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Abstract: Secret key exposure is at high risk in the computing infrastructure due to the
increase in use of harmful devices. As a result, achieving forward secrecy is a preferable
feature for any cryptosystem where the lifetime of a user is divided into discrete time peri-
ods. Forward secrecy preserves the security of past periods even if the secret key is exposed.
In this work, we introduce the first lattice based forward secure dynamic group signature
scheme. The existing forward secure group signature schemes are secure in the bilinear set-
ting, and becomes insecure in the quantum computer period. We employ a complete binary
tree whose leaves are associated with discrete time periods and label the nodes in a unique
way that enables each node of the same depth to have different Hamming weight. This helps
the group manager to produce distinct certificates to distinct users. Our scheme withstands
framing attack, mis-identification attack and preserves anonymity under the learning with
errors (LWE) and short integer solution (SIS) assumptions.

Keywords: Lattice based cryptography, Dynamic group signature, forward security,
anonymity, traceability.

1 Introduction

Group signature scheme enables any group member to produce a signature anonymously on
behalf of the group and in case of misbehavior, the signer can be traced out by a designated
authority, called the Opening Authority (OA). Group signature has been introduced by
Chaum and Heyst [16] in 1991. Since then various constructions of group signature have
been proposed in classical cryptography both in the random oracle model and standard model
based on either strong RSA or bilinear map. Traceability and anonymity are the security
attributes of any group signature. Traceability ensures that only the group manager is able
to determine which member of the group issued the legitimate signature while anonymity
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guarantees that no one other than the group manager should be able to determine any
information about the signer. The confession page on Facebook can be seen as an example
of a group signature scheme. The confession given by individuals is anonymous and can be
traced out only by the administrator.

Group signature scheme can be broadly classified into two categories − static and dynamic.
In static group setting, all the signing keys of the members are fixed during setup and hence
the party handling setup phase has a high degree trust which is undesirable for practical real
life applications. To overcome this problem, dynamic group setting has received considerable
attention in the recent research community whereby a member can join the group at any-
time and receives his private signing key during the joining period. Consequently, member
identities are not fixed at the initial setup phase. Dynamic setting has two different parties
called group manager and opening authority for issuing certificates to users and to trace the
signature respectively. In case of static setting, group manager acts as the opening authority.
The security of static group signatures was formalized by Bellare et al. [7]. In 2004 Bellare,
Shi, and Zhang [9] formally defined the dynamic case. Later, in 2010, Gordon et al. [20] pre-
sented the first lattice based construction of group signature scheme followed by a number of
works based on lattices [[14], [23], [24], [28], [31]]. Lattice based cryptography is a promising
tool even in quantum era as there is no quantum algorithm yet to solve hard problems from
which lattice based cryptosystems derive their security. Recently, in 2016, Libert et al. [25]
proposed the first construction of dynamic group signature based on lattices.

Our contribution: We address the problem of designing efficient group signature scheme in
dynamic setting from lattices featuring forward secrecy. With the increasing use of damaging
tools in computing infrastructure, there is high risk in key exposure. Forward secrecy is
achieved by partitioning the lifetime of a user into distinct and discontinuous time periods.
It keeps the security of past periods secure even when the secret key of the user is exposed.
Introducing forward secrecy in a dynamic group signature scheme without blowing up the
storage, communication and computation overheads is a non-trivial task. All the existing
works for group signature schemes with forward secrecy are in bilinear setup. There is
no group signature based on lattices possessing forward secrecy so far to the best of our
knowledge. In this paper, we improvise Libert et al. [25] dynamic group signature scheme
into forward secure dynamic group signature scheme using a complete binary tree whose leaf
nodes indicate discrete time periods. We label each node of the tree in a suitable manner that
enables nodes at the same depth to have different Hamming weights. When a user joins, it is
issued a certificate for a time period by the group manager. We skillfully utilize the labeling
of this tree to generate distinct matrices for different users in issuing distinct certificates.
Similar to [25], we employ Gentry-Peikert-Vaikuntanathan Identity based encryption (GPV-
IBE) [18] and zero knowledge argument of knowledge to generate signature. We provide
a concrete security analysis of our construction against framing attack, mis-identification
attack and anonymity attack following the stronger notion of security for forward secrecy
specified by Libert et al. [26]. Our scheme achieves security in the random oracle model
under the hardness of learning with errors (LWE) problem and short integer solution (SIS)
problem. We briefly summarize the comparison of our scheme with the existing lattice based
group signature schemes [14], [20], [23], [25], [28] in Table 1 where N denotes the total
number of group members and n is the security parameter. More precisely, we note the
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Scheme Forward secure Dynamic Signature size Public key size Certificate size

GKV [20] No No N · Õ(n2) N · Õ(n2) -

CNR [14] No No N · Õ(n2) N · Õ(n2) -

LLLS [23] No No logN · Õ(n) logN · Õ(n2) -

LNW1 [28] No No logN · Õ(n) logN · Õ(n2) -

LNW2 [28] No No logN · Õ(n) logN · Õ(n) -

LLMNW [25] No Yes logN · Õ(n) logN · Õ(n2) logN · O(n)

Ours Yes Yes logN · Õ(n3) logN · Õ(n2) logN · Õ(n2)

Table 1: Comparative summary of lattice based group signature schemes

following:

(i) The certificate size in our construction is Õ(n2) logN while that of [25] is O(n) logN ,
where N is the total allowable group members and n is the security parameter. How-
ever, public key size in our scheme is same as of [25].

(ii) In contrast to [25], our scheme uses delegation process whereby the certificate once
issued at the initial time, gets updated by the group members themselves without any
interaction with the group manager.

(iii) The schemes [14], [20], [23], [28] are all static where signing keys of the members are
fixed during setup. Although the scheme [25] is dynamic and has the flexibility to
issue secret key at the joining time of a user, it does not achieve forward secrecy. On
contrary, our scheme is the only forward secure group signature scheme in dynamic
setting that derives its security from the hard problems based on lattices.

Paper Organization: The rest of the paper is organized as follows. Section 2, provides
preliminaries and background materials. Syntax and security model of dynamic forward
secure group signature scheme are presented in Section 3. Our scheme is described in Section
4. The underlying zero knowledge argument of knowledge is included in Section 5 and
security of our scheme is discussed in Section 6 respectively. Finally, the paper is concluded
in Section 7.

2 Background and Assumptions

Notations: Throughout the paper, we use the following notations unless otherwise stated:

- We use lower bold case letters for vectors and upper bold case letters for matrices.
Wherever log is used we assume that base is 2. We refer by “||” the concatenation of
strings or matrix columns and by “|” the concatenation of matrices.

- The Euclidean norm of the vector x = {x1, x2, . . . , xn} is denoted by ||x|| = (x2
1 +

x2
2 + . . .+ x2

n)1/2 and infinity norm is denoted by ||x||∞ = max
1≤i≤n

xi. The Gram-Schmidt

orthogonalization of matrix A is denoted by Ã. Transpose of a matrix A is denoted
by At.
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- The notation A←↩M represents that A is a matrix following distribution M. A vector
u ∈ Zm denotes a column vector of size m× 1 with integer entries.

- A function f(n) ∈ Õ(g(n)) indicates f(n) ∈ O(g(n) logk g(n)), for some k ∈ N. We
say that a function f is negligible in λ if f = λ−ω(1).

- Two distributions X and Y , defined over a countable domain D, are said to be statis-
tically closed if their statistical difference, 1

2

∑
α

|Pr[X = α]− Pr[Y = α]| is negligible.

- Two problems are computationally equivalent if one can be reduced to the other. In
other words, both the problems are essentially as hard or as easy.

- A vector v is said to be a “short vector” if given a basis B of an n-dimensional lattice
Λ(B), we have ||v|| ≤ γ(n)λ(Λ), where γ is an approximation factor taken to be a
function of the lattice dimension n and λ(Λ) = min

v∈Λ(B)−{0}
||v||.

Definition 1. (Lattice). Let B = {bi}i≤n be a linearly independent set of vectors of Rn. A
lattice generated by B is defined as Λ(B) = {∑

bi∈B
cibi : ci ∈ Z}, the set of all integer linear

combinations of bi ∈ B. The set B is said to be a basis of the lattice Λ.

For q ∈ N, matrix A ∈ Zn×mq and vector u ∈ Znq , we define the following three q-ary lattices
generated by A:

Λ⊥q (A) = {x ∈ Zm : Ax = 0 mod q}
Λu
q (A) = {x ∈ Zm : Ax = u mod q}

Λq(A) = {x ∈ Zm : Ats = x mod q, for some s ∈ Znq },
where m,n are integers with m ≥ n ≥ 1 .

Definition 2. (Gaussian distribution over a lattice). For a lattice Λ and a real number σ > 0,
discrete Gaussian distribution over Λ centered at 0, denoted by DΛ,σ, is defined as: ∀y ∈ Λ,
DΛ,σ[y] ∼ exp(−π||y||2/σ2), meaning that DΛ,σ[y] is proportional to exp(−π||y||2/σ2).

Lemma 2.1. For any n-dimensional lattice Λ, and for σ > 0,

(a) Prb←↩DΛ,σ
[||b|| ≤ √nσ] ≥ 1− 2−Ω(n) [6], and

(b) there exists the following probabilistic polynomial time (PPT) algorithms :

(i) GPVSample(B, σ) −→ (b ∈ Λ) [12]. On input a basis B of a lattice Λ and a

rational number σ ≥ ||B̃||Ω(
√

log n), this algorithm outputs a vector b ∈ Λ with

distribution DΛ,σ. Here B̃ is the Gram-Schmidt orthogonalization of B.

(ii) SamplePre(A,TA,u, σ) −→ (x ∈ Λu
q (A)) [18]. This algorithm takes as input a

matrix A ∈ Zn×mq , a short basis TA of Λ⊥q (A), a vector u whose preimage is to be
sampled and the standard deviation σ of the distribution from which the preimage
is to be sampled. The algorithm returns a short vector x ∈ Λu

q (A) sampled from
a distribution statistically close to DΛu

q(A),σ whenever Λu
q (A) is non empty i.e., x

satisfies the relation Ax = u mod q.



5 Forward Secure Efficient Group Signature in Dynamic Setting using Lattices

(iii) TrapGen(1n, 1m, q) −→ (A,TA) [4]. Taking 1n, 1m, q as input, this algorithm out-
puts a matrix A ∈ Zn×mq and a basis TA of Λ⊥q (A) such that A is within the

statistical distance 2−Ω(n) to U(Zn×mq ) and ||T̃A|| ≤ O(
√
n log q). Here U(Zn×mq )

is the uniform distribution of integer matrices of order n × m and T̃A is the
Gram-Schmidt orthogonalization of TA.

(iv) ExtBasis(A, Ā,TA) −→ (TA|Ā) [15]. Given a matrix A whose columns span Znq ,
a basis TA of Λ⊥q (A) and an arbitrary matrix Ā, this algorithm outputs a basis

TA|Ā of Λ⊥q (A|Ā) such that ||T̃A|Ā|| = ||T̃A||.
(v) SampleRight(A,C,R, TC, σ,u) −→ (b ∈ Z2m) [1]. On input two matrices A,C ∈

Zn×mq , a low norm matrix R ∈ Zm×m, a short basis TC ∈ Zm×m of Λ⊥q (C), a

vector u ∈ Znq and a parameter σ ≥ ||T̃C||Ω(
√

log n), this algorithm outputs a
random vector b ∈ Z2m satisfying [A|AR + C]b = u mod q with distribution
statistically close to the Gaussian distribution DΛ,σ where Λ denote the shifted
lattice {x ∈ Z2m : [A|AR + C]x = u mod q}.

(vi) BasisDel(A,R,TA, σ) −→ (B = AR−1,TB)[2]. This algorithm takes as input
a matrix A ∈ Zn×mq , a Zq-invertible matrix R ∈ Zm×m sampled from (DZm,σ)m

(distribution on matrices in Zm×m), a basis TA of Λ⊥q (A), and a real parameter

σ > 0 and outputs a matrix B = AR−1 along with a basis TB of Λ⊥q (B).

(vii) SampleRwithBasis(A) −→ (R,TB)[2]. On input a matrix A, this algorithm out-
puts a random Zq-invertible low norm matrix R and a basis TB of Λ⊥q (B) as
follows:

(1) TrapGen(1n, 1m, q) −→ (B,TB).

(2) for i = 1, 2, . . . ,m do

(a) SamplePre(B,TB,ai, σ) −→ (ri ∈ Λai
q (B)) i.e., Bri = ai mod q.

(b) Repeat step (a) until ri ∈ Zq is linearly independent of r1, r2, . . . , ri−1.

(3) Form a matrix R ∈ Zm×m with sampled ri’s as R = (r1, r2, . . . , rm).

end do
Thus BR = A mod q or B = AR−1 mod q.

2.1 Hardness Assumptions

Definition 3. (Inhomogeneous short integer solution (ISIS)[3]). Given an integer q, a matrix
A ∈ Zn×mq , a vector u ∈ Znq and a real number β, the ISIS problem is to find an integer
vector e ∈ Zm such that Ae = u mod q with ||e|| ≤ β.

Remark 1. If a bound on e is not given, then the equation Ae = u mod q is solvable in
polynomial time using Gauss elimination. The ISIS problem is to find e of the equation
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Ae = u mod q with ||e|| ≤ β which is difficult. However, if a short basis TA of Λu
q (A) is

known then ISIS problem can be efficiently solved.

Definition 4. (Short integer solution (SIS)[3]). Given an integer q, a matrix A ∈ Zn×mq , and
a real number β, the SIS problem is to find an integer vector e ∈ Zm such that Ae = 0 mod q
with ||e|| ≤ β.

Definition 5. (Learning with errors (LWE)[32]). Let χ be a distribution on Z, n ≥ 1 be any
integer and p ≥ 2 be any prime. For any s ∈ Znp , given arbitrarily many samples of the form
(a, 〈a, s〉+ e) with a uniform in Znp and e is sampled from χ, the search LWE problem is to
find s and the decisional LWE problem is to distinguish the distribution of (a, 〈a, s〉+e) from
the uniform distribution U(Znp × Zp). Here 〈a, s〉 = ats.

The search LWE and the decisional LWE are computationally equivalent [30].

2.2 Node Select Algorithm [26]

Nodes(t1 + 1, t2, G) −→ (SubsetHN). Following Libert et al. [26], we describe this procedure
in Algorithm 1 which on input a time interval (t1 + 1, t2), a complete binary tree G, returns
a subset SubsetHN of hanging nodes in the given time interval. Let the height of the binary
tree G be l. Then the number of leaves in G is T = 2l. The leaves of G denote the time
period which are binary strings. Each node in G is assigned a label in such a way that no
two nodes at the same level have the same Hamming weight. One such assignment of labels
is shown in Figure 1.

b

b b

b b b b

b b b b b b b b

0

00

000 001 011 111

0000000 0000001 0000011 0000111 0001111 0011111 0111111 1111111

depth 0

depth 1

depth 2

depth 3

01

Figure 1: Node Labeling

The root is at depth 0 and is assigned label 0. The two nodes at depth 1 are each assigned
label of 2 bits, say, 00 and 01 with different Hamming weights. The 4 = 22 nodes at depth
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2 require 22 − 1 = 3-bit each with different Hamming weights and are assigned labels, say,
000, 001, 011, 111. Similarly, all the 2p nodes at depth p can be assigned (2p− 1)-bit labels
with different Hamming weights. For a node w, let wdep denotes its depth and wnum denotes
its assigned label. Note that wnum is a binary string of length 2wdep − 1 where 0 ≤ wdep ≤ l.
There are total T = 2l time periods {1, 2, ..., T} and the period t corresponds to the t-th
node at depth l from left having (2l − 1)-bit label denoted by wt−1

num.

Let Path(u) be the set of all nodes on the path from u to the root of the tree G. If a node
w is a left or a right child of some node in Path(u) with w /∈ Path(u), then w is a hanging
node with respect to Path(u). For a node u at depth ≤ l, its left and right child are denoted
by u0, u1 respectively.
For instance, let wt1−1

num = 0000001, wt2num = 0111111 then X1 = {000, 00, 0} and X2 =
{111, 01, 0}. For all w ∈ X1, SubsetHN = {001} and for all w ∈ X2, SubsetHN = SubsetHN∪
{011}. Hence the resultant ouput is SubsetHN= {001, 011}.

Remark 2. Node Select algorithm outputs a subset of hanging nodes in such a way that the
exactly one ancestor of each leaf between the time period t1 and t2 − 1 are being selected.

Algorithm 1: Nodes(t1 + 1, t2, G)

Input : t1 + 1, t2, G
Output: SubsetHN
if(t1 + 1 > t2) then

return 0;
else
X1, X2, SubsetHN← ∅;
X1 ← X1 ∪ Path(wt1−1

num ); // wt1−1
num is the labeling of the node at period t1

X2 ← X2 ∪Path(wt2num); // wt2num is the labeling of the node at period t2 + 1
for(w ∈ X1) do

if(w1 /∈ X1 ∪X2) then
SubsetHN← SubsetHN ∪ {w1} // Here w1 is the right child of w
end if

end do
for(w ∈ X2) do

if(w0 /∈ X1 ∪X2) then
SubsetHN← SubsetHN ∪ {w0} // Here w0 is the left child of w
end if

end do
end if
return SubsetHN;
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2.3 GPV-IBE [18]

The identity based encryption (IBE) by Gentry, Peikert and Vaikuntanathan [18] is a 4-tuple
GPV-IBE= (Setup, Extract, Enc, Dec) consisting of 3 PPT algorithms Setup, Extract, Enc and
a deterministic algorithm Dec.

• GPV-IBE.Setup(1n, 1m, q) −→ (MPK, MSK). A trusted third party, called a key genera-
tion centre (KGC), runs this PPT algorithm by executing TrapGen(1n, 1m, q)→ (A,TA)
described in Lemma 1.1(b)(iii) and generates a random matrix A ∈ Zn×mq along with

a basis TA of Λ⊥q (A) such that A is within the statistical distance 2−Ω(n) to U(Zn×mq )

and ||T̃A|| ≤ O(
√
n log q). The KGC also chooses a cryptographically secure hash

function F : {0, 1}∗ → Zn×rq for any integer r ≥ 1. It sets the master public key
MPK=(A,F ,m, n, q) and the master secret key MSK=TA. The KGC makes MPK
public and keeps MSK secret to itself.

• GPV-IBE.Extract(MPK, MSK, id)−→ (skid). This PPT algorithm is run by the KGC.
The user with identity id asks for its secret to the KGC. If the identity id∈ {0, 1}∗ has
already been queried and (id, E) is in the local storage of the KGC for some E ∈ Zr×mq

then it returns E to the user. Otherwise, the KGC computes R = F(id) ∈ Zn×rq and
generates E ←↩ SamplePre(A,TA,R, σ) by using multiversion of Lemma 1.1(b)(ii),
where F ,A are extracted from MPK and TA from MSK. Here σ is chosen by the KGC
and E ∈ Zr×mq is an element of the lattice ΛR

q (A) with a distribution statistically close
to DΛR

q (A),σ. Consequently, E satisfies the equation AE = R mod q. The KGC sends
skid = E through a secure channel to the user as its secret key.

• GPV-IBE.Enc(MPK, id, b) −→ (p, c). This PPT algorithm is executed by an encrptor
to encrypt a bit string b ∈ {0, 1}r using MPK=(A,F ,m, n, q). The encryptor with
identity id ∈ {0, 1}∗

– samples s←↩ U(Znq ), x←↩ χm, y←↩ χr, where χ is the LWE distribution;

– computes p = Ats + x ∈ Zmq ;

– sets c = Rts + y + bbq/2c ∈ Zrq where R = F(id);

– finally, sends the ciphertext (p,c) over a public channel.

• GPV-IBE.Dec(skid, (p, c)) −→ (0 ∨ 1). It is a deterministic algorithm run by the de-
cryptor. The decryptor computes b′ = (b′1, b

′
2, ..., b

′
r) = c − Etp ∈ Zrq, using its own

secret key skid=E ∈ Zr×mq . For i = 1, 2, ..., r, it outputs b′i = 0 if b′i is closed to 0 mod q;
otherwise returns b′i = 1.

We have b′ = gts + y + bbq/2c − et(Ats + x) and also Ae = g mod q. So compute b′ =
(y − etx) + bbq/2c; output 1 if b′ is close to bq/2c than to 0 modulo q; otherwise output 0.
Correctness: Let δ > 0 satisfying Prx∈χm,y∈χ[|y − etx| < q

5
] > 1− δ. Then the probability

of decryption error is atmost δ.
Security: Let q ≥ 5σ(m+ 1), σ ≥ ω(

√
logm) and m ≥ 2n log q. Then the GPV-IBE scheme

is CPA-secure and anonymous, assuming that LWEq,χ is hard.
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2.4 Decomposition-Extension Technique [27]

This section describes a procedure Ext for extending and a procedure Dec-Ext for extending
as well as decomposing a vector following Ling et al. [27].
Let m be an arbitrary dimension and B be an infinity norm bound. Let B2

m = {x ∈ {0, 1}2m :
x has exactly m co-ordinates equal to j, for every j ∈ {0, 1}} and B3

mp = {x ∈ {−1, 0, 1}3mp :
x has exactly mp co-ordinates equal to j, ∀j ∈ {−1, 0, 1}} where p = blog2Bc + 1. Let
S3mp be the set of permutations of 3mp length vectors. Then for any π ∈ S3mp, we have
ŵ ∈ B3

mp ⇔ π(ŵ) ∈ B3
mp.

• Extm(w) −→ (ŵ ∈ B2
m) [25]. This algorithm takes an input a vector w ∈ {0, 1}m

with λ0, λ1 respectively the number of 0’s and number of 1’s in w. It selects a random
vector w̃ having exactly (m − λ0) many 0’s and (m − λ1) many 1’s and outputs the
extended vector ŵ = (w||w̃) ∈ B2

m. Then for any permutation π : B2
m → B2

m, we have
ŵ ∈ B2

m ⇔ π(ŵ) ∈ B2
m.

• Dec-Extm,p(w) −→ (ŵ ∈ B3
mp) [25]. On input w = (w1, w2, ..., wm), wi ∈ [−B,B],

1 ≤ i ≤ m, , this algorithm works as follows:

– First, define a finite super-decreasing sequence {Bj}pj=1 of integers by setting

B1 = dB
2
e and Bj = dB−(B1+B2+···+Bj−1)

2
e for 2 ≤ j ≤ p;

– As {Bj} is super-decreasing, for any v ∈ [−B,B], one can efficiently compute

v(1), v(2), . . . , v(p) ∈ {−1, 0, 1} such that
p∑
j=1

Bjv
(j) = v. Note that v(1), v(2), . . . , v(p) ∈

{−1, 0, 1} is a solution of the subset sum problem with weights {Bj}pj=1 and ca-
pacity v and is solvable in polynomial time when the sequence {Bj}pj=1 is super
decreasing.

– Next, define an m×mp matrix Km,B as

Km,B = Im⊗[B1|B2|...|Bp] =




B1 B2 . . . Bp

B1 B2 . . . Bp

. . .
B1 B2 . . . Bp




and set K̂m,B = [Km,B|0m×2mp] ∈ Zm×3mp.

– For the given vector w = (w1, w2, . . . , wm)t, one can efficiently compute w
(1)
i , w

(2)
i ,

. . . , w
(p)
i ∈ {−1, 0, 1} corresponding to each wi ∈ [−B,B], 1 ≤ i ≤ m, satisfying

p∑
j=1

Bjw
(j)
i = wi. Then Km,Bw′ = w for the vector w′ = (w

(1)
1 , . . . , w

(p)
1 , w

(1)
2 , . . . , w

(p)
2 ,

. . . , w
(1)
m , . . . , w

(p)
m ) ∈ {−1, 0, 1}mp.

– Append a 2mp length vector w̃ to w′, following the procedure Ext to obtain
ŵ = (w||w̃) ∈ B3

mp. As the last 2mp columns of K̃m,B are all 0, the vector ŵ

satisfies K̂m,Bŵ = Km,Bw′ = w.
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Example 1. Let B = 3 and m = 2. Consider the vector w = (w1, w2)t = (−2, 1)t where
w1, w2 ∈ [−B,B]. We generate the super-decreasing sequence {Bj}pj=1 of integers where

p = blogBc+ 1 = 2 by setting B1 = d3
2
e = 2, B2 = d3−B1

2
e = 1.

Now,
w1 = −2 = 2.w

(1)
1 + 1.w

(2)
1 gives w

(1)
1 = −1, w

(2)
1 = 0

.
Similarly,

w2 = 1 = 2.w
(1)
2 + 1.w

(2)
2 gives w

(1)
2 = 0, w

(2)
2 = 1

Therefore, w′ = (w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) = (−1, 0, 0, 1) ∈ {−1, 0, 1}mp satisfies Km,Bw

′ = w,

where Km,B = K2,3 is an m×mp matrix given by K2,3 = I2⊗ [B1, B2] =

[
2 1 0 0
0 0 2 1

]
. Next we

set,

K̂2,3 =

[
2 1 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0

]

Note that the number of −1’s, 0’s, 1’s in w′ are respectively λ−1 = 1, λ0 = 2, λ1 = 1. We
append to w′ a vector w̃ of length 2mp = 2 × 2 × 2 = 8 having mp − λ−1 = 3 many −1’s,
mp − λ0 = 2 many 0’s, mp − λ1 = 3 many 1’s following the procedure Ext and obtain
an extended vector ŵ = (w′||w̃) that satisfies K̂2,3ŵ = w. For instance, we can choose
w̃ = (0, 1,−1, 1| − 1,−1, 1, 0) and hence ŵ = (w′||w̃) = (−1, 0, 0, 1|0, 1,−1, 1| − 1,−1, 1, 0).
Then

K̂2,3ŵ =

[
2 1 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0

]

× [−1, 0, 0, 1, 0, 1,−1, 1,−1,−1, 1, 0]t

= (−2, 1)t = w

2.5 Zero Knowledge Argument Systems

In this section, we describe zero knowledge argument of knowledge (ZKAoK) for the relation
Px = v given in [25]. Here P is any matrix and v is a vector (or matrix), both publicly
available and x is a secret vector (or matrix) with some conditions to be proven in zero-
knowledge. Utilizing permutation, Stern designed in [34] a protocol that proves the Hamming
weight of a binary vector x in zero-knowledge. Ling et al. [27] extended Stern’s protocol
to prove the possession of any vector (or matrix) x, with a bound on the norm of x using
procedure Dec-Ext described in Section 2.4.
Let q ≥ 2 and D,L be two positive integers. We consider a subset VALID of all L-length
strings over {−1, 0, 1}. Let S be any finite set of permutations such that for any π ∈ S, we
can associate a permutation Tπ of L elements satisfying
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x ∈ VALID⇔ Tπ(x) ∈ VALID
If x ∈ VALID and π is uniform in S then Tπ(x) is uniform in VALID.

}
(1)

A zero knowledge argument protocol should satisfy following three properties:

• Correctness: Honest prover will convince the verifier on proving a true statement. That
is the probability of verifier accepting a true statement is 1.

• Soundness: A cheating prover cannot convince the verifier on proving a false statement.
Thus the probability of verifier accepting a false statement is negligible. In case of proof
of knowledge, soundness is replaced by a stronger notion called ”Knowledge Extractor”.
For every cheating prover there exists an algorithm ”Knowledge Extractor” which
extracts the witness involved in the interaction between the prover and the verifier.

• Zero knowledge: If the statement proven by the prover is true then the cheating verifier
learns only the fact that the statement is true.

A ZKAoK for the relation R = {(P,v) ∈ ZD×Lq × ZDq ,x ∈ VALID : Px = v mod q} is a
3-round protocol ZKAoK=(Commitment, Challenge, Response,Verification) between a prover
and a verifier, both having access to P and v, and works as follows:

1. ZKAoK.Commitment(P,v,x) −→ (COM = (C1, C2, C3)). The prover

(a) samples randomness ρ1, ρ2, ρ3 for generating commitments and r←↩ U(ZLq ), π ←↩
U(S) where S is a finite set of permutation.

(b) computes the commitment, COM = (C1, C2, C3) where C1 = CMT1(π,Pr; ρ1) uses
randomness ρ1, C2 = CMT2(Tπ(r); ρ2) uses randomness ρ2, C3 = CMT3(Tπ(x +
r); ρ3) uses randomness ρ3 and CMTi, i = 1, 2, 3, is a statistically hiding and com-
putationally binding commitment scheme where the hiding property holds even
against all-powerful receivers, while the binding property holds only for polyno-
mially bounded senders.

(c) sends COM to the verifier.

2. ZKAoK.Challenge(P,v) −→ (Ch←↩ U({1, 2, 3})). The verifier sends a challenge Ch←↩
U({1, 2, 3}) to the prover.

3. ZKAoK.Response(Ch,ρ1, ρ2, ρ3, π, Tπ, r,x)−→ (RSP). The prover sends a response RSP
computed as follows:

(a) if Ch= 1, then the prover sets tx = Tπ(x), tr = Tπ(r) and RSP= (tx, tr, ρ2, ρ3).

(b) if Ch= 2, then the prover sets π2 = π,y = x + r and RSP= (π2,y, ρ1, ρ3).

(c) if Ch= 3, then the prover sets π3 = π, r3 = r and RSP= (π3, r3, ρ1, ρ2).

Here ρ1, ρ2, ρ3 are the randomness picked by the prover in generating the commitment
CMT using the procedure ZKAoK.Commitment.

4. ZKAoK.Verification(P,v,RSP,COM,CMT1,CMT2,CMT3) −→ (VRF). On receiving the
response RSP from the prover, the verifier proceeds as follows:
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(a) if Ch= 1, then the verifier checks whether tx ∈ VALID and C2 = CMT2(tr; ρ2), C3 =
CMT3(tx + tr; ρ3), where C2, C3 are extracted from COM and tx, tr, ρ2, ρ3 from
RSP.

(b) if Ch= 2, then the verifier checks whether C1 = CMT1(π2,Py − v; ρ1), C3 =
CMT3(Tπ2(y); ρ3), using C1, C3 from COM and π2,y, ρ1, ρ3 from RSP.

(c) if Ch= 3, then the verifier checks whether C1 = CMT1(π3,Pr3; ρ1),
C2 = CMT2(Tπ3(r3); ρ2), where C1, C2 are obtained from COM and π3, r3, ρ1, ρ3

are from RSP.

In each case, the verifier outputs VRF = 1 if the verification succeeds, otherwise outputs
VRF = 0.

Remark 3. The above protocol is repeated s = ω(log n) times to achieve negligible sound-
ness error and can be made non-interactive using Fiat-Shamir heuristic [17] as a triple
Π = ({COMγ}sγ=1,Ch, {RSP}sγ=1) where Ch = H(M, {COMγ}sγ=1, aux) ∈ {1, 2, 3}s where
H : {0, 1}∗ → {1, 2, 3}s is a hash function and aux is some auxilliary information given as
input.

Theorem 2.2. [25] The protocol in Figure 2 is a statistical ZKAoK for the relation R with
perfect completeness, soundness error 2/3, and the communication cost O(L log q).
Theorem 2.3. (Improved Forking Lemma)[13] Let A be a probabilistic polynomial time
(PPT) Turing machine called “Attacker” and a PPT simulator B. Let l, q be real numbers

such that l ≤
√
q

4
. If A can find a valid signature (M,σ, h) with non-negligible probability

ε > 4
q

in less than QH number of hash queries where h = H((M,σ)) then with non-negligible

constant probability 1
96

with (1+24QH l log(2l))
ε

replays of A and B with different random oracles,
A will output (l + 1) pair wise distinct valid signatures.

3 Dynamic Forward Secure Group Signature Scheme

(FS-GS)[26]

3.1 Syntax

We describe below the syntax and notion of dynamic fully forward secure group signature
(FS-GS) following Kiayias-Yung [22].
The concept of forward secure signature was demonstrated by Anderson in [5] and was char-
acterized formally by Bellare and Miner [8]. A FS-GS=(Setup, Join, Update, Sign, Verify,
Open) scheme is run among a group manager (GM), users (Ui) and an opening authority
(OA) where FS-GS.Verify and FS-GS.Open are determinstic algorithms while FS-GS.Setup,
FS-GS.Join, FS-GS.Update, and FS-GS.Sign are probabilistic algorithms.
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Figure 2: Zero Knowledge Argument of Knowledge

Prover (P,v) Verifier (P,v)
Secret: x satisfying Px = v

Samples: Randomness ρ1, ρ2, ρ3 for COM and
r←↩ U(ZLq ), π ←↩ U(S)

Computes: C1 = CMT1(π,Pr; ρ1)
C2 = CMT2(Tπ(r); ρ2)
C3 = CMT3(Tπ(x + r); ρ3)
COM = (C1, C2, C3)

CMT−−−−−−−−→
Ch←↩ U({1, 2, 3})

Ch←−−−−−−−
if Ch = 1 then RSP = (tx = Tπ(x), tr = Tπ(r), ρ2, ρ3)

if Ch = 2 then RSP = (π2 = π,y = x + r, ρ1, ρ3)

if Ch = 3 then RSP = (π3 = π, r3 = r, ρ1, ρ2)

RSP−−−−−−−−→

if Ch = 1 then check whether tx ∈ VALID,

C2 = CMT2(tr; ρ2), C3 = CMT3(tx + tr; ρ3)

if Ch = 2 then check whether

C1 = CMT1(π2,Py− v; ρ2), C3 = CMT3(Tπ2(y); ρ3)

if Ch = 3 then check whether

C1 = CMT1(π3,Pr3; ρ1), C2 = CMT2(Tπ3(r3); ρ2)

In each case, the verifier outputs VRF = 1 if the

verification succeeds, otherwise outputs VRF = 0.
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(i) FS-GS.Setup(λ, T ) −→ (Y , SGM, SOA, St). It is run by a trusted third party, called the
key generation center (KGC), the KGC given a security parameter λ ∈ N, maximum
allowable time period T , outputs the public parameter Y , group manager’s secret key
SGM and opening authority’s private key SOA. While SGM, SOA are given to the respective
authorities through secure channels, Y is publicized. The KGC also initializes a public
state, St=(Stusers, Sttrans), consisting of a set data structure Stusers and a string data
structure Sttrans, initially set as Stusers = ∅ and Sttrans = ε.

(ii) FS-GS.Join(GM, Ui)(Y , T ) −→ (certi,t1→t2 , seci,t1→t2 , St). It is an interactive protocol
between the GM and the user Ui who wants to be a group member. This protocol
manages two Turing machines Juser and the JGM controlled respectively by Ui and
GM. These Turing machines, on input Y , T , generates a secret key seci,t1→t2 and a
certificate certi,t1→t2 in some time interval [t1, t2] ⊂ [1, T ] selected by the GM for each
user Ui. Let [Juser(Y , T ), JGM(Y , t1, t2, T, SGM, St)] denotes the execution between Ui
and GM after which Ui receives its certificate certi,t1→t2 generated by the GM through
a secure communication channel. The secret key seci,t1→t2 of Ui is generated by Ui. On
successful completion of the protocol, the user Ui sets its secret key seci,t1→t2 and the
GM updates the public state St=(Stusers, Sttrans) as Stusers = Stusers ∪ {i} and Sttrans =
Sttrans|〈i, t1, t2, transcripti〉,.

(iii) FS-GS.Update(Y , t, t2, seci,t→t2 , certi,t→t2) −→ (seci,t+1→t2 , certi,t+1→t2). It is a random-
ized algorithm executed by the user Ui. On input of Y , [t, t2] ⊆ [1, T ], a valid member-
ship certificate certi,t→t2 and corresponding membership secret seci,t→t2 , this algorithm
allows Ui to obtain its updated membership certificate certi,t+1→t2 and membership
secret seci,t+1→t2 for the subsequent time period t+ 1.

(iv) FS-GS.Sign (seci,t1→t2 , certi,t1→t2 ,Y ,M) −→ (σ). Given seci,t1→t2 , certi,t1→t2 ,Y and the
message M , the user Ui runs this algorithm and outputs a signature σ on the message
M .

(v) FS-GS.Verify(σ, t,M,Y) −→ (1∨0). The verifier, on receiving the message M , signature
σ and a time period t, invokes this algorithm using Y to check whether the produced
signature σ is a valid signature on M or not during the time period t. If σ is a valid
signature, the verifier returns 1; otherwise outputs 0.

(vi) FS-GS.Open(σ, t,M,Y , SOA, St) −→ (i ∨ ⊥). The opening authority OA with its secret
key SOA along with Y , t, σ,M and St runs this algorithm and returns either the identity
i of the group member that has produced the signature σ on M during the time period
t or an opening failure ⊥.

A state St is said to be valid if it can be attained from St=(∅, ε) by a Turing machine hav-
ing access to the oracle JGM. Every membership certificate includes a unique tag (identity)
specific to user generated by the GM .

As in Kiayias-Yung [22], we use notation, certi,t1→t2 
Y seci,t1→t2 to indicate that there ex-
ists some coin tosses $ for JGM run by the GM and Juser run by the user Ui such that for
some valid public state St, the execution of [Juser(Y , T ), JGM(Y , t1, t2, T, SGM, St)]($) issues
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〈i, seci,t1→t2 , certi,t1→t2〉 to Juser (i.e., to Ui).

Correctness: The correctness of FS-GS is as follows:

(a) No two entries of Sttrans should share the same tag and |Stusers| = |Sttrans|.
(b) If 〈i, seci,t1→t2 , certi,t1→t2〉 is obtained by Juser (i.e., Ui) on honestly running [Juser(Y , T ),

JGM(Y , t1, t2, T, SGM , St)], then certi,t1→t2 
Y seci,t1→t2 . Here Y , SGM, SOA, St are gener-
ated by executing FS-GS.Setup(λ, T ).

(c) Let certi,t1→t2 
Y seci,t1→t2 be as in (b) and 〈i, seci,t→t2 , certi,t→t2〉 for t1 ≤ t ≤ t2 is ob-
tained by running FS-GS.Update(Y , k, t2, seci,k→t2 , certi,k→t2)→ (seci,k+1→t2 , certi,k+1→t2),
successively for k = t1, t1 + 1, ..., t− 1. Then certi,t→t2 
Y seci,t→t2 and
FS-GS.Verify(FS-GS.Sign(seci,t1→t2 , certi,t→t2 ,Y ,M), t,M,Y) = 1.

(d) For any 〈i, certi,t1→t2 , seci,t1→t2〉 obtained by Ui on execution of [Juser(Y , t1, t2, T ),
JGM(Y , t1, t2, T, SGM, St)] for some valid state St, let 〈i, certi,t→t2 , seci,t→t2〉 be derived
by FS-GS.Update algorithm as in (c). Now if σ = FS-GS.Sign(seci,t→t2 , certi,t→t2 ,Y ,M),
then FS-GS.Open(σ, t,M,Y , SOA, St) = i.

3.2 Security Model

Security attributes of FS-GS scheme are formalized by three experiments (i) mis-identification
attack (ii) framing attack and (iii) anonymity attack. An adversary A invokes several oracles
accessible in the attack games and interacts with a stateful interface I that maintains the
following variables:

– StateI : a data structure representing the state of the interface I;

– U = |Stusers|: the number of currently involved members in the group;

– Sigs: a database of signatures generated by the signing oracle FS-GS.Sign;

– Ua : collection of adversarially controlled users since their admission;

– U b : collection of honest users with adversary as the dishonest group manager.

The state of the interface I is StateI = (Statepri, Statepub) where Statepri = (certi,t1→t2 , SGM, SOA)
and Statepub = (Stusers, Sttrans,Y , Stcorr) where Y , SGM, SOA and St = (Stusers, Sttrans) are gener-
ated by I on invoking FS-GS.Setup(λ, T ) and Stcorr store pairs of the form (i, t) with i ∈ Stusers
and t ∈ {1, 2, ..., T} representing i is corrupted (i.e., i ∈ U b) at time period t. Each record
stored in Sigs is of the form (i, t,M, σ) indicates the message M is signed by Ui during the
period t. The adversary has access to the transcript Sttrans of the FS-GS.Join protocol but
not to user’s membership secret for users in U b.

The adversary A is given access to the following oracles while mounting attacks.
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• Qpub,QkeyGM,QkeyOA. When adversary A invokes the oracles Qpub,QkeyGM,QkeyOA, the
interface I with StateI returns Y , SGM, SOA respectively to A by extracting them from
StateI .

• Qa−join. The adversary A can introduce users under its control (users in Ua) by
querying the oracle Qa−join. On input t1, t2 ∈ {1, 2, .., T}, the interface I executes
FS-GS.Join acting as the GM that controls the Turing machine JGM and interacts
with a malicious user Ui that controls the Turing machine Juser. If the protocol is
successful, then the interface I increments U by 1, and updates St=(Stusers, Sttrans)
adding index i of the malicious user Ui to both Ua and Stusers, and updating Sttrans as
Sttrans = Sttrans|〈i, t1, t2, transcripti〉.
• Qb−join. This query enables the adversary A to introduce honest users while acting as

the dishonest GM. The adversary A acts as the GM and handles the Turing machine
JGM in executing algorithm FS-GS.Join while the Turing machine Juser is controlled by
an honest user Ui, who wants to be a member. If the protocol successfully terminates,
then the interface I increments U by 1, adds user index i to both U b and Stusers, and
updates Sttrans as Sttrans = Sttrans|〈i, t1, t2, transcripti〉. The Interface I finally stores the
membership certificate certi,t1→t2 in a private part of StateI .

• Qsig(M, i, t) −→ (σ ∨ ⊥).On querying a tuple (M, i, t) consisting of a messageM , an in-
dex i, and a time period t, the interface I first checks if Statepri contains seci,t1→t2 , certi,t1→t2
for some t1, t2 ∈ {1, 2, ..., T} with t1 ≤ t ≤ t2 and Ui ∈ U b. If so, I calls FS-
GS.Update(Y , k, t2, seci,k→t2 , certi,k→t2) for k = t1, t1+1, ..., t to generate the pair (certi,t→t2 ,
seci,t→t2), returns a signature σ ←− FS-GS.Sign(seci,t→t2 , certi,t→t2 ,Y ,M) toA on behalf
of user Ui for the period t and updates Sigs=Sigs|〈i, t,M, σ〉. Otherwise, the interface
I returns ⊥ to A.

• Qopen(M,σ, t) −→ (i ∨ ⊥). Given a valid tuple (M,σ, t) from the adversary, the
interface I runs the opening algorithm FS-GS.Open(σ, t,M,Y , SOA, St) −→ (i ∨ ⊥) with
the current state St=(Stusers, Sttrans). Let S = {(M,σ, t) | FS-GS.Verify(σ, t,M,Y) = 1}
and Q¬Sopen denotes a restricted oracle that applies opening algorithm FS-GS.Open only
for the valid tuples (M,σ, t) which are not in S.

• Qread and Qwrite. These queries permit the adversary A to read and write the contents
in StateI = (Statepri, Statepub). By Qread queries, the adversary A can read StateI but
cannot read Statepri of StateI where membership secrets are stored after Qb−join queries.
On the other hand, Qwrite query allows the adversary A to update StateI by introducing
users in U b without altering, removing or reusing the already existing certificates.

• Qcorrupt(i, t) −→ ((certi,t→t2 , seci,t→t2) ∨ ⊥). On receiving query (i, t), where i ∈ Stusers
and t ∈ {1, 2, ..., T} from A, the interface I checks if i ∈ U b and Sttrans has a record
of the form 〈i, t1, t2, transcripti〉 for some t1, t2 ∈ {1, 2, ..., T} with t1 ≤ t ≤ t2. If not,
returns ⊥. Else, I extracts certi,t1→t2 , seci,t1→t2 from Statepri and iteratively call algo-
rithm FS-GS.Update(Y , k, t2, seci,k→t2 , certi,k→t2) for k = t1, t1 + 1, ..., t − 1 to generate
certi,t→t2 and seci,t→t2 for t > t1. It provides all these information to the adversary and
stores (i, t) in Stcorr. Once a user gets corrupted, it remains corrupted thereafter.
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The security against mis-identification, framing and anonymity attacks are formally de-
scribed below:

1. Mis-identification Attack: This attack is modeled by the experiment Expmis−id
A (λ,T) de-

scribed in Algorithm 2 between an adversary A and the interface I. In this attack,
A gets the public parameter Y by Qpub query and Statepub by Qread query. Besides,
A has the power to manipulate the opening authority given access to SOA by query-
ing QkeyOA oracle. It can also launch new dishonest members in the group by making
Qa−join queries whereby St gets updated and A receives all the secret information of
the dishonest members. The aim of the adversary A is to produce a valid signature σ∗

on a message M∗ during the time period t∗ that does not belong to any adversarially
controlled member (i.e., of Ua) endowed with the ability to sign during the period t∗.

Definition 6. A FS-GS scheme over T periods is secure against mis-identification
attack if Advmis−id

A (λ, T ) = Pr[Expmis−id
A (λ, T ) = 1] ∈ negl(λ), where negl is a negligible

function in λ.

Algorithm 2: Expmis−id
A (λ, T )

StateI = (St,Y , SGM, SOA)← FS-GS.Setup(λ, T );
(M∗, t∗, σ∗)← A(Qpub,Qa−join,Qread,QkeyOA);
if (FS-GS.Verify(σ∗, t∗,M,Y) = 0) then

return 0;
else

i = FS-GS.Open(σ∗, t∗,M∗,Y , SOA, St);
if (i /∈ Ua) then

return 1;
else

if ([〈i, t1, t2, transcripti〉 ∈ Sttrans] ∧ [t1 ≤ t∗ ≤ t2]) then
return 0;
else return 1;

end if
end if

end if

2. Framing Attack: This attack game is formally described by the experiment Expfra
A (λ) in

Algorithm 3 which is played between an adversary A and the interface I. The adver-
sary A has given the power to make the whole system including the group manager
and the opening authority both colludes against some honest user. In this attack, the
adversary A is capable to access the secret keys of both the GM and the OA. Acting
as a dishonest group manager, A can introduce honest members using Qjoin queries.
At the same moment, A can corrupt the honest members of U b by invoking Qcorrupt

queries. It also has the power to observe the system when user produce signatures with
Qsig queries, and can create dummy users with Qwrite queries. The adversary’s goal is to
(a) either frame an uncorrupted group member or (b) generate a signature that opens
to some corrupt member for a period proceeding the one where that member was not
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a group member.

Definition 7. A FS-GS scheme over T periods is secure against framing attack if
AdvfraA (λ) = Pr[Expfra

A (λ) = 1] ∈ negl(λ), where negl is a negligible function in λ.

Algorithm 3: Expfra
A (λ)

StateI = (St,Y , SGM, SOA)← FS-GS.Setup(λ,T);
(M∗, t∗, σ∗)← A(Qpub,QkeyGM,Qb−join,Qsig,Qcorrupt,Qwrite,Qread,QkeyOA);
if (FS− GS.Verify(σ∗, t∗,M,Y) = 0) then

return 0;
else

i = FS-GS.Open(σ∗, t∗,M∗,Y , SOA, St);
if([@〈i, t1, t2, transcripti〉 ∈ Sttrans such that (t1 ≤ t∗ ≤ t2)]

∨ [∃(i, t′) ∈ Stcorr such that t′ ≤ t∗]) then
return 0;

else
if(∧

(j∈Ub such that j=i)
(j, t∗,M∗, ∗) /∈ Sigs) then

return 1;
else return 0;
end if

end if
end if

3. Anonymity Attack: The formal notion of this attack game is modeled by the experiment
Expanon

A (λ, T ) outlined in Algorithm 4 between an adversary A and the interface I. It
consists of 2 stages. The first stage is the play stage, where the adversary A is allowed
to make Qwrite queries and has access to Qopen oracle. At the end of this stage, A chooses
(M∗, t∗) and two pairs (seci0,t∗→t∗0 , certi0,t∗→t∗0), (seci1,t∗→t∗1 , certi1,t∗→t∗1), consisting of a
well formed membership secret and a membership certificate for periods [t∗, t∗b,2] for
b ∈ {0, 1}, and auxiliary information aux. The interface generates a signature σ∗ using
(secid,t∗→t∗d , certid,t∗→t∗d) by flipping a fair coin d ∈ {0, 1}. The aim of the adversary A
is to output a guess d′ for the guess stage.

Definition 8. A FS-GS scheme is fully anonymous for any PPT adversary A, if
Advanon(A) := |Pr[Expanon

A (λ) = 1]− 1/2| ∈ negl(λ), where negl is a negligible function
in λ.

4 Description of Our FSGS Scheme

• FSGS.Setup(λ, T ) −→ (Y , SGM, SOA, St). Given a security parameter λ > 0 and max-
imum allowable time period T = 2l for some integer l, the KGC chooses an integer
n of size O(λ), a prime modulus q of size Õ(ln3) such that T ≤ q and an integer
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Algorithm 4: Expanon
A (λ)

StateI = (St,Y , SGM, SOA)← FS-GS.Setup(λ,T);(
aux,M∗, t∗, (seci0,t∗→t∗0 , certi0,t∗→t∗0), (seci1,t∗→t∗1 , certi1,t∗→t∗1)

)

← A(Play: Qpub, QkeyGM, Qopen, Qread, Qwrite);
if ([¬(certib,t∗→t∗b 
Y secib,t∗→t∗b ) where b ∈ {0, 1}] ∨ [certi0,t∗→t∗0 = certi1,t∗→t∗1 ]) then

return 0;
else

d← U{0, 1};
σ∗ ← FS-GS.Sign(secid,t∗→t∗d , cert∗id,t∗→t∗d ,Y ,M

∗);

d′ ← A(guess, σ∗, aux : Qpub,QkeyGM,Q
¬{(M∗,σ∗,t∗)}
open ,Qread,Qwrite);

if (d′ = d) then
return 1;

else return 0;
end if

end if

µ with µ ≥ log l. The system supports atmost N = 2µ members. The KGC sets
m = 2ndlog qe, selects real numbers σ of size Ω(

√
n log q log n), β of size σω(logm) and

γ of size
√
nω(log n). Here O,Ω, ω are the standard asymptotic notations and Õ is

as defined in Section 2. The KGC executes the following steps to generate the public
key Y , and the private keys SOA of the opening authority (OA) and SGM of the group
manager (GM) respectively and initializes the state St.

(i) It chooses random matrices M0,M1, {Ak}µk=0,D←↩ U(Zn×mq ), D0,D1 ←↩ U(Z2n×2m
q ),

F ←↩ U(Z4n×4m
q ), and a vector u ←↩ U(Znq ). It also selects three quantum secure

hash functions which will be modeled as random oracle in the security analysis
H : {0, 1}∗ → {1, 2, 3}s, H0 : {0, 1}∗ → Zn×2m

q and H2 : {0, 1}∗ → I, where s is
an integer of size ω(log n), I is a set of m ×m invertible matrices over Zq with
columns having low norm and also picks a one time signature OTS=(G,S,V),
where G,S,V are the key generation, signing and verification algorithms respec-
tively.

(ii) The KGC runs the key generation algorithm DSig.KeyGen of a digital signature
scheme DSig=(KeyGen, Sign, Verify) and generates signing-verification key pair
(usk[i], uvk[i]) for each user Ui, i ∈ [N ]. We assume that uvk table is public and
anyone can access the genuine copy of the verification key of any user.

(iii) The KGC runs TrapGen(1n, 1m, q) −→ (A,TA) and TrapGen(1n, 1m, q) −→ (B,TB)
as described in Lemma 1.1(b)(iii) in Section 2 and outputs matrices A,B ∈ Zn×mq

with short bases TA of Λ⊥q (A) and TB of Λ⊥q (B). The short basis TA is the secret
key SGM of the GM utilized to issue certificates to the new users while TB is the
master secret key SOA of the OA employed to trace the signer.

(iv) Initializes the public state St = (Stusers, Sttrans) = (∅, ε).
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(v) The KGC publishes the group public key

Y = (M0,M1,A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

and sends SOA = TB to the OA and SGM = TA to the GM through a secure
communication channel.

chooses λ, l, n, µ, q
sets m,σ, β, γ,N, T
chooses M0,M1, {Ak}µk=0,D,D0,D1,F,u
selects H,H0,OTS,DSig
generates (A,TA)←− TrapGen(1n, 1m, q)
generates (B,TB)←− TrapGen(1n, 1m, q)
sets SGM = TA , SOA = TB

sends SGM = TA to the GM and SOA = TB to the OA
sets St = (Stusers, Sttrans) = (∅, ε)

publishes Y = (M0,M1,A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

• FSGS.Join (Y , T )(GM,Ui) −→ (certi,t1→t2 , seci,t1→t2 , St). It is an interactive protocol run
between the GM and the user Ui. The GM and the user Ui runs the Turing machines
JGM and Juser respectively. On completion of the protocol, Ui receives its membership
certificate certi,t1→t2 from the GM through a secure communication channel for the time
interval [t1, t2] and fixes its secret key seci,t1→t2 while the GM updates the public state
St=(Stusers, Sttrans) (initially set to be (∅, ε) by the KGC) as follows.

(i) The user Ui samples z
(0)
i ←↩ DZ4m,σ meaning z

(0)
i is an integer column vector of

length 4m chosen from discrete Gaussian with standard deviation σ. The user Ui
computes v

(0)
i = F · z(0)

i mod q, sigi = DSig.Sign(usk[i],v
(0)
i ) and sends (v

(0)
i , sigi)

to the GM.

(ii) The GM runs DSig.Verify(uvk[i], sigi,v
(0)
i ). If the verification fails then the GM

aborts. Otherwise, if v
(0)
i is not previously used by a registered member, then

the GM chooses a µ-bit identity idi = (idi[1], idi[2], ..., idi[µ]) ∈ {0, 1}µ and a time
interval [t1, t2] ⊂ [1, T ] for user Ui and uses the secret key SGM = TA to issue a
new certificate to Ui as follows:

– The GM computes the matrix

Aidi = [A|Ā] ∈ Zn×2m
q , with Ā = A0 +

µ∑

k=1

idi[k]Ak

where A, {Ak}µk=0 are extracted from the public key Y , and idi[k] indicates
the kth bit of the identity idi of user Ui.

– It runs ExtBasis(A, Ā,TA) −→ (TA|Ā = TAidi
) as in Lemma 1.1(b)(iv) of

Section 2 to generate a short basis TAidi
of Λ⊥q (Aidi).
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– The GM samples a short vector si ←↩ DZ2m,σ. Note that by Lemma 1.1(a) in
Section 2, ||si|| ≤

√
2mσ. As ||x||∞ ≤ ||x|| ≤

√
n||x||∞ for any x ∈ Rn, we

have ||si||∞ ≤ σω(logm) = β.

– By using the short basis TAidi
of Λ⊥q (Aidi) as mentioned in Remark 1 in Section

2, the GM computes a short vector di = [di,1|di,2]t ∈ Z2m with ||di|| ≤ β,
di,1,di,2 ∈ Zm, satisfying

Aididi = u + D · ri mod q (2)

where
ri = bin(D0 · bin(v

(0)
i ) + D1 · si) mod q (3)

Here bin(v
(0)
i ) stands for the binary representation of the vector v

(0)
i . Observe

that D1 · si ∈ Z2n×1 and D0 · bin(v
(0)
i ) ∈ Z2n×1

q as bin(v
(0)
i ) is of length

4ndlog qe = 2m. We also point out that TAidi
is computable only by the

GM, as TA is known only to the GM and the µ-bit identifier idi for user Ui
is selected by the GM itself. Thus, the GM can compute the short vector di
with ||di|| ≤ β.

– The GM then runs the algorithm Nodes(t1 +1, t2, G) to identify the collection
of subset of hanging nodes SubsetHN as explained in Section 2.2 where G is
the complete binary tree of height l with T = 2l leaves each indicating a time
period. For each node w = (wnum, wdep) ∈ SubsetHN where wnum ∈ {0, 1}∗ is
the label of the node w and wdep ∈ Z, 0 ≤ wdep ≤ l, is its depth in the tree G
of height l, the GM does the following:

(a) computes the matrix

Ai,w = [Aidi |Āw] with Āw = [M0 + wt(wnum)M1|A0 +

µ∑

k=1

αkAk]

where α1α2...αµ = 0µ−δ||bin(wdep), αk ∈ {0, 1}, δ = len(bin(wdep)) denotes
the length of bin(wdep) and wt(wnum) represents the Hamming weight of
wnum;
Note that wt(wnum) and wdep helps to generate different matrices Aw

for each w ∈ SubsetHN. By our choice of labeling, Hamming weights
are different at the same level so in this case wnum ensures for different
matrices whereas wdep guarantees to get different matrices each time when
Hamming weights are same at different depth.

(b) executes ExtBasis(Aidi , Āw,TAidi
) −→ (TAidi

|Āi,w
= TAw) to generate a

short basis TAi,w
of Λ⊥q (Ai,w);

(c) samples short vector s
(0)
i,w ←↩ DZ2m,σ, i.e., ||s(0)

i,w|| ≤
√

2mσ with high

probability whereby ||s(0)
i,w||∞ ≤ σω(logm) = β as guaranteed by Lemma

1.1(a).
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(d) computes a short vector x
(0)
i,w = [x

(0)
i,w,1|x(0)

i,w,2|x(0)
i,w,3]t with ||x(0)

i,w||∞ ≤ β
satisfying

Ai,wx
(0)
i,w = u + D · bin(D0 · bin(v

(0)
i ) + D1 · s(0)

i,w) mod q (4)

by using the short basis TAw of Λ⊥q (Aw) as stated in Remark 1 of Section

2 where x
(0)
i,w,1 ∈ Z2m and x

(0)
i,w,2,x

(0)
i,w,3 ∈ Zm. Note that the knowledge

of TAidi
is required to compute TAw and knowledge of TA is required to

compute TAidi
using the algorithm ExtBasis. As the GM knows the short

basis TA, it can generate a short vector x
(0)
i,w with ||x(0)

i,w||∞ ≤ β.

– The GM computes H2(idi||0) = R
(0)
i , where R

(0)
i is a Zq- invertible matrix

of size m × m whose columns have low norm, sets C
(0)
i = A(R

(0)
i )−1, and

runs the delegation algorithm BasisDel(A,R
(0)
i ,TA, σ)−→ (C

(0)
i ,T

C
(0)
i

) as in

Lemma 1.1(b)(vi) in Section 2 to generate a short basis T
C

(0)
i

of Λ⊥q (C
(0)
i ).

(iii) The GM finally issues the membership certificate

certi,t1→t2 =
(

idi,di, si, {x(0)
i,w, s

(0)
i,w}w∈SubsetHN←Nodes(t1+1,t2,G),C

(0)
i ,T

C
(0)
i
, [t1, t2]

)

to the user Ui through a secure communication channel. The GM updates the
public state St by storing i in Stusers and transcripti = (v

(0)
i , i, uvk[i], sigi, [t1, t2]) in

Sttrans.

(iv) The user Ui verifies ||di||∞ ≤ β, ||si||∞ ≤ β satisfying Eq 2 and for all w ∈
SubsetHN ←− Nodes(t1 + 1, t2, G), ||x(0)

i,w||∞ ≤ β and ||s(0)
i,w||∞ ≤ β satisfying Eq

4. Also it checks C
(0)
i = A(H2(idi||0))−1. If any of these verification fails, then Ui

aborts. Otherwise Ui sets its secret key seci,t1→t2 = z
(0)
i and defines certi,t1→t2 as

its membership certificate corresponding to its secret key seci,t1→t2 = z
(0)
i for the

time interval [t1, t2].
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Figure 3: Join Algorithm

User Ui(usk[i], T,Y) GM (TA, uvk[i],Y)

Chooses: z
(0)
i

Computes: v
(0)
i = F.z

(0)
i mod q

sigi = DSig.Sign(usk[i],v
(0)
i )

(
v
(0)
i , sigi, uvk[i]

)

−−−−−−−−−−→
Runs: DSig.Verify(usk[i],sigi,v

(0)
i )

if (verification succeeds) then
Selects: [t1, t2] ⊂ [1, T ] and

idi = idi[1], ..., idi[µ] ∈ {0, 1}µ
Computes: Aidi = [A|Ā]
Generates: TAidi

←− ExtBasis(A, Ā,TA)
Selects: si
Computes: di satisfying Eq (2) using TAidi

Generates: SubsetHN← Nodes(t1 + 1, t2, G)
for (each w ∈ SubsetHN) do
Computes: Ai,w = [Aidi ||Āw],
Generates:

TAw ←− ExtBasis(Aidi , Āw,TAidi
),

Selects: {s(0)i,w},
Computes: {x(0)

i,w} using TAi,w
.

end do
Computes: R

(0)
i and Sets: C

(0)
i = A(R

(0)
i )−1

Generates:
(C

(0)
i ,T

C
(0)
i

)←− BasisDel(A,R
(0)
i ,TA, σ)

Stores:
certi,t1→t2 = (idi,di, si, {x(0)

i,w, s
(0)
i,w}w∈SubsetHN,

T
C

(0)
i
, [t1, t2])

Stores: transcripti = (v
(0)
i , i, uvk[i], sigi, [t1, t2])

certi,t1→t2←−−−−−−−−−
Sets: seci,t1→t2 = z

(0)
i
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• FSGS.Update(Y , t1, t2, seci,t1+(j−1)→t2 , certi,t1+(j−1)→t2) −→ (seci,t1+j→t2 , certi,t1+j→t2).
A user Ui with a valid certificate certi,t1+(j−1)→t2 and the corresponding secret key

seci,t1+(j−1)→t2 for the time interval [t1 + (j − 1), t2], computes R
(j)
i = H2(idi||j) and

executes the following steps to output the updated certificate certi,t(j)→t2 and secret

key seci,t(j)→t2 for the time interval [t(j), t2], where t(j) = t1 + j for j = 1, 2, . . . , (t2− t1).

(i) The user Ui runs BasisDel(C
(j−1)
i ,R

(j)
i ,T

C
(j−1)
i

, σ)−→ (C
(j)
i ,T

C
(j)
i

) as stated in

Lemma 1.1(b)(vi) of Section 2 to generate

C
(j)
i = A(R

(j)
i )−1

and a short basis T
C

(j)
i

of Λ⊥q (C
(j)
i ).

(ii) The user Ui randomly chooses a vector z
(j)
i from DZ4m,σ, computes v

(j)
i = F · z(j)

i

mod q and sets user’s secret for the time period [t(j), t2] as seci,t(j)→t2 = z
(j)
i .

(iii) For all w = (wnum, wdep) ∈ SubsetHN ← Nodes(t(j) + 1, t2, G) user Ui does the
following:

(a) sets

C
(j)
i,w = [C

(j)
i |C(j)

idi,w
] (5)

with C
(j)
idi,w

= [A0 +
µ∑
k=1

idi[k]Ak|M0 + wt(wnum)M1|A0 +
µ∑
k=1

αkAk]

where αk ∈ {0, 1} is the kth bit of the µ-bit string (0µ−δ||bin(wdep)).

Note that C
(0)
i,w = Ai,w.

(b) runs ExtBasis (C
(j)
i ,C

(j)
idi,w

,T
C

(j)
i

) −→ (T
C

(j)
i |C

(j)
idi,w

= T
C

(j)
i,w

) to get a short basis

T
C

(j)
i,w

of Λ⊥q (C
(j)
i,w).

(c) samples short vectors s
(j)
i,w ←↩ DZ2m,σ and using the short basis T

C
(j)
i,w

as in

Remark 1 in Section 2, computes a short vector x
(j)
i,w = [x

(j)
i,w,1|x(j)

i,w,2|x(j)
i,w,3]t

with ||x(j)
i,w||∞ ≤ β and x

(j)
i,w,1 = [x

(j)
i,w,1,1|x(j)

i,w,1,2] ∈ Z2m satisfying

C
(j)
i x

(j)
i,w,1,1 + C

(j)
idi,w

[
x

(j)
i,w,1,2|x(j)

i,w,2|x(j)
i,w,3

]t
= u + D ·m(j)

i,w mod q (6)

and C
(j)
i x

(j)
i,w,1,1 = 0 mod q

where m
(j)
i,w = bin(D0 · bin(v

(j)
i ) + D1 · s(j)

i,w) mod q (7)

where x
(j)
i,w,1 ∈ Z2m and x

(j)
i,w,2,x

(j)
i,w,3 ∈ Zm.
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(v) The updated certificate is

cert
i,t

(j)
1 →t2

=
(
idi,di, si, {x(j)

i,w, s
(j)
i,w}w∈SubsetHN←Nodes(t(j)+1,t2,G),C

(j)
i ,T

C
(j)
i
, [t(j), t2]

)

and the associated updated secret is seci,t(j)→t2 = {z(0)
i , z

(j)
i }, for j = 1, 2, ....., (t2−

t1).

(vi) The user Ui also updates the public state St=(Stusers, Sttrans).

(vii) After updating the keys for the period [t(j), t2], the algorithm erases certi,t(j−1)→t2
and seci,t(j−1)→t2 for the time period [t(j−1), t2].

• FSGS.Sign(seci,t(j)→t2 , certi,t(j)→t2 ,Y ,M) −→ (σ) : To sign a message M ∈ {0, 1}∗, the
user Ui generates a one time signature signing-verifying key-pair (VK,SK) by running
OTS·G and performs the following steps:

(i) Computes G0= H0(VK) ∈ Zn×2m
q , randomly chooses e0 ←↩ χn, e1 ←↩ χm, e2 ←↩

χ2m, where χ is a γ bounded distribution, extracts F, B from Y , z
(j)
i from

seci,t(j)→t2 , calculates

v
(j)
i = F · z(j)

i (8)

and encrypts
y

(j)
i = bin(v

(j)
i ) ∈ {0, 1}2m (9)

to generate the ciphertext GPV-IBE·Enc(B,VK,y
(j)
i )→ c

v
(j)
i

.

c
v

(j)
i

= (c1, c2) = (Bte0 + e1,G
t
0e0 + e2 + y

(j)
i bq/2c) ∈ Zmq × Z2m

q (10)

(ii) For each signature, the ith signer chooses a new random Ri ∈ Zn×nq and computes

C
(j)
i,R = RiC

(j)
i .

Note that
C

(j)
i x

(j)
i,w,1,1 = 0 mod q ⇒ RiC

(j)
i x

(j)
i,w,1,1 = 0 mod q

and thus basis T
C

(j)
i

of Λ⊥q (C
(j)
i ) serves as a basis T

C
(j)
i,R

of Λ⊥q (C
(j)
i,R). Random

matrix Ri helps in maintaining anonymity.

(iii) Rewrite Eq 5 as

C
(j)
i,w = [C

(j)
idi
|M0 + wt(wnum)M1|A0 +

µ∑

k=1

αkAk] (11)

where

C
(j)
idi

= [C
(j)
i,R|A0 +

µ∑

k=1

idi[k]Ak].

Let H and H̃ be the following (2n×m) and (4n× 2m) matrices.
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H =




1 2 4 · · · 2dlog qe−1

1 2 4 · · · 2dlog qe−1

...

1 2 4 · · · 2dlog qe−1




4n×2ndlog qe

H̃ =




1 2 4 · · · 2dlog qe−1

1 2 4 · · · 2dlog qe−1

...

1 2 4 · · · 2dlog qe−1




4n×4ndlog qe

In order to prove the knowledge of

- si,di, z
(j)
i with infinity norm bound β

- x
(j)
i,w, s

(j)
i,w, for all w ∈ SubsetHN ← Nodes(t(j) + 1, t2, G) with infinity norm

bound β

- e0, e1, e2 with infinity norm bound B

- ri,m
(j)
i,w satisfying Eq 3, Eq 7 respectively

- idi ∈ {0, 1}µ, y
(j)
i = bin(v

(j)
i ) satisfying the following system of equations:





from Eq 2 : Adi,1 + A0di,2 +

µ∑

k=1

Akidi[k]di,2 −Dri = u mod q

from Eq 3 : H · ri = D0y
(0)
i + D1si mod q

from Eq 8 and 9 : F · z(j)
i = H̃y

(j)
i mod q

from Eq 10 : c1 = Bte0 + e1 mod q

from Eq 10 : c2 = Gt
0e0 + e2 + bq/2cy(j)

i mod q

from Eq 6 and 11 : C
(j)
idi

x
(j)
i,w,1 + M0x

(j)
i,w,2 + wt(wnum)M1x

(j)
i,w,2 + A0x

(j)
i,w,3

+

µ∑

k=1

αkAkx
(j)
i,w,3 −Dm

(j)
i,w = u mod q

from Eq 7 : H ·m(j)
i,w = D0y

(j)
i + D1 · s(j)

i,w mod q





(12)

We write the above system of equations in the form Px = v where P,v are public
and x is secret, as explained in the subsequent Section 5 and employ the non-
interactive ZKAoK protocol (see Remark 3 in Section 2.5) for zero knowledge proof
of argument described in Section 2.5 to generate a proof Πi = ({COMi,k}sk=1,Chi,
{RSPi,k}sk=1) where Chi = H(M,VK, c

v
(j)
i
, {COMi,k}sk=1) ∈ {1, 2, 3}s to prove the
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knowledge of x ∈ R = {(P,v) ∈ ZD×Lq × ZDq ,x ∈ VALID : Px = v mod q}
satisfying Px = v.

(iv) Computes a one time signature, osigi = OTS.S(SK, c
v

(j)
i
,Πi) and outputs the

message signature pair (M,σ) where

σ = (VK, c
v

(j)
i
,Πi, osigi,C

(j)
i,R, [t

(j), t2]) (13)

• FSGS.Verify(σ, t,M,Y) −→ (1 ∨ 0) : The verifier parses σ as in Eq (13) and returns
1 if and only if the following holds:

(i) t ∈ [t(j), t2].

(ii) OTS.V(VK, (c
v

(j)
i
,Πi), osigi) = 1.

(iii) The proof of knowledge Πi properly verifies following ZKAoK.Verification in section
2.5.

• FSGS.Open(σ, t,M,Y , SOA, St) −→ (i ∨ ⊥) : The opening authority parses σ as in Eq
13 and executes the following steps using its secret key SOA = TB.

(i) Computes G0 = H0(VK) ∈ Zn×2m
q and use TB to compute a small norm matrix

KVK ∈ Zm×2m using the algorithm SamplePre as in Lemma 1.1(b)(ii) such that
B · KVK = G0 mod q. Note that this equation gives 2m number of equations,
each corresponds to inhomogeneous short integer solution (ISIS) problem. As the
OA has the short basis TB, it can generate the short matrix KVK by Remark 1 in
Section 2.1.

(ii) Calls GPV-IBE.Dec(KVK, cv
(j)
i

)→ bin(v) ∈ {0, 1}2m and checks if v = H̃·bin(v) mod

q appears in a record transcripti = (v, i, uvk[i], sigi, [t1, t2]) of the database Sttrans
for some i. If so, output i indicating that the user Ui is the signer. Otherwise,
outputs ⊥.
Note that if the obtained v is available as one of the records in the transcript,
then the OA will output the corresponding index i appears in the corresponding
tuple.

4.1 Efficiency

The forward secure dynamic group signature has public key sizeO(µmn log q) = Õ(mn) logN
= Õ(n2) logN . The secret key size of a group member is O(m) = Õ(n). The signa-
ture size depends upon the non-interactive argument Π. The communication cost of Π is
s · O(µm log q) = s · Õ(n) logN . Thus the total size of the signature is s · Õ(n3) logN =
Õ(n3) logN.
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5 The Underlying Zero Knowledge for Our Scheme

It is the argument system for the zero knowledge Πi. The argument system upon which our
group signature scheme is built can be summarized as follows:

1. Commom Input: C
(j)
idi
∈ Zn×2m

q ,M0,M1 ∈ Zn×mq ,Aidi ∈ Zn×2m
q ,A,A0, ...,Aµ,D ∈

Zn×mq ,D0,D1 ∈ Z2n×2m
q ,F ∈ Z4n×4m

q , H ∈ Z2n×m
q , H̃ ∈ Z4n×2m

q ,B ∈ Zn×mq ,G0 ∈
Zn×2m
q ,u ∈ Znq , c1 ∈ Zmq , c2 ∈ Z2m

q .

2. Prover’s Input: xi,w,1 ∈ [−β, β]2m,xi,w,2 ∈ [−β, β]m,xi,w,3 ∈ [−β, β]m,y
(0)
i ∈ {0, 1}2m,

y
(j)
i ∈ {0, 1}2m, s

(j)
i,w ∈ [−β, β]2m,m

(j)
i,w ∈ {0, 1}m, ri ∈ {0, 1}m, si ∈ [−β, β]2m,di,1,di,2 ∈

[−β, β]m, z
(j)
i ∈ [−β, β]4m, idi = (idi[1], idi[2], ..., idi[µ])t ∈ {0, 1}µ, e0 ∈ [−γ, γ]n, e1 ∈

[−γ, γ]m, e2 ∈ [−γ, γ]2m. Note that x ∈ [−β, β]m means x ∈ Zmq with ||x||∞ ≤ β.

3. Prover’s Goal: Convince the verifier in zero knowledge of the system of equations
given in Eq 12. To achieve this, we rewrite Eq 12 as

N0x0 + +N1x1 + N2x2 + N3x3 + N4x4 = v mod q (14)

where N0 =




An×m 0 0
0 ( D1)2n×2m 0
0 0 F4n×4m

0m×m 0m×2m 0m×4m

02m×m 02m×2m 02m×4m

02n×m 02n×2m 02n×4m

02n×m 02n×2m 02n×4m




(3m+11n)×7m

,

N1 =
[
A′|A′1|A′2| · · · |A′µ

]
(3m+11n)×(µ+1)m

, with A′i =

[
Ai

0

]

(3m+11n)×m

N2 =




(−D)n×m 0n×2m 02n×m 02n×2m

−H (D0)2n×2m 02n×m 02n×2m

0 H̃ 02n×m 02n×2m

0m×m 0m×2m 02n×m 02n×2m

02n×m bq/2c12n×2m 02n×m 02n×2m

02n×m 02n×2m ([D||0]t)2n×m 02n×2m

02n×m 02n×2m H (D0)2n×2m




(3m+11n)×6m

,

N3 =




0n×n 0n×m 0n×2m

02n×n 02n×m 02n×2m

04n×n 04n×m 04n×2m

(Bt)m×n 1m×m 0m×2m

(Gt
0)2m×n 02m×m 12m×2m

02n×n 02n×m 02n×2m

02n×n 02n×m 02n×2m




(3m+11n)×(3m+n)

,
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N4 =




0n×2m 0n×m 0n×m 0n×2m

02n×2m 02n×m 0 0
04n×2m 04n×m 04n×m 0
0m×2m 0m×m 0m×m 0
02m×2m 02m×m 02m×m 0

(C
(j)
idi

)n×2m (M0 + wt(wnum)M1)n×m (A0 +
∑µ
k=1 αkAk)n×m (−Dn×m||On×m)

02n×2m 02n×m 02n×m (D1)2n×2m




(3m+11n)×6m

,

x0 =




di,1
si

z
(j)
i


, x1 =

[
di,2||idi[1]di,2|| · · · ||idi[µ]di,2

]t
,

x2 =




ri
y

(0)
i

m
(j)
i,w

y
(j)
i


, x3 =




e0

e1

e2


, x4 =




x
(j)
i,w,1

x
(j)
i,w,2

x
(j)
i,w,3

s
(j)
i,w


, v = [u 0 0 c1 c2 u 0]t

- Let p̃ = blog γc+ 1 and p = blog βc+ 1

- B2
l is the collection of 2l length strings over the alphabet {0, 1} having equal

number of 0′s, 1′s and

- B3
l is the collection of 3l length strings over the alphabet {−1, 0, 1} having equal

number of 0′s, 1′s − 1′s.

Let N′i and x̂i for i = 0, 1, . . . , 4 are obtained as follows using the algorithm Dec.Ext

described in Section 2.4 and K̂m,β described in the same section with the property that

K̂m,βx̂ = x.

Dec-Ext7m,p(x0)→ (x̂0 ∈ B3
7mp)

N0.K̂7m,β → (N′0 ∈ Z(3m+11n)×3(7m)p
q )

Dec-Ext(µ+1)m,p(x1)→ (x̂1 ∈ B3
(µ+1)mp)

N1.K̂(µ+1)m,β → (N′1 ∈ Z(3m+11n)×3(µ+1)mp
q )

Dec-Ext6m,p(x2)→ (x̂2 ∈ B2
6mp)

[N2||0(3m+11n)×6mp] = N′2 ∈ Z(3m+11n)×2(6m)p
q )

Dec-Ext(3m+n),p̃(x3)→ (x̂3 ∈ B3
(3m+n)p̃)

N3.K̂(3m+n),γ → (N′3 ∈ Z(3m+11n)×3(3m+n)p̃
q )

Dec-Ext6m,p(x4)→ (x̂4 ∈ B3
6mp)

N4.K̂6m,β → (N′4 ∈ Z(3m+11n)×3(6m)p
q )

Next we set

• P = [N′0||N′1||N′2||N′3||N′4] ∈ Z5(3m+11n)×((52+µ)mp+(9m+3n)p̃)
q

• x = [x̂0||x̂1||x̂2||x̂3||x̂4] ∈ Z(52+µ)mp+(9m+3n)p̃
q
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• L = (52 + µ)mp+ (9m+ 3n)p̃, D = 5(3m+ 11n)

• VALID={w ∈ {−1, 0, 1}L : w = (wt
0||wt

1||wt
2||wt

3||wt
4) for some w0 ∈ B3

7mp,w1 ∈
B3

(µ+1)mp,w2 ∈ B2
6mp,w3 ∈ B3

(3m+n)p̃,w4 ∈ B3
6mp}. Then x ∈ VALID.

Note that

N0K̂m,βx̂0 + N1K̂m,βx̂1 + [N2||0(3m+11n)×6mp]x̂2 + N3K̂m,γx̂3 + N4K̂m,βx̂4

= N0x0 + N1x1 + N2x2 + N3x3 + N4x4

= v mod q.

Let us now define the set S and permutations of L elements Tπ : π ∈ S satisfying the
following conditions:

(i) z ∈ VALID⇔ Tπ(z) ∈ VALID

(ii) z ∈ VALID⇔ Tπ(z) is uniform in VALID whenever π is uniform in S.

Let us define S = S21mp × S3(µ+1)mp × S12mp × S(9m+3n)p̃ × S18mp.
Then for any randomly selected π = (π0, π1, π2, π3, π4) and z = (z0, z1, z2, z3, z4) ∈
VALID, we have Tπ(z) = (π0(z0), π1(z1), π2(z2), π3(z3), π4(z4)) satisfying above condi-
tions (i) and (ii). Finally, we invoke the algorithm ZKAoK described in 2.5 for the
relation R = {(P,v) ∈ ZD×Lq × ZDq ,x ∈ VALID : Px = v mod q} for statistical zero
knowledge argument of knowledge.

6 Security

Theorem 6.1. The group signature scheme FSGS described in Section 4 is secure against
mis-identification attack as per the security framework given in Algorithm 2 of Section 3.2
under the SIS assumption in the random oracle model.
Proof: Let A be a PPT adversary that breaks the security of our group signature scheme
FSGS with non-negligible advantage ε. We will construct a simulator B that solves the SIS
problem using A as a subroutine i.e., given Ā = [Ā1|Ā2] ∈ Zn×2m

q with m = 2ndlog qe where
Ā1, Ā2 ∈ Zn×mq and a real number β, the simulator B interacts with A and finds a vector
z ∈ Z2m with ||z|| ≤ β satisfying Āz = 0 mod q.

The simulator B acts as the KGC as well as the GM. It first chooses randomly îd←↩ U({0, 1}µ),
i∗ ←↩ U([1, δ]) and t̂ ∈ [1, T ] where δ is the cardinality of the set Ua of adversarially controlled
users since their admission and T = 2l is the maximum allowable time periods with µ ≥ log l.
The total number of users supported by the system is N = 2µ. Also B has access to a
knowledge extractor for each cheating prover by the soundness property of zero knowledge
argument of knowledge ZKAoK for the relation Px = v as described in Section 1.5 where
P, v are public and x is secret witness. The knowledge extractor extracts the witness x
involved in the interaction between the cheating prover A and the verifier B.

After repeated executions of the adversary A, let id∗ ∈ {0, 1}µ be the identifier in the
witness x revealed by the knowledge extractor of the proof system for Px = v associated
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in A’s forgery (M∗, σ∗, t∗) where σ∗ is a forged signature on a message M∗ at time t∗. The

identifier îd chosen by B at the beginning before the Setup works as a suspection of the
identifier id∗ disclosed by the knowledge extractor from σ∗ which can be used in solving the
given SIS instance. We have the following two cases.

Case I : id∗ = îd and id∗ does not belong to any user in Ua.

Case II : id∗ = îd and id∗ belongs to a certain group member in Ua but t∗ /∈ [t1, t2] where

[t1, t2] is the time period for which îd has been issued certificate.

Subcase I : r∗ 6= ri∗ where

r∗ = bin(D0bin(v∗) + D1s
∗), and

ri∗ = bin(D0bin(vi∗) + D1si∗).

Here r∗ is contained in the witness x that is disclosed to B by the knowledge
extractor for the relation Px = v associated in A’s forgery σ∗ on message M∗ at
time t∗ and ri∗ corresponds to an adversarially controlled user Ui∗ ∈ Ua. Since
the forgery σ∗ on a message M∗ at time t∗ is framed by A and Ui∗ ∈ Ua with i∗

pre selected by B before the Setup, both the vectors v∗,vi∗ ∈ Z2m
q are chosen by

A and s∗ is also selected by A while si∗ ∈ Z2m are selected by B. The matrices
D0,D1 ∈ Z2n×2m

q are part of the public parameters Y set by B.

Subcase II : r∗ = ri∗ but (bin(v∗), s∗) 6= (bin(vi∗), si∗), where r∗, ri∗ , s∗, si∗ are as above
in Subcase I.

〈A〉 Case I (id∗ = îd and id∗ does not belong to any user in Ua): The simulator B sets

the group public key Y using îd and the given SIS instance Ā = [Ā1|Ā2], Ā1, Ā2 ∈ Zn×mq ,
m = 2ndlog qe as follows.

• Setup: The simulator B runs the algorithm TrapGen(1n, 1m, q) → (L,TL) with ||T̃L|| ≤
O(
√
n log q). It samples (µ + 2) Gaussian matrices {Lk}µk=0,LD ∈ Zm×m with each matrix

having its columns sampled independently from DZm,σ where σ is of size Ω(
√
n log q log n)

and sets the matrices {Ak}µk=0, D and A as

A0 = Ā1L0 +

(
µ∑

k=1

îd[k] · L
)

(15)

Ak = Ā1 · Lk + (−1)îd[k] · L for k ∈ [1, µ] (16)

D = Ā1 · LD, (17)

A = Ā1.

Next, B picks hu ←↩ DZm,σ and sets the vector u as

u = Ā1.hu ∈ Znq .
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It sets the error bound γ of size
√
nω(log n) for encryption scheme GPV-IBE, chooses matrices

M0,M1 ←↩ U(Zn×mq ), D0,D1 ←↩ U(Z2n×2m
q ), F←↩ U(Z4n×4m

q )

at random, selects three hash functions

H : {0, 1}∗ → {1, 2, 3}s, H0 : {0, 1}∗ → Zn×2m
q and H2 : {0, 1}∗ → I

and a one time signature OTS=(G,S,V). Here s is an integer of size ω(log n) and G,S,V are
the key generation, signing and verification algorithms respectively of OTS. The simulator
B generates signing-verification key pair (usk[i], uvk[i]) for each user Ui, i ∈ [N ], by running
the key generation algorithm DSig.KeyGen of a digital signature scheme DSig=(KeyGen,
Sign, Verify). The simulator sends usk[i] to Ui secrectly and uvk[i] is made public. Finally, B
honestly generates the master secret key SOA = TB of the opening authority OA by running
TrapGen(1n, 1m, q)→ (B,TB). The simulator B sets the group public key

Y = (M0,M1,A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

and initializes the public state St = (Stusers, Sttrans) = (∅, ε).
• Query Phase : The simulator B answers to the queries Qpub, Qread, QkeyOA, hash and
Qa−join made by A as follows:

- Qpub: In response to this query, B returns Y to A.

- Qread: On this query, A gets access to the current state St.

- QkeyOA: This query enables the adversary A to receive the secret key TB of the opening
authority from B.

- Hash Queries: To respond hash queries, B maintains two lists for the hash functions
H and H0. These lists store records of the form (x, H(x)) and (y, H0(y)) for some
x,y ∈ {0, 1}∗. Fresh hash value is generated on a string x ∈ {0, 1}∗ if it is not already
been queried and stored in the corresponding hash list. Otherwise, responses are given
utilizing the respective hash lists.

- Qa−join: Simulation of this query by B is as follows:

(i) To introduce a malicious user Ui ∈ Ua, the adversary A chooses a vector v
(0)
i ∈ Znq

and computes sigi = DSig.Sign(usk[i],v
(0)
i ). Here usk[i] is the signing key of user

Ui issued by B and as user Ui is adversarially controlled, A has the knowledge of
usk[i]. The adversary A sends (v

(0)
i , sigi) to B.

(ii) To answer A’s query, B acts as the GM. The simulator B proceeds for the following

steps only if DSig.Verify(uvk[i], sigi,v
(0)
i ) = 1 where uvk[i] is the verification key of

user Ui.
(a) It chooses a fresh µ-bit identifier idi ∈ {0, 1}µ such that idi 6= îd and a time

interval [t1, t2] where t1, t2 ∈ {1, 2, . . . , T}.
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(b) It sets the matrix Aidi as

Aidi =

[
Ā1|Ā1

(
L0 +

µ∑

k=0

idi[k]Lk

)
+ hidi .L

]

where

hidi =

µ∑

k=1

(îd[k] + (−1)îd[k]idi[k]) (18)

is the Hamming distance between idi and îd as

îd[k] + (−1)îd[k]idi[k] =

{
1, îd[k] 6= idi[k]

0, îd[k] = idi[k]

The matrix Aidi has the same distribution as in the real protocol since

Aidi =

[
Ā1|Ā1

(
L0 +

µ∑

k=0

idi[k]Lk

)
+ hidi .L

]

=

[
Ā1|Ā1.

(
L0 +

µ∑

k=0

idi[k]Lk

)
+

µ∑

k=0

(
îd[k] + (−1)îd[k]idi[k]

)
· L
]

=

[
Ā1|

(
Ā1.L0 +

µ∑

k=0

îd[k] · L
)

+

µ∑

k=0

idi[k]
(
Ā1Lk + (−1)îd[k] · L

)]

=

[
A|A0 +

µ∑

k=1

idi[k]Ak

]

The simulator B finds the basis TAidi
of Λ⊥q (Aidi) = {x : Aidix = 0 mod q}

for idi 6= îd using the knowledge of TL as follows. Note that

x ∈ Λ⊥q (L)⇒ Lx = 0 mod q

⇒ hidiLx = 0 mod q ⇒ x ∈ Λ⊥q (hidiL)

Therefore, the basis TL of Λ⊥q (L) = {x : Lx = 0 mod q} serves as a basis
Thidi

L of Λ⊥q (hidiL) = {x : hidiLx = 0 mod q}.
It runs the randomized algorithm SampleRight(Ā1,hidiL, (L0 +

µ∑
k=0

idi[k]Lk),

Thidi
L, σ, 0) → b ∈ Z2m as in Lemma 1.1(b)(v) of Section 2 where b ∈ Z2m

satisfies[
Ā1|Ā1

(
L0 +

µ∑

k=0

idi[k]Lk

)
+ hidiL

]
b = 0 mod q i.e., Aidib = 0 mod q

A maximal set of linearly independent such vectors b ∈ Z2m forms a basis of
TAidi

.



Meenakshi Kansal, Ratna Dutta and Sourav Mukhopadhyay 34

(c) Next as in the original protocol B samples si ←↩ DZ2m,σ and uses TAidi
to com-

pute a short vector di = [di,1|di,2]t ∈ Z2m, with ||di||2 ≤ σ
√

2m, di,1, di,2 ∈
Zm such that Aididi = u + D · ri mod q where ri = bin(D0bin(v

(0)
i ) + D1 · si)

(d) Also for each w = (wnum, wdep) ∈ SubsetHN←↩ Nodes(t1 + 1, t2, G), the simu-
lator B computes the matrix

Ai,w = [Aidi |Āw] with Āw =

[
M0 + wt(wnum)M1|A0 +

µ∑

k=1

αkAk

]

Here G is a binary tree of height l with T = 2l leaves indicating time periods,
wnum ∈ {0, 1}∗ is the label of the node w, wdep is its depth where 0 ≤ wdep ≤ l,
and α1α2...αµ = 0µ−η||bin(wdep), αk ∈ {0, 1}, η = len(bin(wdep)) denotes the
length of bin(wdep) and wt(wnum) represents the Hamming weight of wnum.

As in the real protocol, B samples s
(0)
i,w ←↩ DZ2m,σ and uses TAidi

to compute

a short vector x
(0)
i,w =

[
x

(0)
i,w,1|x(0)

i,w,2|x(0)
i,w,3

]t
∈ Z4m, ||x(0)

i,w||2 ≤ σ
√

4m, x
(0)
i,w,1 ∈

Z2m, x
(0)
i,w,2,x

(0)
i,w,3 ∈ Zm such that

Ai,wx
(0)
i,w = u + D ·mi,w

where
mi,w = bin(D0 · bin(v

(0)
i ) + D1 · s(0)

i,w) mod q

(e) For the delegation purpose, B uses the algorithm SampleRwithBasis(A) →
(R

(0)
i ,T

C
(0)
i

) described in Lemma (1.1)b(vii) of Section 2 where H2(idi||0) =

R
(0)
i ∈ Zm×mq , C

(0)
i = A(R

(0)
i )−1 and T

C
(0)
i

is the basis of the lattice Λ⊥q (C
(0)
i ) =

{x : C
(0)
i x = 0 mod q}.

(iii) The simulator B issues the certificate,

certi,t1→t2 =
(

idi,di, si, {x(0)
i,w, s

(0)
i,w}w∈SubsetHN←Nodes(t1+1,t2,G),C

(0)
i ,T

C
(0)
i
, [t1, t2]

)

to the adversary A as a response to Qa−join query.
The simulator B finally updates the public state St by storing i in Stusers and transcripti =

(v
(0)
i , i, uvk[i], sigi, [t1, t2]) in Sttrans.

• Forgery : At the end, A outputs the forgery (M∗, σ∗, t∗) for a user U /∈ Ua where

σ∗ = (VK∗, cv∗ ,Π
∗, osig∗,C∗R, [t

∗
1, t
∗
2])

such that FSGS.Verify(σ∗, t∗,M∗,Y) = 1 with t∗ ∈ [t∗1, t
∗
2] where
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VK∗ : verification key generated by OTS · G.
cv∗ : ciphertext generated by running the algorithm GPV-IBE · Enc(B,VK∗,y∗)→

: cv∗ ∈ Zmq × Z2m
q where B is extracted from Y and y∗ = bin(v∗) ∈ {0, 1}2m

: for some v∗ ∈ Z2m
q .

Π∗ : zero knowledge proof for Px = v mod q equivalent to the system of equation
: similar to Eq 12.

osig∗ : one time signature generated by running OTS.S(SK∗, cv∗ ,Π
∗) where SK∗ is the

: signing key corresponding to the verification key VK∗ generated by OTS · G.
[t∗1, t

∗
2] : a subset of time interval [1, T ].

We explain below how B can construct a knowledge extractor for Π∗ using the improved fork-
ing lemma stated in Theorem 2.3 in Section 2.5.

Parse the proof of knowledge Π∗ as ({COM∗l }sl=1,Ch∗, {RSP∗l }sl=1) where Ch∗ = H(M∗,VK∗, cv∗ ,
{COM∗l }sl=1) ∈ {1, 2, 3}s. With high probability, A must have invoked random oracle H and
with probability atleast ε′ = ε− 3−s, the tuple (M∗,VK∗, cv∗ , {COM∗l }sl=1) coincides with the
k∗-th random oracle query of H for some k∗ ≤ QH where QH is the number of H-queries of
A and ε is the non-negligible advantage of A in breaking our FSGS group signature scheme.
Following the improved forking lemma, B runs A upto (1+24QH l log(2l))/ε′ times with l = 2
and ε′ = 3(ε−3−s). The adversary A will receive the same answer from the list corresponding
to H maintained by B for the initial run of first k∗ − 1 queries of H with the same random
tape and input. From k∗-th query onwards, A will get fresh values of H. The improved
forking lemma ensures that B can obtain a (l + 1)-fork i.e., 3-fork involving the same tu-

ple (M∗,VK∗, cv∗ , {COM∗l }sl=1) with pairwise distinct answers Ch∗, Ĉh
∗
, C̃h

∗ ∈ {1, 2, 3}s with
probability atleast 1/2. This in turn implies that there exists atleast one index j ∈ {1, 2, ..., s}
for which the j-th bits of Ch∗, Ĉh

∗
, C̃h

∗
differ with probability 1 − (21/27)s = 1 − (7/9)s.

Consequently, B has three distinct responses on the same tuple, indicating existence of a
knowledge extractor Π∗ for B. From the corresponding responses, B is able to extract wit-
nesses (d∗1,d

∗
2) ∈ Zm × Zm, id∗ ∈ {0, 1}µ, r∗ ∈ {0, 1}m from the proof of knowledge Π∗ with

||d∗1||2 ≤ σ
√
m, ||d∗2||2 ≤ σ

√
m, ||r∗||2 ≤ σ

√
m satisfying

Aid∗

[d∗1
d∗2

]
= u + D · r∗ mod q (19)

where r∗ = bin(D0 · bin(v∗) + D1 · s∗

The simulator B declares failure if either (i) id∗ is any user in Ua or (ii) id∗ 6= îd. We denote
the event by fail when any one of the above circumstances occur. With a prediction that fail
does not occur, B can solve the given SIS instance as follows:

As B samples the short vector hu ←↩ DZm,σ, in setting the vector u as u = Ā1 · hu mod q,
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and {Lk}µk=0, LD are sampled by B itself in the Setup phase, it can compute the vector

h = d∗1 + (L0 +

µ∑

k=1

îd[k]Lk)d
∗
2 − LD · r∗ − hu ∈ Zm

where d∗1,d
∗
2 and r∗ are extracted by B from the knowledge extractor. Then we have

Ā1h = Ā1d
∗
1 +

(
Ā1L0 +

µ∑

k=1

îd[k]Ā1Lk

)
d∗2 − Ā1LDr∗ − Ā1hu

= Ā1d
∗
1 +

{(
A0 −

µ∑

k=1

îd[k] · L) +

µ∑

k=1

îd[k](Ak − (−1)îd[k]L

)}
d∗2 −Dr∗ − u

(from Eq 15, Eq 16, and Eq 17)

= Ā1d
∗
1 + A0d

∗
2 +

µ∑

k=1

îd[k]Akd
∗
2 −

µ∑

k=1

(
îd[k] + (−1)îd[k] îd[k]

)
Ld∗2 −Dr∗ − u

= Ā1d
∗
1 + A0d

∗
2 +

µ∑

k=1

îd[k]Akd
∗
2 − hîd Ld∗2 −Dr∗ − u (from Eq 18)

= Ā1d
∗
1 + A0d

∗
2 +

µ∑

k=1

îd[k]Akd
∗
2 −Dr∗ − u

= Ad∗1 + A0d
∗
2 +

µ∑

k=1

id∗[k]Akd
∗
2 −Dr∗ − u

= [A|A0 +

µ∑

k=1

id∗[k]Ak]

[
d∗1
d∗2

]
−Dr∗ − u

= Aid∗

[
d∗1
d∗2

]
−Dr∗ − u

= 0 mod q ( from Eq 19)

Thus h is a short nonzero vector satisfying Ā1.h = 0 mod q with

||h||2 ≤ ||d∗1 + (L0 +

µ∑

k=1

îd[k]Lk)d
∗
2 − LD.r

∗ − hu||2

≤ ||d∗1||2 + ||L0 +
µ∑
k=1

îd[k]Lk||2 · ||d∗2||2 + ||LD||2 · ||r∗||2 + ||hu||2
≤ σ
√
m+ {m× (µ+ 1)σ

√
m}σ√m+ (m× σ√m)σ

√
m+ σ

√
m

≤ 2σ
√
m+ (µ+ 2)m2σ2

Furthermore, (ht|0m)t is a short non-zero vector in Λ⊥q (Ā) and hence serves as a solution of
the given SIS instance.
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〈B〉 Case II(id∗ = îd and id∗ belongs to certain group member in Ua but t∗ /∈ [t1, t2] where

[t1, t2] is the time period for which îd has been issued certificate)

Subcase I(r∗ 6= ri∗): The simulator B performs the following steps to set the group public

key Y using the given SIS instance Ā = [Ā1|Ā2], Ā1, Ā2 ∈ Zn×mq , m = 2ndlog qe and pre

selected îd ∈ {0, 1}µ, i∗ ∈ U([1, δ]), t̂ ∈ [1, T ].

Setup: The simulator B chooses an interval [t1, t2] ⊂ [1, T ] such that t̂ ∈ [t1, t2], picks

δ − 1 distinct identifiers id1, id2, . . . , idi∗−1, idi∗+1, . . . , idδ ∈ {0, 1}µ and sets idi∗ = îd. It also
chooses randomly d0, d1, . . . , dµ ∈ Zq such that

didi = d0 +

µ∑

k=1

idi[k].dk = 0 mod q iff i = i∗, for i ∈ {1, 2, . . . , δ} (20)

This in turn implies that dîd = didi∗ = 0 mod q. Here idi = idi[1]idi[2] . . . idi[µ] will be utilized
to respond the Qa−join query for the adversarially controlled user Ui ∈ {1, 2, . . . , δ}. Next B
runs TrapGen(1n, 1m, q)→ (C,TC), TrapGen(12n, 12m, q)→ (D1,TD1), TrapGen(1n, 1m, q)→
(B,TB). It samples matrices D0 ←↩ U(Z2n×2m

q ), M0,M1 ←↩ U(Zn×mq ). It also selects Gaus-
sian matrices S0,S1, . . . ,Sµ ←↩ Zm×m whose columns are sampled from the distribution
DZm,σ where σ is of size Ω(

√
n log q log n), also selects S←↩ U(Zm×m) such that S−1 has low

norm and sets the matrices D,A,A0, {Ak}µk=1 as
D = Ā1

A = Ā1 · S
A0 = Ā1 · S0 + d0 ·C
Ak = Ā1 · Sk + dk ·C, for k = 1, 2, · · · , µ.

M0 = (A0 +
µ∑
k=1

idi∗ [k]Ak)S and M1 = C.

The simulator B then finds a vector u ∈ Znq as follows:

– It computes Aidi∗ =

[
A|A0 +

µ∑
k=1

idi∗ [k]Ak

]

– Now B chooses two short vectors di∗,1,di∗,2 ∈ DZm,σ, sets di∗ = [di∗,1|di∗,2]t and picks
ri∗ = bin(cM) ∈ {0, 1}m and thus it sets

u = Aidi∗di∗ −D · bin(cM) (21)

i.e., Aidi∗di∗ = u + D · ri∗ (22)

The distribution of u is statistically close to U(Znq ) since A is statistically uniform and
di∗,1 ←↩ DZm,σ and di∗,2 ←↩ DZm,σ.
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The remaining parameters F ←↩ Z4n×4m, H : {0, 1}∗ → {1, 2, 3}s, H0 : {0, 1}∗ → Zn×2m
q ,

H2 : {0, 1}∗ → I, error bound γ of size
√
nω(log n), one time signature OTS = (G,S,V),

digital signature DSig = (KeyGen, Sign,Verify) are generated faithfully as in the original
protocol. Also B runs the key generation algorithm DSig.KeyGen of a digital signature
scheme DSig to generate signing-verification key pair (usk[i], uvk[i]). The simulator sends
usk[i], i ∈ [N ] to Ui secretly and uvk[i] is made public.
The simulator B sets the public key

Y = (M0,M1A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

and initializes the public state St = (Stusers, Sttrans) = (∅, ε).

Query Phase(when (i 6= i∗)): The queries Qpub, Qread, QkeyOA, and hash queries made by
A are answered by B as in Case I. The response to Qa−join query is as follows:

(i) To introduce a malicious user Ui ∈ Ua, the adversary A chooses a vector v
(0)
i ∈ Znq and

computes sigi = DSig.Sign(usk[i],v
(0)
i ). Here usk[i] is the signing key of user Ui issued

by B and as user Ui is adversarially controlled, A has the knowledge of usk[i]. The

adversary A sends (v
(0)
i , sigi) to B.

(ii) To answer A’s query, B acts as the GM and proceeds for the following steps only if

DSig.Verify(uvk[i], sigi,v
(0)
i ) = 1 where uvk[i] is the verification key of user Ui.

(a) It selects a time interval [t1, t2] ⊂ [1, T ] and chooses the i-th identifier idi ∈ {0, 1}µ
from the preselected identifiers in the Setup phase such that idi 6= idi∗ .

(b) It sets the matrix Aidi as

Aidi =

[
Ā1S|Ā1S

{
S−1

(
S0 +

µ∑

k=0

idi[k]Sk

)}
+ didi .C

]

The matrix Aidi has the same distribution as in the real protocol since

Aidi =

[
Ā1S|Ā1S

{
S−1

(
S0 +

µ∑

k=0

idi[k]Sk

)}
+ didi .C

]

=

[
A|Ā1.

(
S0 +

µ∑

k=0

idi[k]Sk

)
+

(
d0 +

µ∑

k=1

idi[k]dk

)
C

]

=

[
A|Ā1.S0 + d0 ·C +

µ∑

k=1

idi[k](Ā1Sk + dkC)

]

=

[
A|A0 +

µ∑

k=1

idi[k]Ak

]
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The simulator B finds the basis TAidi
of Λ⊥q (Aidi) = {x : Aidix = 0 mod q} for

idi 6= îd using the knowledge of TC as follows. Note that

x ∈ Λ⊥q (C)⇒ Cx = 0 mod q

⇒ didiCx = 0 mod q ⇒ x ∈ Λ⊥q (didiC)

Therefore, the basis TC of Λ⊥q (C) = {x : Cx = 0 mod q} serves as a basis TdidiC

of Λ⊥q (didiC) = {x : didiCx = 0 mod q}.
It runs the randomized algorithm SampleRight

(
Ā1S, didiC,S

−1
(
S0 +

µ∑
k=0

idi[k]Sk
)
,

TdidiC
, σ, 0

)
→ b ∈ Z2m as in Lemma 1.1(b)(v) of Section 2 where b ∈ Z2m satisfies

[
Ā1|Ā1

(
S0 +

µ∑

k=0

idi[k]Sk

)
+ didiC

]
b = 0 mod q i.e., Aidib = 0 mod q

A maximal set of linearly independent such vectors b ∈ Z2m forms a basis of TAidi
.

(c) Next as in the original protocol B samples si ←↩ DZ2m,σ and uses TAidi
to compute

a short vector di = [di,1|di,2]t ∈ Z2m, with ||di||2 ≤ σ
√

2m, di,1, di,2 ∈ Zm such

that Aididi = u + D · ri mod q where ri = bin(D0bin(v
(0)
i ) + D1 · si)

(d) Also for each w = (wnum, wdep) ∈ SubsetHN←↩ Nodes(t1 + 1, t2, G), the simulator
B computes the matrix

Ai,w = [Aidi |Āw] with Āw =

[
M0 + wt(wnum)M1|A0 +

µ∑

k=1

αkAk

]

Here G is a binary tree of height l with T = 2l leaves indicating time periods,
wnum ∈ {0, 1}∗ is the label of the node w, wdep is the depth of w with 0 ≤ wdep ≤ l,
and α1α2...αµ = 0µ−η||bin(wdep), αk ∈ {0, 1}, η = len(bin(wdep)) denotes the length
of bin(wdep) and wt(wnum) represents the Hamming weight of wnum.

As in the real protocol, B samples s
(0)
i,w ←↩ DZ2m,σ and uses TAidi

to compute a

short vector x
(0)
i,w =

[
x

(0)
i,w,1|x(0)

i,w,2|x(0)
i,w,3

]t
∈ Z4m, ||x(0)

i,w||2 ≤ σ
√

4m, x
(0)
i,w,1 ∈ Z2m,

x
(0)
i,w,2,x

(0)
i,w,3 ∈ Zm such that

Ai,wx
(0)
i,w = u + D ·mi,w

where
mi,w = bin(D0 · bin(v

(0)
i ) + D1 · s(0)

i,w) mod q.

(e) For the delegation purpose, B uses the algorithm SampleRwithBasis(A)→ (R
(0)
i ,

T
C

(0)
i

) described in Lemma (1.1)b(vii) of Section 2 where H2(idi||0) = R
(0)
i ∈

Zm×mq , C
(0)
i = A(R

(0)
i )−1 and T

C
(0)
i

is the basis of the lattice Λ⊥q (C
(0)
i ) = {x :

C
(0)
i x = 0 mod q}.
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(iii) The simulator B issues the certificate,

certi,t1→t2 =
(

idi,di, si, {x(0)
i,w, s

(0)
i,w}w∈SubsetHN←Nodes(t1+1,t2,G),C

(0)
i ,T

C
(0)
i
, [t1, t2]

)

to the adversary A as a response to Qa−join query and updates the public state St by

storing i in Stusers and transcripti = (v
(0)
i , i, uvk[i], sigi, [t1, t2]) in Sttrans.

Query Phase(when (i = i∗)): Here idi = idi∗ = îd.
The queries Qpub, Qread, QkeyOA, and hash queries made by A are answered by B as in Case
I. The response to Qa−join query is as follows:

(i) To introduce the malicious user Ui∗ ∈ Ua, the adversary A chooses a vector v
(0)
i∗ ∈ Znq

and computes sigi∗ = DSig.Sign(usk[i∗],v(0)
i∗ ) using the signing key usk[i∗] of user Ui∗

issued by B. A user Ui∗ is adversarially controlled, A has the knowledge of usk[i∗]. The

adversary A sends (v
(0)
i∗ , sigi∗) to B.

(ii) To answer A’s query, B acts as the GM. The simulator B proceeds for the following

steps only if DSig.Verify(uvk[i∗], (v(0)
i∗ , sigi∗)) = 1 where uvk[i∗] is the verification key of

the user Ui∗ .
(a) It selects a time interval [t1, t2] where t1, t2 ∈ {1, 2, . . . , T} and chooses the i-th

identifier idi∗ ∈ {0, 1}µ such that idi∗ = îd as set in the Setup phase.

(b) It sets the matrix Aidi∗ as

Aidi∗ =

[
Ā1S|Ā1

(
S0 +

µ∑

k=0

idi∗ [k]Sk

)]

The matrix Aidi∗ has the same distribution as in the real protocol since

Ā1

(
S0 +

µ∑

k=0

idi∗ [k]Sk

)

= Ā1

(
S0 +

µ∑

k=0

idi∗ [k]Sk

)
+ didi∗ .C

= Ā1.

(
S0 +

µ∑

k=0

idi∗ [k]Sk

)
+

(
d0 +

µ∑

k=1

idi∗ [k]dk

)
C

= Ā1.S0 + d0 ·C +

µ∑

k=1

idi∗ [k](Ā1Sk + dkC)
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and consequently,

Aidi∗ =

[
Ā1S|Ā1.S0 + d0 ·C +

µ∑

k=1

idi∗ [k](Ā1Sk + dkC)

]

=

[
A|A0 +

µ∑

k=1

idi∗ [k]Ak

]

(c) As Aidi∗ is independent of C, the simulator B generates the certificate by making
use of the vectors di∗ = [di∗,1|di∗,2]t, where di∗,1,di∗,2 ←↩ DZm,σ, cM ∈ Z2n

q .

On receiving v
(0)
i∗ from A, the simulator B computes

ci∗ = cM −D0 · bin(v
(0)
i∗ ) mod q.

It runs
SamplePre(D1,TD1 , ci∗ , σ)→ si∗ ∈ Λci∗

q (D1)

using TD1 to sample short vectors si∗ ←↩ DΛ
ci∗
q (D1),σ satisfying D1si∗ = ci∗ mod

q i.e.,
D1.si∗ = cM −D0 · bin(v

(0)
i∗ ) mod q.

Note that in the Setup phase, we set ri∗ as

ri∗ = bin(cM) = bin(D0 · bin(v
(0)
i∗ ) + D1si∗).

(d) Also, A′ =

[
A0 +

µ∑
k=1

idi∗ [k]Ak|M0 + wt(wnum)M1

]
, where

M0 = (A0 +

µ∑

k=1

idi∗ [k]Ak)S and M1 = C.

Note that basis of M1 is a superset of wt(wnum)M1. Then using SampleRight(A0 +
µ∑
k=1

idi∗ [k]Ak,wt(wnum)M1,S,Twt(wnum)M1 , σ, 0) → (b ∈ Z2m). A maximal linearly

independent set of such vectors b ∈ Z2m forms a basis of TA′ . The algorithm
ExtBasis(Aidi∗ ,A

′,TA′)→ TAidi∗ |A
′ = TAidi∗ ,w

′ .

Now, for each w = (wnum, wdep) ∈ SubsetHN←↩ Nodes(t1 + 1, t2, G), the simulator
B computes the matrix

Ai∗,w = [Aidi∗ |Āw] with Āw =

[
M0 + wt(wnum)M1|A0 +

µ∑

k=1

αkAk

]

Here G is a binary tree of height l with T = 2l leaves indicating time periods,
wnum ∈ {0, 1}∗ is the label of the node w, wdep is the depth of the w with 0 ≤
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wdep ≤ l, and α1α2...αµ = 0µ−η||bin(wdep), αk ∈ {0, 1}, η = len(bin(wdep)) denotes
the length of bin(wdep) and wt(wnum) represents the Hamming weight of wnum.

As in the real protocol, B samples s
(0)
i∗,w ←↩ DZ2m,σ and uses TAidi∗ ,w

′ to compute

a short vector x
(0)
i∗,w =

[
x

(0)
i∗,w,1|x(0)

i∗,w,2|x(0)
i∗,w,3

]t
∈ Z4m, ||x(0)

i∗,w||2 ≤ σ
√

4m, x
(0)
i∗,w,1 ∈

Z2m, x
(0)
i∗,w,2,x

(0)
i∗,w,3 ∈ Zm such that

Ai∗,wx
(0)
i∗,w = u + D ·mi∗,w

where
mi∗,w = bin(D0 · bin(v

(0)
i∗ ) + D1 · s(0)

i∗,w) mod q.

(e) For the delegation purpose, B finds R
(0)
i∗ = H2(idi||0) and uses the algorithm

SampleRwithBasis(A) → (R
(0)
i∗ ,TC

(0)
i∗

) described in Lemma (1.1)b(vii) of Section

2 where R
(0)
i∗ ∈ Zm×mq , C

(0)
i∗ = A(R

(0)
i∗ )−1 and T

C
(0)
i∗

is the basis of the lattice

Λ⊥q (C
(0)
i∗ ) = {x : C

(0)
i∗ x = 0 mod q}.

Finally, B returns the certificate,

certi∗,t1→t2 =
(

idi∗ ,di∗ , si∗ , {x(0)
i∗,w, s

(0)
i∗,w}w∈SubsetHN←Nodes(t1+1,t2,G),C

(0)
i∗ ,TC

(0)
i∗
, [t1, t2]

)

to the adversary A and updates the public state St by storing i∗ in Stusers and transcripti∗ =

(v
(0)
i∗ , i

∗, uvk[i∗], sigi∗ , [t1, t2]) in Sttrans.

Forgery : At the end, A outputs the forgery (M∗, σ∗, t∗) for a user U /∈ Ua where

σ∗ = (VK∗, cv∗ ,Π
∗, osig∗,C∗R, [t

∗
1, t
∗
2])

such that FSGS.Verify(σ∗, t∗,M∗,Y) = 1 with t∗ ∈ [t∗1, t
∗
2] but t∗ /∈ [t1, t2] where [t1, t2] is the

time period for which id∗ = îd has been issued a certificate. The notations VK∗, cv∗ , Π∗,
osig∗, [t∗1, t

∗
2] are as described in Case I. As B can construct a knowledge extractor for the

proof of knowledge Π∗ as explained in Case I, the simulator B is able to extract witnesses
(d∗1,d

∗
2) ∈ Zm ×Zm, id∗ ∈ {0, 1}µ, r∗ ∈ {0, 1}m from Π∗ with ||d∗1||2 ≤ σ

√
m, ||d∗2||2 ≤ σ

√
m,

||r∗||2 ≤ σ
√
m satisfying Eq 19.

The simulator B declares failure in the following situations:

(i) No membership certificate is issued by B for the identifier id∗ ∈ {0, 1}µ on the Qa−join
query by A i.e., id∗ does not belong to any user in Ua.

(ii) The identifier id∗ ∈ {0, 1}µ belongs to some user i in Ua, but this user is not the one

introduced at the i∗-th Qa−join query i.e., i∗ 6= î and id∗ 6= îd.

(iii) The knowledge extractor reveals vectors bin(v∗) ∈ {0, 1}2m and s∗ ∈ Z2m with r∗ = ri∗

where bin(vi∗) and si∗ are the vectors involved in the i∗-th Qa−join query i.e., id∗ = îd
and r∗ = ri∗ .
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We denote the event by fail when any one of the above circumstances occur. With a pre-
diction that fail does not occur, in which case id∗ = îd = idi∗ belongs to user i∗ ∈ Ua, but
r∗ 6= ri∗ B can solve the given SIS instance as follows:

The simulator B computes the vector

h = S(d∗1 − di∗,1) + (S0 +

µ∑

k=1

îd[k]Sk)(d
∗
2 − di∗,2) + (ri∗ − r∗)

using îd pre selected by B before the Setup and S, {Sk}µk=0,di∗,1,di∗,2, ri∗ set by B itself during
the Setup phase and d∗1, d∗2, r∗ are extracted by B using the knowledge extractor from the
witness x of the proof of knowledge Π∗ of Px = v associated in the forgery σ∗ on message
M∗ at time t∗. Also ||d∗1||2 ≤ σ

√
m, ||d∗2||2 ≤ σ

√
m and ||r∗||2 ≤ σ

√
m. Then

Ā1h = Ā1S(d∗1 − di∗,1) + Ā1(S0 +

µ∑

k=1

îd[k]Sk)(d
∗
2 − di∗,2) + Ā1(ri∗ − r∗)

= A(d∗1 − di∗,1) +

(
A0 +

µ∑

k=1

îd[k]Ak

)
(d∗2 − di∗,2) + Ā1(ri∗ − r∗)

(from Eq 20 and id∗ = îd = idi∗)

=

[
A|
(

A0 +

µ∑

k=1

îd[k]Ak

)]
[d∗1,d

∗
2]t −

[
A|
(

A0 +

µ∑

k=1

îd[k]Ak

)]
[di∗,1,di∗,2]t

+ Ā1(ri∗ − r∗)

= Aid∗

[
d∗1
d∗2

]
−Aidi∗

[
di∗,1
di∗,2

]
+ Ā1(ri∗ − r∗)

= (u + Dr∗)− (u + Dri∗) + Ā1(ri∗ − r∗) (from Eq 19)

= D(r∗ − ri∗) + Ā1(ri∗ − r∗)

= Ā1(r∗ − ri∗) + Ā1(ri∗ − r∗)

= 0 mod q

Thus h is short vector satisfying Ā1 · h = 0 mod q with

||h||2 ≤ ||S(d∗1 − di∗,1) + (S0 +

µ∑

k=1

îd[k]Sk)(d
∗
2 − di∗,2) + (ri∗ − r∗)||

≤ 2mσ2 +m3/2σ(µ+ 1)2σ
√
m+ 2σ

√
m

≤ 2mσ2(1 +m(µ+ 2)) + 2σ
√
m.

Note that r∗ 6= ri∗ , ensures that h 6= 0 with probability. It gives, (ht|0m)t is a short
vector in Λ⊥q (Ā) and hence a solution of the given SIS instance.
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Subcase II(r∗ = ri∗ but (bin(v∗), s∗) 6= (bin(vi∗), si∗)):

Setup: The simulator B generates the group public key

Y = (M0,M1,A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

faithfully as in the original protocol except the matrices D0,D1 ←↩ U(Z2n×2m
q ) which are set

by B as follows: It samples Ā
′ ←↩ U(Zn×2m

q ), randomly selects Q←↩ Z2m×2m whose columns

are sampled from DZ2m,σ and sets D0 =
[

Ā
Ā
′

]
∈ Z2n×2m

q and D1 = D0.Q mod q. The dis-

tribution of each of the matrices D0,D1 is statistically close to U(Z2n×2m
q ). The simulator

initializes the public state St = (Stusers, Sttrans) = (∅, ε).

Query Phase : The respond to A’s queries for Qpub, Qread, QkeyOA, and hash queries are
simulated by B as in Case I whereas Qa−join queries are answered as in the original protocol.

Forgery : Let (M∗, σ∗, t∗) be the forgery of A for a user U /∈ Ua where

σ∗ = (VK∗, cv∗ ,Π
∗, osig∗,C∗R, [t

∗
1, t
∗
2])

such that FSGS.Verify(σ∗, t∗,M∗,Y) = 1 with t∗ ∈ [t1, t2] where VK∗, cv∗ , Π∗, osig∗, [t∗1, t
∗
2]

are as described in Case I.
Using improved forking lemma explained in Theorem 2.3 of Section 2, the simulator B has
access to a knowledge extractor as described in case I. From the knowledge extractor B
extracts bin(v∗) ∈ {0, 1}2m, s∗ ∈ Z2m, r∗ ∈ {0, 1}m.
The simulator B declares failure if r∗ 6= ri∗ .
We denote the event by fail when the above situation occurs. When fail does not occur, B
solves the given SIS instance by computing the vector

h = bin(v∗)− bin(vi∗) + Q.(s∗ − si∗) ∈ Z2m.

Observe that h ∈ Λ⊥q (D0) is a short vector and

D0.h = (D0bin(v∗) + D0Qs∗)− (D0bin(vi∗) + D0Qsi∗)

= (D0bin(v∗) + D1s
∗)− (D0bin(vi∗) + D1si∗) (as by Setup D1 = D0Q)

= 0 mod q ( as r∗ = ri∗),

which in turn implies that

[ Ā

Ā
′

]
h = 0 mod q

⇒
[ Āh

Ā
′
h

]
= 0 mod q

⇒ Āh = 0 mod q

⇒ h ∈ Λ⊥q (Ā)
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Further h ∈ Z2m is nonzero with high probability since bin(v∗) 6= bin(vi∗) and

||h||2 ≤ ||bin(v∗)− bin(vi∗) + Q · (s∗ − si∗)||2

≤ (||bin(v∗)||2 + ||bin(vi∗||2) + ||Q||2(||s∗||2 + ||si∗||2)

≤ 2
3
2m

1
2σ + 2

7
2m2σ2

Given the type of attack is completely independent of i∗ ←↩ U([1, δ]), pre selected by B from
adversary’s view, the probability of correct attack is 1/3. In Case I, the correctly guess of

îd ∈ {0, 1}µ has probability 1/(N − δ) ≥ 1/N and for Case II, the probability of correctly
guess i∗ ∈ {1, 2, . . . , δ} is 1/δ. Hence Pr[¬fail] ≥ 1/{3TMax(N, δ)} ≥ 1/(3TN).

Theorem 6.2. The group signature FSGS scheme described in Section 4 is secure against
framing attack as per the security framework given in Algorithm 3 of Section 3.2 under the
SIS assumption in the random oracle model.
Proof: Let A be any PPT adversary to our group signature scheme FSGS with non-negligible
advantage ε. We show that there exists a simulator B that solves the SIS problem using
the non-negligible advantage of A i.e., given Ā = [Ā1|Ā2] ∈ Z4n×4m

q , Ā1, Ā2 ∈ Z4n×2m
q ,

m = 2ndlog qe, a real number β, the simulator B finds a vector z ∈ Λ⊥q (Ā) such that
||z|| ≤ β using A as a subroutine.
Setup: The simulator B acts as the KGC and honest users while the adversary A acts as the
group manager. First, B chooses i∗ ←↩ U({1, 2, ..., qb}) with a guess that the forged signature
produced by A reveals bin(v∗) coincides with bin(vi∗) of i∗-th user in U b and also chooses
t̂ ←↩ U({1, 2, ..., T}) where qb is the cardinality of the set U b of honest users with A as the
dishonest group manager and T = 2l is allowable time periods with T ≤ q and N = 2µ is
maximum number of group members with µ ≥ log l.
Also B has access to a knowledge extractor for every cheating prover for ZKAoK of the
relation Px = v mod q associated in A’s forgery (M∗, σ∗, t∗) where σ∗ is a forged signature
σ∗ on a message M∗ at time t∗.
The simulator B faithfully generates the group public key

Y = (M0,M1A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ)

as in the original protocol except the matrix F←↩ U(Z4n×2m
q ) which is set by B as F = Ā ∈

Z4n×2m
q . It also initializes the public state St = (Stusers, Sttrans) = (∅, ε) and sets SOA = TB,

SGM = TA where TA,TB are the secret keys of the group manager and the opening authority
respectively.

•Query Phase : The adversaryA queries the oracles Qpub,QKeyGM,Qb−join,Qsig,Qcorrupt,Qwrite,
Qread and QKeyOA which are simulated by B as follows:

• Qpub: In response to this query, B returns Y to A.

• QkeyGM and QkeyOA: If A chooses to corrupt the group manager and the opening au-
thority, B passes SGM and SOA generated honestly in the Setup phase to A.
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• Qb−join: To introduce a new member in Ui ∈ U b, the adversaryA acting as the dishonest
group manager B and handles the Turing machine JGM of FSGS.Join while the simulator
B faithfully runs the Turing machine Juser of FSGS.Join on behalf of the user. If the
protocol successfully terminates, then B increments U by 1, adds user index i to both
U b and Stusers, and updates Sttrans as Sttrans = Sttrans|〈i, t1, t2, transcripti〉. The simulator
B finally stores the membership certificate certi,t1→t2 in a private part of StateI .

• Qsig: On querying a tuple (M, i, t) consisting of a message M , an index i, and a time
period t, the simulator B first checks if Statepri contains seci,t1→t2 , certi,t1→t2 for some
t1, t2 ∈ {1, 2, ..., T} with t1 ≤ t ≤ t2 and Ui ∈ U b. If so, B calls FSGS.Update(Y , k, t2,
seci,k→t2 , certi,k→t2) for k = t1, t1 + 1, ..., t to generate the pair (certi,t→t2 , seci,t→t2),
returns a signature σ ←− FSGS.Sign(seci,t→t2 , certi,t→t2 ,Y ,M) to A on behalf of user
Ui for the period t and updates Sigs=Sigs|〈i, t,M, σ〉. Otherwise, the simulator B
returns ⊥ to A.

• Qcorrupt: On receiving query (i, t), where i ∈ Stusers and t ∈ {1, 2, ..., T} from A, the
simulator B checks if Ui ∈ U b and Sttrans has a record of the form 〈i, t1, t2, transcripti〉
for some t1, t2 ∈ {1, 2, ..., T} with t1 ≤ t ≤ t2. If not, returns ⊥. Else, B extracts
certi,t1→t2 , seci,t1→t2 from Statepri and iteratively call algorithm FSGS.Update(Y , k, t2,
seci,k→t2 , certi,k→t2) for k = t1, t1 + 1, ..., t − 1 to generate certi,t→t2 and seci,t→t2 for
t > t1. It provides all these information to the adversary and stores (i, t) in Stcorr.

• Qread and Qwrite: On access to these queries. A can read and write state St=(Stusers, Sttrans)
without altering, removing or reusing the already existing certificates.

•Forgery : With access to all the above queries, A outputs the forgery (M∗, t∗, σ∗) for a
user U ∈ U b where σ∗ is a forged signature on the message M∗ at time t∗. Parsing σ∗ as

σ∗ = (VK∗, cv∗ ,Π
∗, osig∗,C∗R, [t

∗
1, t
∗
2])

such that FSGS.Verify(σ∗, t∗,M∗,Y) = 1 where VK∗, cv∗ ,Π
∗, osig∗, [t∗1, t

∗
2]) is as explained in

Case I of Theorem 6.1.
The simulator B declares failure if v∗ 6= vi∗ . The opening of σ∗ reveals bin(v∗) = bin(vi∗) ∈
{0, 1}2m and as B has all the collection of short zi ∈ Z4m for each user Ui ∈ U b with
||zi|| ≤ 2σ

√
m, the simulator B can find a zi∗ such that vi∗ = F · zi∗ mod q. Now, B finds

another short vector ẑ satisfying vi∗ = F · ẑ mod q by invoking improved forking lemma
explained in Theorem 2.3 of Section 2.3.
Hence B has zi∗ , ẑ such that v∗ = vi∗ = F · zi∗ = F · ẑ mod q. Due to the statistical witness
indistinguishability ZKAoK to generate signature, ẑ 6= zi∗ with overwhelming probability.
Also the distribution of zi∗ is DΛ

vi∗
q (F),σ. Thus B has

F · zi∗ = F · ẑ mod q ⇒ F(zi∗ − ẑ) = 0 mod q

⇒ Ā(zi∗ − ẑ) = 0 mod q (by Setup)

⇒ zi∗ − ẑ ∈ Λ⊥q (Ā)

with
||u|| ≤ ||zi∗||+ ||ẑ|| ≤ 2σ

√
m+ 2σ

√
m = 4σ

√
m
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is a short vector of Λ⊥q (Ā) i.e., a short solution to the given SIS instance.

Theorem 6.3. The FSGS scheme described in Section 4 is fully anonymous as per the secu-
rity framework given in Algorithm 4 of section 3.2 under the LWE, SIS assumption and the
unforgeability of one time signature OTS.

Proof: The proof of this theorem is structured as a sequence of seven computationally in-
distinguishable games. In the first game, each query is answered as in the real protocol.
We then progressively change each game, show that each game is indistinguishable from the
previous one, and finally prove that our FSGS construction is secure in the security model
of Algorithm 4. Let Ei = Advanon(A) in Game i for i = 0, 1, . . . , 6. The game transition is
described below.

• Game 0: Let A be the adversary and B be the simulator.

Setup: The challenger B runs

FSGS.Setup(λ, T )→ (Y , SGM, SOA, St)

where Y = (M0,M1,A, {Ak}µk=0,B,D,D0,D1,F,u,OTS,DSig, H,H0, β, γ, σ), SGM = TA ∈
Zm×m, SOA = TB ∈ Zm×m and initializes the public state St = (Stusers, Sttrans) = (∅, ε).
Query Phase : The challenger B responds to Qpub,QkeyGM,Qopen,Qread,Qwrite and hash
queries made by A as follows:

- Qpub: In response to this query, B returns Y to A.

- QkeyGM: If A chooses to corrupt the group manager, B passes SGM to A.

- Qopen: On access to this query, A asks B to open the message-signature pair (M, t, gsig)
with the current state St where gsig is a group signature on a message M at time t.
The challenger B uses the opening authority key TA ∈ Zm×m to answer this query by
running FSGS.Open(gsig, t,M,Y , SOA, St) −→ (i ∨ ⊥)

- Qread and Qwrite: On access to these queries, A can respectively read and write state St
without altering, removing or reusing the already existing certificates.

- Hash Queries: To respond hash queries, B maintains two lists for the hash functions
H and H0. These lists store records of the form (x, H(x)) and (y, H0(y)) for some
x,y ∈ {0, 1}∗. Fresh hash value is generated on a string x ∈ {0, 1}∗ if it is not already
been queried and stored in the corresponding hash list. Otherwise, responses are given
utilizing the respective hash lists.

Play Phase : With access to all the above queries, A sends (M∗, t∗, (secib,t∗→t∗b , certib,t∗→t∗b ))
with b ∈ {0, 1} to B. The challenger B aborts if either ([¬(certib,t∗→t∗b 
Y secib,t∗→t∗b )] or
[certi0,t∗→t∗0 = certi1,t∗→t∗1 ].

Challenge Phase : In this phase, the challenger B flips a coin and selects a bit d ∈ {0, 1}
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to sign the message M∗ at time t∗. The challenger B computes the challenge signature

gsig∗ ← FSGS.Sign(secid,t∗→t∗d , cert∗id,t∗→t∗d ,Y ,M
∗)

and sends it to A where gsig∗ = (VK∗, cv∗d
,Π∗, osig∗,C∗R, [t̂1, t̂2]) such that FSGS.Verify(σ∗,

t∗,M∗,Y) = 1 with t∗ ∈ [t̂1, t̂2] where

VK∗ : verification key generated by OTS · G.
cv∗ : ciphertext generated by running the algorithm GPVIBE · Enc(B,VK∗,y∗)→

: cv∗ ∈ Zmq × Z2m
q where B is extracted from Y and y∗ = bin(v∗) ∈ {0, 1}2m

: for some v∗ ∈ Z2m
q .

Π∗ : zero knowledge proof for Px = v mod q equivalent to the system of equation
: similar to Eq 12.

osig∗ : one time signature generated by running OTS.S(SK∗, cv∗ ,Π
∗) where SK∗ is the

: signing key corresponding to the verification key VK∗ generated by OTS · G.
[t̂1, t̂2] : a subset of time interval [1, T ].

Guess Phase : With access to the queries Qpub,QkeyGM,Q
¬{(M∗,σ∗,t∗)}
open ,Qread,Qwrite, the ad-

versary A guesses a bit d′ and wins the game if d′ = d. The experiment returns 1 if d′ = d,
else returns 0.

• Game 1: It is similar to the above game with a slight modification. At the beginning of
the game, the challenger B generates a OTS key pair (VK∗, SK∗) before query phase starts.
This is used by B in the challenge query. The challenger B aborts if following two cases
occur:

- The adversaryA asks Qopen query to B for the signature gsig = (VK, cv,Π, osig,CR, [t1, t2])
with VK = VK∗.

- The adversaryA produces a signature gsig = (VK, cv,Π, osig,CR, [t1, t2]) with VK = VK∗

after knowing the challenge signature gsig∗.

Since both the cases have negligible probability as they contradict the strong unforgeability
of one time signature OTS, Game 0 and Game 1 are identical with high probability from
A’s point of view. That is, |E0 − E1| = ε1 where ε1 > 0 is negligible.

• Game 2: This game explains the simulation of the hash queries. Firstly, choose a random
matrix G∗0 ∈ Zn×2m

q uniformly and define H0(VK∗) = G∗0. Observe that the distribution of
G∗0 is still statistically close to that in the real game. To answer other queries for VK 6= VK∗,
the challenger B selects a small norm matrix KVK ←↩ D2m

Zm,σ and defines H0(VK) = B ·KVK.
The matrix KVK is stored for further usage. If any query is repeated for VK, the stored value
will be produced. Note that in the real protocol, KVK is generated using the trapdoor TB.
As SIS is hard, finding KVK is difficult without TB and hence difficult to decide whether
KVK is generated using TB or uniformly chosen, for all fixed choices of B. Thus H0(VK) is
statistically close to uniform. Also distinguishing between the pair (B,B ·KVK) generated
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using TB, and the uniformly generated pair (B, H0(VK)) is a decisional LWE problem. Hence
Game 1 and Game 2 are statistically indistinguishable. In other words, |E1−E2| = ε2 where
ε2 > 0 is negligible.

• Game 3: This game includes the modification in the opening algorithm. At the outset
of the game, B samples a uniformly random matrix B∗ ∈ Zn×mq to use in place of B to re-
sponse H0-queries. Hence to answer Qopen queries, B does not use TB but recalls the stored
KVK matrices used for H0-queries. This experiment is indistinguishable from the real one,
under the LWE assumption. Thus Game 2 and Game 3 are statistically indistinguishable
and |E2 − E3| = ε3 where ε3 > 0 is negligible.

• Game 4: Statistical zero knowledge states that the simulator can generate the proof that
is statistically close to the real distribution [21]. Thus, B simulates the zero knowledge argu-
ment of knowledge Π = ({COMk}sk=1,Ch, {RSPk}sk=1) where Ch = H(M,VK, cv, {COMk}sk=1) ∈
{1, 2, 3}s instead of using the real witnesses. It is made possible by programming the hash
queries according to the underlying interactive protocol by running the simulator for each
k ∈ {1, 2, . . . , s}. The interactive proof Π is statistically zero knowledge as stated in The-
orem 1.2 and thus Game 3 and Game 4 are statistically indistinguishable. Consequently,
|E3 − E4| = ε4 where ε4 > 0 is negligible.

• Game 5: Here the modification is made on the ciphertext cv∗id
of the challenge phase.

The challenger B does not use the real GPV-IBE for encryption of bin(v∗id) but returns truly
random ciphertext by setting

cv∗id
=

[
z1

z2 + bin(v∗id)bq/2c

]

where bin(v∗id) = F · z∗id , and z1 ←↩ U(Zmq ), z2 ←↩ U(Z2m
q ) are randomly chosen. Note that

in Game 0 to Game 5, cv∗id
is set as

cv∗id
=

[
Bte0 + e1

G∗
t

0 e0 + e2 + bin(v∗id)bq/2c

]

where e0 ←↩ χn, x1 ←↩ χm, x2 ←↩ χ2m and χ is a γ bounded distribution. If A can distinguish
between Bte0 + x1 from z1 and G∗

t

0 e0 + x2 from z2, which would break the decisional LWE
assumption. Thus Game 4 and Game 5 are computationally indistinguishable under the
security of GPV-IBE. Hence, |E4 − E5| = ε5 where ε5 > 0 is negligible.

• Game 6: This is the final game where B selects z′1 ←↩ U(Zmq ), z′2 ←↩ U(Z2m
q ) uniformly

and sets

c∗vid
=

[
z′1
z′2

]
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instead of using bin(v∗id). Observe that c∗vid
follows the same distribution as in Game 5.

Also cv∗id
does not depend on d ∈ {0, 1}, giving zero advantage to the adversary A. Thus,

|E5 − E6| = |E5| = ε6 where ε6 > 0 is negligible.
Thus the advantage of the adversary is

|Adv(A)| ≤ |E0 − E1| + |E1 − E2| + |E2 − E3| + |E3 − E4| + |E4 − E5| + |E5 − E6| =
ε1 + ε2 + ε3 + ε4 + ε5 + ε6 < ε. Hence the result.

7 Conclusion

In this work, we have proposed the first forward secure dynamic group signature scheme
whose security relies on hard problems of lattices. The scheme achieves the strongest notion
of security currently available in the literature. Our scheme is the first quantum resistant
group signature scheme achieving forward secrecy in dynamic setting.
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