
On post-processing in the quantum algorithm for

computing short discrete logarithms

Martin Eker̊a∗

November 20, 2017

Abstract

Eker̊a and H̊astad recently introduced a quantum algorithm for com-
puting short discrete logarithms. To compute an m bit logarithm d this
algorithm exponentiates group elements in superposition to m + 2m/s
bit exponents for s ≥ 1 an integer. Given a set of s good outputs, a
classical post-processing algorithm then recovers d by enumerating an
s+ 1-dimensional lattice. Increasing s trades work in the quantum algo-
rithm for classical work. However, as good outputs cannot be trivially
distinguished, the quantum algorithm needs to be run s/p times and all
subsets of s outputs exhaustively post-processed, where p is the probabil-
ity of observing a good output. In this paper, we introduce an improved
post-processing algorithm that removes the need to exhaustively enumer-
ate exponential in s many s + 1-dimensional lattices, at the expense of
reducing a single n+1 dimensional lattice and applying Babai’s algorithm.
The new algorithm is practical for much greater values of s and in general
requires fewer runs than the original algorithm. As a concrete example,
for m = 1024, s = 30 and n = 40, the algorithm recovers d within a few
seconds with ≈ 99% success probability.

1 Introduction

In a groundbreaking paper [10] from 1994, subsequently extended and revised
in a later publication [11], Shor introduced polynomial time quantum computer
algorithms for factoring integers and for computing discrete logarithms in F∗p.

Although Shor’s algorithm for computing discrete logarithms was originally
described for F∗p, it may be generalized to any finite cyclic group, provided the
group operation may be implemented efficiently using quantum circuits.

More recently, the author [2] introduced a modified version of Shor’s al-
gorithm for computing discrete logarithms that is more efficient than Shor’s
original algorithm when the logarithm is short. This work was originally moti-
vated by the use of short discrete logarithms in instantiations of cryptographic
schemes based on the computational intractability of the discrete logarithm
problem in finite fields. A concrete example is the use of short exponents in the
Diffie-Hellman key exchange protocol when instantiated with safe-prime groups.

∗KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Swedish NCSA,
Swedish Armed Forces, SE-107 85 Stockholm, Sweden. Use ekera@kth.se to e-mail author.

1

mailto:ekera@kth.se

This work was subsequently generalized by the author and H̊astad [3] so as
to enable tradeoffs between the number of times that the algorithm needs to be
executed, and the requirements it imposes on the quantum computer. These
ideas parallel earlier ideas by Seifert [9] for making tradeoffs in Shor’s order
finding algorithm; the quantum part of Shor’s general factoring algorithm.

The author and H̊astad furthermore explained how the RSA integer factoring
problem may be expressed as a short discrete logarithm problem, giving rise to a
new algorithm for factoring RSA integers that imposes less requirements on the
quantum computer than Shor’s general factoring algorithm taking into account
Seifert’s tradeoffs. The new algorithm does not directly rely on order finding.

As it is seemingly difficult to construct and operate large-scale quantum
computers, any reduction in the requirements imposed on the computer by
the algorithm when solving cryptographically relevant problems is potentially
important and merits study. In this paper we improve the post-processing in the
aforementioned algorithms to further reduce the requirements on the quantum
computer when computing short discrete logarithms and factoring RSA integers.

1.1 Preliminaries

To compute an m bit logarithm d, the generalized algorithm by the author
and H̊astad [3] exponentiates group elements in superposition to m+ 2m/s bit
exponents for s ≥ 1 an integer. Given a set of s good outputs, a classical post-
processing algorithm recovers d by enumerating an s+ 1-dimensional lattice.

The number of runs required increases in s, in exchange for a reduction in the
exponent length in the quantum algorithm. Hence, increasing s effectively trades
work in each quantum algorithm run for work in the classical post-processing
algorithm. More specifically, the quantum circuit size and depth, the required
coherence time and, assuming they are not recycled; the number of control
qubits required to implement the algorithm, are all reduced by a constant factor.

To minimize the work performed in each run of the quantum algorithm,
s would ideally be selected of size similar to m. However, as good outputs
cannot be trivially distinguished, the quantum algorithm needs to be run s/p
times and all subsets of s outputs exhaustively post-processed, where p denotes
the probability of obtaining a good output. This exponential complexity in s
restricts s and hence the achievable tradeoff.

Our main contribution in this paper is to show that if outputs from n runs
of the quantum algorithm are included in an n+ 1-dimensional lattice, for some
s and sufficiently large n > s, then d may be recovered by reducing the lattice
and applying Babai’s [1] algorithm. Enumerating exponential in s many s+ 1-
dimensional lattices may thus be avoided at the expense of reducing a single
n + 1-dimensional lattice. The new post-processing algorithm is practical for
comparatively large s and in general requires fewer quantum algorithm runs
than the post-processing algorithm originally proposed.

1.2 The discrete logarithm problem

Let G under � be a group of order r generated by g, and let

x = [d] g = g � g � · · · � g � g︸ ︷︷ ︸
d times

.

2

Given x, a generator g and a description of G and � the discrete logarithm
problem is to compute d = logg x. In the short discrete logarithm problem, the
logarithm d is known to be smaller than the order of the group by some factor.

The bracket notation that we have introduced above is commonly used in
the literature to denote repeated application of the group operation regardless
of whether the group is written multiplicatively or additively.

1.3 Notation

In this section, we introduce notation used throughout this paper.

• u mod n denotes u reduced modulo n constrained to 0 ≤ u mod n < n.

• {u}n denotes u reduced modulo n constrained to −n/2 ≤ {u}n < n/2.

• due denotes u rounded upwards to the closest integer.

• duc denotes u rounded to the closest integer.

• buc denotes u rounded downwards to the closest integer.

• | a+ ib | =
√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a+ ib.

• |u | denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ Rn.

1.4 Earlier works

In this section, we recall the generalized algorithm for computing short discrete
logarithms as the purpose of this paper is to improve upon it.

Given a generator g of a finite cyclic group of order r and a group element
x = [d] g where d is such that 0 < d < 2m ≪ r, the generalized algorithm
computes the logarithm d = logg x by inducing and observing the system

|Ψ 〉 =
1

22`+m

2`+m−1∑
a, j=0

2`−1∑
b, k=0

exp

[
2πi

2`+m
(aj + 2mbk)

]
| j, k, [e = a − bd] g 〉

yielding a pair (j, k) where j and k are integers on the intervals 0 ≤ j < 2`+m

and 0 ≤ k < 2`, respectively, and some group element y = [e] g ∈ G.
Above ` ≈ m/s is an integer for s ≥ 1 a small integer constant that con-

trols the tradeoff between the number of times that the algorithm needs to be
executed and the requirements it imposes on the quantum computer.

When observed, the system collapses to y = [e] g and (j, k) with probability

1

22(2`+m)

∣∣∣∣∣∑
a

∑
b

exp

[
2πi

2`+m
(aj + 2mbk)

] ∣∣∣∣∣
2

where the sums are over all a and b such that e ≡ a− bd (mod r). Assuming
that r ≥ 2`+m+2`d, this simplifies to e = a−bd. Summing over all e, we obtain
the probability P of observing the pair (j, k) over all e as

P =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

exp

[
2πi

2`+m
((e− bd)j + 2mbk)

] ∣∣∣∣∣∣
2

3

=
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

exp

[
2πi

2`+m
b {dj + 2mk}2`+m

] ∣∣∣∣∣∣
2

where we have introduced the functions b0(e) and b1(e) that determine the
summation interval for b. For more information on these functions, see Sect. 2.2.

The above analysis implies that the probability P of observing a given pair
(j, k) is determined by its argument α or, equivalently, by its angle θ, where

α(j, k) =
∣∣ {dj + 2mk}2`+m

∣∣ and θ(α) =
2πα

2m+`

and the probability

P (θ) =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

.

In [3], a pair is said to be good if its argument α ≤ 2m−2, and it is demonstrated
that the quantum algorithm will yield a good pair with probability p ≥ 1/8.
More specifically, lower bounds on both the number of good pairs, and on the
probability of observing any specific good pair, are demonstrated.

Given a set of s distinct good pairs, there is a classical post-processing algo-
rithm that recovers d with great probability using lattice-based techniques.

More specifically, the set {(j1, k1), . . . , (js, ks)} of s pairs is first used to
form a vector v = ({−2mk1}2`+m , . . . , {−2mks}2`+m , 0) ∈ Zs+1 and an s+ 1-
dimensional integer lattice L with basis matrix

j1 j2 · · · js 1
2`+m 0 · · · 0 0

0 2`+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2`+m 0

 .

For some constants m1, . . . , ms ∈ Z, the vector

u = ({dj1}2`+m +m12`+m, . . . , {djs}2`+m +ms2
`+m, d) ∈ L

is then such that the distance

R = |u− v | =

√√√√ s∑
i=1

(
{dji}2`+m +mi2`+m − {−2mki}2`+m

)2
+ d2

=

√√√√√ s∑
i=1

{dji + 2mki}22`+m︸ ︷︷ ︸
α2
i

+ d2 ≤ 2m
√

s

24
+ 1

as the argument αi ≤ 2m−2 for good pairs (j, k). By enumerating all vectors
in L within distance R of v, see appendix C, it is thus possible to recover u
and d as the last component of u. The enumeration is expected to be feasible
to perform in practice for small s, as the dimension D = s + 1 of L is small

4

allowing for a reduced basis to be computed, and as the shortest vector in L is
expected to be of norm about

D

√∣∣detL
∣∣ =

D
√

2(`+m)s ≈ 2m

which is close to R for small s, implying that there are only a small number of
vectors within distance R of v to enumerate.

As good pairs cannot be trivially distinguished, the quantum algorithm is
executed cs times for some constant c ≈ 1/p = 8 to generate a set of cs pairs.
All subsets of s pairs from these cs pairs are then solved for d using the above
classical post-processing algorithm. With great probability, at least one of these
subsets should consist of s distinct good pairs and yield d.

The main drawback with this approach is that the complexity of solving for
d is exponential in the tradeoff factor s, restricting the achievable tradeoff.

1.5 Our contributions

Our main contribution in this paper is to demonstrate that if the above quantum
algorithm is run n ≥ s times, and if all n pairs thus produced are included in
an n+ 1-dimensional lattice L on the above form, then the distance R between
u and v decreases in n in relation to the norm of the shortest vector in L.

If n is selected sufficiently large there will hence only be one vector in L
within distance R of u. Mapping v to the closest vector in L using Babai’s [1]
nearest plane algorithm is then sufficient to immediately recover u and d without
having to enumerate the lattice. The exhaustive enumeration of exponential in s
many s+1-dimensional lattices may thus be avoided, at the expense of reducing
a single n+ 1-dimensional lattice and applying Babai’s algorithm.

For relevant combinations of the logarithm length m and tradeoff factor s,
we let estimate the value of n required to allow d to be immediately recovered.
We verify our estimates by simulating the quantum algorithm and solving sets
of n simulated outputs for d using the new post-processing algorithm.

To compute the estimates, and to simulate the quantum algorithm for known
logarithms, we analytically derive a closed-form expression for the probability
Φ(α) of the quantum algorithm yielding a pair with argument α.

By numerically summing Φ(α) over partial intervals in α, we construct a
high resolution histogram for Φ(α) and use it to sample arguments and pairs in
a manner representative of those yielded by the quantum algorithm.

We simulate the quantum algorithm not only to verify parameter estimates
for our new post-processing algorithm, but also to verify claims made in [3]
with respect to the original post-processing algorithm. Furthermore, we use the
histogram for Φ(α) to show that the probability p of observing a good pair by
the definition in [3] is, in general, considerably greater than 1/8 as guaranteed by
the lower bound in [3]. This implies that the original post-processing algorithm
is more efficient than was previously demonstrated.

1.6 Overview

The remainder of this paper is structured as follows: We derive a closed-form
expression for Φ(α) in Sect. 2, we numerically sum Φ(α) over partial intervals

5

in α in Sect. 3 and we describe how the quantum algorithm may be simulated
on a classical computer when the logarithm is known in Sect. 4.

In Sect. 6 we proceed to describe our new post-processing algorithm in full
detail, to estimate n as a function of m and s and to verify these estimates by
performing simulations. We conclude the paper in Sect. 7.

2 Deriving closed-form expressions

In this section, we derive closed-form expressions for the probability P (θ(α)) of
observing a specific pair (j, k) with angle θ, or equivalently, with argument α.

Furthermore, we count the number of pairs N(α) with argument α and
derive closed-form expressions for the probability Φ(α) of observing any one of
the N(α) pairs (j, k) with argument α.

2.1 The probability of observing (j, k) and e

The probability of observing a pair with angle θ is

P (θ) =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

︸ ︷︷ ︸
ξ

as was explained in Sect. 1.4. If θ = 0 then the inner sum simplifies to

ξ(0,#b(e)) =

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

1

∣∣∣∣∣∣
2

= (b1(e)− b0(e))2 = (#b(e))2

where #b(e) = b1(e)− b0(e). Otherwise, if θ 6= 0 then

ξ(θ,#b(e)) =

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

=

∣∣∣∣ eiθb1(e) − eiθb0(e)

eiθ − 1

∣∣∣∣2 =
1− cos (θ ·#b(e))

1− cos θ
.

The closed-form expressions for ξ(θ,#b(e)) enable us to exactly compute the
probability of observing a specific pair with angle θ for a specific e in terms of
the angle and the length #b(e) of the summation interval in b for this e.

In the next section, we analyze the function #b(e). We proceed in Sect. 2.3
to sum ξ(θ,#b(e)) over all e to derive a closed-form expression for P (θ).

2.2 The summation interval for a given e

In Sect. 1.4, we defined e = a − bd, where 0 < d < 2m and 0 ≤ a < 2`+m and
0 ≤ b < 2`. This implies that e is an integer on the interval

−(2` − 1)d ≤ e = a− bd < 2`+m. (1)

Divide the interval for e into three regions, and denote these regions A, B and
C, respectively. Define the middle region B to be the region in e where

#b(e) = 2` ⇔ 0 = b0(e) ≤ b < b1(e) = 2`.

6

Then by (1) region B spans 0 ≤ e < 2`+m − (2` − 1)d. This is easy to since
as for all b on the interval 0 ≤ b < 2` there must exist an a on the interval
0 ≤ a < 2`+m such that e = a− bd.

It follows that region A to the left of B spans −(2` − 1)d ≤ e < 0 and that
region C to the right of B spans 2`+m − (2` − 1)d ≤ e < 2`+m. Regions A
and C are hence both of length (2` − 1)d. Regions and C are furthermore both
divided into 2` − 1 plateaus of length d, as there is, for each multiple of d that
is subtracted from e in these regions, one fewer value of b for which there exists
an a such that e = a− bd. The situation that arises is depicted in Fig. 1.

A B C

e

#b(e) = b1(e) − b0(e)

1

2

3

4

-39

−
(
2
`
−

1
)
d

=

-26

−
2
d

=

-13

−
d

=

0 25

2
`
+
m
−

(
2
`
−

1
)
d

=

38

2
`
+
m
−

2
d

=

51

2
`
+
m
−
d

=

64

2
`
+
m

=

Figure 1: The interval length #b(e) = b1(e) − b0(e) as a function of e. Above
m = 4, ` = 2 and d = 13 but the same situation arises irrespective of these
parameter choices.

2.3 The probability of observing (j, k) over all e

We are now ready to sum ξ(θ,#b(e)) over all e to express the probability

P (θ) =
1

22(m+2`)
·

2`+m−1∑
e=−(2`−1)d

ξ(θ,#b(e))

on closed form by first noting that if the sum is split into partial sums over the
regions A, B and C, respectively, it follows from the previous two sections that
the sums over regions A and C must yield the same contribution.

7

Furthermore, region B is rectangular, and each plateau in regions A and C is
rectangular. Closed-form expressions for the contribution from these rectangular
regions may be trivially derived. This implies that

2`+m−1∑
e=−(2`−1)d

ξ(θ,#b(e)) =

−1∑
e=−(2`−1)d

ξ(θ,#b(e))

︸ ︷︷ ︸
region A

+

2`+m−(2`−1)d−1∑
e=0

ξ(θ,#b(e))︸ ︷︷ ︸
region B

+

2`+m−1∑
e=2`+m−(2`−1)d

ξ(θ,#b(e))

︸ ︷︷ ︸
region C

=

(2`+m − (2` − 1)d) · ξ(θ, 2`)︸ ︷︷ ︸
region B

+ 2d ·
2`−1∑
#b=1

ξ(θ,#b)︸ ︷︷ ︸
regions A and C

.

If θ = 0 then

2`−1∑
#b=1

ξ(0,#b) =

2`−1∑
#b=1

(#b)2 =
2`

6
(2` − 1)(2`+1 − 1)

so the probability of observing the pair (j, k) over all e is

P (0) =
1

22(m+2`)
·
(

(2`+m − (2` − 1)d) · 22` +
2`d

3
(2` − 1)(2`+1 − 1)

)
.

Otherwise, if θ 6= 0 then

2`−1∑
#b=1

ξ(θ,#b) =

2`−1∑
#b=1

1− cos (θ ·#b)
1− cos θ

=
1

1− cos θ

[
(2` − 1)− 1

2

(
cos((2` − 1)θ)− cos 2`θ

1− cos θ
− 1

)]
so the probability of observing the pair (j, k) over all e is

P (θ) =
1

22(m+2`)
· 1

1− cos θ
·
(

(2`+m − (2` − 1)d) · (1− cos 2`θ) +

2d ·
[

(2` − 1)− 1

2

(
cos((2` − 1)θ)− cos 2`θ

1− cos θ
− 1

)])
.

8

2.4 The number of pairs with argument α

To define the probability of observing some pair with argument α, we now turn
our attention to counting the number of pairs (j, k) with argument α.

To perform the count, we demonstrate how the set of all pairs (j, k) with
argument α may be computed, as this will anyhow prove necessary in Sect. 4
when simulating the quantum algorithm. More specifically, we first show in
Claim 1 that only some arguments are admissible. For admissible arguments α,
we then show in Lemma 1 how to compute one or more j for any given k such
that the pair (j, k) has argument α up to sign. To conclude, we count all pairs
thus generated in Lemma 2 and demonstrate that all pairs have been accounted
for.

Claim 1. For a pair (j, k) where j and k are integers, the argument

α = | {dj + 2mk}2`+m |

is either zero or 2κ | α where κ is the greatest integer such that 2κ | d.

Proof. As 2κ | d < 2m it must be that 2κ | 2m and hence 2κ | α when α 6= 0. �

Lemma 1. Let κ be the greatest integer such that 2κ | d and let α be an integer
on 0 ≤ α < 2m+` such that 2κ | α. For k any integer on 0 ≤ k < 2` and

j =

(
±α− 2mk

2κ

(
d

2κ

)−1
+ 2`+m−κ r

)
mod 2`+m

the pair (j, k) is distinct and has argument α for r any integer on 0 ≤ r < 2κ.

Proof. For each k there are 2` distinct values of j up to sign as 2`+m−κ r
mod 2`+m is distinct for all integers r on 0 ≤ r < 2κ so all (j, k) are distinct.

The argument of a pair (j, k) is defined as α = | {dj + 2mk}2`+m |. As

dj + 2mk ≡ (±α− 2mk)
d

2κ

(
d

2κ

)−1
︸ ︷︷ ︸

=1

+2`+m
dr

2κ︸︷︷︸
∈Z

+2mk ≡ ±α (mod 2`+m)

the pairs all have argument α and so the lemma follows. �

Lemma 2. The number of pairs (j, k) with argument α is

N(α) =

2κ+` if α = 0
2κ+`+1 if 0 < α < 2`+m−1 and 2κ | α
2κ+` if α = 2`+m−1

0 otherwise

where κ is the greatest integer such that 2κ | d.

Proof. By Lemma 1, there are 2κ+` distinct pairs (j, k) with argument α up to
sign for α an integer on 0 ≤ α < 2m+` such that 2κ | α. Both negative and
positive signs are admissible, except when α is zero as the sign then has no
meaning, and when α = 2`+m−1, as only negative signs are then admissible.

9

This accounts for all pairs (j, k) where 0 ≤ j < 2m+` and 0 ≤ k < 2`, as(
2`+m−1

2κ
− 1

)
· 2κ+`+1 + 2 · 2κ+` = 22`+m,

and so the lemma follows. �

By Lemma 2, the number of pairs (j, k) having admissible arguments α =
| {dj + 2mk}2`+m | are uniformly distributed up to the sign of {dj + 2mk}2`+m .

2.5 The probability of observing a pair with argument α

We have derived closed-form expressions for the number of pairs N(α) with
argument α and for the probability P (θ(α)) of observing a specific pair (j, k)
with angle θ, or equivalently, with argument α.

This immediately yields a closed-form expression for the probability Φ(α) of
observing some pair with argument α, as

Φ(α) = N(α) · P (θ(α)) where θ(α) =
2πα

2`+m
.

3 Modelling the probability density function

In this section, we sum Φ(α) numerically over partial intervals in α to form a
high resolution histogram for Φ(α), and we demonstrate analytically that the
probability of observing a pair (j, k) with argument α≫ 2m is negligible

3.1 The notion of t-good pairs

To partition the pairs, we propose to introduce the notion of a t-good pair.

Definition 1. A pair (j, k) is said to be t-good if its argument is on the interval

2t−1 ≤ α =
∣∣ {dj + 2mk}2`+m

∣∣ < 2t

for t an integer on the interval 0 < t ≤ `+m. For t equal to zero, a pair is said
to be t-good if its argument is zero.

3.2 The probability ρ(t) of observing a t-good pair

The probability of observing a t-good pair is

ρ(t) =
∑
α

Φ(α)

where the sum is over all α on 2t−1 ≤ α < 2t for 0 < t ≤ ` + m whilst at the
two endpoints ρ(0) = Φ(0) and ρ(`+m) = Φ(2`+m−1).

It is natural to partition the pairs in this manner, as Φ(α) has a very long
tail, and as the approximate size of the argument of a pair determines how easy
it is to recover d from the pair. Therefore, we are interested in understanding
roughly how the probability mass of Φ(α) is distributed with respect to the size
of the argument, and ρ(t) provides this information.

10

3.3 Bounding the probability ρ(t)

In this section, we prove that the probability of observing a pair (j, k) with
argument significantly greater than 2m is negligible.

Lemma 3. The probability ρ(t) is upper bounded by 20
π2 · 2m−t.

Proof. For t ≤ m the lemma follows trivially. For t > m, recall that

ρ(t) =
∑
α

Φ(α) =
1

22(m+2`)

∑
α

N(α)
∑
e

ξ(θ,#b(e)) where θ =
2πα

2`+m
.

The first sum is over the 2t−κ−1 arguments α on 2t−1 ≤ α < 2t such that
2κ | α. There are N(α) ≤ 2`+κ+1 pairs with argument α. The second sum is
over at most 2`+m+1 values of e. Furthermore, as 1 − cos (θ ·#b(e)) ≤ 2, and
as 1− cos θ ≥ θ2/5 for | θ | ≤ π, we may bound

ξ(θ,#b(e)) =
1− cos (θ ·#b(e))

1− cos θ
≤ 10

θ2
.

Combining these bounds and using that θ = 2πα/2`+m ≥ 2tπ/2`+m yields

ρ(t) ≤ 2t−κ−1 · 2`+κ+1 · 2`+m+1

22(m+2`)
· 10

θ2
≤ 20

π2
· 2m−t

and so the lemma follows. �

One implication of Lemma 3 is that even if the quantum algorithm does not
yield a good pair by the definition in [3], it will with great probability yield a
pair that is close to being good. This indicates that it should be possible to
solve for d even if not all pairs included in the lattice L are good.

3.4 Numerical approximations of Φ(α) and ρ(t)

In this section, we proceed to use numerical methods to approximate ρ(t).
More specifically, we use algorithm 1 in appendix A that simply selects a

subset of equidistant elements from the sum in the expression for ρ(t) and in-
terpolates between them using the rectangle method, the trapezoid method and
Newton-Coates’ method to approximate the function. Inadmissible arguments
known to yield a zero contribution are excluded from the selection.

By varying the number of elements included in the selection it is possible to
make a tradeoff between the time complexity of the algorithm and the accuracy
of the approximation. If all elements are included in the selection, the algorithm
yields an exact result. The maximum number of elements included is upper
bounded by 2ν where ν is a parameter to the algorithm.

The step size, that is the distance between the elements selected, is set
to the least multiple of 2κ to respect the upper bound of 2ν on the number
of elements selected in total. If the step size is 2κ then all arguments that
yield a non-zero contribution to ρ(t) are included in the selection. An exact
result is computed and there is no need to interpolate. If the step size is 2 · 2κ
interpolation is performed using the trapezoid method. For greater multiples of
2κ, interpolation is performed using Newton-Coates’ method.

Algorithm 1 returns a list, the entries of which consist of a set of arguments
and the probability of observing one of these arguments. The actual sum ρ(t)
is computed in algorithm 3. The reason for this subdivision is that algorithm 1
is used as a subroutine in other algorithms in Sect. 4.

11

3.5 Results and analysis

Histograms for ρ(t) as approximated numerically by algorithms 1 and 3 are
drawn in Fig. 2, for parameters m = ` = 256 and ν = 6, and for approximately
equidistant values of d on the interval 2m−1 ≤ d < 2m as well as for the case
where d is smaller than 2m by some orders of magnitude.

As is evident from these histograms, the size of d in relation to 2m affects
ρ(t), as does the greatest power of two 2κ to divide d. The values of d have been
selected to highlight the various extreme cases. The cases where κ is close to its
maximum are rather esoteric, as d is trivial to compute classically when divisible
by an almost maximal power of two. They are included for completeness.

The histograms drawn in Fig. 2 are representative of most choices of the
parameters m and ` = m/s, provided m and/or ` are not extremely small.

All histograms are drawn with resolution ν = 6. Further increasing ν only
yields a marginally better approximation, at the expense of an exponential cost
increase when computing the approximation. We shall therefore fixate ν = 6
throughout the remainder of this paper.

In the right hand part of Fig. 2 in the dashed region denoted A, all d are
selected odd so κ is zero. As d decreases from 2m − 1 to 2m−1 + 1, the proba-
bility mass is shifted towards slightly lesser values of t. However, the effect is
moderate. This re-distribution is expected; it reflects the fact that it becomes
eaiser to solve for d as d decreases in size in relation to 2m.

In the lower left hand corner of Fig. 2 in the dashed region denoted B, an
additional histogram is drawn for d = 2m−5−1. This histogram is representative
of the distribution that arises when d is smaller than 2m by at least a few orders
of magnitude. Further decreasing d has no significant effect on the distribution.

In the upper left hand part of Fig. 2 in the region denoted C, the values of
d are chosen to be divisible by great powers of two. This implies that κ is close
to its maximum. Since N(α) is zero for all non-zero arguments α not divisible
by 2κ, all entries in the histogram on the interval 0 < t < κ are forced to zero
and the probability mass is re-distributed accordingly. This effect arises for all
non-zero κ. However, it is negligible when κ is not close to its maximum.

Based upon the above analysis, we conjecture the probability p of observing
a good pair to, in general, be considerably greater than the lower bound of
p ≥ 1/8 guarantees, see [2, 3] and Sect. 1.4. In general, it should hence be safe
to assume a lower bound of p ≥ 3/10 assuming random d on 2m−1 ≤ d < 2m.

As was described in Sect. 1.4, all subsets of s pairs from a set of s/p pairs
resulting from s/p quantum algorithm runs need to be exhaustively enumerated
to compute d using the post-processing algorithm originally proposed. Hence,
an increased expected success probability p implies complexity reductions, both
in terms of the expected number of runs of the quantum algorithm required,
and in terms of the number of lattices that need to be exhaustively enumerated.

4 Simulating the quantum algorithm

In this section, we describe how the high resolution histogram for Φ(α) may be
used to classically simulate the quantum algorithm when d is known.

The idea is simply to regard the argument α as a stochastic variable with
probability density function Φ(α) and to use the histogram for Φ(α) produced

12

10%

20%

30%

40%

ρ(t)

d = 2m−1 ⇒ κ = m − 1

t

0 m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−3 ⇒ κ = m − 3

t

0 m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−2 ⇒ κ = m − 2

t

0 m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−2 + 2m−3 ⇒ κ = m − 3

t

C 0 m

10%

20%

30%

40%

ρ(t)

d = 2m−5 − 1 ⇒ κ = 0

t

0 mB

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 1 ⇒ κ = 0

t
m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−3 + 1 ⇒ κ = 0

t
m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−2 + 1 ⇒ κ = 0

t
m

10%

20%

30%

40%

ρ(t)

d = 2m−1 + 2m−2 + 2m−3 + 1 ⇒ κ = 0

t
m

10%

20%

30%

40%

ρ(t)
d = 2m − 1 ⇒ κ = 0

t
mA

Figure 2: Plots of ρ(t) for m = ` = 256 and ν = 6. Essentially the same
situation arises for essentially any permissible combination of m and `, and for
any ν ≥ 6.

13

by algorithm 2 in appendix A to sample the variable. More specifically, a bin
in the histogram is first selected according to the probability of an argument in
it being observed as given by Φ(α). The argument is then selected uniformly at
random from the set of all arguments in this bin. For details, see algorithm 4.

The first step is self-explanatory. Our rationale for using uniform sampling in
the second step is that the probability of observing a pair with a given argument
is determined solely by the size of the argument. All arguments in the set will
be of approximately the same size assuming high resolution in the histogram.

Given an argument α sampled by algorithm 4, a pair (j, k) with argument
α is selected uniformly at random from the set of all pairs with argument α by
algorithm 5 in appendix A. A proof of its correctness is given in Lemma 1 and 2.
We conjecture pairs (j, k) sampled in this manner, see the combined procedure
in algorithm 6 in appendix A, to be representative of pairs produced by the
quantum algorithm, enabling us to classically simulate the quantum algorithm
when d is known.

5 Verifying the original post-processing

In this section, we take the opportunity to verify the post-processing algorithm
originally proposed in [2, 3] by simulating the quantum algorithm.

More specifically, for all pairwise combinations of m ∈ {128, 256, . . . , 8192}
and s ∈ {1, 2, . . . , 8, 10, 12, 15, 20}, and for both maximal d = 2m−1 and ran-
dom d on 2m−1 ≤ d < 2m, we fixate ` = dm/se and ν = 6, and sample 102 sets
of s good pairs (j, k) by the definition in [3], see algorithm 7 in appendix A. Each
set is then solved for d using the original post-processing algorithm. Executing
this procedure produced the results in the next section.

The enumeration algorithm employed is described in appendix C. The basis
was reduced using the block Korkin-Zolotarev (BKZ) [5, 8] algorithm, as it is
implemented in fpLLL provided by Sage v7.2, with default parameters and a
block size of ten for all combinations of m and s. For the combinations of m
and s considered, a lattice basis takes at most minutes to reduce and solve for
d in a single execution thread on an ordinary workstation.

We remark that sampling all pairs to be good avoids the need to exhaustively
solve subsets of pairs for d, enabling us to verify the post-processing algorithm
for greater values of s than would otherwise be practical.

5.1 Results and analysis

For maximal d = 2m − 1, the classical post-processing algorithm succeed in
recovering d from all 102 sets. The lattice enumeration algorithm completed
very quickly, after exploring at most a few vectors in the lattice.

For random d on 2m−1 ≤ d < 2m, the post-processing algorithm succeeded
in recovering d for all 102. As expected, fewer vectors needed to be enumerated
when d is random compare to when d is maximal.

For combinations of m and s where s does not divide m so that ` is rounded
upwards, it is often sufficient to map v to the closest vector in L to find u. This
situation arises more frequently for random d than for maximal d.

14

6 Our improved post-processing algorithm

In this section, we introduce our new post-processing algorithm that allows d
to be recovered from a set {(j1, k1), . . . , (jn, kn)} of n > s pairs produced by
executing the quantum algorithm n times.

Note that the pairs are not required to be good by the definition in [3]. The
algorithm therefore does not require an exhaustive search over subsets of pairs
to be performed. It furthermore does not require lattice enumeration provided n
is selected sufficiently large in relation to m and s.

6.1 Recovering d from a set of n pairs

In analogy with the original post-processing algorithm, the set of n pairs is
used to form a vector v = ({−2mk1}2`+m , . . . , {−2mkn}2`+m , 0) ∈ ZD and a
D-dimensional integer lattice L with basis matrix

j1 j2 · · · jn 1
2`+m 0 · · · 0 0

0 2`+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2`+m 0

where D = n+ 1. For some constants m1, . . . , mn ∈ Z, the vector

u = ({dj1}2`+m +m12`+m, . . . , {djn}2`+m +mn2`+m, d) ∈ L

is such that with probability at least q the distance

R = |u− v | =

√√√√ n∑
i=1

(
{dji}2`+m +mi2`+m − {−2mki}2`+m

)2
+ d2

=

√√√√√ n∑
i=1

{dji + 2mki}22`+m︸ ︷︷ ︸
α2
i

+ d2 ≤ 2m
√

22τ(n) n+ 1

assuming τ(n) is selected so that

Pr

[
1

n

n∑
i=1

α2
i ≤ 22(m+τ(n))

]
≥ q (2)

where αi is a stochastic variable with probability density function Φ(αi).
The volume of the fundamental parallelepiped of L is | detL | = 2(`+m)n and

this volume contains a single lattice point. On the other hand, the volume of a
D-dimensional hypersphere of radius R in Euclidean space is

VD(R) =
πD/2

Γ
(
D
2 + 1

)RD
where Γ is the gamma function.

15

We expect to find u simply by mapping v to the closest vector in L when the
volume quotient v = VD(R) / |detL | < 2 since the hypersphere is then expected
to contain a single lattice vector. Hence, if n is selected such that

v =
VD(R)

|detL |
=

π(n+1)/2

Γ
(
n+1
2 + 1

) (2m
√

22τ(n) n+ 1
)n+1

· 1

2(m+`)n
< 2,

with probability q for some constant τ(n), then it should be possible, again with
probability q, to recover u from v by mapping v to the closest vector in L.

In practice, the closest vector is found by reducing the basis using a lattice
basis reduction algorithm and applying Babai’s [1] nearest plane algorithm. To
perform the reduction algorithms ranging from e.g. Lenstra-Lenstra-Lovász [6]
to Korkin-Zolotarev [5, 8] may be employed. The more strongly reduced the
basis, the smaller the error will be when applying Babai’s algorithm.

6.2 Estimating τ(n)

To estimate τ(n) for parameters m and s, and some fixated probability q, we
sample N sets of n arguments {α1, . . . , αn}. For each set, we compute τ from

1

n

n∑
i=1

α2
i = 22(m+τ) ⇒ τ =

1

2
log2

1

n

n∑
i=1

α2
i −m,

sort the resulting set of values of τ in increasing order, and select the value at
index d(N − 1)qc in the resulting list to arrive at the estimate for τ(n).

The integer constant N controls the accuracy of the estimate. Assuming N
to be sufficiently large in relation to q, and to the variance of the arguments,
this approach yields a sufficiently good estimate of τ(n).

6.3 Results and analysis

To estimate n as a function ofm and s, and to verify the estimates in simulations,
we fixate q = 0.99 and ν = 6, and consider the hardest case d = 2m − 1.

For relevant combinations of m and s, we let ` = dm/se, fixate N = 106 when
estimating τ(n), and record the smallest n > s for which the volume quotient
v < 2. For some m and s, we verify the estimate by sampling M = 103 sets of n
pairs {(j1, k1), . . . , (jn, kn)} and solving each set for d with the post-processing
algorithm. If d is thus recovered, the verification succeeds, otherwise it fails.
We record the smallest n > s such that at most M(1− q) = 10 verifications fail.

Table 1 was produced by executing these procedures. For detailed results,
see tables 2 – 8 in appendix B. To reduce the lattice bases, the block Korkin-
Zolotarev (BKZ) algorithm [5, 8] was employed, as it is implemented in fpLLL
provided by Sage v7.2, with default parameters and a block size of ten for all
combinations of m, s and n. For the combinations of m, s and n considered, a
lattice basis takes at most minutes to reduce and solve for d in a single execution
thread on an ordinary workstation.

The estimated values of n are verified by the simulations, except when v is
close to but less than two, requiring n to be incremented in the simulations.
The entries in the table for which this is the case are printed in bold.

16

logarithm length m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 32 15 12 11 11 11 11
20 – 71 31 24 22 21 21
30 – – 59 40 35 33 31
40 – – – 62 48 44 42
50 – – – – 66 57 53

logarithm length m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 10 8 8 8 8 8
8 18 12 10 9 9 9 9

10 – 16 12 11 11 11 11
20 – – 32 24 22 21 21
30 – – – 40 35 33 31
40 – – – – 49 44 42
50 – – – – – 57 54

Table 1: The estimated (top) and simulated (bottom) number of pairs n required
for u to be the closest vector to v in L allowing d to be recovered via Babai’s
algorithm without enumerating L with probability ≈ 99%.

On the lower left diagonal, the variance in α is too great, and the decrements
in v with respect to n too small, for reliable data to be produced without
increasing M and N . This explains the lack of simulations for these estimates.

Compared to the post-processing algorithm originally proposed, the new
post-processing algorithm achieves considerably better tradeoffs with practical
time complexity for cryptographically relevant parameter choices. In general, it
requires considerably fewer quantum algorithm runs.

Further increasing s is possible in practice and would yield slightly better
tradeoffs. However, it is likely not worthwhile as the improvement would come
at the expense of having to run the quantum algorithm many more times.

The parameter choices made above are conservative, in that we have fixated
q at 99% and considered the hardest case of d = 2m − 1. Furthermore, we have

17

made a conservative choice in requiring that mapping v to the closest vector in
L should immediately produce u without enumerating vectors in L.

In practice, some of these choices may be relaxed: The logarithm d would
typically be randomly selected on 2m−1 ≤ d < 2m. It is possible to select m
slightly greater than the bit length of d. Furthermore, the technique of increasing
the lattice dimension may be combined with lattice enumeration and subset
inclusion or exclusion techniques as in the orignal post-processing algorithm.

7 Summary and conclusion

Our main contribution in this paper has been to show that if outputs from n
runs of the quantum algorithm are included in an n+ 1-dimensional lattice, for
some s and sufficiently large n > s, then d may be recovered by reducing the
lattice and applying Babai’s algorithm.

Enumerating exponential in s many s+1-dimensional lattices, as in the post-
processing algorithm originally proposed [3], may thus be avoided at the expense
of reducing a single n + 1-dimensional lattice. By simulating the quantum
algorithm for known d we have estimated n as a function of m and s. We have
verified our estimates by post-processing simulated outputs.

The new post-processing algorithm is practical for larger tradeoff factors s
and, in general, requires fewer quantum algorithm runs compared to the original
post-processing algorithm. The new algorithm enables good tradeoffs to be
achieved in practice for cryptographically relevant parameters choices.

These results are relevant for RSA and for cryptographic schemes based on
the computational intractability of the short discrete logarithm problem such as
Diffie-Hellman when instantiated with safe-prime groups and short exponents.

Acknowledgments

Many thanks to Johan H̊astad for valuable comments and guidance. Thanks to
Lennart Brynielsson and other colleagues for useful discussions.

Funding and support for this work was provided by the Swedish NCSA that
is a part of the Swedish Armed Forces.

References

[1] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1), pp. 1–13 (1986)

[2] Eker̊a, M.: Modifying Shor’s algorithm to compute short discrete loga-
rithms. Cryptology ePrint Archive, Report 2016/1128 (2016)

[3] Eker̊a, M., H̊astad, J.: Quantum algorithms for computing short discrete
logarithms and factoring RSA integers. In: Lange T., Takagi T. (Eds) Post-
Quantum Cryptography. PQCrypto 2017. LNCS, vol. 10346, pp. 347–363.
Springer, Cham (2017)

18

[4] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: Proceedings of the 15th Symposium on the Theory of
Computing. STOC 1983. ACM Press, pp. 99—108 (1983).

[5] Korkine, A., Zolotareff, G.: Sur les formes quadratiques. Math. Ann. 6(3),
pp. 366–389 (1873)

[6] Lenstra, H.W., Lenstra, A.K., Lovász, L.: Factoring Polynomials with Ra-
tional Coefficients. Math. Ann. 261(4) pp. 515–534 (1982)

[7] Micciancio, D., Walter, M.: Fast Lattice Point Enumeration with Mini-
mal Overhead. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 276–294 (2015).

[8] Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science, 53(2–3), pp. 201–224 (1987)

[9] Seifert, J.-P.: Using fewer qubits in Shor’s factorization algorithm via si-
multaneous diophantine approximation.. In: Naccache, D. (ed.) CT-RSA
2001. LNCS, vol. 2020, pp. 319–327. Springer, Heidelberg (2001)

[10] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, pp. 124–134 (1994)

[11] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput., 26(5), pp.
1484–1509 (1997)

A Algorithms

In this appendix, we specify algorithms for numerically approximating ρ(t) and
Φ(α) and for sampling arguments and pairs.

A.1 Approximating Φ(α) and ρ(t)

Algorithm 1 Computes a partial histogram for Φ(α).

procedure PartialHistogramPhi(t, `, m, ν, d)
Let κ be such that 2κ is the greatest power of two to divide d.

if t = 0 then . Single entry intervals.
return [{0}, Φ(0)].

else if t = m+ l then
return [{2`+m−1}, Φ(2`+m−1)].

end if

Let s = max(2κ, 2t−1/2ν). . The step size s ≥ 2κ controlled by ν.

Let H = [] be an empty ordered list.

if s = 2κ then . Rectangle method.
for α ∈ {2t−1, 2t−1 + s, . . . , 2t − s} do

Append [{α}, Φ(α)] to H.
end for

19

else if s = 2 · 2κ then . Trapezoid method.
for α ∈ {2t−1, 2t−1 + s, . . . , 2t − s} do

Let ς = s/2κ · (Φ(α) + Φ(α+ s))/2 = Φ(α) + Φ(α+ s).

Append [{α, α+ 2κ}, ς] to H.
end for

else . Newton-Cotes’ method.
for α ∈ {2t−1, 2t−1 + s, . . . , 2t − s} do

Let ς = s/2κ · (Φ(α) + 4Φ(α+ s/2) + Φ(α+ s))/6.

Append [{α, α+ 2κ, . . . , α+ s− 2κ}, ς] to H.
end for

end if

return H.
end procedure

Algorithm 2 Computes a complete histogram for Φ(α).

procedure HistogramPhi(`, m, ν, d)
Let H = [] be an empty ordered list.

for t ∈ {0, 1, . . . , `+m} do
Concatenate PartialHistogramPhi(t, `,m, ν, d) to H.

end for

return H.
end procedure

Algorithm 3 Computes the probability ρ(t) of observing a t-good pair

procedure Rho(t, `, m, ν, d)
Let H = PartialHistogramPhi(t, `,m, ν, d).

Let ρ(t) = 0.

for [S, ς] in H do
Add ς to ρ(t).

end for

return ρ(t).
end procedure

A.2 Sampling arguments and pairs

Algorithm 4 Samples an argument α according to Φ(α).

procedure SampleArgument(`, m, ν, d)
Let H = HistogramPhi(`,m, ν, d).

Select λ uniformly at random on 0 ≤ λ < 1.

for [S, ς] in H do
Subtract ς from λ.

if λ ≤ 0 then
return α selected uniformly at random from the set S.

end if
end for

20

end procedure

Algorithm 5 Samples a pair (j, k) with argument α uniformly at random.

procedure SamplePairWithArgument(α, `, m, d)
Let κ be such that 2κ is the greatest power of two to divide d.

if α = 0 then
Let s = 1. . The sign is of no consequence.

else if α = 2`+m−1 then
Let s = −1. . The sign must be negative.

else
Select s uniformly at random from {1,−1}. . Pick a random sign.

end if

Select r uniformly at random on 0 ≤ r < 2κ. . Pick one of 2κ values r.

Select k uniformly at random on 0 ≤ k < 2`. . Pick a random k.

Let j =
(
sα− 2mk

2κ

(
d
2κ

)−1
+ 2`+m−κ r

)
mod 2`+m. . Solve for j.

return (j, k).
end procedure

Algorithm 6 Samples a pair (j, k) with argument α according to Φ(α).

procedure SamplePair(`, m, ν, d)
Let α = SampleArgument(`,m, ν, d).

return (j, k) where (j, k) = SamplePairWithArgument(α, `,m, d).
end procedure

Algorithm 7 Samples a good pair (j, k) with argument α according to Φ(α).

procedure SampleGoodPair(`, m, ν, d)
loop

Let α = SampleArgument(`,m, ν, d).

if α ≤ 2m−2 then . Condition from [3] on the pair being good.
break the loop

end if
end loop

return (j, k) where (j, k) = SamplePairWithArgument(α, `,m, d).
end procedure

B Tabulated results

In this appendix, we tabulate results from the estimates and simulations of
the new post-processing algorithm described in Sect. 6. For each value of the
logarithm length m, we tabulate the tradeoff factor s, the number of pairs n, the
estimated value of τ(n), the volume quotient v and the error when simulating
the quantum algorithm and executing classical post-processing.

The error indicates the number of times that reducing the lattice basis and
applying Babai’s algorithm failed to produce u and hence d without enumerating

21

when performing M = 103 simulations. Note that the variance in the error is
non-negligible for some choices of m, s and n. The error column should only be
regarded as providing an approximate indication of the size of the error.

m s n τ(n) v error (h)

128 1 2 4.84 8.12 · 10−34 0

128 2 3 5.13 3.63 · 10−12 0

128 3 4 5.36 1.13 · 10−3 2

128 4 5 5.49 1.25 · 103 48

128 4 6 5.62 9.62 · 10−5 7

128 5 6 5.61 6.28 · 106 –

128 5 7 5.72 3.17 · 101 15

128 5 8 5.81 1.79 · 10−4 6

128 6 8 5.86 1.02 · 106 –

128 6 9 5.94 9.73 · 10 16

128 6 10 6.00 8.57 · 10−3 5

128 7 10 5.98 8.40 · 106 –

128 7 11 6.09 9.61 · 103 –

128 7 12 6.14 7.59 13

128 7 13 6.19 7.06 · 10−3 7

128 8 13 6.17 3.20 · 109 –

128 8 14 6.27 3.78 · 107 –
...

...
...

...
...

...

128 8 17 6.36 1.30 · 10 12

128 8 18 6.43 1.59 · 10−1 8

128 10 18 6.43 2.83 · 1015 –

128 10 19 6.43 1.22 · 1014 –
...

...
...

...
...

...

128 10 31 6.79 1.36 · 101 11

128 10 32 6.79 7.06 · 10−1 10

Table 2: Results for m = 128.

m s n τ(n) v error (h)

256 1 2 4.85 2.48 · 10−72 0

256 2 3 5.11 1.87 · 10−31 0

256 3 4 5.32 5.50 · 10−17 0

256 4 5 5.50 3.01 · 10−7 1

256 5 6 5.64 2.72 · 10−2 1

256 6 7 5.75 1.93 · 104 40

256 6 8 5.82 7.19 · 10−7 1

256 7 8 5.82 2.08 · 108 –

256 7 9 5.92 6.42 · 10−1 14

256 7 10 5.99 2.47 · 1024 2

256 8 10 6.00 2.32 · 106 –

22

m s n τ(n) v error (h)

256 8 11 6.11 3.63 · 10−1 13

256 8 12 6.14 3.09 · 10−8 5

256 10 12 6.09 9.19 · 1013 –

256 10 13 6.19 9.86 · 108 –

256 10 14 6.26 8.56 · 103 –

256 10 15 6.28 4.95 · 10−2 12

256 10 16 6.35 5.09 · 10−7 6

256 20 21 6.09 9.19 · 1013 –

256 20 22 6.19 9.86 · 108 –
...

...
...

...
...

...

256 20 70 7.30 2.64 · 10 –

256 20 71 7.28 9.63 · 10−1 –

Table 3: Results for m = 256.

m s n τ(n) v error (h)

512 1 2 4.85 2.12 · 10−149 0

512 2 3 5.14 5.94 · 10−70 0

512 3 4 5.33 2.95 · 10−42 0

512 4 5 5.49 1.57 · 10−26 0

512 5 6 5.65 2.45 · 10−17 0

512 6 7 5.76 5.71 · 10−10 1

512 7 8 5.84 2.15 · 10−4 7

512 8 9 5.90 4.77 · 103 22

512 8 10 5.99 1.17 · 10−13 0

512 10 11 6.07 1.77 · 1010 89

512 10 12 6.14 1.99 · 10−3 8

512 20 21 6.55 3.81 · 1045 –

512 20 22 6.57 2.85 · 1040 –
...

...
...

...
...

...

512 20 30 6.79 3.51 –

512 20 31 6.86 1.09 · 10−4 11

512 20 32 6.84 5.34 · 10−10 10

512 30 31 6.83 2.62 · 1070 –

512 30 32 6.86 9.68 · 1067 –
...

...
...

...
...

...

512 30 59 7.26 1.59 · 10 –

512 30 60 7.28 9.60 · 10−2 –

Table 4: Results for m = 512.

m s n τ(n) v error (h)

1024 1 2 4.81 1.46 · 10−303 0

23

m s n τ(n) v error (h)

1024 2 3 5.12 4.79 · 10−147 0

1024 3 4 5.35 5.27 · 10−94 0

1024 4 5 5.49 4.51 · 10−65 0

1024 5 6 5.63 1.82 · 10−47 0

1024 6 7 5.73 5.18 · 10−35 0

1024 7 8 5.83 4.23 · 10−26 0

1024 8 9 5.93 3.15 · 10−16 0

1024 10 11 6.08 3.23 · 10−5 7

1024 20 21 6.57 2.75 · 1035 1

1024 20 22 6.57 2.38 · 1022 –

1024 20 23 6.61 3.90 · 109 38

1024 20 24 6.62 4.12 · 10−4 4

1024 30 31 6.79 3.14 · 1065 –

1024 30 32 6.83 1.21 · 1058 –
...

...
...

...
...

...

1024 30 39 6.98 5.72 · 104 20

1024 30 40 6.98 9.99 · 10−4 9

1024 40 41 7.01 4.23 · 10100 –

1024 40 42 7.05 9.47 · 1095 –
...

...
...

...
...

...

1024 40 61 7.30 6.74 · 103 –

1024 40 62 7.31 1.38 · 10−1 –

Table 5: Results for m = 1024.

m s n τ(n) v error (h)

2048 1 2 4.86 8.96 · 10−612 0

2048 2 3 5.13 3.74 · 10−301 0

2048 3 4 5.35 2.41 · 10−196 0

2048 4 5 5.49 3.97 · 10−142 0

2048 5 6 5.62 1.62 · 10−109 0

2048 6 7 5.75 4.77 · 10−87 0

2048 7 8 5.85 2.18 · 10−69 0

2048 8 9 5.92 8.61 · 10−55 0

2048 10 11 6.08 1.02 · 10−34 0

2048 20 21 6.55 1.50 · 1021 101

2048 20 22 6.59 1.06 · 10−7 9

2048 30 31 6.83 7.21 · 1056 –

2048 30 32 6.86 1.12 · 1039 –
...

...
...

...
...

...

2048 30 34 6.87 1.13 · 103 22

2048 30 35 6.89 1.27 · 10−15 6

2048 40 41 6.98 3.76 · 1087 –

2048 40 42 7.03 1.98 · 1075 –

24

m s n τ(n) v error (h)

...
...

...
...

...
...

2048 40 47 7.10 4.30 · 1011 –

2048 40 48 7.12 1.20 · 10−1 19

2048 40 49 7.14 2.70 · 10−14 8

2048 50 51 7.16 6.30 · 10129 –

2048 50 52 7.19 5.44 · 10120 –
...

...
...

...
...

...

2048 50 64 7.33 4.56 · 108 –

2048 50 65 7.36 5.02 · 10−1 –

Table 6: Results for m = 2048.

m s n τ(n) v error (h)

4096 1 2 4.83 2.59 · 10−1228 0

4096 2 3 5.15 2.19 · 10−609 0

4096 3 4 5.32 2.67 · 10−402 0

4096 4 5 5.51 3.24 · 10−296 0

4096 5 6 5.65 1.78 · 10−233 0

4096 6 7 5.75 4.19 · 10−189 0

4096 7 8 5.84 1.58 · 10−158 0

4096 8 9 5.91 7.15 · 10−132 0

4096 10 11 6.09 5.50 · 10−97 0

4096 20 21 6.52 5.08 · 10−8 8

4096 30 31 6.84 9.07 · 1038 –

4096 30 32 6.85 2.82 16

4096 30 33 6.85 7.36 · 10−39 3

4096 40 41 7.02 1.18 · 1075 –

4096 40 42 7.02 6.36 · 1046 –

4096 40 43 7.05 8.92 · 1018 47

4096 40 44 7.07 1.03 · 10−9 7

4096 50 51 7.15 5.41 · 10116 –

4096 50 52 7.20 3.88 · 1095 –
...

...
...

...
...

...

4096 50 56 7.22 2.42 · 108 25

4096 50 57 7.27 2.14 · 10−13 6

Table 7: Results for m = 4096.

m s n τ(n) v error (h)

8192 1 2 4.85 2.60 · 10−2461 0

8192 2 3 5.12 6.25 · 10−1226 0

8192 3 4 5.35 7.29 · 10−813 0

8192 4 5 5.52 1.88 · 10−604 0

25

m s n τ(n) v error (h)

8192 5 6 5.63 9.19 · 10−480 0

8192 6 7 5.74 2.57 · 10−395 0

8192 7 8 5.81 2.02 · 10−334 0

8192 8 9 5.93 6.14 · 10−286 0

8192 10 11 6.07 1.15 · 10−221 0

8192 20 21 6.54 7.97 · 10−71 0

8192 30 31 6.81 1.52 · 10−7 9

8192 40 41 7.02 1.66 · 1049 200

8192 40 42 7.03 2.48 · 10−10 8

8192 50 51 7.19 3.15 · 1091 –

8192 50 52 7.17 3.78 · 1044 –

8192 50 53 7.20 2.88 · 10−2 13

8192 50 54 7.18 3.37 · 10−49 0

Table 8: Results for m = 8192.

C Lattice enumeration

In this appendix, we describe a basic algorithm, borrowed from the work of
Kannan [4], for enumerating all vectors in an integer lattice L that lie within a
D-dimensional hypersphere of radius R centered on v ∈ ZD.

We remark that there are more efficient enumeration algorithms, see for
instance the more recent work of Micciancio and Walter [7].

C.1 Computing a reduced basis

The first step in the enumeration algorithm is to compute a reduced basis B for
the lattice L. Let the basis vectors {b1, . . . ,bD} of B be row vectors. Then

B =

b1

b2

...
bD−1
bD

 ∈ ZD×D.

To reduce the basis, algorithms ranging from e.g. Lenstra-Lenstra-Lovász
[6] to Korkin-Zolotarev [5, 8] may be used. For lattices of small to moderate
dimension these algorithms are efficient even when the lattices have large entries
as is the case in this paper.

C.2 Computing a Gram-Schmidt-orthogonalized basis

The second step is to compute a Gram-Schmidt-orthogonalized basis G for B,
and a lower triangular matrix M, such that B decomposes into

26

b1

b2

...
bD−1
bD

︸ ︷︷ ︸
=B∈ZD×D

=

1 0 · · · 0 0
µ2,1 1 · · · 0 0

...
...

. . .
...

...
µD−1,1 µD−1,2 · · · 1 0
µD,1 µD,2 · · · µD,D−1 1

︸ ︷︷ ︸

=M∈QD×D

b∗1 = b1

b∗2
...

b∗D−1
b∗D

︸ ︷︷ ︸
=G∈QD×D

or equivalently

bi = b∗i +

i−1∑
j=1

µijb
∗
j ⇔ b∗i = bi −

i−1∑
j=1

µijb
∗
j

where the projection factor µij is defined as

µij =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

.

Let u ∈ L. Then

u = cuB = (u1, . . . , uD) B =

D∑
i=1

uibi.

Since basis vector bi for 1 ≤ i ≤ D may be written

bi = b∗i +

i−1∑
j=1

µijb
∗
j

the above sum may be written

u =

D∑
i=1

uibi =

D∑
i=1

ui

b∗i +

i−1∑
j=1

µijb
∗
j

 =

D∑
j=1

uj +

D∑
i=j+1

µijui

b∗j .

where the last sum is column-wise over the matrix instead of row-wise, allowing
us to sum the coefficient of each basis vector separately. Since the basis vectors
{b1, . . . , b∗D } are orthogonal, the square norm

|u |2 =

∣∣∣∣∣∣
D∑
j=1

uj +

D∑
i=j+1

µijui

b∗j

∣∣∣∣∣∣
2

=

D∑
j=1

uj +

D∑
i=j+1

µijui

2

|b∗j |2.

C.3 The projection πk

Define the projection πk(u) of u onto {b∗k, . . . , b∗D} as

πk(u) =

D∑
j=k

uj +

D∑
i=j+1

µijui

b∗j .

27

It is then easy to see that

0 ≤ |πD(u) | ≤ |πD−1(u) | ≤ . . . ≤ |π1(u) | = |u |

since the above is equivalent to

0 ≤ |πD(u) |2 ≤ |πD−1(u) |2 ≤ . . . ≤ |π1(u) |2 = |u |2

which is equivalent to

0 ≤ u2D |b∗D |2︸ ︷︷ ︸
=πD(u)

≤ u2D |b∗D |2 + (uD−1 + µD,D−1uD)2 |b∗D−1 |2︸ ︷︷ ︸
=πD−1(u)

≤
D∑
j=k

uj +

D∑
i=j+1

µijui

2

|b∗j |2︸ ︷︷ ︸
=πk(u) for k=D−2, ..., 1

≤ |π1(u) |2 = |u |2.

This implies that for each orthogonal component we add to the projection, the
norm of the projection can only increase. This fact enables us to efficiently
enumerate the lattice recursively using the projection πk.

C.4 Recursive enumeration

To recursively enumerate all vectors in L within radius R of v, we first solve

v = cvB = (v1, . . . , vD)B

for v1, . . . , vD where cv ∈ QD since v is typically not in L. This implies that
(dv1c , . . . , dvDc) B is a vector in L close to v.

For k = D, D − 1, . . . , 1 we then compute an initial guess

ûk =

 vk −
D∑

j= k+1

µij(uj − vj)

for uk and recursively explore smaller values of k for all values uk = ûk, ûk ±
1, ûk ± 2, . . . respecting the condition that the distance |πk((cu − cv) B) | < R.

Note that if uk = ûk+ i does not respect the condition, then no larger values
of uk can respect the condition. The same rule applies for uk = ûk − i. Note
furthermore that ûk is the best initial guess for uk ∈ Z since we need

uk +

D∑
j= k+1

µijuj ≈ vk +

D∑
j= k+1

µijvj

where vk, . . . , vD ∈ Q and uk+1, . . . , uD ∈ Z are constants in order to minimize
the distance u−v = (cv−cu) B. The complete recursive procedure is described
in pseudocode in algorithm 8.

28

Algorithm 8 Enumerating all vectors u ∈ L within distance R of v.

procedure Enumerate(B = (b1, . . . , bD)T , v, R)
Compute the Gram-Schmidt-orthogonalized basis G = (b∗1, . . . , b∗D)

where b∗i = bi −
i−1∑
j=1

µijb
∗
j and µij =

〈bi, b∗j 〉
〈b∗j , b∗j 〉

.

Solve v = cvB for cv = (v1, . . . , vD).

procedure EnumerateInner(cu = (u1, . . . , uD), k)
if k = 0 then

return the set {u = cu B}. . Leaf node reached.
end if

Let uk = ûk where ûk is defined as

ûk =

 vk −
D∑

j= k+1

µij(uj − vj)

 .
if |πk((cu − cv) B) | > R then

return the empty set ∅ . Prune the search tree.
end if

Let S = EnumerateInner(cu, k − 1). . Descend into branch.

loop
Let uk = uk + 1.

if |πk((cu − cv) B) | > R then
break the loop . No need to consider greater uk.

end if

Let S = S ∪EnumerateInner(cu, k− 1). . Descend into branch.
end loop

Let uk = ûk as defined above.

loop
Let uk = uk − 1.

if |πk((cu − cv) B) | > R then
break the loop . No need to consider lesser uk.

end if

Let S = S ∪EnumerateInner(cu, k− 1). . Descend into branch.
end loop

return S.
end procedure

return EnumerateInner(0, D).
end procedure

29

Algorithm 8 accepts as input a reduced basis B for the lattice L and a vector
v ∈ L. It returns the set of all vectors within distance R of v. It is assumed that
each recursive call to EnumerateInner generates a new isolated context for
cu = (u1, . . . , uD) and k. Furthermore, it is assumed that assigning uk changes
the kth component of cu within the current context.

In practice, when searching for a discrete logarithm d, it is not necessary to
construct the set of all vectors within distance R of v. Rather, it suffices to test
for each vector whether its last component is d.

30

	Introduction
	Preliminaries
	The discrete logarithm problem
	Notation
	Earlier works
	Our contributions
	Overview

	Deriving closed-form expressions
	The probability of observing (j, k) and e
	The summation interval for a given e
	The probability of observing (j, k) over all e
	The number of pairs with argument
	The probability of observing a pair with argument

	Modelling the probability density function
	The notion of t-good pairs
	The probability (t) of observing a t-good pair
	Bounding the probability (t)
	Numerical approximations of () and (t)
	Results and analysis

	Simulating the quantum algorithm
	Verifying the original post-processing
	Results and analysis

	Our improved post-processing algorithm
	Recovering d from a set of n pairs
	Estimating (n)
	Results and analysis

	Summary and conclusion
	Algorithms
	Approximating () and (t)
	Sampling arguments and pairs

	Tabulated results
	Lattice enumeration
	Computing a reduced basis
	Computing a Gram-Schmidt-orthogonalized basis
	The projection k
	Recursive enumeration

