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Abstract. In SAC 2013, Berger et al. defined Extended Generalized Feistel Net-
works (EGFN) and analyzed their security. Later, they proposed a cipher based on
this structure: LILLIPUT . Impossible differential attacks and integral attacks have
been mounted on LILLIPUT . We propose a tool which has found some classical,
impossible and improbable differential attacks by using the variance method. It
has highlighted unusual differential conditions which lead to efficient attacks by
the complexity. Moreover, it is the first time we apply the generic variance method
to a concrete cipher.
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1 Introduction

Lightweight cryptography has become an important field of research with the develop-
ment of IoT. As a solution, a lot of symmetric block ciphers have been built. Some of
them are SPN ciphers like SERPENT [5], PRESENT [9] or more recently SKINNY [2].
Others are Feistel ciphers like SIMON [1], CLEFIA [18] or PICCOLO [17]. In this
context, a new variant of generalized Feistel network has been designed: the Extended
Generalized Feistel Network [4] (EGFN). It is based on a matrix representation and
provides an efficient diffusion. In comparison to the generalized Feistel networks, the
distinctive feature in the EGFN is a linear layer after the confusion step. Moreover, an
efficient differential analysis method remains unknown [15] because of this linear layer.
A cipher based on the EGFN structure called LILLIPUT [3] has been designed. It is a
30 rounds block cipher. Several kinds of attacks on LILLIPUT have been provided as
shown in Table 1.

Differential attacks [7] consist in putting a specific difference in inputs and looking
how it propagates through the cipher into the outputs in order to highlight a bias. Differ-
ential cryptanalysis is an efficient statistical attack and some attacks are derived from it:
truncated differential ones [11], boomerang ones [22] or impossible differential ones [6]
for example. A differential analysis based on the variance method [13] has been made
on the EGFN [12]. In this article, we have applied this method to LILLIPUT .

Our contribution. In this paper, we provide some differential cryptanalysis attacks
on LILLIPUT . Indeed, we provide some differential distinguishers. These attacks are



Table 1. Best Attacks on LILLIPUT .

Variety Distinguisher Key recovery Source
Impossible differential 9 rounds N/A [16]

Division property 13 rounds 17 rounds [15]
Differential 8 rounds 12 rounds Section 4

NCPA (Non-Adaptive Chosen Plaintext Attack) ones. These are based on the variance
method [13] that was already used on the EGFN and on some generalized Feistel net-
work [14, 21]. For the first time, we apply this generic method to a concrete cipher.
These differential attacks do not rely on the key schedule, the structure of LILLIPUT is
the only way used. One can see in [15] that there are 15 active sboxes for LILLIPUT
reduced to 8 rounds. The involved sboxes work on 4-bits words. Since the differen-
tial probability of an active sbox is at most 2−3, then the differential probability is at
most 2−45. In this paper, we will see an implemented differential attack with complex-
ity of 2−25. This is why this method is interesting. Moreover, we have made a tool in
Python to process an automated research of differential attacks. There are generic tools
devoted to different kinds of attacks: meet-in-the-middle and impossible differential at-
tacks in [10], or only for impossible differential attacks in [16], in [23] or in [24] for
example. Contrary to others generic tools, our program is designed to apply the vari-
ance method to a concrete cipher. It can be used on some block ciphers and allows to
get differential attacks, impossible differential attacks and improbable differential at-
tacks. Indeed, we have found empirically some improbable differential attacks [20, 19]
and we provide explanations of how it works. Improbable differential cryptanalysis is
a statistical cryptanalytic technique for which some attacks have been invalidated [8]
when built from an impossible distinguisher. In the theory, an improbable differential
attack is like a classical differential attack but the expected differences occur less for
a permutation generated by the studied cipher than for a random permutation. In this
paper, the attacks we describe work in practice and we provide simulations of them.

This paper is organized as follow: In Section 2, we will describe LILLIPUT . Then
in Section 3 we will detail the general structure of our attacks and describe the tool that
allows to find attacks. Section 4 is devoted to the presentation of distinguishing attacks
up to 8 rounds. Conclusion is given in Section 5.

2 LILLIPUT

The input is denoted by 16 nibbles of 4-bits: I = [I16, I15, · · · , I1]. Similarly, the output is
denoted by: S = [S16,S15, · · · ,S1]. We describe one round of LILLIPUT in the figure 1.

We can see there are three steps in a round:

– NonLinearLayer step with the sbox. There is only one 4-bits sbox in LILLIPUT
and it is descibred in the table 2.

– LinearLayer step: this is a step with some xor operations between the left side
branches and the right side.
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Fig. 1. One round of LILLIPUT .

– PermutationLayer: there is a permutation step and we have described the modifica-
tion of the different branches in the table 3.

One can notice that there are two sides and the left side branches go to the right side
through the permutation step and vice versa.

Table 2. Sbox of LILLIPUT .

Input branch 0 1 2 3 4 5 6 7 8 9 A B C D E F
Ouput branch 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

LILLIPUT is an instance of Extended Generalized Feistel Network, a generic family
of Feistel schemes. Because of the LinearLayer, there are no efficient known methods
to make a differential study of this scheme.
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Table 3. Permutation of LILLIPUT .

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Output 14 10 15 9 11 12 13 16 5 6 4 2 3 7 1 8

As previously said, differential attacks on EGFN have already been proposed. These
attacks are based on the variance method [13] that we will use on LILLIPUT as well.
However, we can not use the same differential trails or use the same kind of relations
between inputs and outputs because in LILLIPUT the sbox is a bijection. In order to find
a solution, we have made a tool in Python which has tested many kinds of differential
relations and it has highlighted a specific and unusual sort of conditions which are not
intuitive.

3 Structure of the attacks

3.1 Variance method

Our attacks are based on variance method [13]. With this method, we can make a further
analysis than a classical differential attack. The aim of the attack is to distinguish a
permutation obtained with LILLIPUT from a random permutation. Just like the authors
of the variance method, we will generate a lot of pairs of messages and count how many
of them satisfy specific differential relations between inputs and outputs. The number
of such pairs is denoted by Nperm for a random permutation and by NL for a LILLIPUT
permutation.

Then, the attack is a success if Nperm is significantly different from NL. If it is
smaller, we obtain an impossible or an improbable differential attack and if it is greater,
we have a classical differential one. But if NL and Nperm have the same order, then
the attack can be successful thanks to the expectation and standard deviation functions
if |E(NL)−E(Nperm)|> max(σ(Nperm),σ(NL)), where E stands for the expectation
function and σ for the standard deviation function. In that case, the attacks work thanks
to the Chebychev formula, which states that for any random variable X , and any α >
0, we have P(|X−E(X)| ≥ ασ(x)) ≤ 1

α2 . Using this formula, it is then possible to
construct a prediction interval for NL for example, in which future computations will
fall, with a good probability. It is important to notice that for our attacks, it is enough to
compute E(Nperm), E(NL) and σ(Nperm). For more details about the variance method
see [13], Chapter 5 for example.

Moreover, for all attacks we will see, the condition on the outputs is an equality on
4 bits. So, it is easy to check that if m is the number of messages for a given attack, then
for a random permutation: E(Nperm)' m·(m−1)

2 × 1
24 and σ(Nperm)'

√
E(Nperm).

3.2 Conditions on the inputs and the outputs

There are 16 branches in LILLIPUT . Our attacks are differential ones, so we look for
differential trails. Due to the structure of LILLIPUT , we look for attacks by putting con-
ditions to the left side [I16, · · · , I9] of the inputs and looking some conditions on the left
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side [S16, · · · ,S9] of the outputs. Indeed, one can check that, if we found an interesting
distinguisher which uses the right side of the output, it leads to a distinguisher which
uses the left side of the output and reaches one more round. It is because in a round the
right side goes to the left side with probability 1 without changes.

We have found by hand distinguishers up to 4 rounds and for more rounds with the
tool. Most attacks are based on a common structure. Each pair (m1,m2) of messages
that we study has to verify that: m1 and m2 are equal on all branches but some on the
left side. Moreover, on the branches involved, the non-zero differences have to be equal.
For example, this condition on branch number 9 will be written I9(m1)⊕ I9(m2) = ∆ or
if more simply ∆ I9 = ∆ .

On the outputs, if c1 = LILLIPUT(m1) and c2 = LILLIPUT(m2) we will look at
the xor between some branches of c = c1⊕ c2. For example, if we are interested in
the branches S12 and S10, we will compute S12⊕ S10 on c and it is denoted by ∆S12⊕
∆S10. One can notice that if one is interested in only one branch, it leads to a classical
differential attack.

3.3 Complexity

In our differential attacks we use structures of messages. Let (m1,m2) be a pair of
messages. As we have said earlier, there are 2 properties the pairs have to follow. First,
m1 and m2 are equal on all branches but some on the left side. Then, for the non zero
branches of m1⊕m2, the difference has to be the same. Thus, a structure is based on a
message m that is randomly chosen. As we want the same difference on some branches,
it leads to 15 more messages. Indeed, the non zero difference can be ∆ ∈ [1 · · ·15]
because branches have 4 bits. So, a structure has 16 messages, and it leads to 16×
15/2 = 120 pairs.

For example, if we are interested in the branches I10 and I13, a pair will be (m1,m2)
such that: m1⊕m2 = [0,0,0,∆ ,0,0,∆ ,0,0,0,0,0,0,0,0,0]. There are exactly 24×14 of
such structures.

The main drawback of our attacks is the data complexity. Indeed for a given attack
which requires 27 messages, the number of pairs is 27×(27−1)

2 = 8,128. With our kinds
of attacks, because we need the same ∆ difference on several branches, we need 68
structures of 120 pairs (68×120 = 8,160 pairs) and it corresponds to 68×16 = 1,088
messages instead of 27. But, thanks to these new conditions, one can see special rela-
tions between internal variables which can be used to build a differential attack.

3.4 Automated research of attacks

To extend this kind of attacks, we have implemented a tool1 in Python to process an
exhaustive research of such conditions. We describe it in the algorithm 1.

In order to optimise this algorithm, we test on a small number of samples and if we
found an interesting result, then we test again in a more meaningful number of samples.
It appears that the most efficient attacks are based on having 2 branches involved on the

1 Our tool is available on the Internet at this anonymous link:
github.com/anon159753/Lilliput_analysis.
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Algorithm 1 Automated research of attacks
for all inputCondition=Combination of branches in the left side of inputs: do

Generate a sample of pairs which verify the condition on the input: Equal on all branches
but the inputCondition.

for all outputCondition=Combination of branches in the left side of outputs: do
Count how many pairs verify the outputCondition: the xor between some branches of

the difference of the outputs equals to 0.
if this result is significantly different than the one expected for a random permutation.

then
We have found a distinguisher.

end if
end for

end for

inputs and 2 branches involved on the ouput. We detail the best attacks we have found
in Section 4.

4 Distinguishing attacks

In this Section, we will describe the different distinguishers we have found by hand
or thanks to the tool. We have made simulations of these attacks. Input is denoted
by: I16, · · · , I1. After the first NonLinearLayer and LinearLayer steps and before the
permutation, the output is: X1

8 ,X
1
7 ,X

1
6 ,X

1
5 ,X

1
4 ,X

1
3 ,X

1
2 ,X

1
1 , I8, I7, I6, I5, I4, I3, I2, I1. Here

X1
1 , . . . ,X

1
8 denote the internal variable that appear at round 1. More generally, X i

j,
1≤ j≤ 16 represent the internal variable that are introduced at round i. In the sequel, to
simplify the notation, we always denote by f the round functions. But the even though
we always use the same bijective sbox, since the entry is xored with a sub-key, for the
same round we note that f (X i

j) = f (X i
k) does not mean that X i

j = X i
k.

4.1 First rounds

In the first rounds, we can mount differential attacks with probability 1 on LILLIPUT
with only 1 or 2 messages. So let (m1,m2) be a couple of messages. We will note
c1 = LILLIPUT(m1), c2 = LILLIPUT(m2) and c = c1⊕ c2.

Attack on one round. After one round, the output is given by:
[I8, I3, I1, I7, I6, I5, I2, I4,X1

8 ,X
1
6 ,X

1
2 ,X

1
1 ,X

1
3 ,X

1
5 ,X

1
4 ,X

1
7 ] with

X1
1 = I9⊕ f (I8),

X1
2 = I10⊕ I8⊕ f (I7),

X1
3 = I11⊕ I8⊕ f (I6),

X1
4 = I12⊕ I8⊕ f (I5),

X1
5 = I13⊕ I8⊕ f (I4),

X1
6 = I14⊕ I8⊕ f (I3),
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X1
7 = I15⊕ I8⊕ f (I2),

X1
8 = I16⊕ I8⊕ I2⊕ I3⊕ I4⊕ I5⊕ I6⊕ I7⊕ f (I1).

So there is an attack with one message: one has to encrypt one message and check if
S16 is equal to I8. This is done with probability 1 for LILLIPUT and with probability 1

24

for a random permutation because it is an equality on 4 bits.

Attack on two rounds. After two rounds, the output is given by:
[X1

8 ,X
1
5 ,X

1
7 ,X

1
6 ,X

1
2 ,X

1
1 ,X

1
4 ,X

1
3 ,X

2
8 ,X

2
6 ,X

2
2 ,X

2
1 ,X

2
3 ,X

2
5 ,X

2
4 ,X

2
7 ] with

X2
1 = I4⊕ f (X1

8 ),

X2
2 = I2⊕X1

8 ⊕ f (X1
6 ),

X2
3 = I5⊕X1

8 ⊕ f (X1
2 ),

X2
4 = I6⊕X1

8 ⊕ f (X1
1 ),

X2
5 = I7⊕X1

8 ⊕ f (X1
3 ),

X2
6 = I1⊕X1

8 ⊕ f (X1
5 ),

X2
7 = I3⊕X1

8 ⊕ f (X1
4 ),

X2
8 = I8⊕X1

1 ⊕X1
2 ⊕X1

3 ⊕X1
4 ⊕X1

5 ⊕X1
6 ⊕X1

8 ⊕ f (X1
7 ).

So there is an NCPA attack with 2 messages. As input condition, we have I8(m1) =
I8(m2). Then, one has to check if S11(c)= I9(m1)⊕I9(m2). This is done with probability
1 for LILLIPUT and with probability 1

24 for a random permutation because it is an
equality on 4 bits.

Property 1 After r rounds (r ≥ 3), the output is:
[X r−1

8 ,X r−1
5 ,X r−1

7 ,X r−1
6 ,X r−1

2 ,X r−1
1 ,X r−1

4 ,X r−1
3 ,X r

8 ,X
r
6 ,X

r
2 ,X

r
1 ,X

r
3 ,X

r
5 ,X

r
4 ,X

r
7 ]. We have

the following formulas:

X r
1 = X r−2

3 ⊕ f (X r−1
8 ),

X r
2 = X r−2

4 ⊕X r−1
8 ⊕ f (X r−1

6 ),

X r
3 = X r−2

1 ⊕X r−1
8 ⊕ f (X r−1

2 ),

X r
4 = X r−2

2 ⊕X r−1
8 ⊕ f (X r−1

1 ),

X r
5 = X r−2

6 ⊕X r−1
8 ⊕ f (X r−1

3 ),

X r
6 = X r−2

7 ⊕X r−1
8 ⊕ f (X r−1

5 ),

X r
7 = X r−2

5 ⊕X r−1
8 ⊕ f (X r−1

4 ),

X r
8 = X r−2

8 ⊕X r−1
8 ⊕X r−1

6 ⊕X r−1
5 ⊕X r−1

4 ⊕X r−1
3 ⊕X r−1

2 ⊕X r−1
1 ⊕ f (X r−1

7 ).

Attack on three rounds. After three rounds, there is an NCPA attack with 2 messages.
Thanks to Property 1, one can see that S11 = X2

1 = I4⊕ f (X1
8 ). Thus, we put as input

conditions: Ii(m1) = Ii(m2), ∀i ∈ {1, · · · ,8,16}. Then, one has to check if S11(c) = 0.
This is done with probability 1 for LILLIPUT and with probability 1

24 for a random
permutation because it is an equality on 4 bits.
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Attack on four rounds. After four rounds, there is an NCPA attack that needs only 2
messages. As input condition we have Ii(m1) 6= Ii(m2) only for i = 15. Then, one has
to check if S13(c)⊕ S9(c) = I15(m1)⊕ I15(m2). We now show that this is done with
probability 1 for LILLIPUT and with probability 1

24 for a random permutation because
we have an equality on 4 bits.
Here we have: S13 = X3

6 and S9 = X3
3 . According to Property 1, we obtain:

S13⊕S9 = X3
3 ⊕X3

6

= X1
1 ⊕X1

7 ⊕ f (X2
5 )⊕ f (X2

2 )

= I9⊕ f (I8)⊕ I15⊕ I8⊕ f (I2)⊕ f (I7⊕X1
8 ⊕ f (X1

3 ))⊕ f (I2⊕X1
8 ⊕ f (X1

6 )).

Using the input conditions, we obtain:

∆S9⊕∆S13 = ∆ I15⊕∆ f (I7⊕X1
8 ⊕ f (X1

3 ))⊕∆ f (I2⊕X1
8 ⊕ f (X1

6 )).

But, we have:

X1
3 = I11⊕ I8⊕ f (I6)and∆X1

3 = 0,
X1

6 = I14⊕ I8⊕ f (I3)and∆X1
6 = 0,

X1
8 = I16⊕ I2⊕ I3⊕ I4⊕ I5⊕ I6⊕ I7⊕ I8⊕ f (I1)andX1

8 = 0.

since the input conditions are Ii(m1)⊕ Ii(m2) = 0, ∀i ∈ {1, · · · ,14,16}. Finally we
obtain, ∆S13⊕∆S9 = ∆ I15 with probability 1.

Attack on five rounds. After five rounds, there is an NCPA attack that needs only 2
messages. As input condition we have Ii(m1) 6= Ii(m2) only for i ∈ {9,10}. Moreover,
we set I9(m1)⊕ I9(m2) = I10(m1)⊕ I10(m2). Then, one has to check if S9(i)⊕S9( j)⊕
S10(i)⊕ S10( j) = 0. This is satisfied with probability 1

24 for a random permutation.
We now explain why this is true with probability 1 for a permutation obtained with
LILLIPUT .
According to Property 1:
S9 = X4

3 = X2
1 ⊕X3

8 ⊕ f (X3
2 ) and S10 = X4

4 = X2
2 ⊕X3

8 ⊕ f (X3
1 ).

X2
1 = I14⊕ f (X1

8 ),

X3
2 = X1

4 ⊕X2
8 ⊕ f (X2

6 ),

X2
2 = I2⊕X1

8 ⊕ f (X1
6 ),

X3
1 = X1

3 ⊕ f (X2
8 ).

Using the input conditions, we obtain ∆X1
8 = 0,∆X2

1 = 0,∆X1
6 and ∆X2

2 = 0. This gives
∆S9⊕∆10 = ∆ f (X3

2 )⊕∆ f (X3
1 ). Moreover, ∆X1

3 = 0 and ∆X2
8 = ∆X1

1 ⊕∆X1
2 = I9⊕

∆ I10 = 0. This implies that ∆ f (X3
1 ) = 0. It is easy to check that we also have ∆ f (X3

2 ) =
0. This shows that we have ∆S9⊕∆S10 = 0 with probability 1.

We have found 26 of such attacks.2

2 See appendix C.
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4.2 Further attacks

As we have said in Section 3, our attacks are based on a specific structure: for each pair
we have equalities on all but some branches and this non zero difference is the same on
the different branches. So, we will detail for each attack, the input branches involved.
Similarly, we have said that the output condition is the xor between some branches of
c = c1⊕ c2. So, we will precise which output branches are involved. In order to obtain
E(NL), we will use the mean value obtained from some samples. Thus, we will also
detail the number of samples, the number of pairs for each sample and the results we
have obtained.

6 rounds. The tool has found a lot of attacks on 6 rounds.3 We present here the most
efficient of these. With only one structure (so 120 pairs of messages, this corresponds to
24 messages since if m is the number of messages, then we have m(m−1)

2 pairs of distinct
messages) we will see that we can distinguish LILLIPUT from a random permutation.
The output condition is ∆S9⊕∆S15 = 0. It is an equality on 4 bits, so for a random
permutation, the mean value is expected to be E(Nperm) =

m(m−1)
2·24 = 7.5. The results

we have obtained are shown in Table 4. We notice that the number of pairs of message
satisfying the conditions is 32. This provides a distinguishing attack.

Moreover, this attack is still valid with only 4 messages: the last version of our tool
works with structures of messages so the minimal number is 24 but, one can reduce
this attack to 4 messages. Indeed, the mean value of pairs which satisfy the output
condition for a random permutation is then expected to be E(Nperm) = 0.375 and we
have obtained by simulation:4 E(NL) = 1.7128. We now explain how the structure of
LILLIPUT leads to this result.

Table 4. Attack on 6 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average
I10, I14 S9, S15 100 120 32

At the end of round 6 (see Property 1) we have: S15 = X5
5 and S9 = X5

3 and

X5
5 = X3

6 ⊕X4
8 ⊕ f (X4

3 ),

X3
6 = X1

7 ⊕X2
8 ⊕ f (X2

5 ),

X1
7 = I15⊕ I8⊕ f (I2),

X2
5 = I7⊕X1

8 ⊕ f (X1
3 ).

X5
3 = X3

1 ⊕X4
8 ⊕ f (X4

2 ),

X3
1 = X1

3 ⊕ f (X2
8 ),

X1
3 = I11⊕ I8⊕ f (I6),

So we have: ∆X1
7 = 0, ∆X1

3 = 0, ∆X2
5 = 0. Or, ∆X2

8 = ∆ I10⊕∆ I14 = 0. So, ∆X3
1 = 0

and ∆X3
6 = 0. Thus ∆S9⊕∆S15 = ∆ f (X4

2 )⊕∆ f (X4
3 ).

3 See appendix C.
4 Mean value obtained in simulation with 5000 samples of 4 messages.
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X4
2 = X2

4 ⊕X3
8 ⊕ f (X3

6 ),

X2
4 = I6⊕X1

8 ⊕ f (X1
1 ),

X1
1 = I9⊕ f (I8),

X4
3 = X2

1 ⊕X3
8 ⊕ f (X3

2 ),

X2
1 = I4⊕ f (X1

8 ),

X3
2 = X1

4 ⊕X2
8 ⊕ f (X2

6 ).

So ∆X1
1 = 0, ∆X2

4 = 0, ∆X3
2 = 0, ∆X2

1 = 0. So ∆ f (X3
2 ) = 0, ∆X4

3 = ∆X4
2 = ∆X3

8 .
Or, we have:

∆X3
8 = ∆X2

2 ⊕∆X2
3

= ∆ f (X1
6 )⊕∆ f (X1

2 )

= f (X1
6 )⊕ f (X1

6 ⊕∆ I14)⊕ f (X1
2 )⊕ f (X1

2 ⊕∆ I10).

So we have: ∆S9⊕∆S15 = f (X4
2 )⊕ f (X4

2 ⊕∆X3
8 )⊕ f (X4

3 )⊕ f (X4
3 ⊕∆X3

8 ).
The bias is obtained if f (X4

2 ) = f (X4
3 ) note that the round key is not the same for

these two values so it does not lead to X4
2 = X4

3 . We can also follow the differential
trail if X3

8 = 0. This happens at random or if f (X1
6 ) = f (X1

2 ) and, similarly, it does not
mean X1

6 =X1
2 . Thus we are able to distinguish a random permutation from a LILLIPUT

permutation. We can also turn this attack into a related key attack with probability 1.5

7 rounds. Just like the attacks for 6 rounds, our program has found some attacks6 and
we will describe the most efficient of them. The tool found an improbable differential
attack on LILLIPUT reduced to 7 rounds. For this attack, we use samples of 8,160 pairs,
so 68 structures of 120 pairs of messages each. This corresponds to about 27 messages,
but with this kind of attack, about 210 messages are needed (see Subsection 3.3). The
output condition is an equality on 4 bits: ∆S10⊕∆S12 = 0. Thus, for a random per-
mutation, the number of pairs verifying this condition is expected to be 510 in average,
since we have E(Nperm)' m(m−1)

2.·24 and we obtain that σ(Nperm)'
√
E(Nperm) is about

22.58. If we look at the values we have obtained and that are given in Table 5, we see
that |E(NL)−E(Nperm)| > σ(Nperm). This shows that, as explained in Section 3.1,
the attack is successful. Moreover, since E(NL) < E(Nperm), we have an improbable
attack.

Table 5. Attack simulation on 7 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average
I10, I12 S10, S12 500 8,160 477

We describe now the details of the equations and explain why it leads to an improb-
able differential attack. At the end of round 6 (see Property 1) we have: S10 = X6

4 and
S12 = X6

2 .

5 See appendix B.
6 See appendix C.
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X6
4 = X4

2 ⊕X5
8 ⊕ f (X5

1 ),

X4
2 = X2

4 ⊕X3
8 ⊕ f (X3

6 ),

X2
4 = I6⊕X1

8 ⊕ f (X1
1 ),

X1
1 = I9⊕ f (I8),

X3
6 = X1

7 ⊕X2
8 ⊕ f (X2

5 ),

X1
7 = I15⊕ I8⊕ f (I2),

X6
2 = X4

4 ⊕X5
8 ⊕ f (X5

6 ),

X4
4 = X2

2 ⊕X3
8 ⊕ f (X3

1 ),

X2
2 = I2⊕X1

8 ⊕ f (X1
6 ),

X1
6 = I14⊕ I8⊕ f (I3),

X3
1 = X1

3 ⊕ f (X2
8 ),

X1
3 = I11⊕ I8⊕ f (I6).

So, ∆X1
3 = 0, ∆X3

1 = 0, ∆X1
6 = 0, ∆X2

2 = 0. Similarly, ∆X1
7 = 0, ∆X3

6 = 0, ∆X1
1 = 0

and ∆X2
4 = 0. So, ∆X6

4 ⊕∆X6
2 = ∆ f (X5

6 )⊕∆ f (X5
1 ). Moreover we have: ∆X5

6 = ∆X3
3 ⊕

∆ f (X4
8 ) and ∆X5

6 = ∆ 4
8 ⊕∆ f (X3

3 ) It is easy to check that ∆X3
3 = 0 and ∆X4

5 = ∆X2
6 ⊕

∆X3
8 ⊕∆ f (X3

3 ) = ∆X3
8 . We also have ∆X4

8 = ∆X3
8 ⊕∆X3

5 . This gives:

∆S10⊕∆S12 = f (X5
1 )⊕ f

(
X5

1 ⊕ f (X4
8 )⊕ f (X4

8 ⊕∆X4
8 )
)

⊕ f (X5
6 )⊕ f

(
X5

6 ⊕∆X4
8 ⊕ f (X4

5 )⊕ f (X4
5 ⊕∆X3

8 )
)
.

Suppose that ∆X3
8 = ∆X3

5 . This implies that ∆X4
8 = 0 and we have: ∆S10⊕∆S12 =

f (X5
6 )⊕ f

(
X5

6 ⊕ f (X4
5 )⊕ f (X4

5 ⊕∆X3
8 )
)
. Since f is bijective, we obtain:

∆S10⊕∆S12 = 0⇔ f (X4
5 )⊕ f (X4

5 ⊕∆X3
8 ) = 0⇔ ∆X3

8 = 0.

This also gives ∆X3
5 = 0. But ∆X3

5 = 0⇔ ∆X2
3 = 0⇔ ∆ I10 = 0 which is not possi-

ble. We now compute the probabilities. We have:

P [∆S10⊕∆S12 = 0] = P
[
∆S10⊕∆S12 = 0/∆X3

5 6= ∆X3
8
]
P
[
∆X3

5 6= ∆X3
8
]

+ P
[
∆S10⊕∆S12 = 0/∆X3

5 = ∆X3
8
]
P
[
∆X3

5 = ∆X3
8
]
.

The previous computations show that: P
[
∆S10⊕∆S12 = 0/∆X3

5 = ∆X3
8
]
= 0. Thus we

obtain, if m is the number of messages.

P [∆S10⊕∆S10 = 0] = P
[
∆S10⊕∆S10 = 0/∆X3

5 6= ∆X3
8
]
P
[
∆X3

5 6= ∆X3
8
]

=
m(m−1)

2 ·24

(
1− 1

24

)
.

With m = 27, this is the value given in Table 5. This shows that we have here an im-
probable attack.

8 rounds. The tool have found a differential attack on LILLIPUT reduced to 8 rounds.
For this attack, we use samples of 301,977,600 pairs, so 2,516,480 structures. This
corresponds to about 1.5× 214 messages, but with this kind of attack, about 225 mes-
sages are needed (see Subsection 3.3). The output condition is an equality on 4 bits:
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∆S12⊕∆S14 = 0. For a random permutation, the number of pairs verifying this con-
dition is expected to be 18,873,600 in average, i.e. E(Nperm) ' m(m−1)

2.·24 , and the stan-
dard deviation is about the square root of the mean value which gives: 4344. Since
the mean value obtained for a LILLIPUT permutation is 18,882,219.56, we can see
that |E(NL)−E(Nperm)| > σ(Nperm). This shows that, as explained in Section 3.1,
the attack is successful. The simulations described in Table 6 have taken 65.6 hours of
computation on a virtual machine with a E8500 as processor and 4Go of RAM.

Table 6. Attack simulation on 8 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average
I9, I10 S12, S14 50 301,977,600 18,882,219.56

Here are the details of the equations: S12 = X7
2 and S14 = X7

7 .

X7
2 = X5

4 ⊕X6
8 ⊕ f (X6

6 ),

X5
4 = X3

2 ⊕X4
8 ⊕ f (X4

1 ),

X3
2 = X1

4 ⊕X2
8 ⊕ f (X2

6 ),

X1
4 = I12⊕ I8⊕ f (I5),

∆X1
4 = 0,

X7
7 = X5

5 ⊕X6
8 ⊕ f (X6

4 ),

X5
5 = X3

6 ⊕X4
8 ⊕ f (X4

3 ),

X3
6 = X1

7 ⊕X2
8 ⊕ f (X2

5 ),

X1
4 = I12⊕ I8⊕ f (I5),

∆X1
7 = 0.

Or ∆ f (X2
5 ) = 0 and ∆ f (X2

6 ) = 0. So ∆S12⊕∆S14 = ∆ f (X6
6 )⊕∆ f (X6

4 )⊕∆ f (X4
1 )⊕

∆ f (X4
3 ). We can observe that the condition ∆S12 ⊕ ∆S14 = 0 can be satisfied if for

example: f (X4
1 ) = f (X4

3 ), f (X4
1 ⊕∆X4

1 ) = f (X4
3 ⊕∆X4

3 ), f (X6
4 ) = f (X6

6 ), and f (X6
4 ⊕

∆X6
4 ) = f (X6

6 ⊕∆X6
6 ). But other equalities are also possible.

5 Conclusion

We have seen some differential attacks on LILLIPUT . These attacks were found by a
tool we have made and are based on the variance method. This is the first time this
method is applied to a concrete cipher. The tool has highlighted unusual differential
conditions for which LILLIPUT is sensitive. We can see our distinguishers do not reach
more rounds than the previous analysis. But, contrary to these attacks, we have found
our results empirically and since the last attack require 225 messages, one can see that
it is far from the maximum and from the complexity of 245 based on the number of
active sboxes. Thus, we can look for distinguishers which reach more rounds with a
devoted equipment. We have described how the key recovery works with our attacks in
the appendix A. Finally, we have also seen improbable differential attacks which work
well in simulations. This scheme can be an efficient support to study this kind of attacks
thanks to the complexity of relations between internal variables in LILLIPUT due to the
LinearLayer step.
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A Key recovery

In this appendix, we describe how the key recovery works in order to show what we
can do. We process the key recovery on LILLIPUT reduced to 7 and 8 rounds. We
have used the distinguishing attack on 6 rounds to attack 7 then 8 rounds in order to do
simulations because the distinguishing attack on 8 rounds require 225 messages to be
processed. Nevertheless, it will work similarly for this distinguishing attack.

A.1 Key schedule description

LILLIPUT uses a 80-bit master key. The key schedule is managed by an internal state
denoted by 20 nibbles (4-bit words): Y19, . . . ,Y0. It is initialized with the master key and
is processed by the algorithm 2 in order to build the round keys RK0, . . . ,RK29. The
ExtractRoundKey function is described in the algorithm 3. Note that the Sbox S used
in the ExtractRoundKey function is the same as the one in LILLIPUT . The functions
L0, L1, L2 and L3 are generalized Feistel schemes with 5 branches and a bit size of 4.
They are described in Fig 2, Fig 3, Fig 4 and Fig 5 respectively.

Algorithm 2 LILLIPUT key schedule
Y19, . . . ,Y0 = MasterKey
RK0 = ExtractRoundKey(Y19, . . . ,Y0)
for i in 1, . . . ,29 do

(Y4, . . . ,Y0) = L0(Y4, . . . ,Y0)
(Y9, . . . ,Y5) = L1(Y9, . . . ,Y5)
(Y14, . . . ,Y10) = L2(Y14, . . . ,Y10)
(Y19, . . . ,Y15) = L3(Y19, . . . ,Y15)
RKi = ExtractRoundKey(Y19, . . . ,Y0)

end for
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Algorithm 3 ExtractRoundKey function for RKi

Let Z, a 32-bit word such that: Z = Y18Y16Y13Y10Y9Y6Y3Y1
The bits of Z are denoted by: Z31, . . . ,Z0
RK0 = ExtractRoundKey(Y19, . . . ,Y0)
for j in 0, . . . ,7 do

RKi
j = S(Z j||Z8+ j||Z16+ j||Z24+ j)

end for
RKi = RKi⊕ (i||0)

Y0Y1Y2Y3Y4

>>> 1

>> 3

Fig. 2. L0

Y5Y6Y7Y8Y9

<<< 1

<< 3

Fig. 3. L1

Y10Y11Y12Y13Y14

>>> 1

>> 3

Fig. 4. L2

A.2 Key recovery analysis on 7 rounds

This attack is based on some distinguishing attacks on 6 rounds. As usual, a plaintext
structure contains 16 messages (thus 120 different pairs) which are different only on 2
branches. Moreover, the difference has to be the same on these branches.

On LILLIPUT reduced to 6 rounds, there are some differential attacks based on our
attacks. The involved input branches are I9 and I10. On the outputs, the conditions can
be: ∆S9⊕∆S10 = 0 or ∆S9⊕∆S14 = 0 or ∆S10⊕∆S14 = 0. Based on one of these
attacks, one can mount a key recovery attack on 7 rounds with the algorithm 4.
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Y15Y16Y17Y18Y19

<< 3

<<< 1

Fig. 5. L3

Algorithm 4 Key recovery on 7 rounds.
Encrypt some samples of 68 structures on 7 rounds.
for all guess of RK6

0 , RK6
1 do

Decrypt one round with the guess.
r =Count how many pairs verify ∆S9⊕∆S10 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for

This algorithm allows to get a list of possible RK6
0 , RK6

1 . There are 28 possibilities
for the guess. In simulations, one can find directly the correct guess (list of one element)
with 5 or 10 samples. But with less samples, one get a list of several possibilities.
With the knowledge of RK6

0 , RK6
1 , one get the following bits of the corresponding Z:

Z0Z1Z8Z9Z16Z17Z24Z25. Even if there are several RK6
0 , RK6

1 , the cost of the brute-force
attack is reduced from 280 to about 274. Of course, one can optimize this algorithm.

Indeed, one can use several attacks in order to get a better attack. It is described in
the algorithm 5. In simulations, we have always get the correct guess RK6

0 , RK6
1 and

RK6
5 . As we do not test all the possibilities for the second and third attack but only the

ones which work from the previous, the number of possibilities is lower than 3×28.
With the algorithm 5, one has the knowledge of RK6

0 , RK6
1 and RK6

5 . It corresponds
to the following bits of Z: Z0Z1Z5Z8Z9Z13Z16Z17Z21Z24Z25Z29. Then, the cost of the
brute-force attack is reduced from 280 to 268.

We can also improve the algorithm 5 by using the following improbable differential
attacks: ∆S9⊕∆S15 = 0, ∆S10⊕∆S15 = 0 and ∆S14⊕∆S15 = 0. There are 24 possibil-
ities for RK6

6 , the corresponding round key for S15, and we test only with the possible
RK6

0 , RK6
1 and RK6

5 . Thus, the cost of the brute-force attack is reduced from 280 to 264.
Starting from these attack, one can get additional details by using distinguishing

attacks on LILLIPUT reduced to 5 rounds. Indeed, based on the same input conditions,
there are the following attacks on 5 rounds: ∆S13⊕∆S15 = 0, ∆S13⊕∆S14 = 0 and
∆S14⊕∆S15 = 0. These attacks require the previous guess RK6

0 , RK6
1 and RK6

6 . One
can use the same method from the algorithm 5 to get RK5

4 , RK5
5 and RK5

6 . Thus, the
corresponding bits of Z for the round 5 are: Z4Z5Z6Z12Z13Z14Z20Z21Z22Z28Z29Z30. In
the key schedule, these bits correspond to Y3, Y9, Y13 and Y18. Then, for the round 6,
they shift to: Y4, Y5, Y14 and Y19. For this step, the number of possibilities is lower than
3×28.
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Algorithm 5 Key recovery on 7 rounds.
Encrypt some samples of 68 structures on 7 rounds.
for all guess of RK6

0 , RK6
1 do

Decrypt one round with the guess.
r =Count how many pairs verify ∆S9⊕∆S10 = 0.
if r > 550 then

The guess is possible, one has to stock it in List0.
end if

end for
for all possible RK6

0 in List0 do
for all guess of RK6

5 do
Decrypt one round of the ciphertexts after 7 rounds with the guess RK6

0 and RK6
5 .

r =Count how many pairs verify ∆S9⊕∆S14 = 0.
if r > 550 then

The guess is possible, one has to stock it in List1.
end if

end for
end for
for all possible RK6

1 in List0 do
for all possible RK6

5 in List1 do
Decrypt one round of the ciphertexts after 7 rounds with the guess RK6

1 and RK6
5 .

r =Count how many pairs verify ∆S10⊕∆S14 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for
end for
Deduce the possible correct guess RK6

0 , RK6
1 , RK6

5 .

There is a efficient attack with the same input condition on LILLIPUT reduced
to 5 rounds and we can exploit it in our key recovery attack. The output condition is
∆S9⊕∆S10 = 0. This condition is always verified, so we can test it on smaller samples
in order to decrease the global complexity. One can look which round keys are involved
from the end of round 7: RK5

0 , RK5
1 , RK6

4 and RK6
7 . The number of possibilities is 216.

Table 7. Round key recover at the end of round 6.

Round key Corresponding bits on Z Corresponding Y
RK6

0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16
RK6

1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16
RK6

4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18
RK6

5 Z5, Z13, Z21, Z29 Y3, Y9, Y13, Y18
RK6

6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18
RK6

7 Z7, Z15, Z23, Z31 Y3, Y9, Y13, Y18
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Table 8. Round key recover at the end of round 5.

Round key Corresponding bits on Z Corresponding Y
RK5

0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16
RK5

1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16
RK5

4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18
RK5

5 Z5, Z13, Z21, Z29 Y3, Y9, Y13, Y18
RK5

6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18

Finally, we have attacked LILLIPUT reduced to 7 rounds using distinguishing at-
tacks on 6 and 5 rounds. One can see the round keys recovered in the table 7 and table 8.
Here is the state7 at the end of round 6: Y1 =??||, Y3 = ||||, Y6 =??||, Y9 = ||||, Y10 =??||,
Y13 = ||||, Y16 =??||, Y18 = ||||. At the end of the round 5, it is similar, we have the knowl-
edge of: Y1 =??||, Y3 =?|||, Y6 =??||, Y9 =?|||, Y10 =??||, Y13 =?|||, Y16 =??||, Y18 =?|||.
But, these bits shift for the round 6. Thus, at the end of round 6, we also have more
details described in table 9. We can see in this table that we have recovered 44 bits of
the internal state. Thus, the cost of the brute-force is reduced from 280 to 236. The cost
for all guess is less than: c = 216 + 6 ∗ 28 + 24. We can continue to use the previous
rounds with more distinguishing attacks in order to reduce the complexity.

Table 9. Internal state at round 6.

Parts of Y State of the nibble
Y0,Y8,Y12,Y15 ????

Y1,Y2,Y6,Y7,Y10,Y11,Y16,Y17 ??||
Y4,Y5,Y14,Y19 ?|||
Y3,Y9,Y13,Y18 ||||

A.3 Key recovery analysis on 8 rounds

We have seen how the key recovery works based on our attacks. Now, we will see how
it can be extend. In this subsection, we will see how it works on LILLIPUT reduced to
8 rounds.

First, we want to use our distinguishing attack on 6 rounds: ∆S9 ⊕∆S10 = 0. If
we look the branches involved until 8 rounds, we can see which round key we have
to guess. We summarize the analysis in the table 10. To mount a key recovery attack
on LILLIPUT reduced to 8 rounds, one can use the algorithm 6. As is it described in
the table 10, if one wants to exploit ∆S9⊕∆S10 = 0, the round key to guess will be:
RK6

0 , RK6
1 , RK7

7 and RK7
4 . Thus the number of possibilities is 216. We can use more

distinguishing attacks in order to get more round keys: ∆S9 ⊕ ∆S10 = 0 and ∆S9 ⊕
7 ’?’ means unknown bit and ’|’ means known bit

18



Table 10. Round key involved for key recovery on 8 rounds.

Branch involved Round key and involved branches Round key for internal variables
X5

3 RK6
0 , X6

8 RK7
7

X5
4 RK6

1 , X6
6 RK7

4
X5

7 RK6
5 , X6

5 RK7
6

X5
5 RK6

6 , X6
4 RK7

1

∆S10 = 0 for example. Moreover, there are the same improbable differential attacks as
in the Section A.2: ∆S9⊕∆S15 = 0, ∆S10⊕∆S15 = 0 and ∆S14⊕∆S15 = 0.

Algorithm 6 Key recovery on 8 rounds.
Encrypt some samples of 68 structures on 8 rounds.
for all guess of RK7

7 , RK7
4 do

Decrypt one round with the guess.
for all guess of RK6

0 , RK6
1 do

r =Count how many pairs verify ∆S9⊕∆S10 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for
end for

We can use the same method as the algorithm 5. Thanks to this algorithm, we have
recovered 24 bits of data as described in the table 11 and table 12. Then we will see
how much is the cost of the brute-force attack without using previous rounds method.

Table 11. Round key recover at the end of round 6.

Round key Corresponding bits on Z Corresponding Y
RK6

0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16
RK6

1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16
RK6

5 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18

As we can see in the Section A.1, the information recovered at the end of round
7 can be go up at the end of round 6 without any condition. Thus, with an algorithm
similar to the algorithm 5, we have recovered 24 bits of data for the internal state at the
end of round 6 and not only split on two rounds. It is described in the table 13. The cost
of the brute-force attack is reduced from 280 to 256.

19



Table 12. Round key recover at the end of round 7.

Round key Corresponding bits on Z Corresponding Y
RK7

4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18
RK7

6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18
RK7

7 Z7, Z15, Z23, Z31 Y3, Y9, Y13, Y18

Table 13. Internal state at round 6.

Parts of Y State of the nibble
Y0,Y4,Y5,Y7,Y11,Y14,Y15Y19 ????

Y3,Y9,Y13,Y18 ??|?
Y1,Y6,Y10,Y16 ??||
Y2,Y8,Y12,Y17 ||?|

A.4 Key recovery analysis on more rounds

We have seen how to attack 2 rounds more than the distinguisher. In order to attack more
rounds, we need the internal variable on the branch I16. Thus we will need to guess all
the round keys for this round. So, it costs 232. Similarly, if we want to attack 4 rounds
more than the distinguisher attack, it will cost 264. It is possible to reduce enough the
complexity to do that but we can not process one more round with this method. Based
on the distinguisher on 8 rounds, it is then possible to attack 12 rounds.

B Related key attack on 6 rounds

In this appendix, we describe the related key attack on LILLIPUT reduce to 6 rounds.
To recall the attack, the input branches involved are I10 and I14. If c = c1⊕c2, the ouput
condition is S9(c)⊕S15(c) = 0.

If I10 = I14 and RK1
1 = RK1

5 and RK2
1 = RK2

2 , the differential trail is verified with
probability 1. This attack was verified in practice.

The aim of the attack is to make ∆X3
8 = 0.

We have seen that ∆X3
8 = f (X1

6 )⊕ f (X1
6 ⊕∆ I14)⊕ f (X1

2 )⊕ f (X1
2 ⊕∆ I10). Moreover,

we know that ∆ I14 = ∆ I10.
But, it is important to notice that f (X1

6 ) = sbox(X1
6 ⊕ RK1

1 ). Similarly, f (X1
2 ) =

sbox(X1
2 ⊕RK1

2 ). So, ∆X3
8 = 0 if and only if sbox(X1

2 ⊕RK1
2 ) = sbox(X1

6 ⊕RK1
1 ). It can

happens at random but if we have the condition on the key RK1
1 = RK1

2 , then (X1
6 =

X1
2 )⇒ ∆X3

8 = 0.
Then, we have X1

6 ⊕X1
2 = I14⊕ I10⊕ sbox(I3⊕RK0

5 )⊕ sbox(I7⊕RK0
1 ). So if I10 =

I14, then (X1
6 ⊕X1

2 = 0 if and only if I3⊕RK0
5 = I7⊕RK0

1 ).
Now we will see what kind of conditions on the master key we have.
The key state is denoted by 20 nibbles of 4 bits: Y = [Y19, · · · ,Y0] Each round there

is a 32-bit round key extract by the extraction function.
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First, we have Z = [Y18,Y16,Y13,Y10,Y9,Y6,Y3,Y1]. Let Z = Z31, · · · ,Z0 the bits of Z.
Then, we have:

RK1
1 = sbox([Z1,Z9,Z17,Z25]),

RK1
5 = sbox([Z5,Z13,Z21,Z29]),

RK2
1 = sbox([Z1,Z9,Z17,Z25])⊕1,

RK2
2 = sbox([Z2,Z10,Z18,Z26])⊕1.

Note that the xor with 1 is processed to flip the bit at the left. RK1
1 = RK1

5 if and
only if sbox([Z1,Z9,Z17,Z25]) = sbox([Z5,Z13,Z21,Z29]). So RK1

1 = RK1
5 if and only if

[Z1,Z9,Z17,Z25] = [Z5,Z13,Z21,Z29].
So RK1

1 = RK1
5 if Z1 = Z5, Z9 = Z13, Z17 = Z21 and Z25 = Z29. If K = K79, · · · ,K0 is

the master key, these conditions lead to: K5 = K13, K25 = K38, K41 = K53 and K65 = K73
Similarly RK2

1 = RK2
2 if Z1 = Z2, Z9 = Z10, Z17 = Z18 and Z25 = Z26. Note that it

is the Z of the second round, so the Z9 is not the same. It leads to these conditions
on the master key: K1⊕K18 = K2⊕K19, K21 = K22, K58 = K57 and K61 = K62. With
these 8 conditions on 1 bit on the master key, we have the attack with probability 1 on
LILLIPUT reduced to 6 rounds.

C Attacks on 5, 6 and 7 rounds

In this appendix, we describe some attacks on LILLIPUT reduced to 5, 6 and 7 rounds.
These attacks are based on 500 samples of 8,160 couples of messages. This corresponds
to 27 messages. We count how many couples verify a property. The average result for
a random permutation is 8160

24 = 510 because it is an equality on 4 bits. The results
obtained with the attacks we described below are significantly greater or significantly
smaller than this value. In fact, in order to obtain an attack, the difference between these
values is expected to be 8160

28 = 32. As said in Section 4, these attacks are based on an
non zero difference put on two input branches. We detail these branches involved, the
differential condition on the ouput and the average result obtained.

The attacks described below from the table 14 to the table 25 use only two branches
in input and two branches in output. The tool also found a lot of attacks for all combi-
nation i ∈ {1, · · · ,8} branches in input and j ∈ {1, · · · ,8} branches in output but i = 2
and j = 2 leads to the most relevant attacks. Note that the attacks on 7 rounds are not
based on 27 messages but 211.
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Table 14. Differential attacks which require only 2 messages.

Inputs Condition Result
I9, I10 ∆S9⊕∆S10 = 0 8,160.0
I9, I11 ∆S9⊕∆S13 = 0 8,160.0
I9, I12 ∆S10⊕∆S14 = 0 8,160.0
I9, I13 ∆S10⊕∆S13 = 0 8,160.0
I9, I13 ∆S10⊕∆S14 = 0 8,160.0
I9, I13 ∆S13⊕∆S14 = 0 8,160.0
I9, I14 ∆S9⊕∆S14 = 0 8,160.0
I10, I11 ∆S9⊕∆S15 = 0 8,160.0
I10, I12 ∆S10⊕∆S12 = 0 8,160.0
I10, I12 ∆S10⊕∆S15 = 0 8,160.0
I10, I12 ∆S12⊕∆S15 = 0 8,160.0
I10, I13 ∆S10⊕∆S12 = 0 8,160.0
I10, I14 ∆S9⊕∆S12 = 0 8,160.0
I12, I13 ∆S10⊕∆S12 = 0 8,160.0
I12, I13 ∆S10⊕∆S14 = 0 8,160.0
I12, I13 ∆S12⊕∆S14 = 0 8,160.0
I12, I14 ∆S12⊕∆S14 = 0 8,160.0
I13, I14 ∆S12⊕∆S14 = 0 8,160.0
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Table 15. Impossible differential attacks on 5 rounds.

Inputs Condition Result
I9, I10 ∆S9⊕∆S12 = 0 0.0
I9, I10 ∆S9⊕∆S13 = 0 0.0
I9, I10 ∆S9⊕∆S14 = 0 0.0
I9, I10 ∆S9⊕∆S15 = 0 0.0
I9, I10 ∆S10⊕∆S12 = 0 0.0
I9, I10 ∆S10⊕∆S13 = 0 0.0
I9, I10 ∆S10⊕∆S14 = 0 0.0
I9, I10 ∆S10⊕∆S15 = 0 0.0
I9, I11 ∆S9⊕∆S10 = 0 0.0
I9, I11 ∆S9⊕∆S14 = 0 0.0
I9, I11 ∆S9⊕∆S15 = 0 0.0
I9, I11 ∆S10⊕∆S13 = 0 0.0
I9, I11 ∆S13⊕∆S14 = 0 0.0
I9, I11 ∆S13⊕∆S15 = 0 0.0
I9, I12 ∆S9⊕∆S10 = 0 0.0
I9, I12 ∆S9⊕∆S14 = 0 0.0
I9, I12 ∆S10⊕∆S12 = 0 0.0
I9, I12 ∆S10⊕∆S13 = 0 0.0
I9, I12 ∆S10⊕∆S15 = 0 0.0
I9, I12 ∆S10⊕∆S16 = 0 0.0
I9, I12 ∆S12⊕∆S14 = 0 0.0
I9, I12 ∆S13⊕∆S14 = 0 0.0
I9, I12 ∆S14⊕∆S15 = 0 0.0
I9, I12 ∆S14⊕∆S16 = 0 0.0
I9, I13 ∆S9⊕∆S10 = 0 0.0
I9, I13 ∆S9⊕∆S13 = 0 0.0
I9, I13 ∆S9⊕∆S14 = 0 0.0
I9, I13 ∆S10⊕∆S12 = 0 0.0
I9, I13 ∆S12⊕∆S13 = 0 0.0
I9, I13 ∆S12⊕∆S14 = 0 0.0
I9, I14 ∆S9⊕∆S10 = 0 0.0
I9, I14 ∆S9⊕∆S12 = 0 0.0
I9, I14 ∆S9⊕∆S13 = 0 0.0
I9, I14 ∆S10⊕∆S14 = 0 0.0
I9, I14 ∆S12⊕∆S14 = 0 0.0
I9, I14 ∆S13⊕∆S14 = 0 0.0
I9, I16 ∆S10⊕∆S13 = 0 0.0
I9, I16 ∆S10⊕∆S14 = 0 0.0
I10, I11 ∆S9⊕∆S10 = 0 0.0
I10, I11 ∆S9⊕∆S12 = 0 0.0
I10, I11 ∆S9⊕∆S13 = 0 0.0
I10, I11 ∆S10⊕∆S15 = 0 0.0

Inputs Condition Result
I10, I11 ∆S12⊕∆S15 = 0 0.0
I10, I11 ∆S13⊕∆S15 = 0 0.0
I10, I12 ∆S9⊕∆S10 = 0 0.0
I10, I12 ∆S9⊕∆S12 = 0 0.0
I10, I12 ∆S9⊕∆S15 = 0 0.0
I10, I12 ∆S10⊕∆S14 = 0 0.0
I10, I12 ∆S10⊕∆S16 = 0 0.0
I10, I12 ∆S12⊕∆S14 = 0 0.0
I10, I12 ∆S12⊕∆S16 = 0 0.0
I10, I12 ∆S14⊕∆S15 = 0 0.0
I10, I12 ∆S15⊕∆S16 = 0 0.0
I10, I13 ∆S9⊕∆S10 = 0 0.0
I10, I13 ∆S9⊕∆S12 = 0 0.0
I10, I13 ∆S10⊕∆S13 = 0 0.0
I10, I13 ∆S10⊕∆S14 = 0 0.0
I10, I13 ∆S10⊕∆S15 = 0 0.0
I10, I13 ∆S12⊕∆S13 = 0 0.0
I10, I13 ∆S12⊕∆S14 = 0 0.0
I10, I13 ∆S12⊕∆S15 = 0 0.0
I10, I14 ∆S9⊕∆S10 = 0 0.0
I10, I14 ∆S9⊕∆S14 = 0 0.0
I10, I14 ∆S9⊕∆S15 = 0 0.0
I10, I14 ∆S10⊕∆S12 = 0 0.0
I10, I14 ∆S12⊕∆S14 = 0 0.0
I10, I14 ∆S12⊕∆S15 = 0 0.0
I10, I16 ∆S10⊕∆S12 = 0 0.0
I10, I16 ∆S10⊕∆S15 = 0 0.0
I11, I12 ∆S9⊕∆S15 = 0 0.0
I11, I12 ∆S10⊕∆S15 = 0 0.0
I11, I12 ∆S12⊕∆S15 = 0 0.0
I11, I12 ∆S13⊕∆S15 = 0 0.0
I11, I12 ∆S14⊕∆S15 = 0 0.0
I11, I12 ∆S15⊕∆S16 = 0 0.0
I11, I13 ∆S9⊕∆S13 = 0 0.0
I11, I13 ∆S10⊕∆S13 = 0 0.0
I11, I13 ∆S12⊕∆S13 = 0 0.0
I11, I13 ∆S13⊕∆S14 = 0 0.0
I11, I13 ∆S13⊕∆S15 = 0 0.0
I11, I14 ∆S9⊕∆S12 = 0 0.0
I11, I14 ∆S9⊕∆S13 = 0 0.0
I11, I14 ∆S9⊕∆S14 = 0 0.0
I11, I14 ∆S9⊕∆S15 = 0 0.0
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Table 16. Impossible differential attacks on 5 rounds.

Inputs Condition Result
I12, I13 ∆S10⊕∆S13 = 0 0.0
I12, I13 ∆S10⊕∆S15 = 0 0.0
I12, I13 ∆S12⊕∆S13 = 0 0.0
I12, I13 ∆S12⊕∆S15 = 0 0.0
I12, I13 ∆S13⊕∆S14 = 0 0.0
I12, I13 ∆S14⊕∆S15 = 0 0.0
I12, I14 ∆S9⊕∆S12 = 0 0.0
I12, I14 ∆S9⊕∆S14 = 0 0.0
I12, I14 ∆S10⊕∆S12 = 0 0.0
I12, I14 ∆S10⊕∆S14 = 0 0.0
I12, I14 ∆S12⊕∆S15 = 0 0.0
I12, I14 ∆S12⊕∆S16 = 0 0.0
I12, I14 ∆S14⊕∆S15 = 0 0.0
I12, I14 ∆S14⊕∆S16 = 0 0.0
I12, I16 ∆S10⊕∆S12 = 0 0.0
I12, I16 ∆S10⊕∆S14 = 0 0.0
I12, I16 ∆S10⊕∆S15 = 0 0.0
I13, I14 ∆S9⊕∆S12 = 0 0.0
I13, I14 ∆S9⊕∆S14 = 0 0.0
I13, I14 ∆S10⊕∆S12 = 0 0.0
I13, I14 ∆S10⊕∆S14 = 0 0.0
I13, I14 ∆S12⊕∆S13 = 0 0.0
I13, I14 ∆S13⊕∆S14 = 0 0.0
I13, I16 ∆S10⊕∆S12 = 0 0.0
I13, I16 ∆S10⊕∆S13 = 0 0.0
I13, I16 ∆S10⊕∆S14 = 0 0.0
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Table 17. Differential attacks on 5 rounds.

Inputs Condition Result
I9, I10 ∆S9⊕∆S16 = 0 542.59
I9, I10 ∆S10⊕∆S16 = 0 542.59
I9, I10 ∆S11⊕∆S12 = 0 1,284.936
I9, I10 ∆S11⊕∆S14 = 0 615.462
I9, I10 ∆S11⊕∆S15 = 0 616.796
I9, I10 ∆S12⊕∆S13 = 0 550.578
I9, I10 ∆S12⊕∆S14 = 0 1,276.944
I9, I10 ∆S12⊕∆S15 = 0 1,284.72
I9, I10 ∆S13⊕∆S14 = 0 550.61
I9, I10 ∆S13⊕∆S15 = 0 551.39
I9, I10 ∆S14⊕∆S15 = 0 1,282.128
I9, I11 ∆S9⊕∆S11 = 0 1,743.32
I9, I11 ∆S9⊕∆S12 = 0 550.684
I9, I11 ∆S9⊕∆S16 = 0 543.678
I9, I11 ∆S10⊕∆S14 = 0 1,278.672
I9, I11 ∆S10⊕∆S15 = 0 1,252.536
I9, I11 ∆S11⊕∆S13 = 0 1,743.32
I9, I11 ∆S12⊕∆S13 = 0 550.684
I9, I11 ∆S13⊕∆S16 = 0 543.678
I9, I11 ∆S14⊕∆S15 = 0 1,282.344
I9, I12 ∆S9⊕∆S12 = 0 1,271.76
I9, I12 ∆S9⊕∆S13 = 0 1,252.968
I9, I12 ∆S9⊕∆S15 = 0 1,278.024
I9, I12 ∆S9⊕∆S16 = 0 550.794
I9, I12 ∆S10⊕∆S11 = 0 1,053.244
I9, I12 ∆S11⊕∆S14 = 0 1,053.244
I9, I12 ∆S12⊕∆S13 = 0 1,260.96
I9, I12 ∆S12⊕∆S15 = 0 1,271.76
I9, I12 ∆S12⊕∆S16 = 0 595.752
I9, I12 ∆S13⊕∆S15 = 0 1,281.696
I9, I12 ∆S13⊕∆S16 = 0 550.948
I9, I12 ∆S15⊕∆S16 = 0 551.776
I9, I13 ∆S9⊕∆S12 = 0 549.68
I9, I13 ∆S10⊕∆S11 = 0 1,744.92
I9, I13 ∆S10⊕∆S15 = 0 1,270.464
I9, I13 ∆S11⊕∆S13 = 0 1,744.92
I9, I13 ∆S11⊕∆S14 = 0 1,744.92
I9, I13 ∆S11⊕∆S15 = 0 610.29
I9, I13 ∆S13⊕∆S15 = 0 1,270.464
I9, I13 ∆S14⊕∆S15 = 0 1,270.464

Inputs Condition Result
I9, I14 ∆S9⊕∆S11 = 0 1,734.96
I9, I14 ∆S9⊕∆S15 = 0 594.91
I9, I14 ∆S9⊕∆S16 = 0 543.972
I9, I14 ∆S10⊕∆S12 = 0 1,273.272
I9, I14 ∆S10⊕∆S13 = 0 1,286.664
I9, I14 ∆S11⊕∆S14 = 0 1,734.96
I9, I14 ∆S12⊕∆S13 = 0 1,256.856
I9, I14 ∆S14⊕∆S15 = 0 594.91
I9, I14 ∆S14⊕∆S16 = 0 543.972
I9, I15 ∆S9⊕∆S10 = 0 1,057.336
I9, I15 ∆S9⊕∆S12 = 0 666.698
I9, I15 ∆S9⊕∆S13 = 0 1,728.196
I9, I15 ∆S9⊕∆S14 = 0 1,738.81
I9, I15 ∆S10⊕∆S12 = 0 562.01
I9, I15 ∆S10⊕∆S13 = 0 1,055.428
I9, I15 ∆S10⊕∆S14 = 0 1,056.176
I9, I15 ∆S12⊕∆S13 = 0 667.754
I9, I15 ∆S12⊕∆S14 = 0 666.358
I9, I15 ∆S13⊕∆S14 = 0 1,738.462
I9, I16 ∆S10⊕∆S11 = 0 902.446
I9, I16 ∆S10⊕∆S15 = 0 544.0
I9, I16 ∆S13⊕∆S14 = 0 543.22
I10, I11 ∆S9⊕∆S14 = 0 1,268.304
I10, I11 ∆S9⊕∆S16 = 0 611.888
I10, I11 ∆S10⊕∆S11 = 0 611.288
I10, I11 ∆S10⊕∆S12 = 0 551.35
I10, I11 ∆S10⊕∆S13 = 0 550.92
I10, I11 ∆S12⊕∆S13 = 0 551.252
I10, I11 ∆S14⊕∆S15 = 0 1,268.304
I10, I11 ∆S15⊕∆S16 = 0 611.888
I10, I12 ∆S9⊕∆S11 = 0 565.622
I10, I12 ∆S9⊕∆S14 = 0 1,279.536
I10, I12 ∆S10⊕∆S13 = 0 550.596
I10, I12 ∆S11⊕∆S14 = 0 563.856
I10, I12 ∆S12⊕∆S13 = 0 550.596
I10, I12 ∆S13⊕∆S15 = 0 550.596
I10, I13 ∆S9⊕∆S13 = 0 550.608
I10, I13 ∆S9⊕∆S14 = 0 550.912
I10, I13 ∆S9⊕∆S15 = 0 596.804
I10, I13 ∆S11⊕∆S14 = 0 610.154
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Table 18. Differential attacks on 5 rounds.

Inputs Condition Result
I10, I13 ∆S11⊕∆S15 = 0 1,270.896
I10, I13 ∆S13⊕∆S14 = 0 550.548
I10, I13 ∆S13⊕∆S15 = 0 550.54
I10, I13 ∆S14⊕∆S15 = 0 1,265.928
I10, I14 ∆S9⊕∆S13 = 0 594.642
I10, I14 ∆S9⊕∆S16 = 0 611.952
I10, I14 ∆S10⊕∆S11 = 0 1,283.208
I10, I14 ∆S10⊕∆S14 = 0 1,267.224
I10, I14 ∆S10⊕∆S15 = 0 593.402
I10, I14 ∆S11⊕∆S14 = 0 613.168
I10, I14 ∆S12⊕∆S13 = 0 594.642
I10, I14 ∆S12⊕∆S16 = 0 611.952
I10, I14 ∆S14⊕∆S15 = 0 552.278
I10, I15 ∆S9⊕∆S10 = 0 1,054.44
I10, I15 ∆S9⊕∆S15 = 0 1,741.32
I10, I15 ∆S10⊕∆S15 = 0 1,056.38
I10, I15 ∆S11⊕∆S16 = 0 566.092
I10, I15 ∆S12⊕∆S14 = 0 1,279.32
I10, I16 ∆S10⊕∆S13 = 0 544.0
I10, I16 ∆S10⊕∆S14 = 0 596.114
I10, I16 ∆S12⊕∆S15 = 0 613.966
I11, I12 ∆S9⊕∆S10 = 0 1,266.36
I11, I12 ∆S9⊕∆S12 = 0 551.74
I11, I12 ∆S9⊕∆S13 = 0 1,268.304
I11, I12 ∆S9⊕∆S14 = 0 1,273.704
I11, I12 ∆S10⊕∆S12 = 0 550.054
I11, I12 ∆S10⊕∆S13 = 0 1,282.56
I11, I12 ∆S10⊕∆S14 = 0 1,280.616
I11, I12 ∆S11⊕∆S15 = 0 1,051.468
I11, I12 ∆S12⊕∆S13 = 0 548.646
I11, I12 ∆S12⊕∆S14 = 0 595.28
I11, I12 ∆S12⊕∆S16 = 0 544.0
I11, I12 ∆S13⊕∆S14 = 0 1,248.648
I11, I12 ∆S14⊕∆S16 = 0 544.0
I11, I13 ∆S9⊕∆S10 = 0 550.208
I11, I13 ∆S9⊕∆S12 = 0 549.644
I11, I13 ∆S9⊕∆S14 = 0 550.648
I11, I13 ∆S9⊕∆S15 = 0 595.88
I11, I13 ∆S10⊕∆S12 = 0 550.288
I11, I13 ∆S10⊕∆S14 = 0 1,266.144

Inputs Condition Result
I11, I13 ∆S10⊕∆S15 = 0 1,265.496
I11, I13 ∆S11⊕∆S13 = 0 1,719.88
I11, I13 ∆S12⊕∆S14 = 0 593.428
I11, I13 ∆S12⊕∆S15 = 0 550.316
I11, I13 ∆S14⊕∆S15 = 0 1,262.472
I11, I14 ∆S9⊕∆S10 = 0 1,285.8
I11, I14 ∆S9⊕∆S11 = 0 1,725.328
I11, I14 ∆S9⊕∆S16 = 0 610.24
I11, I14 ∆S10⊕∆S11 = 0 617.944
I11, I14 ∆S11⊕∆S16 = 0 612.464
I11, I14 ∆S12⊕∆S13 = 0 551.284
I11, I14 ∆S12⊕∆S14 = 0 595.708
I11, I14 ∆S12⊕∆S15 = 0 551.876
I11, I14 ∆S13⊕∆S14 = 0 1,285.8
I11, I14 ∆S13⊕∆S15 = 0 550.746
I11, I14 ∆S14⊕∆S15 = 0 550.956
I11, I15 ∆S9⊕∆S13 = 0 1,744.06
I11, I15 ∆S9⊕∆S15 = 0 1,730.04
I11, I15 ∆S10⊕∆S14 = 0 567.802
I11, I15 ∆S13⊕∆S15 = 0 1,723.052
I11, I16 ∆S13⊕∆S15 = 0 616.944
I12, I13 ∆S9⊕∆S10 = 0 593.886
I12, I13 ∆S9⊕∆S12 = 0 593.886
I12, I13 ∆S9⊕∆S14 = 0 593.886
I12, I13 ∆S10⊕∆S11 = 0 1,051.278
I12, I13 ∆S11⊕∆S12 = 0 1,051.278
I12, I13 ∆S11⊕∆S14 = 0 1,051.278
I12, I13 ∆S13⊕∆S15 = 0 1,262.904
I12, I13 ∆S15⊕∆S16 = 0 575.986
I12, I14 ∆S9⊕∆S10 = 0 1,255.56
I12, I14 ∆S9⊕∆S15 = 0 550.276
I12, I14 ∆S10⊕∆S15 = 0 592.83
I12, I14 ∆S10⊕∆S16 = 0 544.0
I12, I14 ∆S11⊕∆S12 = 0 1,052.232
I12, I14 ∆S11⊕∆S13 = 0 564.396
I12, I14 ∆S11⊕∆S14 = 0 1,052.232
I12, I14 ∆S12⊕∆S13 = 0 1,274.568
I12, I14 ∆S13⊕∆S14 = 0 1,274.568
I12, I14 ∆S15⊕∆S16 = 0 544.0
I12, I15 ∆S9⊕∆S12 = 0 1,262.904
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Table 19. Differential attacks on 5 rounds.

Inputs Condition Result
I12, I15 ∆S9⊕∆S13 = 0 665.692
I12, I15 ∆S10⊕∆S14 = 0 1,053.13
I12, I15 ∆S10⊕∆S15 = 0 1,055.476
I12, I15 ∆S10⊕∆S16 = 0 972.51
I12, I15 ∆S11⊕∆S16 = 0 559.624
I12, I15 ∆S12⊕∆S13 = 0 666.406
I12, I15 ∆S14⊕∆S15 = 0 1,735.592
I12, I15 ∆S14⊕∆S16 = 0 900.544
I12, I15 ∆S15⊕∆S16 = 0 900.472
I12, I16 ∆S9⊕∆S10 = 0 561.768
I12, I16 ∆S10⊕∆S11 = 0 963.714
I12, I16 ∆S12⊕∆S14 = 0 542.272
I12, I16 ∆S12⊕∆S15 = 0 613.964
I12, I16 ∆S14⊕∆S15 = 0 544.13
I13, I14 ∆S9⊕∆S10 = 0 550.194
I13, I14 ∆S9⊕∆S13 = 0 550.898
I13, I14 ∆S10⊕∆S13 = 0 1,281.48
I13, I14 ∆S11⊕∆S12 = 0 1,740.224
I13, I14 ∆S11⊕∆S14 = 0 1,740.224
I13, I14 ∆S12⊕∆S15 = 0 550.844
I13, I14 ∆S14⊕∆S15 = 0 550.844
I13, I15 ∆S10⊕∆S13 = 0 1,054.164
I13, I15 ∆S10⊕∆S14 = 0 1,052.654
I13, I15 ∆S12⊕∆S15 = 0 664.048
I13, I15 ∆S13⊕∆S14 = 0 1,713.588
I13, I16 ∆S9⊕∆S10 = 0 565.006
I13, I16 ∆S10⊕∆S11 = 0 900.286
I13, I16 ∆S12⊕∆S13 = 0 614.604
I13, I16 ∆S12⊕∆S14 = 0 543.066
I13, I16 ∆S13⊕∆S14 = 0 542.57
I14, I15 ∆S9⊕∆S14 = 0 1,744.13
I14, I15 ∆S10⊕∆S12 = 0 561.934
I14, I15 ∆S10⊕∆S13 = 0 564.562
I14, I15 ∆S12⊕∆S13 = 0 1,275.216
I14, I16 ∆S10⊕∆S14 = 0 550.886
I14, I16 ∆S12⊕∆S14 = 0 543.868
I14, I16 ∆S13⊕∆S15 = 0 558.836
I15, I16 ∆S10⊕∆S11 = 0 562.682
I15, I16 ∆S11⊕∆S12 = 0 564.098
I15, I16 ∆S13⊕∆S15 = 0 626.906
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Table 20. Improbable differential attacks on 5 rounds.

Inputs Condition Result
I9, I10 ∆S9⊕∆S11 = 0 456.406
I9, I10 ∆S10⊕∆S11 = 0 456.406
I9, I11 ∆S10⊕∆S11 = 0 427.664
I9, I11 ∆S10⊕∆S12 = 0 459.68
I9, I11 ∆S11⊕∆S14 = 0 455.106
I9, I11 ∆S11⊕∆S15 = 0 428.986
I9, I11 ∆S12⊕∆S14 = 0 456.43
I9, I11 ∆S12⊕∆S15 = 0 460.224
I9, I12 ∆S9⊕∆S11 = 0 477.28
I9, I12 ∆S11⊕∆S13 = 0 470.25
I9, I12 ∆S11⊕∆S15 = 0 476.564
I9, I12 ∆S11⊕∆S16 = 0 473.812
I9, I13 ∆S9⊕∆S11 = 0 426.94
I9, I13 ∆S9⊕∆S15 = 0 454.32
I9, I13 ∆S11⊕∆S12 = 0 455.378
I9, I13 ∆S12⊕∆S15 = 0 382.816
I9, I14 ∆S10⊕∆S11 = 0 457.022
I9, I14 ∆S10⊕∆S15 = 0 458.88
I9, I14 ∆S11⊕∆S12 = 0 457.022
I9, I14 ∆S11⊕∆S13 = 0 429.452
I9, I14 ∆S12⊕∆S15 = 0 456.974
I9, I14 ∆S13⊕∆S15 = 0 457.692
I9, I15 ∆S9⊕∆S15 = 0 453.836
I9, I15 ∆S12⊕∆S15 = 0 455.466
I9, I15 ∆S13⊕∆S15 = 0 452.946
I9, I15 ∆S14⊕∆S15 = 0 453.876
I10, I11 ∆S9⊕∆S11 = 0 456.658
I10, I11 ∆S10⊕∆S14 = 0 383.872
I10, I11 ∆S11⊕∆S14 = 0 453.642
I10, I11 ∆S11⊕∆S15 = 0 456.658
I10, I11 ∆S11⊕∆S16 = 0 475.422
I10, I11 ∆S12⊕∆S14 = 0 455.266
I10, I11 ∆S13⊕∆S14 = 0 460.764
I10, I12 ∆S9⊕∆S13 = 0 459.58
I10, I12 ∆S13⊕∆S14 = 0 458.946
I10, I13 ∆S10⊕∆S11 = 0 456.836
I10, I13 ∆S11⊕∆S12 = 0 456.836
I10, I14 ∆S9⊕∆S11 = 0 457.08
I10, I14 ∆S10⊕∆S13 = 0 456.904
I10, I14 ∆S11⊕∆S12 = 0 457.08

Inputs Condition Result
I10, I14 ∆S11⊕∆S16 = 0 474.526
I10, I14 ∆S13⊕∆S14 = 0 457.626
I10, I15 ∆S9⊕∆S12 = 0 453.456
I10, I15 ∆S9⊕∆S13 = 0 427.922
I10, I15 ∆S9⊕∆S14 = 0 452.084
I10, I15 ∆S10⊕∆S11 = 0 473.66
I10, I15 ∆S10⊕∆S13 = 0 474.326
I10, I15 ∆S12⊕∆S15 = 0 452.492
I10, I15 ∆S13⊕∆S15 = 0 426.356
I10, I15 ∆S14⊕∆S15 = 0 452.268
I10, I16 ∆S10⊕∆S11 = 0 431.544
I11, I12 ∆S9⊕∆S11 = 0 476.908
I11, I12 ∆S10⊕∆S11 = 0 474.896
I11, I12 ∆S11⊕∆S12 = 0 474.328
I11, I12 ∆S11⊕∆S13 = 0 470.094
I11, I13 ∆S9⊕∆S11 = 0 430.764
I11, I13 ∆S10⊕∆S11 = 0 429.96
I11, I13 ∆S11⊕∆S12 = 0 429.842
I11, I13 ∆S11⊕∆S14 = 0 458.144
I11, I13 ∆S11⊕∆S15 = 0 458.144
I11, I14 ∆S10⊕∆S12 = 0 459.376
I11, I14 ∆S10⊕∆S13 = 0 381.808
I11, I14 ∆S10⊕∆S14 = 0 380.128
I11, I14 ∆S10⊕∆S15 = 0 453.502
I11, I14 ∆S11⊕∆S12 = 0 428.66
I11, I14 ∆S11⊕∆S13 = 0 429.124
I11, I14 ∆S11⊕∆S14 = 0 457.298
I11, I14 ∆S11⊕∆S15 = 0 429.524
I11, I15 ∆S9⊕∆S10 = 0 468.954
I11, I15 ∆S9⊕∆S14 = 0 432.018
I11, I15 ∆S10⊕∆S13 = 0 468.918
I11, I15 ∆S10⊕∆S15 = 0 468.61
I11, I15 ∆S13⊕∆S14 = 0 429.128
I11, I15 ∆S14⊕∆S15 = 0 428.412
I11, I16 ∆S10⊕∆S11 = 0 470.666
I11, I16 ∆S10⊕∆S14 = 0 461.568
I12, I13 ∆S9⊕∆S13 = 0 455.984
I12, I13 ∆S9⊕∆S15 = 0 461.136
I12, I13 ∆S11⊕∆S13 = 0 471.014
I12, I14 ∆S9⊕∆S11 = 0 476.81
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Table 21. Improbable differential attacks on 5 rounds.

Inputs Condition Result
I12, I14 ∆S9⊕∆S13 = 0 383.504
I12, I14 ∆S10⊕∆S13 = 0 383.68
I12, I14 ∆S11⊕∆S15 = 0 473.448
I12, I14 ∆S13⊕∆S15 = 0 460.536
I12, I14 ∆S13⊕∆S16 = 0 458.422
I12, I15 ∆S9⊕∆S11 = 0 477.23
I12, I15 ∆S9⊕∆S14 = 0 451.714
I12, I15 ∆S9⊕∆S15 = 0 452.648
I12, I15 ∆S9⊕∆S16 = 0 431.954
I12, I15 ∆S10⊕∆S13 = 0 474.572
I12, I15 ∆S11⊕∆S12 = 0 476.134
I12, I15 ∆S12⊕∆S14 = 0 453.04
I12, I15 ∆S12⊕∆S15 = 0 452.112
I12, I15 ∆S12⊕∆S16 = 0 432.952
I12, I15 ∆S13⊕∆S14 = 0 428.988
I12, I15 ∆S13⊕∆S15 = 0 427.398
I12, I15 ∆S13⊕∆S16 = 0 471.12
I13, I14 ∆S9⊕∆S11 = 0 426.906
I13, I14 ∆S10⊕∆S11 = 0 457.886
I13, I14 ∆S10⊕∆S15 = 0 453.848
I13, I14 ∆S11⊕∆S13 = 0 428.98
I13, I14 ∆S13⊕∆S15 = 0 459.242
I13, I15 ∆S9⊕∆S10 = 0 472.576
I13, I15 ∆S9⊕∆S13 = 0 426.866
I13, I15 ∆S9⊕∆S14 = 0 427.7
I13, I15 ∆S10⊕∆S15 = 0 473.606
I13, I15 ∆S12⊕∆S13 = 0 451.614
I13, I15 ∆S12⊕∆S14 = 0 452.74
I13, I15 ∆S13⊕∆S15 = 0 430.478
I13, I15 ∆S14⊕∆S15 = 0 429.422
I14, I15 ∆S9⊕∆S10 = 0 473.934
I14, I15 ∆S9⊕∆S12 = 0 452.584
I14, I15 ∆S9⊕∆S13 = 0 452.326
I14, I15 ∆S9⊕∆S15 = 0 425.86
I14, I15 ∆S10⊕∆S11 = 0 472.896
I14, I15 ∆S10⊕∆S14 = 0 473.216
I14, I15 ∆S12⊕∆S14 = 0 453.174
I14, I15 ∆S13⊕∆S14 = 0 452.394
I14, I15 ∆S14⊕∆S15 = 0 425.856
I14, I16 ∆S10⊕∆S11 = 0 432.282
I14, I16 ∆S10⊕∆S13 = 0 455.698
I15, I16 ∆S10⊕∆S14 = 0 472.974
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Table 22. Differential attacks on 6 rounds.

Inputs Condition Result
I9, I10 ∆S9⊕∆S10 = 0 587.834
I9, I10 ∆S9⊕∆S14 = 0 590.538
I9, I10 ∆S10⊕∆S14 = 0 637.662
I9, I11 ∆S10⊕∆S12 = 0 1,744.584
I9, I12 ∆S9⊕∆S12 = 0 584.23
I9, I12 ∆S9⊕∆S15 = 0 587.71
I9, I12 ∆S12⊕∆S15 = 0 625.994
I9, I13 ∆S9⊕∆S10 = 0 588.014
I9, I13 ∆S12⊕∆S14 = 0 2,336.416
I9, I14 ∆S9⊕∆S12 = 0 588.802
I9, I14 ∆S10⊕∆S15 = 0 1,731.616
I9, I15 ∆S12⊕∆S14 = 0 565.276
I10, I11 ∆S10⊕∆S15 = 0 623.274
I10, I11 ∆S11⊕∆S13 = 0 679.866
I10, I12 ∆S9⊕∆S13 = 0 1,722.962
I10, I13 ∆S9⊕∆S10 = 0 625.052
I10, I13 ∆S9⊕∆S11 = 0 561.728
I10, I14 ∆S9⊕∆S15 = 0 2,364.232
I11, I12 ∆S12⊕∆S14 = 0 625.882
I11, I13 ∆S11⊕∆S12 = 0 562.106
I11, I14 ∆S11⊕∆S15 = 0 638.076
I11, I15 ∆S12⊕∆S13 = 0 671.91
I12, I13 ∆S9⊕∆S14 = 0 1,736.72
I12, I13 ∆S10⊕∆S13 = 0 556.906
I12, I13 ∆S10⊕∆S15 = 0 559.664
I12, I14 ∆S9⊕∆S12 = 0 633.65
I12, I15 ∆S13⊕∆S14 = 0 565.65
I13, I15 ∆S12⊕∆S14 = 0 566.012

30



Table 23. Improbable differential attacks on 6 rounds.

Inputs Condition Result
I9, I10 ∆S9⊕∆S15 = 0 413.818
I9, I10 ∆S10⊕∆S15 = 0 431.676
I9, I10 ∆S14⊕∆S15 = 0 392.032
I9, I11 ∆S10⊕∆S14 = 0 432.738
I9, I11 ∆S10⊕∆S15 = 0 429.832
I9, I11 ∆S12⊕∆S14 = 0 389.782
I9, I11 ∆S12⊕∆S15 = 0 388.614
I9, I12 ∆S9⊕∆S14 = 0 458.15
I9, I12 ∆S10⊕∆S14 = 0 472.758
I9, I12 ∆S12⊕∆S14 = 0 431.422
I9, I12 ∆S14⊕∆S15 = 0 432.224
I9, I13 ∆S9⊕∆S12 = 0 413.908
I9, I13 ∆S9⊕∆S14 = 0 413.084
I9, I13 ∆S10⊕∆S12 = 0 431.656
I9, I13 ∆S10⊕∆S14 = 0 431.802
I9, I13 ∆S12⊕∆S15 = 0 387.35
I9, I13 ∆S14⊕∆S15 = 0 388.41
I9, I14 ∆S9⊕∆S10 = 0 460.36
I9, I14 ∆S9⊕∆S15 = 0 414.122
I9, I14 ∆S10⊕∆S12 = 0 434.114
I9, I14 ∆S12⊕∆S15 = 0 391.38
I10, I11 ∆S10⊕∆S13 = 0 431.58
I10, I11 ∆S13⊕∆S15 = 0 391.014
I10, I12 ∆S9⊕∆S14 = 0 435.314
I10, I12 ∆S9⊕∆S15 = 0 430.81
I10, I12 ∆S13⊕∆S14 = 0 432.612

Inputs Condition Result
I10, I12 ∆S13⊕∆S15 = 0 431.518
I10, I13 ∆S9⊕∆S14 = 0 391.92
I10, I13 ∆S9⊕∆S15 = 0 388.426
I10, I14 ∆S9⊕∆S10 = 0 430.186
I10, I14 ∆S9⊕∆S13 = 0 386.47
I10, I14 ∆S10⊕∆S15 = 0 430.984
I10, I14 ∆S13⊕∆S15 = 0 386.146
I11, I12 ∆S9⊕∆S10 = 0 473.87
I11, I12 ∆S10⊕∆S13 = 0 473.644
I11, I12 ∆S12⊕∆S13 = 0 431.702
I11, I12 ∆S13⊕∆S14 = 0 432.164
I11, I13 ∆S10⊕∆S12 = 0 432.768
I11, I13 ∆S12⊕∆S14 = 0 391.322
I11, I14 ∆S10⊕∆S12 = 0 434.188
I11, I14 ∆S10⊕∆S13 = 0 430.098
I11, I14 ∆S10⊕∆S15 = 0 433.2
I12, I13 ∆S9⊕∆S12 = 0 432.092
I12, I13 ∆S12⊕∆S14 = 0 432.376
I12, I14 ∆S9⊕∆S10 = 0 473.888
I12, I14 ∆S9⊕∆S13 = 0 426.554
I12, I14 ∆S9⊕∆S15 = 0 431.738
I12, I15 ∆S10⊕∆S15 = 0 474.674
I13, I14 ∆S9⊕∆S10 = 0 430.32
I13, I14 ∆S9⊕∆S12 = 0 391.266
I13, I14 ∆S9⊕∆S15 = 0 387.298
I14, I15 ∆S14⊕∆S15 = 0 474.544
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Table 24. Differential attacks on 7 rounds.

Inputs Condition Result
I9, I11 ∆S9⊕∆S13 = 0 131,738.9
I9, I13 ∆S9⊕∆S10 = 0 133,707.05
I9, I13 ∆S9⊕∆S12 = 0 131,796.3
I9, I14 ∆S13⊕∆S14 = 0 131,893.75
I10, I13 ∆S10⊕∆S12 = 0 132,552.95
I10, I14 ∆S9⊕∆S15 = 0 132,127.9
I11, I12 ∆S12⊕∆S14 = 0 133,870.55
I11, I13 ∆S9⊕∆S14 = 0 132,262.4
I11, I15 ∆S10⊕∆S11 = 0 131,637.65
I11, I15 ∆S10⊕∆S15 = 0 131,621.1
I12, I13 ∆S9⊕∆S15 = 0 131,560.6
I12, I13 ∆S10⊕∆S12 = 0 131,683.85
I12, I13 ∆S12⊕∆S13 = 0 131,538.65
I12, I14 ∆S9⊕∆S15 = 0 133,746.8
I13, I14 ∆S9⊕∆S15 = 0 132,071.85
I13, I15 ∆S10⊕∆S12 = 0 131,978.15

Table 25. Improbable differential attacks on 7 rounds.

Inputs Condition Result
I9 I11 ∆S9⊕∆S14 = 0 127,667.15
I9 I13 ∆S9⊕∆S13 = 0 127,620.15
I9 I13 ∆S9⊕∆S14 = 0 130,417.3
I9 I13 ∆S9⊕∆S15 = 0 127,600.45
I9 I13 ∆S10⊕∆S15 = 0 130,096.95
I9 I14 ∆S9⊕∆S13 = 0 127,740.7
I10 I12 ∆S10⊕∆S12 = 0 123,372.9
I10 I13 ∆S10⊕∆S15 = 0 130,042.35
I10 I14 ∆S12⊕∆S13 = 0 130,258.05
I10 I14 ∆S13⊕∆S15 = 0 130,438.75
I11 I13 ∆S9⊕∆S10 = 0 129,541.15
I11 I13 ∆S9⊕∆S12 = 0 130,483.15
I11 I14 ∆S10⊕∆S14 = 0 130,240.5
I12 I13 ∆S9⊕∆S10 = 0 130,304.7
I12 I15 ∆S13⊕∆S14 = 0 130,761.2
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