{2}\right)$ and $c=c_{1} \oplus c_{2}$.

Attack on one round. After one round, the output is given by:
$\left[I_{8}, I_{3}, I_{1}, I_{7}, I_{6}, I_{5}, I_{2}, I_{4}, X_{8}^{1}, X_{6}^{1}, X_{2}^{1}, X_{1}^{1}, X_{3}^{1}, X_{5}^{1}, X_{4}^{1}, X_{7}^{1}\right]$ with

$$
\begin{aligned}
& X_{1}^{1}=I_{9} \oplus f\left(I_{8}\right), \\
& X_{2}^{1}=I_{10} \oplus I_{8} \oplus f\left(I_{7}\right), \\
& X_{3}^{1}=I_{11} \oplus I_{8} \oplus f\left(I_{6}\right), \\
& X_{4}^{1}=I_{12} \oplus I_{8} \oplus f\left(I_{5}\right), \\
& X_{5}^{1}=I_{13} \oplus I_{8} \oplus f\left(I_{4}\right), \\
& X_{6}^{1}=I_{14} \oplus I_{8} \oplus f\left(I_{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& X_{7}^{1}=I_{15} \oplus I_{8} \oplus f\left(I_{2}\right), \\
& X_{8}^{1}=I_{16} \oplus I_{8} \oplus I_{2} \oplus I_{3} \oplus I_{4} \oplus I_{5} \oplus I_{6} \oplus I_{7} \oplus f\left(I_{1}\right) .
\end{aligned}
$$

So there is an attack with one message: one has to encrypt one message and check if $S_{16}$ is equal to $I_{8}$. This is done with probability 1 for LILLIPUT and with probability $\frac{1}{2^{4}}$ for a random permutation because it is an equality on 4 bits.

Attack on two rounds. After two rounds, the output is given by: $\left[X_{8}^{1}, X_{5}^{1}, X_{7}^{1}, X_{6}^{1}, X_{2}^{1}, X_{1}^{1}, X_{4}^{1}, X_{3}^{1}, X_{8}^{2}, X_{6}^{2}, X_{2}^{2}, X_{1}^{2}, X_{3}^{2}, X_{5}^{2}, X_{4}^{2}, X_{7}^{2}\right]$ with

$$
\begin{aligned}
& X_{1}^{2}=I_{4} \oplus f\left(X_{8}^{1}\right), \\
& X_{2}^{2}=I_{2} \oplus X_{8}^{1} \oplus f\left(X_{6}^{1}\right), \\
& X_{3}^{2}=I_{5} \oplus X_{8}^{1} \oplus f\left(X_{2}^{1}\right), \\
& X_{4}^{2}=I_{6} \oplus X_{8}^{1} \oplus f\left(X_{1}^{1}\right), \\
& X_{5}^{2}=I_{7} \oplus X_{8}^{1} \oplus f\left(X_{3}^{1}\right), \\
& X_{6}^{2}=I_{1} \oplus X_{8}^{1} \oplus f\left(X_{5}^{1}\right), \\
& X_{7}^{2}=I_{3} \oplus X_{8}^{1} \oplus f\left(X_{4}^{1}\right), \\
& X_{8}^{2}=I_{8} \oplus X_{1}^{1} \oplus X_{2}^{1} \oplus X_{3}^{1} \oplus X_{4}^{1} \oplus X_{5}^{1} \oplus X_{6}^{1} \oplus X_{8}^{1} \oplus f\left(X_{7}^{1}\right) .
\end{aligned}
$$

So there is an NCPA attack with 2 messages. As input condition, we have $I_{8}\left(m_{1}\right)=$ $I_{8}\left(m_{2}\right)$. Then, one has to check if $S_{11}(c)=I_{9}\left(m_{1}\right) \oplus I_{9}\left(m_{2}\right)$. This is done with probability 1 for LILLIPUT and with probability $\frac{1}{2^{4}}$ for a random permutation because it is an equality on 4 bits.

Property 1 After $r$ rounds ( $r \geq 3$ ), the output is:
$\left[X_{8}^{r-1}, X_{5}^{r-1}, X_{7}^{r-1}, X_{6}^{r-1}, X_{2}^{r-1}, X_{1}^{r-1}, X_{4}^{r-1}, X_{3}^{r-1}, X_{8}^{r}, X_{6}^{r}, X_{2}^{r}, X_{1}^{r}, X_{3}^{r}, X_{5}^{r}, X_{4}^{r}, X_{7}^{r}\right]$. We have the following formulas:

$$
\begin{aligned}
& X_{1}^{r}=X_{3}^{r-2} \oplus f\left(X_{8}^{r-1}\right), \\
& X_{2}^{r}=X_{4}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{6}^{r-1}\right), \\
& X_{3}^{r}=X_{1}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{2}^{r-1}\right), \\
& X_{4}^{r}=X_{2}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{1}^{r-1}\right), \\
& X_{5}^{r}=X_{6}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{3}^{r-1}\right), \\
& X_{6}^{r}=X_{7}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{5}^{r-1}\right), \\
& X_{7}^{r}=X_{5}^{r-2} \oplus X_{8}^{r-1} \oplus f\left(X_{4}^{r-1}\right), \\
& X_{8}^{r}=X_{8}^{r-2} \oplus X_{8}^{r-1} \oplus X_{6}^{r-1} \oplus X_{5}^{r-1} \oplus X_{4}^{r-1} \oplus X_{3}^{r-1} \oplus X_{2}^{r-1} \oplus X_{1}^{r-1} \oplus f\left(X_{7}^{r-1}\right) .
\end{aligned}
$$

Attack on three rounds. After three rounds, there is an NCPA attack with 2 messages. Thanks to Property 1 , one can see that $S_{11}=X_{1}^{2}=I_{4} \oplus f\left(X_{8}^{1}\right)$. Thus, we put as input conditions: $I_{i}\left(m_{1}\right)=I_{i}\left(m_{2}\right), \forall i \in\{1, \cdots, 8,16\}$. Then, one has to check if $S_{11}(c)=0$. This is done with probability 1 for LILLIPUT and with probability $\frac{1}{2^{4}}$ for a random permutation because it is an equality on 4 bits.

Attack on four rounds. After four rounds, there is an NCPA attack that needs only 2 messages. As input condition we have $I_{i}\left(m_{1}\right) \neq I_{i}\left(m_{2}\right)$ only for $i=15$. Then, one has to check if $S_{13}(c) \oplus S_{9}(c)=I_{15}\left(m_{1}\right) \oplus I_{15}\left(m_{2}\right)$. We now show that this is done with probability 1 for LILLIPUT and with probability $\frac{1}{2^{4}}$ for a random permutation because we have an equality on 4 bits.
Here we have: $S_{13}=X_{6}^{3}$ and $S_{9}=X_{3}^{3}$. According to Property 1, we obtain:

$$
\begin{aligned}
S_{13} \oplus S_{9} & =X_{3}^{3} \oplus X_{6}^{3} \\
& =X_{1}^{1} \oplus X_{7}^{1} \oplus f\left(X_{5}^{2}\right) \oplus f\left(X_{2}^{2}\right) \\
& =I_{9} \oplus f\left(I_{8}\right) \oplus I_{15} \oplus I_{8} \oplus f\left(I_{2}\right) \oplus f\left(I_{7} \oplus X_{8}^{1} \oplus f\left(X_{3}^{1}\right)\right) \oplus f\left(I_{2} \oplus X_{8}^{1} \oplus f\left(X_{6}^{1}\right)\right) .
\end{aligned}
$$

Using the input conditions, we obtain:

$$
\Delta S_{9} \oplus \Delta S_{13}=\Delta I_{15} \oplus \Delta f\left(I_{7} \oplus X_{8}^{1} \oplus f\left(X_{3}^{1}\right)\right) \oplus \Delta f\left(I_{2} \oplus X_{8}^{1} \oplus f\left(X_{6}^{1}\right)\right)
$$

But, we have:

$$
\begin{aligned}
& X_{3}^{1}=I_{11} \oplus I_{8} \oplus f\left(I_{6}\right) \text { and } \Delta X_{3}^{1}=0 \\
& X_{6}^{1}=I_{14} \oplus I_{8} \oplus f\left(I_{3}\right) \text { and } \Delta X_{6}^{1}=0 \\
& X_{8}^{1}=I_{16} \oplus I_{2} \oplus I_{3} \oplus I_{4} \oplus I_{5} \oplus I_{6} \oplus I_{7} \oplus I_{8} \oplus f\left(I_{1}\right) \text { and } X_{8}^{1}=0 .
\end{aligned}
$$

since the input conditions are $I_{i}\left(m_{1}\right) \oplus I_{i}\left(m_{2}\right)=0, \forall i \in\{1, \cdots, 14,16\}$. Finally we obtain, $\Delta S_{13} \oplus \Delta S_{9}=\Delta I_{15}$ with probability 1 .

Attack on five rounds. After five rounds, there is an NCPA attack that needs only 2 messages. As input condition we have $I_{i}\left(m_{1}\right) \neq I_{i}\left(m_{2}\right)$ only for $i \in\{9,10\}$. Moreover, we set $I_{9}\left(m_{1}\right) \oplus I_{9}\left(m_{2}\right)=I_{10}\left(m_{1}\right) \oplus I_{10}\left(m_{2}\right)$. Then, one has to check if $S_{9}(i) \oplus S_{9}(j) \oplus$ $S_{10}(i) \oplus S_{10}(j)=0$. This is satisfied with probability $\frac{1}{2^{4}}$ for a random permutation. We now explain why this is true with probability 1 for a permutation obtained with LILLIPUT.
According to Property 1:
$S_{9}=X_{3}^{4}=X_{1}^{2} \oplus X_{8}^{3} \oplus f\left(X_{2}^{3}\right)$ and $S_{10}=X_{4}^{4}=X_{2}^{2} \oplus X_{8}^{3} \oplus f\left(X_{1}^{3}\right)$.

$$
\begin{aligned}
& X_{1}^{2}=I_{14} \oplus f\left(X_{8}^{1}\right), \\
& X_{2}^{3}=X_{4}^{1} \oplus X_{8}^{2} \oplus f\left(X_{6}^{2}\right), \\
& X_{2}^{2}=I_{2} \oplus X_{8}^{1} \oplus f\left(X_{6}^{1}\right), \\
& X_{1}^{3}=X_{3}^{1} \oplus f\left(X_{8}^{2}\right) .
\end{aligned}
$$

Using the input conditions, we obtain $\Delta X_{8}^{1}=0, \Delta X_{1}^{2}=0, \Delta X_{6}^{1}$ and $\Delta X_{2}^{2}=0$. This gives $\Delta S_{9} \oplus \Delta_{10}=\Delta f\left(X_{2}^{3}\right) \oplus \Delta f\left(X_{1}^{3}\right)$. Moreover, $\Delta X_{3}^{1}=0$ and $\Delta X_{8}^{2}=\Delta X_{1}^{1} \oplus \Delta X_{2}^{1}=I_{9} \oplus$ $\Delta I_{10}=0$. This implies that $\Delta f\left(X_{1}^{3}\right)=0$. It is easy to check that we also have $\Delta f\left(X_{2}^{3}\right)=$ 0 . This shows that we have $\Delta S_{9} \oplus \Delta S_{10}=0$ with probability 1 .

We have found 26 of such attacks. ${ }^{2}$

[^1]
### 4.2 Further attacks

As we have said in Section 3, our attacks are based on a specific structure: for each pair we have equalities on all but some branches and this non zero difference is the same on the different branches. So, we will detail for each attack, the input branches involved. Similarly, we have said that the output condition is the xor between some branches of $c=c_{1} \oplus c_{2}$. So, we will precise which output branches are involved. In order to obtain $\mathbb{E}\left(\mathscr{N}_{L}\right)$, we will use the mean value obtained from some samples. Thus, we will also detail the number of samples, the number of pairs for each sample and the results we have obtained.

6 rounds. The tool has found a lot of attacks on 6 rounds. ${ }^{3}$ We present here the most efficient of these. With only one structure (so 120 pairs of messages, this corresponds to $2^{4}$ messages since if $m$ is the number of messages, then we have $\frac{m(m-1)}{2}$ pairs of distinct messages) we will see that we can distinguish LILLIPUT from a random permutation. The output condition is $\Delta S_{9} \oplus \Delta S_{15}=0$. It is an equality on 4 bits, so for a random permutation, the mean value is expected to be $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)=\frac{m(m-1)}{2 \cdot 2^{4}}=7.5$. The results we have obtained are shown in Table 4. We notice that the number of pairs of message satisfying the conditions is 32 . This provides a distinguishing attack.

Moreover, this attack is still valid with only 4 messages: the last version of our tool works with structures of messages so the minimal number is $2^{4}$ but, one can reduce this attack to 4 messages. Indeed, the mean value of pairs which satisfy the output condition for a random permutation is then expected to be $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)=0.375$ and we have obtained by simulation: ${ }^{4} \mathbb{E}\left(\mathscr{N}_{L}\right)=1.7128$. We now explain how the structure of LILLIPUT leads to this result.

Table 4. Attack on 6 rounds.

| Input branches | Output branches | \#Sample | \#Pairs in a sample | \#Pairs in average |
| :---: | :---: | :---: | :---: | :---: |
| $I_{10}, I_{14}$ | $S_{9}, S_{15}$ | 100 | 120 | 32 |

At the end of round 6 (see Property 1) we have: $S_{15}=X_{5}^{5}$ and $S_{9}=X_{3}^{5}$ and

$$
\begin{aligned}
& X_{5}^{5}=X_{6}^{3} \oplus X_{8}^{4} \oplus f\left(X_{3}^{4}\right), \\
& X_{6}^{3}=X_{7}^{1} \oplus X_{8}^{2} \oplus f\left(X_{5}^{2}\right), \\
& X_{7}^{1}=I_{15} \oplus I_{8} \oplus f\left(I_{2}\right), \\
& X_{5}^{2}=I_{7} \oplus X_{8}^{1} \oplus f\left(X_{3}^{1}\right)
\end{aligned}
$$

$$
X_{3}^{5}=X_{1}^{3} \oplus X_{8}^{4} \oplus f\left(X_{2}^{4}\right)
$$

$$
X_{1}^{3}=X_{3}^{1} \oplus f\left(X_{8}^{2}\right)
$$

So we have: $\Delta X_{7}^{1}=0, \Delta X_{3}^{1}=0, \Delta X_{5}^{2}=0$. Or, $\Delta X_{8}^{2}=\Delta I_{10} \oplus \Delta I_{14}=0$. So, $\Delta X_{1}^{3}=0$ and $\Delta X_{6}^{3}=0$. Thus $\Delta S_{9} \oplus \Delta S_{15}=\Delta f\left(X_{2}^{4}\right) \oplus \Delta f\left(X_{3}^{4}\right)$.

[^2]\[

$$
\begin{array}{ll}
X_{2}^{4}=X_{4}^{2} \oplus X_{8}^{3} \oplus f\left(X_{6}^{3}\right), & X_{3}^{4}=X_{1}^{2} \oplus X_{8}^{3} \oplus f\left(X_{2}^{3}\right), \\
X_{4}^{2}=I_{6} \oplus X_{8}^{1} \oplus f\left(X_{1}^{1}\right), & X_{1}^{2}=I_{4} \oplus f\left(X_{8}^{1}\right) \\
X_{1}^{1}=I_{9} \oplus f\left(I_{8}\right), & X_{2}^{3}=X_{4}^{1} \oplus X_{8}^{2} \oplus f\left(X_{6}^{2}\right)
\end{array}
$$
\]

So $\Delta X_{1}^{1}=0, \Delta X_{4}^{2}=0, \Delta X_{2}^{3}=0, \Delta X_{1}^{2}=0$. So $\Delta f\left(X_{2}^{3}\right)=0, \Delta X_{3}^{4}=\Delta X_{2}^{4}=\Delta X_{8}^{3}$. Or, we have:

$$
\begin{aligned}
\Delta X_{8}^{3} & =\Delta X_{2}^{2} \oplus \Delta X_{3}^{2} \\
& =\Delta f\left(X_{6}^{1}\right) \oplus \Delta f\left(X_{2}^{1}\right) \\
& =f\left(X_{6}^{1}\right) \oplus f\left(X_{6}^{1} \oplus \Delta I_{14}\right) \oplus f\left(X_{2}^{1}\right) \oplus f\left(X_{2}^{1} \oplus \Delta I_{10}\right) .
\end{aligned}
$$

So we have: $\Delta S_{9} \oplus \Delta S_{15}=f\left(X_{2}^{4}\right) \oplus f\left(X_{2}^{4} \oplus \Delta X_{8}^{3}\right) \oplus f\left(X_{3}^{4}\right) \oplus f\left(X_{3}^{4} \oplus \Delta X_{8}^{3}\right)$.
The bias is obtained if $f\left(X_{2}^{4}\right)=f\left(X_{3}^{4}\right)$ note that the round key is not the same for these two values so it does not lead to $X_{2}^{4}=X_{3}^{4}$. We can also follow the differential trail if $X_{8}^{3}=0$. This happens at random or if $f\left(X_{6}^{1}\right)=f\left(X_{2}^{1}\right)$ and, similarly, it does not mean $X_{6}^{1}=X_{2}^{1}$. Thus we are able to distinguish a random permutation from a LILLIPUT permutation. We can also turn this attack into a related key attack with probability $1 .{ }^{5}$

7 rounds. Just like the attacks for 6 rounds, our program has found some attacks ${ }^{6}$ and we will describe the most efficient of them. The tool found an improbable differential attack on LILLIPUT reduced to 7 rounds. For this attack, we use samples of 8,160 pairs, so 68 structures of 120 pairs of messages each. This corresponds to about $2^{7}$ messages, but with this kind of attack, about $2^{10}$ messages are needed (see Subsection 3.3). The output condition is an equality on 4 bits: $\Delta S_{10} \oplus \Delta S_{12}=0$. Thus, for a random permutation, the number of pairs verifying this condition is expected to be 510 in average, since we have $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right) \simeq \frac{m(m-1)}{2.2^{4}}$ and we obtain that $\sigma\left(\mathscr{N}_{\text {perm }}\right) \simeq \sqrt{\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)}$ is about 22.58. If we look at the values we have obtained and that are given in Table 5, we see that $\left|\mathbb{E}\left(\mathscr{N}_{L}\right)-\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)\right|>\sigma\left(\mathscr{N}_{\text {perm }}\right)$. This shows that, as explained in Section 3.1, the attack is successful. Moreover, since $\mathbb{E}\left(\mathscr{N}_{L}\right)<\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)$, we have an improbable attack.

Table 5. Attack simulation on 7 rounds.

| Input branches | Output branches | \#Sample | \#Pairs in a sample | \#Pairs in average |
| :---: | :---: | :---: | :---: | :---: |
| $I_{10}, I_{12}$ | $S_{10}, S_{12}$ | 500 | 8,160 | 477 |

We describe now the details of the equations and explain why it leads to an improbable differential attack. At the end of round 6 (see Property 1) we have: $S_{10}=X_{4}^{6}$ and $S_{12}=X_{2}^{6}$.

[^3]\[

$$
\begin{array}{ll}
X_{4}^{6}=X_{2}^{4} \oplus X_{8}^{5} \oplus f\left(X_{1}^{5}\right), & X_{2}^{6}=X_{4}^{4} \oplus X_{8}^{5} \oplus f\left(X_{6}^{5}\right), \\
X_{2}^{4}=X_{4}^{2} \oplus X_{8}^{3} \oplus f\left(X_{6}^{3}\right), & X_{4}^{4}=X_{2}^{2} \oplus X_{8}^{3} \oplus f\left(X_{1}^{3}\right), \\
X_{4}^{2}=I_{6} \oplus X_{8}^{1} \oplus f\left(X_{1}^{1}\right), & X_{2}^{2}=I_{2} \oplus X_{8}^{1} \oplus f\left(X_{6}^{1}\right), \\
X_{1}^{1}=I_{9} \oplus f\left(I_{8}\right), & X_{6}^{1}=I_{14} \oplus I_{8} \oplus f\left(I_{3}\right), \\
X_{6}^{3}=X_{7}^{1} \oplus X_{8}^{2} \oplus f\left(X_{5}^{2}\right), & X_{1}^{3}=X_{3}^{1} \oplus f\left(X_{8}^{2}\right), \\
X_{7}^{1}=I_{15} \oplus I_{8} \oplus f\left(I_{2}\right), & X_{3}^{1}=I_{11} \oplus I_{8} \oplus f\left(I_{6}\right) .
\end{array}
$$
\]

So, $\Delta X_{3}^{1}=0, \Delta X_{1}^{3}=0, \Delta X_{6}^{1}=0, \Delta X_{2}^{2}=0$. Similarly, $\Delta X_{7}^{1}=0, \Delta X_{6}^{3}=0, \Delta X_{1}^{1}=0$ and $\Delta X_{4}^{2}=0$. So, $\Delta X_{4}^{6} \oplus \Delta X_{2}^{6}=\Delta f\left(X_{6}^{5}\right) \oplus \Delta f\left(X_{1}^{5}\right)$. Moreover we have: $\Delta X_{6}^{5}=\Delta X_{3}^{3} \oplus$ $\Delta f\left(X_{8}^{4}\right)$ and $\Delta X_{6}^{5}=\Delta_{8}^{4} \oplus \Delta f\left(X_{3}^{3}\right)$ It is easy to check that $\Delta X_{3}^{3}=0$ and $\Delta X_{5}^{4}=\Delta X_{6}^{2} \oplus$ $\Delta X_{8}^{3} \oplus \Delta f\left(X_{3}^{3}\right)=\Delta X_{8}^{3}$. We also have $\Delta X_{8}^{4}=\Delta X_{8}^{3} \oplus \Delta X_{5}^{3}$. This gives:

$$
\begin{aligned}
\Delta S_{10} \oplus \Delta S_{12} & =f\left(X_{1}^{5}\right) \oplus f\left(X_{1}^{5} \oplus f\left(X_{8}^{4}\right) \oplus f\left(X_{8}^{4} \oplus \Delta X_{8}^{4}\right)\right) \\
& \oplus f\left(X_{6}^{5}\right) \oplus f\left(X_{6}^{5} \oplus \Delta X_{8}^{4} \oplus f\left(X_{5}^{4}\right) \oplus f\left(X_{5}^{4} \oplus \Delta X_{8}^{3}\right)\right)
\end{aligned}
$$

Suppose that $\Delta X_{8}^{3}=\Delta X_{5}^{3}$. This implies that $\Delta X_{8}^{4}=0$ and we have: $\Delta S_{10} \oplus \Delta S_{12}=$ $f\left(X_{6}^{5}\right) \oplus f\left(X_{6}^{5} \oplus f\left(X_{5}^{4}\right) \oplus f\left(X_{5}^{4} \oplus \Delta X_{8}^{3}\right)\right)$. Since $f$ is bijective, we obtain:

$$
\Delta S_{10} \oplus \Delta S_{12}=0 \Leftrightarrow f\left(X_{5}^{4}\right) \oplus f\left(X_{5}^{4} \oplus \Delta X_{8}^{3}\right)=0 \Leftrightarrow \Delta X_{8}^{3}=0 .
$$

This also gives $\Delta X_{5}^{3}=0$. But $\Delta X_{5}^{3}=0 \Leftrightarrow \Delta X_{3}^{2}=0 \Leftrightarrow \Delta I_{10}=0$ which is not possible. We now compute the probabilities. We have:

$$
\begin{aligned}
\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{12}=0\right] & =\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{12}=0 / \Delta X_{5}^{3} \neq \Delta X_{8}^{3}\right] \mathbb{P}\left[\Delta X_{5}^{3} \neq \Delta X_{8}^{3}\right] \\
& +\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{12}=0 / \Delta X_{5}^{3}=\Delta X_{8}^{3}\right] \mathbb{P}\left[\Delta X_{5}^{3}=\Delta X_{8}^{3}\right]
\end{aligned}
$$

The previous computations show that: $\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{12}=0 / \Delta X_{5}^{3}=\Delta X_{8}^{3}\right]=0$. Thus we obtain, if $m$ is the number of messages.

$$
\begin{aligned}
\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{10}=0\right] & =\mathbb{P}\left[\Delta S_{10} \oplus \Delta S_{10}=0 / \Delta X_{5}^{3} \neq \Delta X_{8}^{3}\right] \mathbb{P}\left[\Delta X_{5}^{3} \neq \Delta X_{8}^{3}\right] \\
& =\frac{m(m-1)}{2 \cdot 2^{4}}\left(1-\frac{1}{2^{4}}\right)
\end{aligned}
$$

With $m=2^{7}$, this is the value given in Table 5. This shows that we have here an improbable attack.

8 rounds. The tool have found a differential attack on LILLIPUT reduced to 8 rounds. For this attack, we use samples of $301,977,600$ pairs, so $2,516,480$ structures. This corresponds to about $1.5 \times 2^{14}$ messages, but with this kind of attack, about $2^{25}$ messages are needed (see Subsection 3.3). The output condition is an equality on 4 bits:
$\Delta S_{12} \oplus \Delta S_{14}=0$. For a random permutation, the number of pairs verifying this condition is expected to be $18,873,600$ in average, i.e. $\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right) \simeq \frac{m(m-1)}{2.2^{4}}$, and the standard deviation is about the square root of the mean value which gives: 4344 . Since the mean value obtained for a LILLIPUT permutation is $18,882,219.56$, we can see that $\left|\mathbb{E}\left(\mathscr{N}_{L}\right)-\mathbb{E}\left(\mathscr{N}_{\text {perm }}\right)\right|>\sigma\left(\mathscr{N}_{\text {perm }}\right)$. This shows that, as explained in Section 3.1, the attack is successful. The simulations described in Table 6 have taken 65.6 hours of computation on a virtual machine with a E8500 as processor and 4Go of RAM.

Table 6. Attack simulation on 8 rounds.

| Input branches | Output branches | \#Sample | \#Pairs in a sample | \#Pairs in average |
| :---: | :---: | :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $S_{12}, S_{14}$ | 50 | $301,977,600$ | $18,882,219.56$ |

Here are the details of the equations: $S_{12}=X_{2}^{7}$ and $S_{14}=X_{7}^{7}$.

$$
\begin{aligned}
X_{2}^{7} & =X_{4}^{5} \oplus X_{8}^{6} \oplus f\left(X_{6}^{6}\right), & X_{7}^{7} & =X_{5}^{5} \oplus X_{8}^{6} \oplus f\left(X_{4}^{6}\right), \\
X_{4}^{5} & =X_{2}^{3} \oplus X_{8}^{4} \oplus f\left(X_{1}^{4}\right), & X_{5}^{5} & =X_{6}^{3} \oplus X_{8}^{4} \oplus f\left(X_{3}^{4}\right), \\
X_{2}^{3} & =X_{4}^{1} \oplus X_{8}^{2} \oplus f\left(X_{6}^{2}\right), & X_{6}^{3} & =X_{7}^{1} \oplus X_{8}^{2} \oplus f\left(X_{5}^{2}\right), \\
X_{4}^{1} & =I_{12} \oplus I_{8} \oplus f\left(I_{5}\right), & X_{4}^{1} & =I_{12} \oplus I_{8} \oplus f\left(I_{5}\right), \\
\Delta X_{4}^{1} & =0, & \Delta X_{7}^{1} & =0 .
\end{aligned}
$$

Or $\Delta f\left(X_{5}^{2}\right)=0$ and $\Delta f\left(X_{6}^{2}\right)=0$. So $\Delta S_{12} \oplus \Delta S_{14}=\Delta f\left(X_{6}^{6}\right) \oplus \Delta f\left(X_{4}^{6}\right) \oplus \Delta f\left(X_{1}^{4}\right) \oplus$ $\Delta f\left(X_{3}^{4}\right)$. We can observe that the condition $\Delta S_{12} \oplus \Delta S_{14}=0$ can be satisfied if for example: $f\left(X_{1}^{4}\right)=f\left(X_{3}^{4}\right), f\left(X_{1}^{4} \oplus \Delta X_{1}^{4}\right)=f\left(X_{3}^{4} \oplus \Delta X_{3}^{4}\right), f\left(X_{4}^{6}\right)=f\left(X_{6}^{6}\right)$, and $f\left(X_{4}^{6} \oplus\right.$ $\left.\Delta X_{4}^{6}\right)=f\left(X_{6}^{6} \oplus \Delta X_{6}^{6}\right)$. But other equalities are also possible.

## 5 Conclusion

We have seen some differential attacks on LILLIPUT. These attacks were found by a tool we have made and are based on the variance method. This is the first time this method is applied to a concrete cipher. The tool has highlighted unusual differential conditions for which LILLIPUT is sensitive. We can see our distinguishers do not reach more rounds than the previous analysis. But, contrary to these attacks, we have found our results empirically and since the last attack require $2^{25}$ messages, one can see that it is far from the maximum and from the complexity of $2^{45}$ based on the number of active sboxes. Thus, we can look for distinguishers which reach more rounds with a devoted equipment. We have described how the key recovery works with our attacks in the appendix A. Finally, we have also seen improbable differential attacks which work well in simulations. This scheme can be an efficient support to study this kind of attacks thanks to the complexity of relations between internal variables in LILLIPUT due to the LinearLayer step.

## References

1. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, and al. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint archive: 2013/404: Listing for 2013.
2. C. Beierle, J. Jean, S. Kölbl, and al. The SKINNY Family of Block Ciphers and its LowLatency Variant MANTIS. Cryptology ePrint archive: 2016/660: Listing for 2016.
3. T. P. Berger, J. Francq, M. Minier, and G. Thomas. Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput. IEEE Transactions on Computers, 65(7):2074-2089, July 2016.
4. T.P. Berger, M. Minier, and G. Thomas. Extended Generalized Feistel Networks Using Matrix Representation, pages 289-305. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
5. E. Biham, R.J. Anderson, and L.R. Knudsen. Serpent: A new block cipher proposal. In Proceedings of the 5th International Workshop on Fast Software Encryption, FSE '98, pages 222-238, London, UK, UK, 1998. Springer-Verlag.
6. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In J. Stern, editor, Advances in Cryptology - EUROCRYPT 99, volume 1592 of Lecture Notes in Computer Science, pages 12-23. Springer-Verlag, 1999.
7. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology, 4(1):3-72, 1991.
8. C. Blondeau. Improbable Differential from Impossible Differential: On the Validity of the Model, pages 149-160. Springer International Publishing, Cham, 2013.
9. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher, pages 450466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
10. Patrick Derbez and Pierre-Alain Fouque. Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks, pages 157-184. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
11. L.R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast Software Encrytion - FSE '94, volume 1008 of Lecture Notes in Computer Science, pages 291-311. Springer-Verlag, 1994.
12. V. Nachef, N. Marrière, and E. Volte. Improved Attacks on Extended Generalized Feistel Networks, pages 562-572. Springer International Publishing, Cham, 2016.
13. V. Nachef, J. Patarin, and E. Volte. Feistel Ciphers. Springer International Publishing, 2017.
14. V. Nachef, E. Volte, and J. Patarin. Differential Attacks on Generalized Feistel schemes. In M. Abdalla, C. Nita-Rotaru, and R. Dahab, editors, CANS 2013, volume 8257 of Lecture Notes in Computer Science, pages 1-19. Springer-Verlag, 2013.
15. Y. Sasaki and Y. Todo. New differential bounds and division property of lilliput: Block cipher with extended generalized feistel network. In Selected Areas in Cryptography - SAC 2016. Springer, 2016.
16. Y. Sasaki and Y. Todo. New impossible differential search tool from design and cryptanalysis aspects - revealing structural properties of several ciphers. In EUROCRYPT (3), pages 185215. Springer, 2017.
17. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Piccolo: An UltraLightweight Blockcipher, pages 342-357. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
18. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata. The 128-Bit Blockcipher CLEFIA (Extended Abstract), pages 181-195. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
19. C. Tezcan. Truncated, impossible, and improbable differential analysis of ascon. Cryptology ePrint archive: 2016/490: Listing for 2016.
20. C. Tezcan. The Improbable Differential Attack: Cryptanalysis of Reduced Round CLEFIA, pages 197-209. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
21. E. Volte, V. Nachef, and N. Marrière. Automatic Expectation and Variance Computing for Attacks on Feistel Schemes. Cryptology ePrint archive: 2016/136: Listing for 2016.
22. D. Wagner. The boomerang attack. In Proceedings of the 6th International Workshop on Fast Software Encryption, FSE '99, pages 156-170, London, UK, UK, 1999. Springer-Verlag.
23. Shengbao Wu and Mingsheng Wang. Automatic Search of Truncated Impossible Differentials for Word-Oriented Block Ciphers, pages 283-302. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
24. Y. Luoand Z. Wu, X. Lai, and G. Gong. A Unified Method for Finding Impossible Differentials of Block Cipher Structures. 2009. http://eprint.iacr.org/.

## A Key recovery

In this appendix, we describe how the key recovery works in order to show what we can do. We process the key recovery on LILLIPUT reduced to 7 and 8 rounds. We have used the distinguishing attack on 6 rounds to attack 7 then 8 rounds in order to do simulations because the distinguishing attack on 8 rounds require $2^{25}$ messages to be processed. Nevertheless, it will work similarly for this distinguishing attack.

## A. 1 Key schedule description

LILLIPUT uses a 80-bit master key. The key schedule is managed by an internal state denoted by 20 nibbles (4-bit words): $Y_{19}, \ldots, Y_{0}$. It is initialized with the master key and is processed by the algorithm 2 in order to build the round keys $R K^{0}, \ldots, R K^{29}$. The ExtractRoundKey function is described in the algorithm 3. Note that the Sbox $S$ used in the ExtractRoundKey function is the same as the one in LILLIPUT. The functions $L_{0}, L_{1}, L_{2}$ and $L_{3}$ are generalized Feistel schemes with 5 branches and a bit size of 4 . They are described in Fig 2, Fig 3, Fig 4 and Fig 5 respectively.

```
Algorithm 2 LILLIPUT key schedule
 \(Y_{19}, \ldots, Y_{0}=\) MasterKey
 \(R K^{0}=\) ExtractRoundKey \(\left(Y_{19}, \ldots, Y_{0}\right)\)
 for i in \(1, \ldots, 29\) do
 \(\left(Y_{4}, \ldots, Y_{0}\right)=L_{0}\left(Y_{4}, \ldots, Y_{0}\right)\)
 \(\left(Y_{9}, \ldots, Y_{5}\right)=L_{1}\left(Y_{9}, \ldots, Y_{5}\right)\)
 \(\left(Y_{14}, \ldots, Y_{10}\right)=L_{2}\left(Y_{14}, \ldots, Y_{10}\right)\)
 \(\left(Y_{19}, \ldots, Y_{15}\right)=L_{3}\left(Y_{19}, \ldots, Y_{15}\right)\)
 RK \({ }^{i}=\) ExtractRound \(\operatorname{Key}\left(Y_{19}, \ldots, Y_{0}\right)\)
 end for
```

```
Algorithm 3 ExtractRoundKey function for \(R K^{i}\)
 Let \(Z\), a 32-bit word such that: \(Z=Y_{18} Y_{16} Y_{13} Y_{10} Y_{9} Y_{6} Y_{3} Y_{1}\)
 The bits of \(Z\) are denoted by: \(Z_{31}, \ldots, Z_{0}\)
 \(R K^{0}=\) ExtractRoundKey \(\left(Y_{19}, \ldots, Y_{0}\right)\)
 for j in \(0, \ldots, 7\) do
 \(R K_{j}^{i}=S\left(Z_{j} \mid\left\|Z_{8+j}\right\| Z_{16+j} \| Z_{24+j}\right)\)
 end for
 \(R K^{i}=R K^{i} \oplus(i \| 0)\)
```



Fig. 2. $L_{0}$


Fig. 3. $L_{1}$


Fig. 4. $L_{2}$

## A. 2 Key recovery analysis on 7 rounds

This attack is based on some distinguishing attacks on 6 rounds. As usual, a plaintext structure contains 16 messages (thus 120 different pairs) which are different only on 2 branches. Moreover, the difference has to be the same on these branches.

On LILLIPUT reduced to 6 rounds, there are some differential attacks based on our attacks. The involved input branches are $I_{9}$ and $I_{10}$. On the outputs, the conditions can be: $\Delta S_{9} \oplus \Delta S_{10}=0$ or $\Delta S_{9} \oplus \Delta S_{14}=0$ or $\Delta S_{10} \oplus \Delta S_{14}=0$. Based on one of these attacks, one can mount a key recovery attack on 7 rounds with the algorithm 4.


Fig. 5. $L_{3}$

```
Algorithm 4 Key recovery on 7 rounds.
 Encrypt some samples of 68 structures on 7 rounds.
 for all guess of \(R K_{0}^{6}, R K_{1}^{6}\) do
 Decrypt one round with the guess.
 \(r=\) Count how many pairs verify \(\Delta S_{9} \oplus \Delta S_{10}=0\).
 if \(r>550\) then
 The guess is possible, one has to stock it.
 end if
 end for
```

This algorithm allows to get a list of possible $R K_{0}^{6}, R K_{1}^{6}$. There are $2^{8}$ possibilities for the guess. In simulations, one can find directly the correct guess (list of one element) with 5 or 10 samples. But with less samples, one get a list of several possibilities. With the knowledge of $R K_{0}^{6}, R K_{1}^{6}$, one get the following bits of the corresponding $Z$ : $Z_{0} Z_{1} Z_{8} Z_{9} Z_{16} Z_{17} Z_{24} Z_{25}$. Even if there are several $R K_{0}^{6}, R K_{1}^{6}$, the cost of the brute-force attack is reduced from $2^{80}$ to about $2^{74}$. Of course, one can optimize this algorithm.

Indeed, one can use several attacks in order to get a better attack. It is described in the algorithm 5. In simulations, we have always get the correct guess $R K_{0}^{6}, R K_{1}^{6}$ and $R K_{5}^{6}$. As we do not test all the possibilities for the second and third attack but only the ones which work from the previous, the number of possibilities is lower than $3 \times 2^{8}$.

With the algorithm 5, one has the knowledge of $R K_{0}^{6}, R K_{1}^{6}$ and $R K_{5}^{6}$. It corresponds to the following bits of $Z: Z_{0} Z_{1} Z_{5} Z_{8} Z_{9} Z_{13} Z_{16} Z_{17} Z_{21} Z_{24} Z_{25} Z_{29}$. Then, the cost of the brute-force attack is reduced from $2^{80}$ to $2^{68}$.

We can also improve the algorithm 5 by using the following improbable differential attacks: $\Delta S_{9} \oplus \Delta S_{15}=0, \Delta S_{10} \oplus \Delta S_{15}=0$ and $\Delta S_{14} \oplus \Delta S_{15}=0$. There are $2^{4}$ possibilities for $R K_{6}^{6}$, the corresponding round key for $S_{15}$, and we test only with the possible $R K_{0}^{6}, R K_{1}^{6}$ and $R K_{5}^{6}$. Thus, the cost of the brute-force attack is reduced from $2^{80}$ to $2^{64}$.

Starting from these attack, one can get additional details by using distinguishing attacks on LILLIPUT reduced to 5 rounds. Indeed, based on the same input conditions, there are the following attacks on 5 rounds: $\Delta S_{13} \oplus \Delta S_{15}=0, \Delta S_{13} \oplus \Delta S_{14}=0$ and $\Delta S_{14} \oplus \Delta S_{15}=0$. These attacks require the previous guess $R K_{0}^{6}, R K_{1}^{6}$ and $R K_{6}^{6}$. One can use the same method from the algorithm 5 to get $R K_{4}^{5}, R K_{5}^{5}$ and $R K_{6}^{5}$. Thus, the corresponding bits of $Z$ for the round 5 are: $Z_{4} Z_{5} Z_{6} Z_{12} Z_{13} Z_{14} Z_{20} Z_{21} Z_{22} Z_{28} Z_{29} Z_{30}$. In the key schedule, these bits correspond to $Y_{3}, Y_{9}, Y_{13}$ and $Y_{18}$. Then, for the round 6, they shift to: $Y_{4}, Y_{5}, Y_{14}$ and $Y_{19}$. For this step, the number of possibilities is lower than $3 \times 2^{8}$.

```
Algorithm 5 Key recovery on 7 rounds.
 Encrypt some samples of 68 structures on 7 rounds.
 for all guess of \(R K_{0}^{6}, R K_{1}^{6}\) do
 Decrypt one round with the guess.
 \(r=\) Count how many pairs verify \(\Delta S_{9} \oplus \Delta S_{10}=0\).
 if \(r>550\) then
 The guess is possible, one has to stock it in List \(_{0}\).
 end if
 end for
 for all possible \(R K_{0}^{6}\) in List \(_{0}\) do
 for all guess of \(R K_{5}^{6}\) do
 Decrypt one round of the ciphertexts after 7 rounds with the guess \(R K_{0}^{6}\) and \(R K_{5}^{6}\).
 \(r=\) Count how many pairs verify \(\Delta S_{9} \oplus \Delta S_{14}=0\).
 if \(r>550\) then
 The guess is possible, one has to stock it in List \(_{1}\).
 end if
 end for
 end for
 for all possible \(R K_{1}^{6}\) in List \(_{0}\) do
 for all possible \(R K_{5}^{6}\) in List \(_{1}\) do
 Decrypt one round of the ciphertexts after 7 rounds with the guess \(R K_{1}^{6}\) and \(R K_{5}^{6}\).
 \(r=\) Count how many pairs verify \(\Delta S_{10} \oplus \Delta S_{14}=0\).
 if \(r>550\) then
 The guess is possible, one has to stock it.
 end if
 end for
 end for
 Deduce the possible correct guess \(R K_{0}^{6}, R K_{1}^{6}, R K_{5}^{6}\).
```

There is a efficient attack with the same input condition on LILLIPUT reduced to 5 rounds and we can exploit it in our key recovery attack. The output condition is $\Delta S_{9} \oplus \Delta S_{10}=0$. This condition is always verified, so we can test it on smaller samples in order to decrease the global complexity. One can look which round keys are involved from the end of round 7: $R K_{0}^{5}, R K_{1}^{5}, R K_{4}^{6}$ and $R K_{7}^{6}$. The number of possibilities is $2^{16}$.

Table 7. Round key recover at the end of round 6.

| Round key | Corresponding bits on Z | Corresponding Y |
| :---: | :---: | :---: |
| $R K_{0}^{6}$ | $Z_{0}, Z_{8}, Z_{16}, Z_{24}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{1}^{6}$ | $Z_{1}, Z_{9}, Z_{17}, Z_{25}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{4}^{6}$ | $Z_{4}, Z_{12}, Z_{20}, Z_{28}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{5}^{6}$ | $Z_{5}, Z_{13}, Z_{21}, Z_{29}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{6}^{6}$ | $Z_{6}, Z_{14}, Z_{22}, Z_{30}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{7}^{6}$ | $Z_{7}, Z_{15}, Z_{23}, Z_{31}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |

Table 8. Round key recover at the end of round 5.

| Round key | Corresponding bits on Z | Corresponding Y |
| :---: | :---: | :---: |
| $R K_{0}^{5}$ | $Z_{0}, Z_{8}, Z_{16}, Z_{24}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{1}^{5}$ | $Z_{1}, Z_{9}, Z_{17}, Z_{25}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{4}^{5}$ | $Z_{4}, Z_{12}, Z_{20}, Z_{28}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{5}^{5}$ | $Z_{5}, Z_{13}, Z_{21}, Z_{29}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{6}^{5}$ | $Z_{6}, Z_{14}, Z_{22}, Z_{30}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |

Finally, we have attacked LILLIPUT reduced to 7 rounds using distinguishing attacks on 6 and 5 rounds. One can see the round keys recovered in the table 7 and table 8. Here is the state ${ }^{7}$ at the end of round 6: $Y_{1}=? ?\left\|, Y_{3}=\right\|\left\|, Y_{6}=? ?\right\|, Y_{9}=\| \|\left\|, Y_{10}=? ?\right\|$, $Y_{13}=\| \|\left\|, Y_{16}=? ?\right\|, Y_{18}=\| \| \|$. At the end of the round 5, it is similar, we have the knowledge of: $Y_{1}=? ?\left\|, Y_{3}=?\left|\left\|, Y_{6}=? ?\right\|, Y_{9}=?\left\|| |, Y_{10}=? ?| |, Y_{13}=? \mid\right\|, Y_{16}=? ?\left\|, Y_{18}=?\right\| \|\right.\right.$. But, these bits shift for the round 6. Thus, at the end of round 6, we also have more details described in table 9 . We can see in this table that we have recovered 44 bits of the internal state. Thus, the cost of the brute-force is reduced from $2^{80}$ to $2^{36}$. The cost for all guess is less than: $c=2^{16}+6 * 2^{8}+2^{4}$. We can continue to use the previous rounds with more distinguishing attacks in order to reduce the complexity.

Table 9. Internal state at round 6.

| Parts of $Y$ | State of the nibble | | | |
|---|---|---|---|---|
| $Y_{0}, Y_{8}, Y_{12}, Y_{15}$ | ???? |
| $Y_{1}, Y_{2}, Y_{6}, Y_{7}, Y_{10}, Y_{11}, Y_{16}, Y_{17}$ | ?? \\| |
| $Y_{4}, Y_{5}, Y_{14}, Y_{19}$ | ?\|\| |
| $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ | $\\|\\|\\|$ |

## A. 3 Key recovery analysis on 8 rounds

We have seen how the key recovery works based on our attacks. Now, we will see how it can be extend. In this subsection, we will see how it works on LILLIPUT reduced to 8 rounds.

First, we want to use our distinguishing attack on 6 rounds: $\Delta S_{9} \oplus \Delta S_{10}=0$. If we look the branches involved until 8 rounds, we can see which round key we have to guess. We summarize the analysis in the table 10 . To mount a key recovery attack on LILLIPUT reduced to 8 rounds, one can use the algorithm 6. As is it described in the table 10, if one wants to exploit $\Delta S_{9} \oplus \Delta S_{10}=0$, the round key to guess will be: $R K_{0}^{6}, R K_{1}^{6}, R K_{7}^{7}$ and $R K_{4}^{7}$. Thus the number of possibilities is $2^{16}$. We can use more distinguishing attacks in order to get more round keys: $\Delta S_{9} \oplus \Delta S_{10}=0$ and $\Delta S_{9} \oplus$

[^4]Table 10. Round key involved for key recovery on 8 rounds.

| Branch involved | Round key and involved branches | Round key for internal variables |
| :---: | :---: | :---: |
| $X_{3}^{5}$ | $R K_{0}^{6}, X_{8}^{6}$ | $R K_{7}^{7}$ |
| $X_{4}^{5}$ | $R K_{1}^{6}, X_{6}^{6}$ | $R K_{4}^{7}$ |
| $X_{7}^{5}$ | $R K_{5}^{6}, X_{5}^{6}$ | $R K_{6}^{7}$ |
| $X_{5}^{5}$ | $R K_{6}^{6}, X_{4}^{6}$ | $R K_{1}^{7}$ |

$\Delta S_{10}=0$ for example. Moreover, there are the same improbable differential attacks as in the Section A.2: $\Delta S_{9} \oplus \Delta S_{15}=0, \Delta S_{10} \oplus \Delta S_{15}=0$ and $\Delta S_{14} \oplus \Delta S_{15}=0$.

```
Algorithm 6 Key recovery on 8 rounds.
 Encrypt some samples of 68 structures on 8 rounds.
 for all guess of \(R K_{7}^{7}, R K_{4}^{7}\) do
 Decrypt one round with the guess.
 for all guess of \(R K_{0}^{6}, R K_{1}^{6}\) do
 \(r=\) Count how many pairs verify \(\Delta S_{9} \oplus \Delta S_{10}=0\).
 if \(r>550\) then
 The guess is possible, one has to stock it.
 end if
 end for
 end for
```

We can use the same method as the algorithm 5. Thanks to this algorithm, we have recovered 24 bits of data as described in the table 11 and table 12 . Then we will see how much is the cost of the brute-force attack without using previous rounds method.

Table 11. Round key recover at the end of round 6.

| Round key | Corresponding bits on $Z$ | Corresponding Y |
| :---: | :---: | :---: |
| $R K_{0}^{6}$ | $Z_{0}, Z_{8}, Z_{16}, Z_{24}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{1}^{6}$ | $Z_{1}, Z_{9}, Z_{17}, Z_{25}$ | $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ |
| $R K_{5}^{6}$ | $Z_{4}, Z_{12}, Z_{20}, Z_{28}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |

As we can see in the Section A.1, the information recovered at the end of round 7 can be go up at the end of round 6 without any condition. Thus, with an algorithm similar to the algorithm 5, we have recovered 24 bits of data for the internal state at the end of round 6 and not only split on two rounds. It is described in the table 13. The cost of the brute-force attack is reduced from $2^{80}$ to $2^{56}$.

Table 12. Round key recover at the end of round 7.

| Round key | Corresponding bits on Z | Corresponding Y |
| :---: | :---: | :---: |
| $R K_{4}^{7}$ | $Z_{4}, Z_{12}, Z_{20}, Z_{28}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{6}^{7}$ | $Z_{6}, Z_{14}, Z_{22}, Z_{30}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |
| $R K_{7}^{7}$ | $Z_{7}, Z_{15}, Z_{23}, Z_{31}$ | $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ |

Table 13. Internal state at round 6.

| Parts of $Y$ | State of the nibble | |
|---|---|---|
| $Y_{0}, Y_{4}, Y_{5}, Y_{7}, Y_{11}, Y_{14}, Y_{15} Y_{19}$ | ???? |
| $Y_{3}, Y_{9}, Y_{13}, Y_{18}$ | $? ? \mid ?$ |
| $Y_{1}, Y_{6}, Y_{10}, Y_{16}$ | $? ? \mid \\|$ |
| $Y_{2}, Y_{8}, Y_{12}, Y_{17}$ | $\\|\|?\|$ |

## A. 4 Key recovery analysis on more rounds

We have seen how to attack 2 rounds more than the distinguisher. In order to attack more rounds, we need the internal variable on the branch $I_{16}$. Thus we will need to guess all the round keys for this round. So, it costs $2^{32}$. Similarly, if we want to attack 4 rounds more than the distinguisher attack, it will cost $2^{64}$. It is possible to reduce enough the complexity to do that but we can not process one more round with this method. Based on the distinguisher on 8 rounds, it is then possible to attack 12 rounds.

## B Related key attack on 6 rounds

In this appendix, we describe the related key attack on LILLIPUT reduce to 6 rounds. To recall the attack, the input branches involved are $I_{10}$ and $I_{14}$. If $c=c_{1} \oplus c_{2}$, the ouput condition is $S_{9}(c) \oplus S_{15}(c)=0$.

If $I_{10}=I_{14}$ and $R K_{1}^{1}=R K_{5}^{1}$ and $R K_{1}^{2}=R K_{2}^{2}$, the differential trail is verified with probability 1 . This attack was verified in practice.

The aim of the attack is to make $\Delta X_{8}^{3}=0$.
We have seen that $\Delta X_{8}^{3}=f\left(X_{6}^{1}\right) \oplus f\left(X_{6}^{1} \oplus \Delta I_{14}\right) \oplus f\left(X_{2}^{1}\right) \oplus f\left(X_{2}^{1} \oplus \Delta I_{10}\right)$. Moreover, we know that $\Delta I_{14}=\Delta I_{10}$.

But, it is important to notice that $f\left(X_{6}^{1}\right)=\operatorname{sbox}\left(X_{6}^{1} \oplus R K_{1}^{1}\right)$. Similarly, $f\left(X_{2}^{1}\right)=$ $\operatorname{sbox}\left(X_{2}^{1} \oplus R K_{2}^{1}\right)$. So, $\Delta X_{8}^{3}=0$ if and only if $\operatorname{sbox}\left(X_{2}^{1} \oplus R K_{2}^{1}\right)=\operatorname{sbox}\left(X_{6}^{1} \oplus R K_{1}^{1}\right)$. It can happens at random but if we have the condition on the key $R K_{1}^{1}=R K_{2}^{1}$, then $\left(X_{6}^{1}=\right.$ $\left.X_{2}^{1}\right) \Rightarrow \Delta X_{8}^{3}=0$.

Then, we have $X_{6}^{1} \oplus X_{2}^{1}=I_{14} \oplus I_{10} \oplus \operatorname{sbox}\left(I_{3} \oplus R K_{5}^{0}\right) \oplus \operatorname{sbox}\left(I_{7} \oplus R K_{1}^{0}\right)$. So if $I_{10}=$ $I_{14}$, then $\left(X_{6}^{1} \oplus X_{2}^{1}=0\right.$ if and only if $\left.I_{3} \oplus R K_{5}^{0}=I_{7} \oplus R K_{1}^{0}\right)$.

Now we will see what kind of conditions on the master key we have.
The key state is denoted by 20 nibbles of 4 bits: $Y=\left[Y_{19}, \cdots, Y_{0}\right]$ Each round there is a 32 -bit round key extract by the extraction function.

First, we have $Z=\left[Y_{18}, Y_{16}, Y_{13}, Y_{10}, Y_{9}, Y_{6}, Y_{3}, Y_{1}\right]$. Let $Z=Z_{31}, \cdots, Z_{0}$ the bits of $Z$. Then, we have:

$$
\begin{aligned}
& R K_{1}^{1}=\operatorname{sbox}\left(\left[Z_{1}, Z_{9}, Z_{17}, Z_{25}\right]\right) \\
& R K_{5}^{1}=\operatorname{sbox}\left(\left[Z_{5}, Z_{13}, Z_{21}, Z_{29}\right]\right) \\
& R K_{1}^{2}=\operatorname{sbox}\left(\left[Z_{1}, Z_{9}, Z_{17}, Z_{25}\right]\right) \oplus 1 \\
& R K_{2}^{2}=\operatorname{sbox}\left(\left[Z_{2}, Z_{10}, Z_{18}, Z_{26}\right]\right) \oplus 1
\end{aligned}
$$

Note that the xor with 1 is processed to flip the bit at the left. $R K_{1}^{1}=R K_{5}^{1}$ if and only if $\operatorname{sbox}\left(\left[Z_{1}, Z_{9}, Z_{17}, Z_{25}\right]\right)=\operatorname{sbox}\left(\left[Z_{5}, Z_{13}, Z_{21}, Z_{29}\right]\right)$. So $R K_{1}^{1}=R K_{5}^{1}$ if and only if $\left[Z_{1}, Z_{9}, Z_{17}, Z_{25}\right]=\left[Z_{5}, Z_{13}, Z_{21}, Z_{29}\right]$.

So $R K_{1}^{1}=R K_{5}^{1}$ if $Z_{1}=Z_{5}, Z_{9}=Z_{13}, Z_{17}=Z_{21}$ and $Z_{25}=Z_{29}$. If $K=K_{79}, \cdots, K_{0}$ is the master key, these conditions lead to: $K_{5}=K_{13}, K_{25}=K_{38}, K_{41}=K_{53}$ and $K_{65}=K_{73}$

Similarly $R K_{1}^{2}=R K_{2}^{2}$ if $Z_{1}=Z_{2}, Z_{9}=Z_{10}, Z_{17}=Z_{18}$ and $Z_{25}=Z_{26}$. Note that it is the $Z$ of the second round, so the $Z_{9}$ is not the same. It leads to these conditions on the master key: $K_{1} \oplus K_{18}=K_{2} \oplus K_{19}, K_{21}=K_{22}, K_{58}=K_{57}$ and $K_{61}=K_{62}$. With these 8 conditions on 1 bit on the master key, we have the attack with probability 1 on LILLIPUT reduced to 6 rounds.

## C Attacks on 5, 6 and 7 rounds

In this appendix, we describe some attacks on LILLIPUT reduced to 5, 6 and 7 rounds. These attacks are based on 500 samples of 8,160 couples of messages. This corresponds to $2^{7}$ messages. We count how many couples verify a property. The average result for a random permutation is $\frac{8160}{2^{4}}=510$ because it is an equality on 4 bits. The results obtained with the attacks we described below are significantly greater or significantly smaller than this value. In fact, in order to obtain an attack, the difference between these values is expected to be $\frac{8160}{2^{8}}=32$. As said in Section 4, these attacks are based on an non zero difference put on two input branches. We detail these branches involved, the differential condition on the ouput and the average result obtained.

The attacks described below from the table 14 to the table 25 use only two branches in input and two branches in output. The tool also found a lot of attacks for all combination $i \in\{1, \cdots, 8\}$ branches in input and $j \in\{1, \cdots, 8\}$ branches in output but $i=2$ and $j=2$ leads to the most relevant attacks. Note that the attacks on 7 rounds are not based on $2^{7}$ messages but $2^{11}$.

Table 14. Differential attacks which require only 2 messages.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $8,160.0$ |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $8,160.0$ |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $8,160.0$ |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{9}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $8,160.0$ |
| $I_{10}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $8,160.0$ |
| $I_{10}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $8,160.0$ |
| $I_{10}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | $8,160.0$ |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $8,160.0$ |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | $8,160.0$ |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $8,160.0$ |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{12}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{12}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $8,160.0$ |
| $I_{13}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $8,160.0$ |

Table 15. Impossible differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{9}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{9}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{9}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
|  | $\Delta I_{11}$ | 0.0 |
| 0 |  |  |


| Inputs | Condition | Result |
| :--- | :--- | :---: |
| $I_{10}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{12}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{10}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{10}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{10}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{12}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{11}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{11}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{11}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 0.0 |

Table 16. Impossible differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{12}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{12}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{12}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{12}, I_{13}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{12}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{16}=0$ | 0.0 |
| $I_{12}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{12}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{12}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{13}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 0.0 |
| $I_{13}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 0.0 |
| $I_{13}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 0.0 |
| $I_{13}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 0.0 |

Table 17. Differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 542.59 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{16}=0$ | 542.59 |
| $I_{9}, I_{10}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | $1,284.936$ |
| $I_{9}, I_{10}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 615.462 |
| $I_{9}, I_{10}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 616.796 |
| $I_{9}, I_{10}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 550.578 |
| $I_{9}, I_{10}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $1,276.944$ |
| $I_{9}, I_{10}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | $1,284.72$ |
| $I_{9}, I_{10}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 550.61 |
| $I_{9}, I_{10}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 551.39 |
| $I_{9}, I_{10}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,282.128$ |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | $1,743.32$ |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 550.684 |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 543.678 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,278.672$ |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,252.536$ |
| $I_{9}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | $1,743.32$ |
| $I_{9}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 550.684 |
| $I_{9}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{16}=0$ | 543.678 |
| $I_{9}, I_{11}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,282.344$ |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | $1,271.76$ |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $1,252.968$ |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $1,278.024$ |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 550.794 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | $1,053.244$ |
| $I_{9}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,053.244$ |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $1,260.96$ |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | $1,271.76$ |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 595.752 |
| $I_{9}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | $1,281.696$ |
| $I_{9}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{16}=0$ | 550.948 |
| $I_{9}, I_{12}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 551.776 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 549.68 |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | $1,744.92$ |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,270.464$ |
| $I_{9}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | $1,744.92$ |
| $I_{9}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,744.92$ |
| $I_{9}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 610.29 |
| $I_{9}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | $1,270.464$ |
| $I_{9}, I_{13}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,270.464$ |
|  |  |  |


| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | $1,734.96$ |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 594.91 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 543.972 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $1,273.272$ |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $1,286.664$ |
| $I_{9}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,734.96$ |
| $I_{9}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $1,256.856$ |
| $I_{9}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 594.91 |
| $I_{9}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{16}=0$ | 543.972 |
| $I_{9}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $1,057.336$ |
| $I_{9}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 666.698 |
| $I_{9}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $1,728.196$ |
| $I_{9}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,738.81$ |
| $I_{9}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 562.01 |
| $I_{9}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $1,055.428$ |
| $I_{9}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,056.176$ |
| $I_{9}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 667.754 |
| $I_{9}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 666.358 |
| $I_{9}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $1,738.462$ |
| $I_{9}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 902.446 |
| $I_{9}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 544.0 |
| $I_{9}, I_{16}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 543.22 |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,268.304$ |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 611.888 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 611.288 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 551.35 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 550.92 |
| $I_{10}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 551.252 |
| $I_{10}, I_{11}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,268.304$ |
| $I_{10}, I_{11}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 611.888 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 565.622 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,279.536$ |
| $I_{10}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 550.596 |
| $I_{10}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 563.856 |
| $I_{10}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 550.596 |
| $I_{10}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 550.596 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 550.608 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 550.912 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 596.804 |
| $I_{10}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 610.154 |
|  |  |  |

Table 18. Differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :--- | :---: | :---: |
| $I_{10}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | $1,270.896$ |
| $I_{10}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 550.548 |
| $I_{10}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 550.54 |
| $I_{10}, I_{13}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,265.928$ |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 594.642 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 611.952 |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | $1,283.208$ |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,267.224$ |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 593.402 |
| $I_{10}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 613.168 |
| $I_{10}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 594.642 |
| $I_{10}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 611.952 |
| $I_{10}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 552.278 |
| $I_{10}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $1,054.44$ |
| $I_{10}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $1,741.32$ |
| $I_{10}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,056.38$ |
| $I_{10}, I_{15}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 566.092 |
| $I_{10}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $1,279.32$ |
| $I_{10}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 544.0 |
| $I_{10}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 596.114 |
| $I_{10}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 613.966 |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $1,266.36$ |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 551.74 |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $1,268.304$ |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,273.704$ |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 550.054 |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $1,282.56$ |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,280.616$ |
| $I_{11}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | $1,051.468$ |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 548.646 |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 595.28 |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 544.0 |
| $I_{11}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $1,248.648$ |
| $I_{11}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{16}=0$ | 544.0 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 550.208 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 549.644 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 550.648 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 595.88 |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 550.288 |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,266.144$ |
|  |  |  |


| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,265.496$ |
| $I_{11}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | $1,719.88$ |
| $I_{11}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 593.428 |
| $I_{11}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 550.316 |
| $I_{11}, I_{13}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,262.472$ |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $1,285.8$ |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | $1,725.328$ |
| $I_{11}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 610.24 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 617.944 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 612.464 |
| $I_{11}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 551.284 |
| $I_{11}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 595.708 |
| $I_{11}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 551.876 |
| $I_{11}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $1,285.8$ |
| $I_{11}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 550.746 |
| $I_{11}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 550.956 |
| $I_{11}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $1,744.06$ |
| $I_{11}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $1,730.04$ |
| $I_{11}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 567.802 |
| $I_{11}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | $1,723.052$ |
| $I_{11}, I_{16}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 616.944 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 593.886 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 593.886 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 593.886 |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | $1,051.278$ |
| $I_{12}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | $1,051.278$ |
| $I_{12}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,051.278$ |
| $I_{12}, I_{13}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | $1,262.904$ |
| $I_{12}, I_{13}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 575.986 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $1,255.56$ |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 550.276 |
| $I_{12}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 592.83 |
| $I_{12}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{16}=0$ | 544.0 |
| $I_{12}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | $1,052.232$ |
| $I_{12}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 564.396 |
| $I_{12}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,052.232$ |
| $I_{12}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $1,274.568$ |
| $I_{12}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $1,274.568$ |
| $I_{12}, I_{14}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 544.0 |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | $1,262.904$ |
|  |  |  |

Table 19. Differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 665.692 |
| $I_{12}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,053.13$ |
| $I_{12}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,055.476$ |
| $I_{12}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{16}=0$ | 972.51 |
| $I_{12}, I_{15}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 559.624 |
| $I_{12}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 666.406 |
| $I_{12}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | $1,735.592$ |
| $I_{12}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{16}=0$ | 900.544 |
| $I_{12}, I_{15}$ | $\Delta S_{15} \oplus \Delta S_{16}=0$ | 900.472 |
| $I_{12}, I_{16}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 561.768 |
| $I_{12}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 963.714 |
| $I_{12}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 542.272 |
| $I_{12}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 613.964 |
| $I_{12}, I_{16}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 544.13 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 550.194 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 550.898 |
| $I_{13}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $1,281.48$ |
| $I_{13}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | $1,740.224$ |
| $I_{13}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | $1,740.224$ |
| $I_{13}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 550.844 |
| $I_{13}, I_{14}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 550.844 |
| $I_{13}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | $1,054.164$ |
| $I_{13}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $1,052.654$ |
| $I_{13}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 664.048 |
| $I_{13}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $1,713.588$ |
| $I_{13}, I_{16}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 565.006 |
| $I_{13}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 900.286 |
| $I_{13}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 614.604 |
| $I_{13}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 543.066 |
| $I_{13}, I_{16}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 542.57 |
| $I_{14}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,744.13$ |
| $I_{14}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 561.934 |
| $I_{14}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 564.562 |
| $I_{14}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $1,275.216$ |
| $I_{14}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 550.886 |
| $I_{14}, I_{16}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 543.868 |
| $I_{14}, I_{16}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 558.836 |
| $I_{15}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 562.682 |
| $I_{15}, I_{16}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 564.098 |
| $I_{15}, I_{16}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 626.906 |
|  |  |  |

Table 20. Improbable differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 456.406 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 456.406 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 427.664 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 459.68 |
| $I_{9}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 455.106 |
| $I_{9}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 428.986 |
| $I_{9}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 456.43 |
| $I_{9}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 460.224 |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 477.28 |
| $I_{9}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 470.25 |
| $I_{9}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 476.564 |
| $I_{9}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 473.812 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 426.94 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 454.32 |
| $I_{9}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 455.378 |
| $I_{9}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 382.816 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 457.022 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 458.88 |
| $I_{9}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 457.022 |
| $I_{9}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 429.452 |
| $I_{9}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 456.974 |
| $I_{9}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 457.692 |
| $I_{9}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 453.836 |
| $I_{9}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 455.466 |
| $I_{9}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 452.946 |
| $I_{9}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 453.876 |
| $I_{10}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 456.658 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 383.872 |
| $I_{10}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 453.642 |
| $I_{10}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 456.658 |
| $I_{10}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 475.422 |
| $I_{10}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 455.266 |
| $I_{10}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 460.764 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 459.58 |
| $I_{10}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 458.946 |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 456.836 |
| $I_{10}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 456.836 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 457.08 |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 456.904 |
| $I_{10}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 457.08 |


| Inputs | Condition | Result |
| :--- | :---: | :---: |
| $I_{10}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{16}=0$ | 474.526 |
| $I_{10}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 457.626 |
| $I_{10}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 453.456 |
| $I_{10}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 427.922 |
| $I_{10}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 452.084 |
| $I_{10}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 473.66 |
| $I_{10}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 474.326 |
| $I_{10}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 452.492 |
| $I_{10}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 426.356 |
| $I_{10}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 452.268 |
| $I_{10}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 431.544 |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 476.908 |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 474.896 |
| $I_{11}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 474.328 |
| $I_{11}, I_{12}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 470.094 |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 430.764 |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 429.96 |
| $I_{11}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 429.842 |
| $I_{11}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 458.144 |
| $I_{11}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 458.144 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 459.376 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 381.808 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 380.128 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 453.502 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 428.66 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 429.124 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{14}=0$ | 457.298 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 429.524 |
| $I_{11}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 468.954 |
| $I_{11}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 432.018 |
| $I_{11}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 468.918 |
| $I_{11}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 468.61 |
| $I_{11}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 429.128 |
| $I_{11}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 428.412 |
| $I_{11}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 470.666 |
| $I_{11}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 461.568 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 455.984 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 461.136 |
| $I_{12}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 471.014 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 476.81 |
|  |  |  |

Table 21. Improbable differential attacks on 5 rounds.

| Inputs | Condition | Result |
| :--- | :--- | :---: |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 383.504 |
| $I_{12}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 383.68 |
| $I_{12}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 473.448 |
| $I_{12}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 460.536 |
| $I_{12}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{16}=0$ | 458.422 |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 477.23 |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 451.714 |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 452.648 |
| $I_{12}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{16}=0$ | 431.954 |
| $I_{12}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 474.572 |
| $I_{12}, I_{15}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 476.134 |
| $I_{12}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 453.04 |
| $I_{12}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 452.112 |
| $I_{12}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{16}=0$ | 432.952 |
| $I_{12}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 428.988 |
| $I_{12}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 427.398 |
| $I_{12}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{16}=0$ | 471.12 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 426.906 |
| $I_{13}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 457.886 |
| $I_{13}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 453.848 |
| $I_{13}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 428.98 |
| $I_{13}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 459.242 |
| $I_{13}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 472.576 |
| $I_{13}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 426.866 |
| $I_{13}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 427.7 |
| $I_{13}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 473.606 |
| $I_{13}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 451.614 |
| $I_{13}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 452.74 |
| $I_{13}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 430.478 |
| $I_{13}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 429.422 |
| $I_{14}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 473.934 |
| $I_{14}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 452.584 |
| $I_{14}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 452.326 |
| $I_{14}, I_{15}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 425.86 |
| $I_{14}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 472.896 |
| $I_{14}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 473.216 |
| $I_{14}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 453.174 |
| $I_{14}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 452.394 |
| $I_{14}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 425.856 |
| $I_{14}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | 432.282 |
| $I_{14}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 455.698 |
| $I_{15}, I_{16}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 472.974 |

Table 22. Differential attacks on 6 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 587.834 |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 590.538 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 637.662 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $1,744.584$ |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 584.23 |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 587.71 |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 625.994 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 588.014 |
| $I_{9}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $2,336.416$ |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 588.802 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $1,731.616$ |
| $I_{9}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 565.276 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 623.274 |
| $I_{10}, I_{11}$ | $\Delta S_{11} \oplus \Delta S_{13}=0$ | 679.866 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $1,722.962$ |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 625.052 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{11}=0$ | 561.728 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $2,364.232$ |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 625.882 |
| $I_{11}, I_{13}$ | $\Delta S_{11} \oplus \Delta S_{12}=0$ | 562.106 |
| $I_{11}, I_{14}$ | $\Delta S_{11} \oplus \Delta S_{15}=0$ | 638.076 |
| $I_{11}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 671.91 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $1,736.72$ |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 556.906 |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 559.664 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 633.65 |
| $I_{12}, I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 565.65 |
| $I_{13}, I_{15}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 566.012 |
|  |  |  |

Table 23. Improbable differential attacks on 6 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{10}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 413.818 |
| $I_{9}, I_{10}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 431.676 |
| $I_{9}, I_{10}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 392.032 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 432.738 |
| $I_{9}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 429.832 |
| $I_{9}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 389.782 |
| $I_{9}, I_{11}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 388.614 |
| $I_{9}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 458.15 |
| $I_{9}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 472.758 |
| $I_{9}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 431.422 |
| $I_{9}, I_{12}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 432.224 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 413.908 |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 413.084 |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 431.656 |
| $I_{9}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | 431.802 |
| $I_{9}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 387.35 |
| $I_{9}, I_{13}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 388.41 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 460.36 |
| $I_{9}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 414.122 |
| $I_{9}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 434.114 |
| $I_{9}, I_{14}$ | $\Delta S_{12} \oplus \Delta S_{15}=0$ | 391.38 |
| $I_{10}, I_{11}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 431.58 |
| $I_{10}, I_{11}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 391.014 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 435.314 |
| $I_{10}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 430.81 |
| $I_{10}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 432.612 |


| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{10}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 431.518 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | 391.92 |
| $I_{10}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 388.426 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 430.186 |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 386.47 |
| $I_{10}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 430.984 |
| $I_{10}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | 386.146 |
| $I_{11}, I_{12}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 473.87 |
| $I_{11}, I_{12}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 473.644 |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | 431.702 |
| $I_{11}, I_{12}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | 432.164 |
| $I_{11}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 432.768 |
| $I_{11}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 391.322 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | 434.188 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{13}=0$ | 430.098 |
| $I_{11}, I_{14}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 433.2 |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 432.092 |
| $I_{12}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | 432.376 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 473.888 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | 426.554 |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 431.738 |
| $I_{12}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | 474.674 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | 430.32 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | 391.266 |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | 387.298 |
| $I_{14}, I_{15}$ | $\Delta S_{14} \oplus \Delta S_{15}=0$ | 474.544 |

Table 24. Differential attacks on 7 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9}, I_{11}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $131,738.9$ |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $133,707.05$ |
| $I_{9}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | $131,796.3$ |
| $I_{9}, I_{14}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $131,893.75$ |
| $I_{10}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $132,552.95$ |
| $I_{10}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $132,127.9$ |
| $I_{11}, I_{12}$ | $\Delta S_{12} \oplus \Delta S_{14}=0$ | $133,870.55$ |
| $I_{11}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $132,262.4$ |
| $I_{11}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{11}=0$ | $131,637.65$ |
| $I_{11}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $131,621.1$ |
| $I_{12}, I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $131,560.6$ |
| $I_{12}, I_{13}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $131,683.85$ |
| $I_{12}, I_{13}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $131,538.65$ |
| $I_{12}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $133,746.8$ |
| $I_{13}, I_{14}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $132,071.85$ |
| $I_{13}, I_{15}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $131,978.15$ |

Table 25. Improbable differential attacks on 7 rounds.

| Inputs | Condition | Result |
| :---: | :---: | :---: |
| $I_{9} I_{11}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $127,667.15$ |
| $I_{9} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $127,620.15$ |
| $I_{9} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{14}=0$ | $130,417.3$ |
| $I_{9} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{15}=0$ | $127,600.45$ |
| $I_{9} I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $130,096.95$ |
| $I_{9} I_{14}$ | $\Delta S_{9} \oplus \Delta S_{13}=0$ | $127,740.7$ |
| $I_{10} I_{12}$ | $\Delta S_{10} \oplus \Delta S_{12}=0$ | $123,372.9$ |
| $I_{10} I_{13}$ | $\Delta S_{10} \oplus \Delta S_{15}=0$ | $130,042.35$ |
| $I_{10} I_{14}$ | $\Delta S_{12} \oplus \Delta S_{13}=0$ | $130,258.05$ |
| $I_{10} I_{14}$ | $\Delta S_{13} \oplus \Delta S_{15}=0$ | $130,438.75$ |
| $I_{11} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $129,541.15$ |
| $I_{11} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{12}=0$ | $130,483.15$ |
| $I_{11} I_{14}$ | $\Delta S_{10} \oplus \Delta S_{14}=0$ | $130,240.5$ |
| $I_{12} I_{13}$ | $\Delta S_{9} \oplus \Delta S_{10}=0$ | $130,304.7$ |
| $I_{12} I_{15}$ | $\Delta S_{13} \oplus \Delta S_{14}=0$ | $130,761.2$ |


[^0]:    ${ }^{1}$ Our tool is available on the Internet at this anonymous link: github.com/anon159753/Lilliput_analysis.

[^1]:    ${ }^{2}$ See appendix C.

[^2]:    ${ }^{3}$ See appendix C.
    ${ }^{4}$ Mean value obtained in simulation with 5000 samples of 4 messages.

[^3]:    ${ }^{5}$ See appendix B.
    ${ }^{6}$ See appendix C.

[^4]:    7 '?' means unknown bit and '|' means known bit

