
Doubly-efficient zkSNARKs without trusted setup
Riad S. Wahby⋆

rsw@cs.stanford.edu

Ioanna Tzialla◦
iontzialla@gmail.com

abhi shelat†
abhi@neu.edu

Justin Thaler‡
justin.thaler@georgetown.edu

Michael Walfish◦
mwalfish@cs.nyu.edu

⋆Stanford ◦NYU †Northeastern ‡Georgetown

Abstract. We present a zero-knowledge argument for NP with
low communication complexity, low concrete cost for both the
prover and the verifier, and no trusted setup, based on standard
cryptographic assumptions. Communication is proportional to
d · log(G) (for d the depth and G the width of the verifying circuit)
plus the square root of the witness size. When applied to batched
or data-parallel statements, the prover’s runtime is linear and the
verifier’s is sub-linear in the verifying circuit size, both with good
constants. In addition, witness-related communication can be
reduced, at the cost of increased verifier runtime, by leveraging
a new commitment scheme for multilinear polynomials, which
may be of independent interest. These properties represent a
new point in the tradeoffs among setup, complexity assumptions,
proof size, and computational cost.

We apply the Fiat-Shamir heuristic to this argument to produce
a zero-knowledge succinct non-interactive argument of knowl-
edge (zkSNARK) in the random oracle model, based on the
discrete log assumption, which we call Hyrax. We implement
Hyrax and evaluate it against four state-of-the-art baseline sys-
tems, finding that Hyrax gives smaller proofs than all but the
most computationally costly baseline, and that its computational
costs are comparable to or less than all but two of the baselines,
both of which produce larger proofs.

1 Introduction
A zero-knowledge proof convinces a verifier of a statement while
revealing nothing but its own validity. Since they were introduced
by Goldwasser, Micali, and Rackoff [53], zero-knowledge (ZK)
proofs have found applications in domains as diverse as authenti-
cation and signature schemes [87, 92], secure encryption [42, 91],
and emerging blockchain technologies [12].

A seminal result in the theory of interactive proofs and cryp-
tography is that any problem solvable by an interactive proof
(IP) is also solvable by a computational zero-knowledge proof
or perfect zero-knowledge argument [8]. This means that, given
an interactive proof for any NP-complete problem, one can
construct zero-knowledge proofs or arguments for any NP state-
ment. But existing instantiations of this paradigm have large
overheads: early techniques [21, 51] require many repetitions
to achieve negligible soundness error, and incur polynomial
blowups in prover work and communication. More recent work
[23, 26, 27, 29, 54, 55, 59] avoids those issues, but generally
entails many expensive cryptographic operations.1

Several other recent lines of work have sought to avoid these
overheads. As detailed in Section 2, however, these works still

1Some works avoid these overheads by targeting specific problems with algebraic
structure and cryptographic significance, most notably Schnorr-style proofs [92]
for languages related to statements about discrete logarithms of group elements.

yield costly protocols or come with significant limitations. In
particular, state-of-the-art, general-purpose ZK protocols suffer
from one or more of the following problems: (a) they require proof
size that is linear or super-linear in the size of the computation
verifying an NP witness; (b) they require the prover or verifier to
perform work that is super-linear in the time to verify a witness;
(c) they require a complex parameter setup to be performed
by a trusted party; (d) they rely on non-standard cryptographic
assumptions; or (e) they have very high concrete overheads.
These issues have limited the use of such general-purpose ZK
proof systems in many contexts.

Our goal in this work is to address the limitations of existing
general-purpose ZK proofs and arguments. Specifically, we would
like to take any computation for verifying an NP statement and
turn it into a zero-knowledge proof of the statement’s validity. In
addition to concrete efficiency, our desiderata are that:
• the proof should be succinct, that is, sub-linear in the size of

the statement and the witness to the statement’s validity;
• the verifier should run in time linear in input plus proof size;
• the prover, given a witness to the statement’s validity, should

run in time linear in the cost of the NP verification procedure;
• the scheme should not require a trusted setup phase or common

reference string; and
• soundness and zero-knowledge should each be either statistical

or based on standard cryptographic assumptions. Pragmatically,
security in the random oracle model [7] suffices.

Our approach transforms a state-of-the-art interactive proof
for arithmetic circuit (AC) satisfiability into a zero-knowledge
argument by composing new ideas with existing techniques.

Ben-Or et al. [8] and Cramer and Damgård [38] show how to
transform IPs into computationally ZK proofs or perfectly ZK
arguments, using cryptographic commitment schemes. At a high
level, rather than sending its messages in the clear, the prover
sends cryptographic commitments corresponding to its messages.
These commitments are binding, ensuring that the prover cannot
cheat by equivocating about its messages. They are also hiding,
meaning that the verifier cannot learn the committed value and
thus ensuring zero-knowledge. Finally, the commitment scheme
has a homomorphism property (§3.1) that allows the verifier to
check the prover’s messages “underneath the commitments.”

Accepted wisdom is that such transformations introduce large
overheads (e.g., [33, §1.1]). In this paper, we challenge that
wisdom by constructing a protocol that meets our desiderata for
many cases of interest.

Our starting point is the Giraffe interactive proof [107] with
an optimization, adapted from Chiesa et al. [33], that reduces



communication complexity (§3.2). We transform this IP into a
ZK argument through a straightforward (but careful) applica-
tion of Cramer-Damgård techniques (§4). This argument uses
cryptographic operations (required by the commitment schemes)
only for the witness and for the prover’s messages, which are
sub-linear in the size of the AC. (In contrast, many recent works
invoke cryptographic primitives for each gate in the verifying
circuit [12, 13, 16, 23, 29, 48, 81]; §2.) But the argument is not
succinct, and it has high concrete costs, especially for the verifier.

We slash these costs with two key refinements. First, we
exploit the IP’s structure by tightly integrating the verification
procedure with a multi-commitment scheme and a Schnorr-style
proof [92] (§5); this reduces communication and computational
costs by 3–5× compared to the naive approach. Second, we
devise a new witness commitment scheme (§6), yielding a
succinct argument and asymptotically reducing the verifier’s cost
associated with the witness.

Our refined protocol is public coin; we compile it into Hyrax, a
zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK) [19] in the random oracle model [7], via the Fiat-
Shamir heuristic [43]. We evaluate Hyrax against four state-of-
the-art baseline systems, as well as a version of Hyrax without
the refinements (§7–8). We find that Hyrax gives smaller proofs
than all but the most computationally costly baseline, that its
computational costs are comparable to or faster than all but two
of the baselines, and that its refinements yield multiple orders of
magnitude savings in proof size and verifier runtime.

Contributions. We design, implement, and evaluate Hyrax,
a “doubly” (meaning for both prover and verifier) concretely
efficient zkSNARK. For input x, witness w, an AC C of width G
and depth d, and a design parameter ι ≥ 2 that controls a tradeoff
between proof length and verifier time:
• Hyrax’s proofs are succinct, i.e., sub-linear in |C| and |w |: they

require ≈10d log G + |w |1/ι group elements;
• its verifier runs in time sub-linear in |C|, if C has sufficient

parallelism:2 O(|x | + d log G + |w |(ι−1)/ι), with good constants;
• its prover runs in time linear in |C|, with good constants, if
C has sufficient parallelism (practically, a few tens of paral-
lel instances suffices), and it requires only O(d log G + |w |)
cryptographic operations, also with good constants; and

• it requires no trusted setup, and it is secure under the discrete
log assumption in the random oracle model.
We also give a new commitment scheme tailored to multilinear

polynomials (§6), which may be of independent interest. This
scheme allows the prover to commit to a multilinear polynomial
m over F, and later to reveal (a commitment to) m(r) for any r
chosen by the verifier. For ι ≥ 2, if |m| denotes the number of
monomials in m, then the commitment has size O(|m|1/ι), and
the time to verify a purported evaluation is O(|m|(ι−1)/ι).

2 Related work
Kilian [65, 66] and Micali [75] show how to construct succinct
arguments for NP from probabilistically checkable proofs (PCPs).

2Even without parallelism, the verifier runs in time sub-linear in |C | if C’s wiring
pattern satisfies a technical “regularity” condition [35, 52] (Thm. 1, §3.2).

Recent work on PCPs has improved upon these techniques, and the
latest approaches extend the classical notion of PCPs by adding
interaction; these are interactive oracle proofs (IOPs) [9, 14], also
known as probabilistically checkable interactive proofs [89]. All
of these works incur many-orders-of-magnitude overheads for the
prover in runtime and memory usage. Recent work by Ben-Sasson
et al. [10] improves concrete efficiency, and implementation
work [11] shows promise for some classes of problems, but the
prover appears to be highly memory intensive.

Ishai, Kushilevitz, and Ostrovsky [62] observe that a lin-
ear PCP can be combined with an additively homomorphic
encryption scheme in order to construct a more efficient argu-
ment, albeit in the pre-processing model; several refinements
and implementations exist [28, 93–95]. Groth [56] and later
Lipmaa [71] make this idea non-interactive. Gennaro, Gentry,
Parno, and Raykova [48] present a very efficient linear PCP3
that forms the basis of many recent zkSNARK implementa-
tions [4, 5, 12, 13, 15, 16, 28, 34, 36, 41, 44–46, 67, 78, 81, 108].
The latest instantiation of this paradigm by Groth [57] has a proof
comprising 3 group elements that requires only 3 elliptic-curve
pairing operations to verify. However, all of these zkSNARKs rely
on non-standard, non-falsifiable knowledge of exponent assump-
tions or work in the generic group model [97]. They also require a
trusted party to create a (structured) common reference string that
is as large as the verifying circuit. And although these systems
have been deployed in popular applications like ZCash [12, 109],
their overheads are massive: the prover’s runtime is quasi-linear
in the circuit size and includes a few public key operations for
each gate, and memory consumption limits the instances sizes
that these systems can handle in practice [108].

Another approach due to Ishai, Kushilevitz, Ostrovsky, and
Sahai [63] (IKOS) transforms a secure multi-party computation
protocol into a zero-knowledge argument. For constant-depth
circuits, this approach yields proof sizes polylogarithmic in the
circuit size and linear in the witness size; for general circuits,
proof size is linear in the circuit size. Giacomelli, Madsen, and
Orlandi apply this approach to an efficient 3-party secure protocol
to construct ZKBoo [49], a ZK argument system for Boolean
circuits that avoids public-key cryptography. ZKB++, a follow-up
improvement by Chase et al. [31], reduces proof size by constant
factors. These schemes are concretely efficient for small circuits,
but their costs are linear in circuit size.

Ames et al. [1] improve the IKOS transformation and apply it to
a more sophisticated secure computation protocol. Their scheme,
Ligero, is a public-coin, zero-knowledge argument system without
trusted setup that only requires collision-resistant hash functions
(and no public-key cryptography). Ligero proves the satisfiability
of a circuit C with communication complexity Õ(

√
|C|), but both

the prover and the verifier perform work quasi-linear in |C|. Our
approach gives smaller proofs for languages with small witnesses
but requires public-key cryptography.

Bootle et al. [23] give two ZK arguments for AC satisfiability
from the hardness of discrete logarithms, building on the work
of Groth [55] and of Bayer and Groth [6]. The first argument
has proof size O(

√
M) for an AC withM multiplications. The

3The observation that the quadratic span programs of [48] can be viewed as
linear PCPs is due to Bitansky et al. [20] and Setty et al. [93].



second reduces this to O(logM) at the cost of significantly higher
runtimes for the prover and verifier. Bünz et al. [29] reduce proof
size and runtimes in the log scheme by ≈3×. The log schemes
of Bootle et al. and Bünz et al. give significantly shorter proofs
than our scheme. On the other hand, all of the above schemes
have concretely higher prover and verifier runtimes than ours;
moreover, verifier runtimes in these schemes are O(M), while
in ours the verifier’s runtime is often asymptotically less. We
compare further in Section 8.

Bootle et al. [24] give a ZK argument with proof size O(
√
|C|)

whose verifier uses O(|C|) additions (which are concretely less ex-
pensive than multiplications). The authors state that the constants
are large and do not recommend implementing as-is.

Most similar to our work, Zhang et al. [110] show how to
use an interactive proof [35, 52, 100] along with a verifiable
polynomial delegation scheme [64, 80] to construct a succinct
interactive argument. That work does not address zero-knowledge;
a follow-up [111] (concurrent with and independent from our
work) achieves ZK using the same commit-and-prove approach
that we use, with several key differences. First, their commitment
to the witness w reduces communication to O(log |w |), but
requires a trusted setup and relies on non-standard, non-falsifiable
assumptions. In contrast, our commitment protocol (§6) requires
no trusted setup and is based on the discrete log assumption, but
has communication O(|w |1/ι), ι ≥ 2. Second, their argument is
based on an IP that requires slightly more communication than
ours (§3.2). Finally, our method of compiling the IP into a ZK
argument uses additional refinements (§5) that reduce costs. Both
our IP and our refinements apply to their work; we estimate that
they would reduce proof size by ≈3× andV runtime by ≈5×.

Polynomial commitment schemes were introduced by Kate et
al. [64], who gave a construction for univariate polynomials based
on pairing assumptions. Several follow-up works [80, 110–112]
extend this construction to multivariate polynomials; Libert et
al. [68] give a construction based on constant-size assumptions;
and Fujisaki et al. [47] give a construction for polynomial evalua-
tion based on the RSA problem that can be immediately adapted
to polynomial commitment. None of these schemes meet our
desiderata (§1) because of some combination of high cost, trusted
setup, and non-standard assumptions. Bootle et al. [24] and Boo-
tle and Groth [25] describe univariate polynomial commitment
schemes based on the discrete log assumption; our scheme is
closely related to these ideas and extends them to multilinear
polynomials. The second of these also presents a general frame-
work for proving simple relations between commitments and field
elements; exploring these ideas in our context is future work.

3 Background
3.1 Definitions

We use ⟨A(za), B(zb)⟩(x) to denote the random variable represent-
ing the (local) output of machine B when interacting with machine
A on common input x, when the random tapes for each machine
are uniformly and independently chosen, and A and B has auxil-
iary inputs za and zb respectively. We use tr⟨A(za), B(zb)⟩(x) to
denote the random variable representing the entire transcript of
the interaction between A and B, and View (⟨A(za), B(zb)⟩(x)) to

denote the distribution of the transcript. The symbol ≈c denotes
that two ensembles are computationally indistinguishable.

Arithmetic circuits
Section 3.2 considers the arithmetic circuit (AC) evaluation
problem. In this problem, one fixes an arithmetic circuit C,
consisting of addition and multiplication gates over a finite field
F. We assume throughout that C is layered, with all gates having
fan-in at most 2 (any arithmetic circuit can be made layered while
increasing the number of gates by a factor of at most the circuit
depth). C has depth d and input x with length |x |. The goal is
to evaluate C on input x. In an interactive proof or argument for
this problem, the prover sends the claimed outputs y of C on
input x, and must prove that y = C(x).

Our end goal in this work is to give efficient protocols for the
arithmetic circuit satisfiability problem. Let C(·, ·) be a layered
arithmetic circuit of fan-in two. Given an input x and outputs y,
the goal is to determine whether there exists a witness w such
that C(x,w) = y. The corresponding witness relation for this
problem is the natural one: R(x,y) = {w : C(x,w) = y}.

Interactive protocols and zero-knowledge
Definition 1 (Interactive arguments and proofs). A pair of prob-
abilistic interactive machines ⟨P,V⟩ is called an interactive
argument system for a language L if there exists a negligible
function η such that the following two conditions hold:
1. Completeness: For every x ∈ L there exists a string w s.t. for

every z ∈ {0, 1}∗, Pr[⟨P(w),V(z)⟩(x)=1] ≥ 1 − η(|x |).

2. Soundness: For every x < L, every interactive PPT P∗, and
every w, z ∈ {0, 1}∗, Pr[⟨P∗(w),V(z)⟩(x)=1] ≤ η(|x |).

If soundness holds against computationally unbounded cheating
provers P∗, then ⟨P,V⟩ is called an interactive proof (IP).
Definition 2 (Zero-knowledge (ZK)). Let L ⊂ {0, 1}∗ be a
language and for each x ∈ L, let Rx ⊂ {0, 1}∗ denote a cor-
responding set of witnesses for the fact that x ∈ L. Let RL

denote the corresponding language of valid (input, witness) pairs,
i.e., RL = {(x,w) : x ∈ L and w ∈ Rx}. An interactive proof or
argument system ⟨P,V⟩ for L is computational zero-knowledge
(CZK) with respect to an auxiliary input if for every PPT inter-
active machineV∗, there exists a PPT algorithm S, called the
simulator, running in time polynomial in the length of its first
input, such that for every x ∈ L, w ∈ Rx , and z ∈ {0, 1}∗,

View (⟨P(w),V∗(z)⟩(x)) ≈c S(x, z) (1)

when the distinguishing gap is considered as a function of |x |. If
the statistical distance between the two distributions is negligible,
then the interactive proof or argument system is said to be
statistical zero-knowledge (SZK). If the simulator is allowed to
abort with probability at most 1/2, but the distribution of its
output conditioned on not aborting is identically distributed to
View (⟨P(w),V∗(z)⟩(x)), then the interactive proof or argument
system is called perfect zero-knowledge (PZK).

The left term in Equation (1) denotes the distribution of
transcripts afterV∗ interacts withP on common input x; the right
term denotes the distribution of simulator S’s output on x. For
any CZK (resp., SZK or PZK) protocol, Definition 2 requires the



simulator to produce a distribution that is computationally (resp.,
statistically or perfectly) indistinguishable from the distribution
of transcripts of the ZK proof or argument system.

Our zero-knowledge arguments also satisfy a proof of knowl-
edge property. Intuitively, this means that in order to produce a
convincing proof of a statement, the prover must know a witness
to the validity of the statement. To define this notion formally, we
follow Groth and Ishai [58] who borrow the notion of statistical
witness-extended emulation from Lindell [70]:
Definition 3 (Witness-extended emulation [58]). Let L be a lan-
guage and RL corresponding language of valid (input, witness)
pairs as in Definition 2. An interactive argument system ⟨P,V⟩
for L has witness-extended emulation if for all deterministic
polynomial time P∗ there exists an expected polynomial time
emulator E such that for all non-uniform polynomial time adver-
saries A and all zV ∈ {0, 1}∗, the following probabilities differ
by at most a negligible function in the security parameter λ:

Pr
[
(x, zP) ← A(1λ); t ← tr⟨P∗(zP),V(zV)⟩(x) : A(t) = 1

]
and Pr

[
(x, zP) ← A(1λ); (t,w) ← EP

∗(zP )(x) : A(t) = 1 ∧
if t is an accepting transcript, then (x,w) ∈ RL .

]
Here, the oracle called by E permits rewinding the prover to a
specific point and resuming with fresh randomness for the verifier
from this point onwards.

The protocols of Sections 5 and 6 are generalized special
sound, which implies witness-extended emulation (Appx. A.6).
Definition 4 (Generalized special soundness). A (2µ + 1)-move
interactive argument ⟨P,V⟩ is generalized special sound if there
exists a PPT algorithm ExGSS that extracts a witness except
with negligible probability given an (n1, . . . , nµ)-tree of accept-
ing transcripts. This tree comprises n1 transcripts with fresh
randomness inV’s first message; and for each such transcript,
n2 transcripts with fresh randomness in V’s second message;
etc., for a total of

∏µ
i=1 ni leaves. The standard notion of special

soundness corresponds to µ = 1, n1 = 2.
Commitment schemes
Informally, a commitment scheme allows a sender to produce
a message C = Com(m) that hides m from a receiver but binds
the sender to the value m. In particular, when the sender opens C
and reveals m, the receiver is convinced that this was indeed the
sender’s original value. We say that Compp(m; r) is a commitment
to m with opening r with respect to public parameters pp. The
sender chooses r at random; to open the commitment, the sender
reveals (m, r). We frequently leave the public parameters implicit,
and sometimes do the same for the opening, e.g., Com(m).
Definition 5 (Collection of non-interactive commitments [61]).
We say that a tuple of PPT algorithms (Gen,Com) is a collection
of non-interactive commitments if the following conditions hold:

• Computational binding: For every (non-uniform) PPT A,
there is a negligible function η such that for every n ∈ N,

Pr


pp← Gen(1n) ;
(m0, r0), (m1, r1) ← A(1n, pp) :
m0 , m1, |m0 | = |m1 | = n,
Compp(m0; r0) = Compp(m1; r1)

 ≤ η(n)

• Perfect hiding: For any pp ∈ {0, 1}∗ and m0,m1 ∈ {0, 1}∗
where |m0 | = |m1 |, the ensembles {Compp(m0)}n∈N and
{Compp(m1)}n∈N are identically distributed.

We define only the computational variant of binding and the
perfect variant of hiding because the commitment schemes used
in our implementation satisfy these properties. The use of such
commitment schemes in our context yields a PZK argument. If we
instead used perfectly (or statistically) binding, computationally
hiding commitments, we would obtain a CZK proof.

Collections of non-interactive commitments can be constructed
based on any one-way function [60, 77], but we require a ho-
momorphism property (defined below) that these commitments
do not provide. (The Pedersen commitment [82], described in
Appx. A, provides this property.)
Definition 6 (Additive homomorphism). Given Com(x; sx) and
Com(y; sy), there is an operator ⊙ such that

Com(x; sx) ⊙ Com(y; sy) = Com(x + y; sx + sy) and
Com(x; sx)k ≜ Com(x; sx) ⊙ · · · ⊙ Com(x; sx) (k times)

In a multi-commitment scheme, x and y are vectors, and this
additive homomorphism is vector-wise.

3.2 Our starting point: Gir++ (Giraffe, with a tweak)
The most efficient known IPs for the AC evaluation problem (§3.1)
follow a line of work starting with the breakthrough result of
Goldwasser, Kalai, and Rothblum (GKR) [52]. Cormode, Mitzen-
macher, and Thaler (CMT) [35] and Vu et al. [105] refine this
result, giving O(|C| log |C|) prover and O(|x | + |y | + d log |C|)
verifier runtimes, for AC C with depth d, input x, and output y.

Further refinements are possible in the case where C is data
parallel, meaning it consists of N identical sub-computations
run on different inputs. (We refer to each sub-computation as
a sub-AC of C, and we assume for simplicity that all layers of
the sub-AC have width G, so |C| = d · N · G.) Thaler [100]
reduced the prover’s runtime in the data-parallel case from
O(|C| log |C|) to O(|C| log G). Very recently, Wahby et al. in-
troduced Giraffe [107], which reduces the prover’s runtime to
O(|C| + d · G · log G). Since |C| = d · N · G, observe that when
N ≥ log G, the time reduces to O(|C|), which is asymptotically
optimal. That is, for sufficient data parallelism, the prover’s run-
time is just a constant factor slower than evaluating the circuit
gate-by-gate without providing any proof of correctness.

Our work builds on Gir++, which reduces Giraffe’s communica-
tion via an optimization due to Chiesa et al. [33]; our description
of Gir++ borrows notation from Wahby et al. [107]. Assume for
simplicity that N and G are powers of 2, and let bN = log2 N
and bG = log2 G. Within a layer of C, each gate is labeled with a
pair (i, j) ∈ {0, 1}bN × {0, 1}bG . Number the layers of C from 0
to d in reverse execution order, so that 0 refers to the output layer,
and d refers to the input layer. Each layer i is associated with
an evaluator function Vi : {0, 1}bN × {0, 1}bG → F that maps a
gate’s label to the output of that gate when C is evaluated on
input x. For example, V0(i, j) is the j’th output of the i’th sub-AC,
and Vd(i, j) is the jth input to the ith sub-AC.

At a high level, the protocol proceeds in iterations, one for
each layer of the circuit. At the start of the protocol, the prover P



sends the claimed outputs y of C (i.e., all the claimed evaluations
of V0). The first iteration of the protocol reduces the claim about
V0 to a claim about V1, in the sense that it is safe for the verifier
V to believe the former claim as long asV is convinced of the
latter. ButV cannot directly check the claim about V1, because
doing so would require evaluating all of the gates in C other than
the outputs themselves. Instead, the second iteration reduces the
claim about V1 to a claim about V2, and so on, until P makes a
claim about Vd (i.e., the inputs to C), whichV checks itself.

To describe how the reduction from a claim about Vi to a claim
about Vi+1 is performed, we first introduce multilinear extensions,
the sum-check protocol, and wiring predicates.
Multilinear extensions. An extension of a function
f : {0, 1}ℓ → F is a ℓ-variate polynomial g over F such that
g(x) = f (x) for all x ∈ {0, 1}ℓ . Any such function f has a
unique multilinear extension (MLE)—a multilinear polynomial—
denoted f̃ . Given a vector z ∈ Fm with m = 2ℓ , we will often
view z as a function z : {0, 1}ℓ → F mapping indices to vector
entries, and use z̃ to denote the MLE of z.

The sum-check protocol. Fix an ℓ-variate polynomial g over
F, and let degi(g) denote the degree of g in variable i. The
sum-check protocol [72] is an interactive proof that allows P
to convince V of a claim about the value of

∑
x∈{0,1}ℓ g(x) by

reducing it to a claim about the value of g(r), where r ∈ Fℓ is
a point randomly chosen by V. There are ℓ rounds, and V’s
runtime is O(

∑ℓ
i=1 degi(g)) plus the cost of evaluating g(r). The

mechanics are detailed in Section 4.

Wiring predicates capture the wiring information of the sub-
ACs. Define the wiring predicate addi : {0, 1}3bG → {0, 1},
where addi(g, h0, h1) returns 1 if (a) within each sub-AC, gate g

at layer i − 1 is an add gate and (b) the left and right inputs of g
are, respectively, h0 and h1 at layer i (and 0 otherwise). multi is
defined analogously for multiplication gates. Define the equality
predicate eq : {0, 1}2bN → {0, 1} as eq(a, b) = 1 iff a = b.

Thaler [100, 101] and Wahby et al. [107] showed how
to express Ṽi−1 in terms of Ṽi: for (q′, q) ∈ FbN × FbG , let
Pq′,q,i : FbN × FbG × FbG → F denote the polynomial

Pq′,q,i(h′, hL, hR) =

ẽq(q′, h′) ·
[ ˜addi(q, hL, hR)

(
Ṽi(h′, hL) + Ṽi(h′, hR)

)
+

˜multi(q, hL, hR)
(
Ṽi(h′, hL) · Ṽi(h′, hR)

) ]
Then we have

Ṽi−1(q′, q) =
∑

h′∈{0,1}bN

∑
hL,hR ∈{0,1}bG

Pq′,q,i(h′, hL, hR). (2)

Protocol overview
Step 1. At the start of the protocol, P sends the claimed output
y, thereby specifying a function Vy : {0, 1}bG+bN → F mapping
the label of each output gate to the corresponding entry of y. The
verifier wishes to check that Vy = V0 (i.e., that the claimed outputs
equal the correct outputs of C on input x); to accomplish this, it
would be enough to check that Ṽy = Ṽ0. In principle,V could do
that by choosing a random pair (q′, q) ∈ FbN ×FbG and checking

that Ṽy(q′, q) = Ṽ0(q′, q); if that check passes, then Ṽy = Ṽ0
with high probability, by the Schwartz-Zippel lemma. On the
one hand,V can and does compute Ṽy(q′, q); this takes O(NG)
time [107, §3.3]. But on the other hand, V cannot compute
Ṽ0(q′, q) directly—this would requireV to evaluate C.
Step 2 (iterated). Instead,V outsources evaluation of Ṽ0(q′, q)
toP, via the sum-check protocol; this is motivated by Equation (2).
At the end of the sum-check protocol,V must evaluate Pq′,q,1 at a
random input (r ′, rL, rR), which requires the values Ṽ1(r ′, rL) and
Ṽ1(r ′, rR).V does not evaluate these points directly; that would
be too costly. Instead, P sends v0 and v1, which it claims are the
required values.V uses these to evaluate Pq′,q,1, then checks v0
and v1 using a mini-protocol, which we describe shortly. At a
high level, the mini-protocol transforms P’s claims about v0, v1
into a claim about Ṽ2.V checks this claim with a sum-check and
mini-protocol invocation, yielding a claim about Ṽ3. P and V
iterate, layer by layer, untilV has a claim about Ṽd .
Final step. V checks P’s final claim about Ṽd by evaluating Ṽx

(since Ṽd = Ṽx); it can do this in O(NG) time [107, §3.3].
Mini-protocols: reducing from Ṽi to Ṽi+1

Gir++ differs from Giraffe only in that they use different mini-
protocols to reduce P’s claims at the end of one sum-check
invocation (i.e., v0 = Ṽi(r ′, rL) and v1 = Ṽi(r ′, rR)) into the
expression thatV and P use for the next sum-check invocation.
Reducing from two points to one point. This approach is used
in Giraffe and prior work [35, 52, 100, 105–107]. P sends
V the restriction of Ṽi to the unique line H in FbN+bG passing
through the points (r ′, rL) and (r ′, rR) by specifying the univariate
polynomial fH (t) = Ṽi(r ′, (1−t)·rL+t ·rR), which has degree bG .
V should believe this claim as long as fH (0) = v0, fH (1) = v1,
and fH (υ) = Ṽi(r ′, rυ), where rυ = (1 − υ) · rL + υ · rR and υ is
chosen byV. By Equation (2),V can check this latter equality
by engaging P in a sum-check protocol over Pr′,rυ,i+1.
Alternative: Random linear combination. Each invocation
of the prior mini-protocol requires P to send bG + 1 field
elements specifying fH . The following technique, due to Chiesa
et al. [33], eliminates this requirement. Instead,V checks v0 and
v1 by checking a random linear combination, via a sum-check
invocation over a polynomial we define below.

In more detail,V samples two field elements µ0 and µ1, and
sends them to P. Mechanically,V next checks that

µ0 · Ṽi(r ′, rL) + µ1 · Ṽi(r ′, rR) = µ0 · v0 + µ1 · v1 (3)

since, by the Schwartz-Zippel lemma, this implies that
v0 = Ṽi(r ′, rL) and v1 = Ṽi(r ′, rR) with high probability (formal-
ized in Thm. 1, below).V checks Equation (3) by exploiting the
fact that its LHS can be written as

µ0 · Ṽi(q′, qL) + µ1 · Ṽi(q′, qR)

=
∑

hL,hR ∈{0,1}bG

∑
h′∈{0,1}bN

[
µ0 · Pq′,qL,i+1(h′, hL, hR) +

µ1 · Pq′,qR,i+1(h′, hL, hR)
]

=
∑

hL,hR ∈{0,1}bG

∑
h′∈{0,1}bN

Qq′,qL,qR,µ0,µ1,i+1(h′, hL, hR)



where Qq′,qL,qR,µ0,µ1,i : FbN × FbG × FbG → F is given by:

Qq′,qL,qR,µ0,µ1,i(h
′, hL, hR) ≜ ẽq(q′, h′) ·[ (

µ0 · ˜addi(qL, hL, hR) + µ1 · ˜addi(qR, hL, hR)
)
·(

Ṽi(h′, hL) + Ṽi(h′, hR)
)

+
(
µ0 · ˜multi(qL, hL, hR) + µ1 · ˜multi(qR, hL, hR)

)
·(

Ṽi(h′, hL) · Ṽi(h′, hR)
) ]

This means thatV can check that Equation (3) holds by engaging
P in a sum-check protocol over Qr′,rL,rR,µ0,µ1,i+1.

Giraffe vs. Gir++ Gir++ uses the Alternative above. This re-
duces communication cost in Gir++ compared to Giraffe by a
small factor that depends on the amount of data parallelism. We
are motivated to reduce communication because communication
will translate into proof size and more cryptographic cost (§4).

As an exception, Gir++ uses the “reducing from two points
to one point” technique after the final sum-check (i.e., the one
over Q...,d−1); this is to avoid increasingV’s computational costs
compared to Giraffe. Recall that in the final step of Gir++, V
checks P’s claim about Ṽd by evaluating Ṽx (which is equal to
Ṽd). Thus, to check the LHS of Equation (3),V would require
two evaluations of Ṽx ; the “reducing from two points to one point”
technique requires only one. Since evaluating Ṽx is typically a
bottleneck for the verifier [107, §3.3], eliminating the second
evaluation is worthwhile even though it slightly increases the
size of P’s final message (and thus the proof size; see §4).

We give pseudocode for Gir++ in Appendix E. Gir++’s ef-
ficiency and security are formalized in the following theorem,
which can be proved via a standard analysis [52].
Theorem 1. The interactive proof Gir++ satisfies the following
properties when applied to a layered arithmetic circuit C of
fan-in two, consisting of N identical sub-computations, each
of depth d, with all layers of each sub-computation having
width at most G. It has perfect completeness, and soundness
error at most ((1 + 2 log G + 3 log N) · d + log G)/|F|. After
a pre-processing phase taking time O(dG), the verifier runs
in time O(|x | + |y | + d log(NG)), and the prover runs in time
O(|C| + d ·G · log G). If the sub-AC has a regular wiring pattern
as defined in [35], then the pre-processing phase is unnecessary.

4 Compiling Gir++ into a ZK argument
In this section, we describe a straightforward application of
“commit-and-prove” techniques [8, 38] (§1) to Gir++ (§3.2). The
result is a public coin, perfect ZK argument “of knowledge”
for AC satisfiability (the knowledge property is formalized via
witness-extended emulation; §3.1). In Sections 5 and 6, we
develop substantial efficiency improvements; in Section 7, we
apply the Fiat-Shamir heuristic [43] to make it non-interactive.

Building blocks. This section uses abstract commitments having
a homomorphism property (§3.1). We also make black-box use
of three sub-protocols, which operate on commitments:
• proof-of-opening(C) convincesV that P can open C.

• proof-of-equality(C0,C1) convincesV that C0 and C1 commit
to the same value, and that P can open both.

• proof-of-product(C0,C1,C2) convincesV that C2 commits to
the product of the values committed in C0 and C1, and that P
can open all three.

In Appendix A, we give concrete definitions of the above protocols
in terms of Pedersen commitments [82].

Protocol overview. This protocol differs from Gir++ in three
ways. First, it adds an initial step in which P commits to w

such that C(x,w) = y. Second, P replaces all of its messages in
Gir++ with commitments to those messages. Third, P convinces
V that its committed values pass all of V’s checks in Gir++
using the homomorphism property of the commitments and the
above sub-protocols. The steps below correspond to the steps of
Gir++ (§3.2); we describe only how the protocols differ.

Step 0. (This is a new step.) P sends commitments to each
element of w ∈ Fℓ . P andV execute proof-of-opening for each.

Step 1. As in Gir++, V computes Ṽy(q′, q). Afterwards, V
computes C0 = Com(Ṽy(q′, q); 0).

Step 2. As in Gir++, this step comprises one sum-check and
one mini-protocol per layer of C. We now review the sum-check
protocol, and then describe how P andV execute the sum-check
and mini-protocols “underneath the commitments.”
Review of the sum-check protocol. We begin by describing the
first layer sum-check protocol in Gir++ (others are similar), which
reduces Ṽy(q′, q) to a claim about Ṽ1(·). In the first round of the
sum-check protocol, P sends a univariate polynomial s1(·) of
degree 3.V checks that s1(0)+ s1(1) = Ṽy(q′, q), and then sends
a random field element r1 to P. In general, in round j of the
sum-check protocol, P sends a univariate polynomial sj (which
is degree 3 in the first bN rounds and degree 2 in the remaining
rounds [100, 107]). V checks that sj(0) + sj(1) = sj−1(rj−1),
then sends a random field element rj to P.

We write the vector of all rj’s chosen by V in the jlast =

bN + 2bG rounds of the sum-check protocol as (r1, . . . , rjlast ) ∈

FbN+2bG ; let r ′ denote the first bN entries of this vector, rL
denote the next bG entries, and rR denote the final bG entries.

In the last round, P sends v0 and v1 (which it claims are equal
to Ṽ1(r ′, rL) and Ṽ1(r ′, rR); §3.2).V first checks that

sjlast (rjlast ) = ẽq(q′, r ′) ·
[ ˜add1(q, rL, rR) · (v0 + v1)+

˜mult1(q, rL, rR) · v0 · v1
]

V then checks P’s claims about v0 and v1 by invoking a mini-
protocol (§3.2) and engaging P in another sum-check at layer 2.
ZK sum-check protocol. In round j of the sum-check, P com-
mits to sj(t) = c0, j + c1, j t + c2, j t2 + c3, j t3, via δc0, j←Com(c0, j),
δc1, j←Com(c1, j), δc2, j←Com(c2, j), and δc3, j←Com(c3, j), and
P and V execute proof-of-opening for each one. Now P con-
vincesV that sj(0) + sj(1) = sj−1(rj−1). Notice that ifV holds
commitments Com(sj−1(rj−1)) and Com(sj(0)+sj(1)),P can use
proof-of-equality to convinceV that the above equation holds.
Further,V can use the homomorphism property to compute the
required commitments: for sj(0)+ sj(1) = 2c0, j +c1, j +c2, j +c3, j ,
V computes δ2

c0, j
⊙ δc1, j ⊙ δc2, j ⊙ δc3, j . Similarly, for sj−1(rj−1)

V computes δc0, j ⊙ δ
rj
c1, j ⊙ δ

r2
j

c2, j ⊙ δ
r3
j

c3, j .



The first sum-check round ( j = 1) is an exception to the above:
rather than a commitment to s0, V holds a commitment to a
value that purportedly equals s1(0) + s1(1). For the sum-check
invocation at layer 1, this value is C0, whichV computed in Step
1. For subsequent layers, the value is the result of the preceding
mini-protocol invocation, which we discuss below.

In the final round jlast, V computes a commitment W
to sjlast

(rjlast ) as described above. P then sends commit-
ments X , Y , and Z to v0, v1, and v0 · v1, and uses
proof-of-product to convince V that the committed val-
ues satisfy this product relation. Finally, V computes
Ω←(X ⊙ Y )ẽq(q′,r′)· ˜add1(q,r1,r2) ⊙ Z ẽq(q′,r′)· ˜mult1(q,r1,r2) andP uses
proof-of-equality to convince V that W and Ω commit to the
same value.
ZK mini-protocols. For random-linear-combination,V computes
Com(µ0v0+µ1v1) = Xµ0 ⊙Yµ1 ; this is the purported Com(s1(0)+
s1(1)) for the next sum-check invocation.

To execute reducing-from-two-points-to-one-point,P commits
to the coefficients of fH and invokes proof-of-opening for each;
V computes commitments to fH (0) and fH (1), and P uses
proof-of-equality to show that these commit to the same values
as X and Y ; and V samples υ and computes a commitment to
fH (υ), which it uses in the final step.

Final step. P now convincesV that Com( fH (υ)), the result of
the final mini-protocol invocation (which is a commitment to
Ṽd(r ′, rυ); §3.2), is consistent with x and w.

We let m = (x,w) denote the concatenation of the input x and
the witness w; assume for simplicity that |x | = |w | = 2ℓ ; interpret
x, w, and m as functions (§3.2, “Multilinear extensions”); and
let (r0, . . . , rℓ) = (r ′, rυ). Then by the definitions of m̃, x̃, and w̃,

m̃(r0, . . . , rℓ) = (1 − r0) · x̃(r1, . . . , rℓ) + r0 · w̃(r1, . . . , rℓ).

By analogy to Gir++’s final step, V’s task is to check that
Ṽd(r ′, rυ) is equal to m̃(r0, . . . , rℓ).V does this by first computing
Com(m̃(r0, . . . , rℓ)) using the commitments to w that P sent in
Step 0 (above), and then engaging P in proof-of-equality on
Com( fH (υ)) and Com(m̃(r0, . . . , rℓ)).

To compute Com(m̃(·)), V exploits the following expres-
sion [35] for the multilinear extension of w : {0, 1}ℓ → F:

w̃(r1, . . . , rℓ) =
∑

b∈{0,1}ℓ
w(b) ·

∏
k∈{1,...,ℓ }

χbk
(rk)

=
∑

b∈{0,1}ℓ
w(b) · χb (4)

where χbk
(rk) = rkbk + (1 − rk)(1 − bk), χb =

∏
k χbk

(rk), and
bk is the (1-indexed) k th bit of b. In more detail,V first evaluates
each χb in linear time [105], and then computes

F =
⊙

b∈{0,1}ℓ
Com(w(b))r0 ·χb (r1,...,rℓ )

which is Com(r0 · w̃(r1, . . . , rℓ)). It then computes, in the
clear, F ′ = (1 − r0) · x̃(r1, . . . , rℓ). Finally, V computes
Com(m̃(r0, . . . , rℓ)) = F ⊙ Com(F ′; 0). Invoking proof-of-
equality as described above completes the protocol.

The following theorem formalizes the efficiency of the argu-
ment of this section. We leave a formal statement of security
properties to the final protocol (§7).
Theorem 2. Let C(·, ·) be a layered arithmetic circuit of fan-in
two, consisting of N identical sub-computations, each of depth
d, with all layers of each sub-computation having width at most
G. Assuming the existence of computationally binding, perfectly
hiding homomorphic commitment schemes that support proof-
of-opening, proof-of-equality, and proof-of-product (Appx. A)
with running times upper-bounded by κ, there exists a PZK
argument for the NP relation “∃w such that C(x,w) = y.” The
protocol requires d log(G) rounds of communication, and has
communication complexity Θ(|y | + (|w | + d log G) · λ), where
λ is a security parameter. Given a w such that C(x,w) = y,
the prover runs in time Θ (dNG + G log G + (|w | + d log G) · κ).
Verifier runtime is Θ (|x | + |y | + dG + (|w | + d log(NG)) · κ).

The above follows from the more general Theorem 3.1 of [8].

5 Reducing the cost of sum-checks
In the PZK argument from Section 4, the prover sends a separate
commitment for every message element of Gir++ (§3.2), and
then independently proves knowledge of how to open each
commitment. This leads to long proofs and many expensive
cryptographic operations for the verifier.

In this section, we explain how to reduce this communication
and the number of cryptographic operations for the verifier by
exploiting multi-commitment schemes, in which a commitment
to a vector of elements has the same size as a commitment to a
single element. The Pedersen commitment (Appx. A) supports
multi-commitments.

Dot-product proof protocol. Our starting point is an existing
protocol for multi-commitments, which we call proof-of-dot-
prod. With this protocol, a prover that knows the openings of two
commitments, one to a vector ®x = (x1, . . . , xn) ∈ Fn and one to a
scalar y ∈ F, can prove in zero-knowledge that y = ⟨®a, ®x⟩ for a
public ®a ∈ Fn. The protocol is defined in Appendix A.2.

SquashingV’s checks. To exploit proof-of-dot-prod, we first
recall from Section 4 that in each round j of each sum-
check invocation in Gir++, P sends commitments to c0, j ,
c1, j , c2, j , and (only in the first bN rounds) c3, j . Next, P
proves to V that 2c0, j + c1, j + c2, j + c3, j = sj−1(rj−1) (i.e., that
sj(0) + sj(1) = sj−1(rj−1)). Finally,V computes a commitment
to sj(rj) = c0, j + c1, jrj + c2, jr2

j + c3, jr3
j for the next round.

Combining the above equations yields c3, j+1 + c2, j+1 + c1, j+1 +

2c0, j+1 − (c3, jr3
j + c2, jr2

j + c1, jrj + c0, j) = 0. V’s final check
can likewise be expressed as a linear equation in terms of
v0, v1, c2,n, c1,n, c0,n, and wiring predicate evaluations (§3.2)
(n = bN + 2bG). We can thus write V’s checks during the
rounds of the sum-check protocol as the matrix-vector product

M1
...

MbN+2bG+1

 · ®π =


s0
0
...

 (5)

Each Mk is a row in F4bN+6bG+3 encoding one of V’s checks
and ®π is a column in F4bN+6bG+3 comprising P’s messages.



(4bN+6bG+3 accounts for bN rounds with cubic sj , 2bG rounds
with quadratic sj , and the final values v0, v1, and v0v1; §4.)

Now we can combine all of the linear equality checks encoded
in Equation (5) into a single check, namely, by multiplying each
row k by a random coefficient ρk and summing the rows.
Lemma 3. For any ®π ∈ Fℓ , and any matrix M ∈ Fn+1×ℓ with
rows M1, . . . , Mn+1 for which Eq. (5) does not hold, then

Pr
ρ

[〈(∑
ρk · Mk

)
, ®π

〉
= ρ1 · s0

]
≤ 1/|F|

Proof. Observe that ⟨(
∑
ρk · Mk) , ®π⟩ is a polynomial in

ρ1, . . . , ρn+1 of total degree 1 (i.e., a linear function in
ρ1, . . . , ρn+1). Call this linear polynomial ϕ. The coefficients
of ϕ are the entries of M · ®π. Similarly, ρ1 · s0 is a linear poly-
nomial ψ in ρ1, . . . , ρn+1, whose coefficients are the entries of
[s0, 0, . . . , 0]. Note that if Equation (5) does not hold, then ϕ and
ψ are distinct polynomials, each of total degree 1. The lemma
now follows from the Schwartz-Zippel lemma. □

Putting the pieces together. Lemma 3 implies that, once P
has committed to ®π, it can use proof-of-dot-prod to convince
V of the sum-check result in one shot. For soundness in Gir++,
however, P must commit to c3, j, c2, j, c1, j, c0, j before the Verifier
sends rj . This means that P cannot send Com( ®π) all at once.

Instead, we observe that P can send the commitment to ®π
incrementally, using one group element per round of the sum-
check. That is, in each round of the sum-check protocol, P
commits to a vector encoding the coefficients of that round’s
polynomial, and V responds with its random coin rj . After P
has committed to all of its messages for the sum-check, P andV
engage in the protocol of Figure 1, which encodesV’s checks
for all rounds of the sum-check protocol at once. This protocol
replacesV’s checks in Step 2 of the protocol of Section 4.
Lemma 4. The protocol of Figure 1 is a complete, honest-verifier
perfect ZK argument, with generalized special soundness under
the discrete log assumption, that its inputs constitute an accepting
sum-check relation: on input a commitment C0, commitments
{αj} to polynomials {sj} in a sum-check invocation, rows {Mk} of
the matrix of Equation (5), and commitments X = Com(v0), Y =
Com(v1), and Z , where {rj} areV’s coins from the sum-check
and n=bN +2bG , the protocol proves that C0=Com(s1(0)+s1(1));
sj(0)+sj(1)=sj−1(rj−1), j∈{2, . . . , n}; and sn(rn)=Q...,i evalu-
ated with v0, v1 (per §3.2).

Lemma 4 is proved in Appendix A.4. Relative to Step 2 of
Section 4, the protocol of Figure 1 reduces communication
during a sum-check invocation by ≈3×. It also reduces P’s and
V’s cryptographic costs by ≈4× and ≈5×, respectively (in part
because it allows P andV to use multi-exponentiation [85]).

6 Reducing the cost of the witness
In the protocol of Section 4, P sends a separate commitment to
each element w1, . . . ,wℓ of the witness w (§4, “Step 0.”). This
means that handling a circuit relation with |w | witness elements
requires a proof whose size is at least proportional to |w |. In this
section, we describe a new commitment scheme for multilinear
polynomials that reduces witness commitment size (and thus

proof-of-sum-check(C0, {αj}, {Mk}, X,Y, Z)

Inputs: C0 = Com(s0; rC0 ).
{αj} are all of P’s messages from a sum-check invocation: at
each round j of the sum-check protocol, P has sent

αj ← Com((c3, j, c2, j, c1, j, c0, j); rαj )

{Mk} is defined as in Equation (5) and Lemma 3. (These
vectors encodeV’s random coins {rj} from the sum-check.)
X = Com(v0; rX ), Y = Com(v1; rY ), Z = Com(v0v1; rZ ).
Definitions: n = bN + 2bG; ®π is defined as in Equation (5);
{ρk} are chosen byV (see below); ®J =

∑
ρk · ®Mk ; (JX, JY, JZ )

are the last 3 elements of ®J; ®π∗ and ®J∗ are all but the last three
elements of ®π and ®J, respectively.

1. P andV execute proof-of-product (§4) on X , Y , and Z .

2. P picks rδ1, . . . , rδn ∈R F and ®d ∈R F4bN+6bG where
®d = (dc3,1, dc2,1, dc1,1, dc0,1, . . . , dc0,n−1, dc2,n, dc1,n, dc0,n ).
P computes and sends

δj ← Com((dc3, j , dc2, j , dc1, j , dc0, j ); rδ j ), j ∈ {1, . . . , n}

3. V chooses and sends ρ1, . . . , ρn+1 ∈R F.

4. P picks rC ∈R F, then computes and sends

C ← Com(⟨ ®J∗, ®d⟩; rC)

5. V chooses and sends challenge c ∈R F.
6. P computes and sends

®z ← c · ®π∗ + ®d

zδ j ← c · rαj + rδ j , j ∈ {1, . . . , n}
zC ← c ·

(
ρ1rC0 − JXrX − JYrY − JZrZ

)
+ rC

7. V rejects unless the following holds, where we denote
®z = (zc3,1, zc2,1, zc1,1, zc0,1, . . . , zc0,n−1, zc2,n, zc1,n, zc0,n ):

Com((zc3, j , zc2, j , zc1, j , zc0, j ); zδ j )
?
= αc

j ⊙ δj j ∈ {1, . . . , n}

(Cρ1
0 ⊙ X−JX ⊙ Y−JY ⊙ Z−JZ )c ⊙ C ?

= Com(⟨ ®J∗, ®z⟩; zC)

Figure 1—This protocol proves the statement derived by applying
Lemma 3 to Equation (5), i.e., that the sum-check whose transcript is
encoded in the protocol’s inputs is accepting. Values corresponding to
c3, j are elided for all sum-check rounds j having quadratic sj .

proof size) to sub-linear in |w |; it also reducesV’s computation
cost to sub-linear in |w | (§6.1). To begin, we require each sub-
AC to have separate input and witness elements; we relax this
restriction by introducing a redistribution layer that allows input
and witness sharing among sub-ACs (§6.2).

6.1 A commitment scheme for multilinear polynomials

In Section 4,V’s final step checks that P’s commitments to w are
consistent with its other messages by evaluating w̃ (the MLE of
w; §3.2, “Multilinear extensions”). Zhang et al. [110] show, in the



non-ZK setting, thatV can outsource this evaluation to P. We
apply their idea to the ZK setting,4 reducing communication and
saving V computation, by devising a polynomial commitment
scheme [64] tailored to multilinear polynomials. Informally, such
schemes are hiding and binding (§3.1, Def. 5); they also allow
the sender to evaluate a committed polynomial at any point and
prove that the evaluation is consistent with the commitment.

Our commitment scheme builds on a matrix commitment
idea due to Groth [55] and an inner-product argument due to
Bünz et al. [29]. We begin by describing a simplified version of
the scheme that gives O(

√
|w |) communication andV runtime;

we then generalize this to O(Sp) communication and O(Ti)
V runtime, Ti ≥

√
|w |, Sp · Ti = |w |. We assume WLOG for

notational convenience that 2ℓ = |x | = |w |.

Square-root commitment scheme. In its final check,V evalu-
ates w̃(r1, . . . , rℓ) by computing a commitment to the dot product
⟨(w0, . . . ,w2ℓ−1), (χ0, . . . , χ2ℓ−1)⟩ (Eq. (4), §4). Consider the fol-
lowing strawman protocol for computing this commitment: in
Step 0 (§4), P sends one multi-commitment to w. Later, P sends
a commitment ω, and P andV execute proof-of-dot-prod (§5)
on Com(w), ω, and (χ0, . . .). This protocol convinces V that
ω = Com(w̃(·)), but does not reduce communication: proof-of-
dot-prod requires P to send O(|w |) messages (Appx. A.2).

To reduce communication, we exploit the structure of the
polynomial w̃ and a matrix commitment due to Groth [55]. At
a high level, this works as follows (details below). In Step 0,
P encodes w as a matrix T , then sends commitments {Tk} to
the rows of T . Then, in the final step, P sends a commitment ω
that it claims is to w̃(r1, . . . , rℓ); V uses {Tk} to compute one
multi-commitment T ′; and P andV execute proof-of-dot-prod
on T ′ and ω. In total, communication cost is O(2ℓ/2).

In more detail: T is the 2ℓ/2 × 2ℓ/2 matrix whose column-major
order is w, i.e., Ti+1, j+1 = wi+2ℓ/2 · j . Before defining T ′ and the
proof-of-dot-prod invocation, we define

χ̌b =

ℓ/2∏
k=1

χbk
(rk) χ̂b =

ℓ∏
k=ℓ/2+1

χbk
(rk)

L = ( χ̌0, χ̌1, . . . , χ̌2ℓ/2−1) R = ( χ̂0, χ̂2ℓ/2, . . . , χ̂2ℓ/2 ·(2ℓ/2−1))

To compute T ′ from commitments {Tk} to the rows of T ,V
evaluates L (in time O(2ℓ/2) [107, §3.3]) and uses it to compute

T ′ =
2ℓ/2−1⊙
k=0

T χ̌k
k+1 = Com(L · T) (6)

Finally, P sends a commitment ω and uses proof-of-dot-prod to
convinceV that the dot product of R with the vector committed
in T ′ equals the value committed in ω.

The above proves to V that ω = Com(w̃(r0, . . . , rℓ)), as we
now argue. For 1-indexed L and R, we have

Li+1 · Rj+1 = χ̌i · χ̂2ℓ/2 · j = χi+2ℓ/2 · j

This is true because χ̌b comprehends the lower ℓ/2 bits of b, and

4In concurrent and independent work, Zhang et al. extend to ZK [111]; §2.

χ̂b the upper ℓ/2 bits. Then by the definition of T , we have

L · T · RT =

2ℓ/2−1∑
i=0

2ℓ/2−1∑
j=0

Ti+1, j+1 · Li+1 · Rj+1

=

2ℓ/2−1∑
i=0

2ℓ/2−1∑
j=0

wi+2ℓ/2 · j · χi+2ℓ/2 · j =

2ℓ−1∑
k=0

wk · χk

If V accepts P’s proof-of-dot-prod on T ′, ω, and R, then by
Equation (6), ω = Com(L ·T · RT) = Com(

∑2ℓ−1
k=0 wk · χk), which

equals Com(w̃(r0, . . . , rℓ)) (Eq. (4), §4) as claimed.
In total, communication is O(2ℓ/2) (for {Tk} plus the proof-of-

dot-prod invocation), andV’s computational cost is O(2ℓ/2) (for
computing L, R, and T ′, and executing proof-of-dot-prod).

Reducing the cost of proof-of-dot-prod. In the above protocol,
proof-of-dot-prod establishes a lower bound on communication
cost. To reduce proof-of-dot-prod’s cost, we use an idea due to
Bünz et al. [29], who give a dot-product protocol that has cost
logarithmic in the length of the vectors. Their protocol works
over two committed vectors; we require one that works over one
committed and one public vector. In Appendix A.3, we adapt their
protocol to the syntax of proof-of-dot-prod; we refer to the result
as prooflog-of-dot-prod. Whereas proof-of-dot-prod requires P to
send 4+n elements for vectors of length n, prooflog-of-dot-prod
requires only 4+2 log n. In both protocols, V’s computational
cost is dominated by a multi-exponentiation of length n.

The full commitment scheme differs from the square-root one
in that P andV invoke prooflog-of-dot-prod (rather than proof-
of-dot-prod) on T ′, R, and ω. For T, L, R, χ̌b, χ̂b as defined
above, P sends 4+2ℓ/2+2 log 2ℓ/2 elements, andV’s runtime is
dominated by two multi-exponentiations of length 2ℓ/2, one to
compute T ′ and the other to execute prooflog-of-dot-prod. This
gives the same asymptotics as the square-root scheme with ≈2×
less communication (but with ≈3× more computation for P).

More importantly, prooflog-of-dot-prod gives the freedom to
reduce communication in exchange for increasedV runtime. For
a parameter ι, we redefine T to be the 2ℓ/ι × 2ℓ−ℓ/ι matrix whose
column-major order is w; redefine χ̌b to comprehend the lower
ℓ/ι bits of b, and χ̂b the upper ℓ − ℓ/ι bits; and redefine

L = ( χ̌0, χ̌1, . . . , χ̌2ℓ/ι−1) R = ( χ̂0, χ̂2ℓ/ι, . . . , χ̂2ℓ/ι ·(2ℓ−ℓ/ι−1))

T has 2ℓ/ι rows and T ′ is a vector of 2ℓ−ℓ/ι elements, so P sends
2ℓ/ι commitments in Step 0 and 4+ log 2ℓ−ℓ/ι elements for prooflog-
of-dot-prod, which is O(2ℓ/ι) in total. Computing T ′ costs V
one multi-exponentiation of length 2ℓ/ι , and executing prooflog-
of-dot-prod costs one of length 2ℓ−ℓ/ι , which is O(2ℓ/ι+2ℓ−ℓ/ι)
in total. Since this is at least O(2ℓ/2), V’s runtime is at least
O(

√
|w |). We formalize immediately below.

Lemma 5. Suppose WLOG that w ∈ F2ι·ℓ′ for ι ≥ 2, and that P
commits to w as described above using 2ℓ′ = |w |1/ι multi-com-
mitments. Then for any (r1, . . . , rι ·ℓ′), P can send a commitment
ω and argue that it commits to w̃(r1, . . . , rι ·ℓ′) in communication
O(|w |1/ι), whereV runs in O(|w |(ι−1)/ι) steps. This is a complete,
honest-verifier perfect zero-knowledge argument with generalized
special soundness under the discrete log assumption.



Completeness and zero-knowledge follow from the analysis in
Appendix A.3. We provide an analysis for generalized special
soundness in Appendix A.5. We have described this protocol
in terms of the multilinear extension of w, but it generalizes to
any multilinear polynomial f using the fact that T comprises the
evaluations of f at all binary inputs.

6.2 Sharing witness elements in the data-parallel setting

We have thus far regarded the computation as having one large
input and one large witness. When evaluating a data-parallel
computation, this means that the sub-ACs’ inputs must be disjoint
slices of the full input (and similarly for the witness). However,
this is not sufficient in many cases of interest.

Consider a case where P wants to convinceV that it knows
leaves of a Merkle tree corresponding to a supplied root. Verifying
a witness with M leaves requires 2M−1 invocations of a hash
function. We encode this as a computation with 2M−1 sub-ACs
laid side-by-side, each encoding the hash function.5 Then, for
sub-ACb processing sub-ACa’s output, P supplies the purported
output to both, and sub-ACa just checks that value and outputs a bit
indicating correctness. This is necessary for zero-knowledge: all
AC outputs are public, whereas sub-ACa’s output (an intermediate
value in the computation) must not be revealed toV.

This arrangement requires sub-ACs to share witness elements—
but duplicating entries in the matrix T (§6.1) is not a solution,
becauseV cannot detect if a cheating P produces T that gives
different values to different sub-ACs. One possibility is a hybrid
vector-scalar scheme: P supplies scalar commitments for each
shared witness element and matrix commitment {Tk} for the rest.
Then, for a scalar commitment δ, V “injects” the committed
value into input index b by multiplying the commitment to
Ṽd(r ′, rυ) (§4, “Final step”) by δ−r0 ·χb .6 (In contrast, the protocol
of Section 6.1 maps each entry of T to a fixed input index.)

This approach works when the number of shared witness
elements is small, but it is inefficient when there are many shared
elements: each shared element requires a separate commitment
and proof-of-opening invocation. For such cases, we enable
sharing of witness elements by modifying the arithmetic circuit
encoding the NP relation. Specifically, after constructing a data-
parallel AC corresponding to the computation, we add one
non-data-parallel redistribution layer (RDL) whose inputs are
the full input and witness, and whose outputs feed the input layers
of each sub-AC. Since the RDL is not data parallel, there are
no restrictions on how its inputs connect to its outputs, meaning
thatV can use it to ensure that the same witness element feeds
multiple sub-ACs: the sum-check protocol forces P to respect
the wiring of the RDL, so P cannot equivocate about w.

5The sub-ACs could instead be arranged sequentially. This would avoid the issues
described in this subsection, but would dramatically increase circuit depth, and
thus the proof length and associated costs when applying our argument.
6In fact, this approach works generally for computations over values to which
V holds a commitment whose opening P knows. It also applies to committed
vectors: if V holds a commitment ξ = Com( ®x), it can inject the committed
values into a list of indices (b1, . . .) as follows: P produces a commitment δ and
proves to V that it commits to Com(⟨(x1, . . .), (χb1, . . .)⟩) with prooflog-of-
dot-prod; then V multiplies Com(Ṽd (r

′, rυ )) by δ−r0 . This approach requires
more communication and V computation than the protocol of Section 6.1,
because it does not assume any particular structure for (b1, . . .).

Moreover, since the RDL only “re-wires” its inputs, the sum-
check invocation corresponding to this layer of the AC can be
optimized to require fewer rounds and a simplified final check.
Observe that the redistribution layer only requires one-input
“pass” gates that copy their input to their output. Thus, following
a simplification of the CMT protocol [35, 101], we have that

Ṽd−1(q′, q) =
∑

h∈{0,1}log(|m |)

˜pass((q′, q), h) · Ṽd(h)

where ˜pass((q′, q), h) is the MLE of a wiring predicate (§3.2)
that is 1 when the RDL connects from the AC input with index h
to input q in sub-AC q′, and 0 otherwise. A sum-check over

RDL(q′,q)(h) = ˜pass((q′, q), h) · Ṽd(h)

requires log(|m|) = log(|x | + |w |) rounds, at the end of whichV
evaluates RDL(q′,q) at a random point. This requiresV to evaluate

˜pass, but in contrast to P...,i or Q...,i (§3.2), it only requires one
evaluation of Ṽd, whichV can check (via the protocol of §6.1)
without invoking a mini-protocol (§3.2).

By a standard analysis [35], P’s costs are O(NG log |m|);V’s
primary cost related to the RDL is evaluating ˜pass at one point,
which costs O(|m| + NG) via known techniques [107, §3.3]. We
formalize in Theorem 6 (§7).

7 Hyrax: a zkSNARK based on Gir++

We refer to the honest-verifier PZK argument obtained by ap-
plying the refinements of Sections 5 and 6 to the protocol of
Section 4 as Hyrax-I; pseudocode is given in Appendix D. Since
Hyrax-I is a public-coin protocol, we apply the Fiat-Shamir
heuristic [43] to produce a zkSNARK that we call Hyrax whose
properties we now formalize:
Theorem 6. LetC(·, ·) be a layered AC of fan-in two, consisting of
N identical sub-computations, each having d layers whose width
is at most G. Under the discrete log assumption in the random
oracle model, for every Sp,Ti with Ti ≥

√
|w | and Sp · Ti =

|w |, there exists a perfectly complete, perfect zero-knowledge,
non-interactive argument with witness-extended emulation for
the NP relation “∃w such that C(x,w) = y.” V runs in time
O(|x | + |y | + dG + (Ti + d log(NG)) · κ) for κ a bound on the
time to compute a commitment; when using an RDL (§6.2),V
incurs an additional O(|x | + |w | + NG) cost. P’s messages have
size O((Sp + d log(NG)) · λ) for λ a security parameter.
We formalize Hyrax-I’s properties in Appendix B. Hyrax’s se-
curity properties follow from these and the properties of the
Fiat-Shamir heuristic [7, 43].

We note that it is also possible to compile Hyrax-I into an inter-
active, malicious-verifier PZK argument in the plain model under
the decisional Diffie-Hellman assumption [22] using standard
techniques [37, 39].

Implementation. Our implementation of Hyrax is based on
Giraffe’s code [83, 107]. It uses Pedersen commitments (Appx. A)
in an elliptic curve group of order qG and works with ACs over
FqG . We instantiate the random oracle with SHA-256.

The prover takes as input a high-level description of an AC (in
the format produced by Giraffe’s C compiler), the public inputs,



and an auxiliary executable that generates the witness from the
public inputs; the prover’s output is a proof. The verifier takes as
input the same computation description and public inputs plus
the proof, and outputs “accept” or “reject.”

We implement Gir++, the techniques of Sections 5 and 6,
the random oracle, and proof serialization and deserialization
by adding 2800 lines of Python and 300 lines of C to the
Giraffe code.7 We also implemented a library for fast multi-
exponentiation comprising 750 lines of C that uses the MIRACL
Crypto SDK [76] for elliptic curve operations and selects between
Straus’s [98] and Pippenger’s [18, 85] methods, depending on
the problem size. Our library supports Curve25519 [17], M221,
M191, and M159 [2]. Python code calls this library via CFFI [30].
We produce random group elements by hashing, implemented in
200 lines of Sage [90] adapted from a script by Samuel Neves [2].

8 Evaluation
In this section we ask:
• How does Hyrax compare to several baseline systems, con-

sidering proof size andV and P execution time?
• How do Hyrax’s refinements (§5–6) improve its costs?
• What is the overall effect of trading greater witness-related
V computation for smaller witness commitments (§6.1)?

A careful comparison of built systems shows that, even for modest
problem sizes, Hyrax’s proofs are smaller than all but the most
computationally costly of the baselines; and that its V and P
execution times are comparable to or faster than half of the
baselines. We also find that Hyrax’s refinements yield multiple
orders of magnitude savings in proof size and V time, and a
small constant savings in P time. Finally, we find that tuning the
witness commitment costs gives much smaller proofs, with little
effect on totalV time for a computation using an RDL (§6.2).

8.1 Comparison with prior work
Baselines. We compare Hyrax with four state-of-the-art zero-
knowledge argument systems with similar properties, detailed
below. We also consider Hyrax-naive, which implements the
protocol of Section 4 without our refinements (§5–6). We do not
compare to systems that require trusted setup (see §2, second
paragraph), but we discuss those systems briefly in Section 8.3.

Like Hyrax (and Hyrax-naive), two of the baselines rely on
elliptic curve primitives; but their existing implementations use
a different curve than Hyrax. To evaluate like-for-like, we re-
implemented them using the same Python scaffolding and C
cryptographic library that Hyrax uses (§7).

The other two baselines do not use elliptic curves, so some
mismatch in implementations is unavoidable. For those systems,
we used existing implementations written in C or C++.
• BCCGP-sqrt is the square-root-communication argument due
to Bootle et al. [23]. We implemented this protocol using Hyrax’s
libraries, as described above. In addition, this protocol uses
polynomial multiplication, for which we used NTL [96]. We also
wrote a compiler to convert from Hyrax’s AC description format
to the required constraint format, with rudimentary optimizations

7Our implementation is single threaded. Prior work suggests that Gir++ is highly
parallelizable [102, 106, 107]; exploring this is future work.

like constant folding and common subexpression elimination. Our
implementation comprises 1200 lines of Python and 160 lines of
C.
• Bulletproofs is the argument due to Bünz et al. [29] (we
adapted the inner-product argument from this work in §6). We
implemented this protocol in 300 lines of Python on top of our
BCCGP-sqrt implementation.
• Ligero [1]: we report on the authors’ C++ implementation.
• ZKB++ [31]: we report runtime of a C implementation of
ZKBoo [49, 113]; per its authors, ZKB++ has similar perfor-
mance [31, §3.2].8 We report extrapolated proof sizes (which are
linear with circuit size) from ZKB++ [31, §3.2.1].

Benchmarks. We evaluate Hyrax, Hyrax-naive, BCCGP-sqrt,
and Bulletproofs on the benchmarks below. We evaluate Ligero
and ZKB++ only on Merkle trees; we explain in Section 8.3.
• Matrix factoring (i.e., matrix multiplication) proves toV that
P knows two matrices whose product equals the public input.
We evaluate on 16×16, 32×32, 64×64, and 128×128 matrices,
and for each we vary N , the number of parallel executions.
• Image scaling establishes that V’s input, a low-resolution
image, is a scaled version of a high-resolution image that P
knows. For scaling, we use Lanczos resampling [103], which
is a standard image transformation in which each output pixel
is the result of convolving a two-dimensional windowed sinc
function [79] with the input image.

We evaluate on 4×, 16×, 64×, and 256× scaling, varying the
number of pixels. This is a data-parallel computation where
each sub-computation evaluates one pixel of the low-resolution
image, but pixels of the high-resolution image must be shared
between sub-computations corresponding to neighboring pixels
in the low-resolution image. To accommodate this, we use a
redistribution layer (RDL; §6.2).
• Merkle tree proves toV that P knows an assignment to the
leaves of a Merkle tree [74] corresponding to a root that V
provides. We use SHA-256 for the hash, varying the number of
leaves in the tree; we implement a data-parallel computation in
which each sub-computation is one invocation of SHA-256; and
we connect outputs at one level of the tree to inputs at the next
level using an RDL. For M leaves, the benchmark comprises
2M−1 sub-computations.9

To implement SHA-256 efficiently in an arithmetic circuit,
we use an approach from prior work [12] for efficient addition
modulo 232. We describe the approach, and an optimization that
may be of independent interest, in Appendix C.

Testbed. We run experiments on Amazon EC2 [3]. For Hyrax,
Hyrax-naive, Ligero, and ZKB++, we use c3.4xlarge instances,
which have 30 GiB of RAM and 8 Xeon E5-2680v2 cores (2
threads per core) clocked at 2.8 GHz. For BCCGP-sqrt and
Bulletproofs (whose provers are more memory-intensive; “P
cost,” below), we use c3.8xlarge instances, which have 60 GiB of
RAM and 16 Xeon E5-2680v2 cores clocked at 2.8 GHz. Only

8We run ZKBoo because there is no standalone ZKB++ implementation that can
run our benchmarks, only one tailored to the Picnic signature scheme [84].
9In a related application [109], P convinces V that it knows a path from a
supplied Merkle root to a leaf. For all evaluated systems, a path of length 2M−1
has the same costs as an M-leaf Merkle tree. We evaluate the tree benchmark
because it demonstrates a wider range of useful computation sizes.
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(a) 64×64 matrix multiplication: proof size.
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(b) 64×64 matrix multiplication: P time.
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(c) 64×64 matrix multiplication:V time.
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(d) 16× Lanczos scaling: proof size.
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(e) 16× Lanczos scaling: P time.
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(f) 16× Lanczos scaling:V time.
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(g) SHA-256 Merkle tree: proof size.
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(h) SHA-256 Merkle tree: P time.

2 4 6 8
log2 M , number of leaves in Merkle tree

0.1

1

10

100

103

104

ve
ri

fie
r

ti
m

e,
se

co
nd

s

(i) SHA-256 Merkle tree:V time.
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Hyrax-1/2 Hyrax-1/3 Hyrax-naive BCCGP-sqrt Bulletproofs ZKB++ Ligero

Figure 2—Comparison of concrete costs between the baseline systems and Hyrax (§8.1). Hyrax-1/2 is Hyrax where P’s witness commitments
have size |w |1/2, and likewise Hyrax-1/3 has commitments of size |w |1/3 (§6.1). Hyrax-naive is Hyrax without the optimizations of Sections 5–6.
BCCGP-sqrt [23], Bulletproofs [29], ZKB++ [31], and Ligero [1] are prior work. The BCCGP-sqrt and Bulletproofs data are truncated for matrix
multiplication and Merkle trees because the provers ran out of memory for the largest benchmarks (§8.1).

RAM is relevant because all code is single threaded.
All testbed machines run Debian GNU/Linux 9.3 [40]. We run

all Python code using PyPy [88], a fast JIT-compiling interpreter.

Security parameters. For Hyrax, Hyrax-naive, BCCGP-sqrt,
and Bulletproofs,G is M191 [2], an elliptic curve over a base field
modulo 2191−19 with a subgroup of order qG = 2188+293+ . . .,
giving ≈90-bit security. We run ZKB++ and Ligero at 2−80

soundness error.10 Except for Ligero and ZKB++, ACs are over
FqG , and group elements and scalars are 24 bytes. (Ligero works
over a smaller field, ZKB++ over Boolean circuits.)

Method. For each benchmark, we construct a set of arithmetic
circuits (and, for image scaling and Merkle trees, RDLs) for a
range of computation sizes. We then run each system’s prover,
feeding the resulting proof into its verifier. We record proof size,
and measure time using the high-resolution system clock.

For matrix factoring and image scaling, we set Hyrax’s com-

10ZKB++ and Ligero give statistical security while the other systems make
computational assumptions; this makes apples-to-apples comparison difficult.
We have chosen parameters to give all systems roughly equivalent cost to prove
a false statement assuming the best-known attacks against ECDH.

munication andV runtime to |w |1/2 (§6.1). For Merkle trees, we
optimize proof size vs. V runtime by setting witness-related
communication to |w |1/3 andV runtime to |w |2/3; we explore the
effect of this setting in Section 8.2.

Results. Figure 2 compares costs for the benchmarks. We show
64×64 matrices and 16× image scaling; others are similar. We
useM to indicate the number of multipliers in an AC C.

Proof size (Figs. 2a, 2d, 2g):
• Hyrax has larger proofs than Bulletproofs, both asymptotically
and concretely.
• Hyrax’s proofs are smaller than BCCGP-sqrt’s when the cost
of the witness commitment dominates the cost of P’s messages
in Gir++ (i.e., for large enough computations).

Specifically, Hyrax’s cost tracks |w |1/2 (|w |1/3 for Merkle trees;
Fig. 2g), while BCCGP-sqrt’s tracks M1/2. Thus, on matrix
factoring (where |w | ≪M) Hyrax has much smaller proofs.
• Hyrax’s Merkle tree proofs are asymptotically and concretely
smaller than Ligero’s: the latter’s cost tracks |C|1/2.
• ZKB++’s cost is linear in the number of AND gates and
Hyrax-naive’s cost tracks |w |; both are large.
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(a) SHA-256 Merkle tree: proof size.
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(b) SHA-256 Merkle tree: P time.
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(c) SHA-256 Merkle tree:V time.

Figure 3—Proof size and P and V runtime for different sizes of P’s witness commitment (§6.1; §8.2). Hyrax-1/2 has commitment size |w |1/2,
Hyrax-1/3 has commitment size |w |1/3, and Hyrax-log has commitment size log |w |. Hyrax-1/2 gives the largest proofs but has the fastest runtimes.
Hyrax-log gives the smallest proofs but has the longest runtimes. Hyrax-1/3 gets essentially the best of both for this application.

P cost (Figs. 2b, 2e, 2h):
• BCCGP-sqrt and Bulletproofs require a number of crypto-
graphic operations proportional toM. Hyrax has lower P time
than these systems because it uses cryptographic operations only
for P’s messages in Gir++ and for w (§4–§6).
• The provers in both BCCGP-sqrt and Bulletproofs ran out of
memory for the largest benchmarks (Figs. 2b and 2h) despite
having 2× more RAM than Hyrax (“Testbed”, above). This is
because they operate, roughly speaking, over all wire values in the
AC at once. In contrast, Hyrax’s P works layer-by-layer (§3.2).11
• Hyrax’s P is more expensive than either ZKB++’s or Ligero’s,
because those systems do not use any public-key cryptography.
• While Ligero’s P is asymptotically more costly than Hyrax’s
P, this is not apparent at the problem sizes we consider.
• Hyrax’s refinements compared to Hyrax-naive (§5–6) yield a
constant factor lower P cost, at most ≈3×.
V time (Fig. 2c, 2f, 2i):
• Hyrax’sV time for matrix factoring (Fig. 2c) is dominated by
the sum-check for small N , and by evaluating Ṽy (which tracks
N; §3.2) for large N . The RDL (§6.2) dominatesV’s costs in the
other two benchmarks (Figs 2f, 2i).
• Hyrax’s V cost is lower than BCCGP-sqrt for large enough
problems: the latter requires O(M) field operations.
• Hyrax’s V cost is much less than Bulletproofs’s: the latter
requires a multi-exponentiation of length M (which can be
computed using O(M/logM) cryptographic operations).
• ZKB++ has verification cost linear in the problem size, so
Hyrax wins on large enough problems (Fig. 2i).
• Ligero’s verifier amortizes its bottleneck computation over the
repeated SHA-256 instances [1, §5.4], so it has sublinear (and
concretely fast) verification time (Fig. 2i).
• Hyrax-naive requires cryptographic operations proportional
to |w |; Hyrax’s refinements give more than 100× savings.

8.2 Effect of tradingV runtime for smaller proofs
Method. We run the Merkle tree benchmark using the same
setup as in Section 8.1, except that we vary the size of P’s witness
commitment (§6.1). We experiment with commitments of size
log |w |, |w |1/3, and |w |1/2.V’s witness-related work at these three

11It is probably possible to engineer the BCCGP-sqrt and Bulletproofs provers
to reduce memory requirements, e.g., by streaming from disk. We attempted a
standard approach—paging memory to an array of fast SSDs—but this caused
thrashing and dramatically increased runtimes.

settings is O(|w |), O(|w |2/3), and O(|w |1/2), respectively.

Results. Figure 3 shows proof size and runtime for the specified
commitment sizes. For Hyrax-1/2, proof sizes are large but P and
V runtimes are small; Hyrax-log is the opposite. Hyrax-1/3 has
similar runtimes to Hyrax-1/2: P’s costs are dominated by Gir++,
V’s by the RDL (§6.2). Meanwhile, its proof sizes are not much
larger than Hyrax-log, because the Gir++-related proof costs are
the same in both cases, and because the constants hidden in the
asymptotic notation mean that the log and cube-root protocols
have similar concrete costs at these problem sizes. In other words,
Hyrax-1/3 gets very nearly the best of both worlds.

8.3 Discussion

Our results show that Hyrax is competitive with the baselines,
and that the refinements of Sections 5 and 6 give substantial im-
provements. Hyrax gives smaller proofs than all but Bulletproofs,
which pays for its smaller proofs with very high computational
costs. Meanwhile, P and V speeds are as good as or better
than the baselines other than ZKB++ and Ligero, both of which
produce substantially larger proofs than Hyrax.

On the other hand, there are several limitations to this analysis.
First, because Gir++ is geared to data-parallel computations (§3.2;
Thm. 1), Hyrax is competitive with prior work primarily when
computations contain sufficient parallelism or are amenable to
batching; this is evident in the way Hyrax’s performance relative
to the baselines improves as parallelism increases in Fig. 2.
While an RDL (§6.2) lets Hyrax take advantage of parallelism
within one computation (as it did in the Merkle tree and image
scaling benchmarks), not all applications fit these paradigms.
Moreover, the RDL is asymptotically and concretely costly for
V; eliminating this bottleneck is future work.

Second, our ZKB++ and Ligero comparison is only on the
SHA-256 Merkle tree benchmark. This makes sense for ZKB++
because it is best suited to Boolean circuits, and SHA-256 is a
natural benchmark. Ligero’s primary evaluation is on SHA-256 [1,
§6]. Its current implementation does not support computations
over large fields [104], so we could not evaluate on matrix
factoring or image scaling; future work is an evaluation of
Ligero’s performance on these benchmarks. We note that, since
Hyrax’s proof size is primarily due to witness size |w | rather than
arithmetic circuit size |C|, we expect it to outperform Ligero on
applications like matrix factoring where |w | ≪ |C|.

Finally, our comparison does not consider argument systems



like libsnark [16, 69] that require trusted setup and non-standard,
non-falsifiable assumptions (§2, paragraph 2); Hyrax’s goal is
to avoid these requirements. Ignoring this, Hyrax’s proofs are
bigger: libsnark’s proofs are a constant ≈300-bytes, independent
of the AC C. Hyrax’s P cost is concretely and asymptotically
smaller: libsnark has a logarithmic overhead in |C|, and it re-
quires cryptographic operations per AC gate, while Hyrax’s P is
essentially linear in computation size and requires cryptographic
operations only for P’s Gir++ messages and for w (§4–§6). For
V, libsnark’s offline setup is very expensive [108, §5.4], and it
must be performed by V or someone V trusts; but libsnark’s
onlineV costs are essentially always cheaper than Hyrax’s.

9 Conclusion
We have described a succinct zero-knowledge argument for NP
with no trusted setup and low concrete cost for both the prover and
the verifier, based on standard cryptographic assumptions. This
scheme is practical because it tightly integrates three components:
a state-of-the-art interactive proof (IP), which we tweak to reduce
communication complexity; a highly optimized transformation
from IPs to zero-knowledge arguments following the approach
of Ben-Or et al. [8] and Cramer and Damgård [38]; and a
new cryptographic commitment scheme tailored to multilinear
polynomials that adapts prior work [29, 55] to allow a sender
to commit to a log G-variate multilinear polynomial and later
to open it at one point, with O(G1/ι) total communication and
O(G(ι−1)/ι) receiver runtime for any ι ≥ 2. A careful comparison
with prior work shows that our argument system is competitive
on both proof size and computational costs. Key future work is
to further reduce proof size without increasing verifier runtime.

More broadly, ours and other recent work [110–112] suggest
that the applicability of the GKR interactive proof [52] has
been underestimated. In particular, GKR seemingly requires
deterministic arithmetic circuits, and saves work for the verifier
(relative to computing the circuit) only when those circuits have
low depth. Zhang et al. sidestep these issues, extending GKR
to non-deterministic, low-depth computations [110] and more
recently to arbitrary RAM programs [112], in both cases saving
work asymptotically for the verifier. But even those enhanced
protocols fall short of state-of-the-art work-saving zkSNARKs [4,
5, 12, 13, 15, 16, 28, 34, 36, 41, 44–46, 67, 78, 81, 108] by
failing to address zero-knowledge applications. This work (and
concurrent work by Zhang et al. [111]) closes that gap—and, in
our view, attests to the power and versatility of the GKR protocol.
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Pedersen Commitment Scheme

Definitions: Let G be a (multiplicative) cyclic group of prime
order qG with group operation ⊙ and inverse ⊘.V publishes
generators g, h ∈ G.

Com(m): P picks s $← {1, . . . , qG} and sends gm ⊙ hs .

Open(α): P sends (m, s).V checks α ?
= gm ⊙ hs .

Multi-commitments: For commitments to vectors,V publishes
generators g1, . . . , gn, h ∈ G and P sends

Com((m1, . . . ,mn)) = hs ⊙
⊙
i

gmi

i

Figure 4—The Pedersen commitment scheme.

A Instantiations of commitment schemes
In this section, we review the Pedersen commitment scheme [82]
(Fig. 4) and related protocols.
Theorem 7 ([82]). The Pedersen commitment scheme is a non-
interactive commitment scheme assuming the hardness of the
discrete logarithm problem in G.
Knowledge of opening. Schnorr [92] shows how P can give a
ZK proof that it knows an x, r such that C0 = Com(x; r).
proof-of-opening(C0)

Inputs: C0 = gx ⊙ hr . P knows x and r .

1. P picks t1, t2 $← {1, . . . , qG} and sends α← gt1 ⊙ ht2 .

2. V sends a challenge c $← {1, . . . , qG}.

3. P sends z1 ← xc + t1 and z2 ← rc + t2.

4. V checks that gz1 ⊙ hz2 ?
= Cc

0 ⊙ α.

Theorem 8 ([92]). proof-of-opening is complete, honest-verifier
perfect zero-knowledge, and special sound under the discrete log
assumption.
Commitment to the same value. Using similar ideas, P can
show in ZK that C1 = Com(v1; s1) and C2 = Com(v2; s2) are
commitments to the same value, i.e., v1 = v2. Given Cu =

Com(u; su) and a value v, P can also convinceV that u = v.
proof-of-equality(C1,C2)

Inputs: C1 = gv1 ⊙ hs1 and C2 = gv2 ⊙ hs2 .
P knows v1 = v2, s1, and s2.

1. P picks r $← {1, . . . , qG} and sends α← hr .

2. V sends a challenge c $← {1, . . . , qG}.

3. P sends z ← c · (s1 − s2) + r

4. V checks that hz ?
= (c1 ⊘ c2)

c ⊙ α.

Theorem 9 (Folklore). proof-of-equality is complete, honest-
verifier perfect zero-knowledge, and special sound under the
discrete log assumption.

A.1 Proving a product relationship
Figure 5 gives a protocol in which P convinces V that it has
openings to three Pedersen commitments having a product rela-

proof-of-product(X,Y, Z)

Inputs: X = gx ⊙ hrX , Y = gy ⊙ hrY , and Z = gx ·y ⊙ hrZ .
P knows x,y,rX ,rY , and rZ .

1. P picks b1, . . . , b5
$← {1, . . . , qG} and sends

α← gb1 ⊙ hb2 β← gb3 ⊙ hb4 δ← Xb3 ⊙ hb5

2. V sends a challenge c $← {1, . . . , qG}

3. P sends

z1 ← b1 + c · x z2 ← b2 + c · rx z3 ← b3 + c · y

z4 ← b4 + c · ry z5← b5 + c(rz − rx y)

4. V checks that

α ⊙ Xc ?
= gz1 ⊙ hz2 (7)

β ⊙ Y c ?
= gz3 ⊙ hz4 (8)

δ ⊙ Zc ?
= Xz3 ⊙ hz5 (9)

Figure 5—ZK proof of knowledge for a product relationship (§A.1).

tionship. This is folklore; for example, we know that Maurer [73]
describes a very similar protocol.

Theorem 10. Given commitments X , Y , and Z , proof-of-product
proves that Z is a commitment to the product of the values
committed in X and Y . This protocol is complete, honest-verifier
perfect zero-knowledge, and special sound under the discrete log
assumption.

Proof. Completeness. It is easy to check that if the prover
sends all values as prescribed, then the first two equations hold.
Checking that the third equation holds is a straightforward (if
slightly tedious) calculation:

δ ⊙ Zc = Xb3 ⊙ hb5 ⊙ (gxy ⊙ hrz )c = Xb3 ⊙ gxyc ⊙ hb5+rz ·c

= Xb3 ⊙

(
(gx ⊙ hrx )yc ⊙ h−(rx ⊙yc)

)
⊙ hb5+rz ·c

= Xb3 ⊙ Xyc ⊙ hb5+c(rz−rxy)

= Xz3 ⊙ hz5 .

Special soundness. To show that the protocol is special sound, for
a given theorem statement (X,Y, Z), let (α, β, δ) be a first message,
and let (c, z1, . . . , z5) and (c′, z′1, . . . , z

′
5) be two transcripts such

that the verification equations above hold, c , c′.
Define the variables

x =
z1 − z′1
c − c′

rx =
z2 − z′2
c − c′

y =
z3 − z′3
c − c′

ry =
z4 − z′4
c − c′

w =
z5 − z′5
c − c′

We first show that the values (x, rx), (y, ry), are proper openings
of the commitments to X and Y .

Recall the following two equations hold:

α ⊙ Xc=gz1 ⊙ hz2 α ⊙ Xc′=gz
′
1 ⊙ hz′2



It follows by dividing the two equations, that

Xc−c′ = gz1−z
′
1 ⊙ hz2−z

′
2

and moreover that

X = g(z1−z
′
1)/(c−c

′) ⊙ h(z2−z
′
2)/(c−c

′) = gx ⊙ hrx (10)

which shows that (x, rx) is indeed an opening for commitment X .
The same follows for Y . Finally, since

δ ⊙ Zc=Xz3 ⊙ hz5 δ ⊙ Zc′=Xz′3 ⊙ hz′5

it follows again by dividing that

Z = X (z3−z
′
3)/(c−c

′) ⊙ h(z5−z
′
5)/(c−c

′) = Xy ⊙ hw

Substituting from (10), we have

Z = (gx ⊙ hrx )y ⊙ hw = gxy ⊙ hrxy+w

which shows that Z can be opened as the product (xy, rx y + w).

Perfect ZK. Here, we show an honest-verifier simulation. Using
Fiat-Shamir [43] or Cramer-Damgård [37] techniques, one can
compile the protocol into a malicious-verifier ZK protocol.

• The simulator S(X,Y, Z, c), on input X,Y, Z and a random
challenge c does the following:
Sample z1, . . . , z5

$← {1, . . . , qG}, then compute:

α← gz1 ⊙ hz2 ⊘ Xc β← gz3 ⊙ hz4 ⊘ Y c

δ← Xz3 ⊙ hz5 ⊘ Zc

• Then the simulator outputs the transcript

(α, β, δ), c, z1, z2, z3, z4, z5

By inspection, the transcript satisfies equations (7)–(9) above.
It remains to show that the distribution over transcripts pro-

duced by S and those produced by the honest prover and honest
verifier are identical. To show this, we show a one-to-one map-
ping between every transcript produced by the honest prover
and a transcript produced by the Simulator. Fix a theorem state-
ment (X,Y, Z) having the correct product relation, a witness,
and a challenge c. The Prover’s random coins consist of the
5 values b1, b2, b3, b4, b5. Given the fixed values, each 5-tuple
uniquely defines (α, β, δ) and the values z1, z2, z3, z4, z5. This
5-tuple is chosen uniformly over Z5

qG
. Likewise, the simulator S

uses random coins z′1, z
′
2, z
′
3, z
′
4, z
′
5, again chosen uniformly over

the same probability space. When S picks the random coins
z1 = b1 + c · x,..., then S produces exactly the same transcript
(α, β, δ), c, (z1, z2, z3, z4, z5). Thus, for every possible transcript,
both the honest prover and simulator produce that transcript with
the same probability. □

proof-of-dot-prod(ξ, τ, ®a)
Inputs: Commitments ξ = Com(®x; rξ ), τ = Com(y; rτ), and a
vector ®a, where ®x, ®a ∈ ZnqG and y = ⟨®x, ®a⟩ ∈ ZqG .
P knows ®x, rξ , y, and rτ .

1. P samples the vector ®d $← {1, . . . , qG}n and the values
rβ, rδ $← {1, . . . , qG} and sends

δ← Com( ®d; rδ) = hrδ ⊙
⊙
i

gdii (11)

β← Com(⟨®a, ®d⟩; rβ) = g ⟨ ®a,
®d⟩ ⊙ hrβ (12)

2. V sends a challenge c $← {1, . . . , qG}.

3. P sends

®z ← c · ®x + ®d, zδ ← c · rξ + rδ, zβ ← c · rτ + rβ

4. V checks that

ξc ⊙ δ
?
= Com(®z; zδ) = hzδ ⊙

⊙
i

gzii (13)

τc ⊙ β
?
= Com(⟨®z, ®a⟩; zβ) = g ⟨®z, ®a⟩ ⊙ hzβ (14)

Figure 6—ZK vector dot-product proof (§A.2).

A.2 Proving a dot-product relationship

In the protocol of Figure 6, P convincesV that it has openings to
one multi-commitment ξ = Com(®x; rξ ) and one scalar commit-
ment τ = Com(y; rτ) such that, for a supplied vector ®a it holds
that y = ⟨®x, ®a⟩. Intuitively, this protocol works because

⟨®z, ®a⟩ = ⟨c®x + ®d, ®a⟩ = c⟨®x, ®a⟩ + ⟨ ®d, ®a⟩ = cy + ⟨ ®d, ®a⟩

The above identity is verified in the exponent in Equation (14).

Theorem 11. The protocol of Figure 6 is complete, honest-
verifier perfect zero-knowledge, and special sound under the
discrete log assumption.

Proof. Completeness. If both the prover and the verifier follow
the protocol correctly both checks will succeed because

ξc ⊙ δ =

(
hrξ ⊙

⊙
i

gxii

)c
⊙ hrδ ⊙

⊙
i

gdii

= hc ·rξ+rδ ⊙
⊙
i

gc ·xi+dii = hzδ ⊙
⊙
i

gzii

τc ⊙ β = (hrτ ⊙ gy)c ⊙ g ®a ·
®d ⊙ hrβ = hc ·rτ+rβ ⊙ gcy+⟨ ®a,

®d⟩

= hzβ ⊙ gc · ⟨ ®x, ®a⟩+⟨
®d, ®a⟩ = hzβ ⊙ g®z · ®a

Special soundness. For a given theorem instance (ξ, τ, ®a), let
(δ, β) be a first message, and let (c, ®z, zδ, zβ) and (c′, ®z′, z′δ, z

′
β) be

two valid transcripts. Since both transcripts satisfy both ofV’s



checks, we have

ξc ⊙ δ = hzδ ⊙
⊙
i

gzii

ξc
′

⊙ δ = hz′δ ⊙
⊙
i

g
z′i
i

τc ⊙ β = hzβ ⊙ g ⟨®z, ®a⟩

τc
′

⊙ β = hz′β ⊙ g ⟨
®z′, ®a⟩

Dividing the top by the bottom in each pair yields

ξ = h(zδ−z
′
δ )/(c−c

′) ⊙
⊙
i

g
(zi−z

′
i )/(c−c

′)

i

τ = hzβ−z
′
β/(c−c

′)
⊙ g(®z−®z

′)· ®a/(c−c′)

which implies that ®x = (®z− ®z′)/(c−c′), that rξ = (zδ−z′δ)/(c−c′),
and that rτ = (zβ − z′β)/(c − c′).

Honest-verifier perfect zero-knowledge. (Analogous to the ZK
proof for protocol for proving product of commitment.) The
zero-knowledge property follows from standard reverse-ordering
techniques. In particular, the simulator first picks c, then ®z, zδ, zβ ,
and finally computes an appropriate first message δ, β which
satisfies check equations (13) and (14).

The simulator S, on input the theorem instance (ξ, τ, ®a) and a
challenge c does the following:

• Sample ®z′ $← ZnqG and z′δ, z
′
β

$← ZqG

• Produce values

δ←

(
hz′δ ⊙

⊙
i

g
z′i
i

)
⊘ ξc (15)

β←
(
g ⟨
®z′, ®a⟩ ⊙ hz′β

)
⊘ τc (16)

• Output the transcript (δ, β), c, (®z, zδ, zβ).
By inspection, one can certify that the transcript passes both
checks of the verifier and the verifier will accept it.

It remains to show that the distribution over transcripts pro-
duced by S and those produced by the honest verifier and honest
prover are identical. To show this, we show a one to one map-
ping between every transcript produced by the honest prover
and a trancript produced by the simulator. We fix a theorem
statement (ξ, τ, ®a), a witness w = (®x, rξ, rτ) and a challenge c.
The prover’s random coins consist of the (n + 2)-tuple ( ®d, rδ, rβ).
Given the fixed statement, witness, and challenge, each (n + 2)-
tuple uniquely determines (δ, β) and the values ®z, zδ, zβ . This
(n + 2)-tuple is chosen uniformly over Zn+2

qG
.

Likewise, the simulator S uses an (n+2)-tuple ®z′, z′δ, z
′
β chosen

uniformly at random over the probability space. We show a one-
to-one mapping between the prover’s coins and the simulator’s
output. In particular, when

M( ®z′) = ®z′ − c · ®x M(z′δ) = z′δ − c · rξ M(z′β) = z′β − c · rτ

By inspection, this mapping is one-to-one, and when the prover
runs with coins M( ®z′, z′δ, z

′
β), it produces the same transcript as

prooflog-of-dot-prod(ξ, τ, ®a)
Inputs: ξ = Com®g(®x; rξ ) = hrξ ⊙

⊙n
i=1 g

xi
i ,

τ = Com(y; rτ) = gy ⊙ hrτ . ®x, ®a ∈ ZnqG , y, rξ, rτ ∈ ZqG .
P knows ®x, y, rξ , and rτ .

1. Let Υ = ξ ⊙ τ = hrΥ ⊙ gy ⊙
⊙n

i=1 g
xi
i where rΥ = rτ + rξ .

(Υ̂, â, ĝ) ← bullet-reduce(Υ, ®a, ®g) (see Fig. 8).

At this point, n = 1 and Υ̂ = ĝ x̂ ⊙ gŷ ⊙ hr̂Υ where ŷ = x̂ · â.

2. P samples d, rδ, rβ $← {1, . . . , qG} and sends

δ← Comĝ(d; rδ) = ĝd ⊙ hrδ

β← Comg(d; rβ) = gd ⊙ hrβ

3. V chooses and sends c $← {1, . . . , qG}.

4. P sends z1 ← d + c · ŷ and z2 ← â
(
c · r̂Υ + rβ

)
+ rδ .

5. V checks that(
Υ̂
c ⊙ β

) â
⊙ δ

?
=

(
ĝ ⊙ gâ

)z1
⊙ hz2 (17)

Figure 7—Protocol for dot-product relation based on Bulletproofs [29].
Com®g indicates a multi-commitment over generators ®g.

the simulator. Thus, the output distribution of S is identical to
that of the prover on this instance. This property holds for all
instances, and any challenge c, which concludes the proof. □

A.3 Dot-product argument from Bulletproofs
The dot-product argument of Appendix A.2 has communication
4+n elements for a vector of length n. By adapting the Bulletproof
recursive reduction of Bünz et al. [29], we reduce this to 4+2 log n.
Figures 7 and 8 detail this protocol.

As in Appendix A.2, we have ®x, ®a, and y = ⟨®x, ®a⟩, where n =
| ®x | = | ®a|. Given ®a and Υ = Com®g(®x) ⊙ Com(y), each recursive
call to bullet-reduce produces ®a′ and Υ′ = Com®g′(®x ′) ⊙ Com(y′)
such that y′ = ⟨®x ′, ®a′⟩.

After log n such recursive calls, we are left with a scalar â and
a commitment Υ̂ = ĝ x̂gŷhr̂Υ . P can now use a Schnorr proof to
convinceV that ŷ = x̂ · â. Expanding Equation (17) (Fig. 7),(
Υ̂
c ⊙ β

) â
⊙ δ =

(
ĝc ·x̂ ⊙ gc ·ŷ ⊙ hc ·r̂Υ ⊙ gd ⊙ hrβ

) ®a
⊙ δ

=
(
ĝc ·x̂ ⊙ gc ·ŷ+d ⊙ hc ·r̂Υ+rβ

) ®a
⊙ ĝd ⊙ hrδ

= ĝc ·x̂ ·â+d ⊙ gâ(c ·ŷ+d) ⊙ hâ(c ·rΥ+rβ )+rδ

= ĝc ·ŷ+d ⊙ gâ(c ·ŷ+d) ⊙ hz2

=
(
ĝ ⊙ gâ

)z1
⊙ hz2

In total,P sends 2 log n elements during the bullet-reduce calls
and 4 elements for the final Schnorr proof. Adapting suggestions
by Poelstra [86],V’s work computing ĝ can be reduced to one
multi-exponentiation of length n and one field inversion, and
computing Υ̂ costs one multi-exponentiation of length 1+2 log n.



bullet-reduce(Υ, ®a, ®g)
Inputs: Υ = hrΥ ⊙ gy ⊙

⊙n
i=1 g

xi
i , ®x, ®a ∈ ZnqG , y, rΥ ∈ ZqG .

P knows ®x,y, and rΥ.
Define ®x1 = (x1, . . . , xn/2), ®x2 = (x1+n/2, . . . , xn) and similarly
for ®a1, ®a2, ®g1, and ®g2; and define

(g1, g2 . . .)
k◦(g1+n/2, g2+n/2 . . .)

ℓ = (gk1 ⊙g
ℓ
1+n/2, g

k
2 ⊙g

ℓ
2+n/2, . . .)

1. If n = 1, return (Υ, a1, g1).

2. P samples rΥ−1, rΥ1
$← {1, . . . , qG} and sends

Υ−1 ← hrΥ−1 ⊙ g ⟨ ®x1, ®a2 ⟩ ⊙

n/2⊙
i=1

gxi
i+n/2

Υ1 ← hrΥ1 ⊙ g ⟨ ®x2, ®a1 ⟩ ⊙

n/2⊙
i=1

g
xi+n/2
i

3. V chooses and sends c $← {1, . . . , qG}.

4. P andV both compute

Υ
′← Υc2

−1 ⊙ Υ ⊙ Υ
c−2

1

®a′← c−1 · ®a1 + c · ®a2

®g′← ®g1
c−1
◦ ®g2

c
= (g1, . . . , gn/2)

c−1
◦ (g1+n/2, . . . , gn)

c

P computes

®x ′← c · ®x1 + c−1 · ®x2

y′← c2 · ⟨ ®x1, ®a2⟩ + y + c−2 · ⟨ ®x2, ®a1⟩

r ′
Υ
← rΥ−1 · c2 + rΥ + rΥ1 · c

−2

5. Return bullet-reduce(Υ′, ®a′, ®g′).
If y = ⟨®x, ®a⟩, then y′ = ⟨®x ′, ®a′⟩, and P knows ®x ′, y′, r ′

Υ
.

Figure 8—Reduction step for the protocol of Figure 7.

Lemma 12. The protocol of Figures 7–8 is complete, honest-
verifier perfect ZK, and generalized special sound under the
discrete log assumption.

Completeness follows from the derivation of Equation (17)
above and the completeness of bullet-reduce [29, Thm. 2,
Appx. A], and ZK follows from standard reverse-ordering tech-
niques. Generalized special soundness follows from the properties
of Schnorr protocols and an argument similar to the proof of [29,
Thm. 2, Appx. A]. In total, the extractor requires n+2 transcripts.

A.4 Proof of Lemma 4

Proof. Completeness. If the theorem statement(
C0, (α1, . . . αn), (M1, . . . , Mn+1), X,Y, Z

)
holds, the prover knows openings of the commitments
C0, (α1, . . . αn), X,Y, Z and he sends all values as prescribed,
it follows from the correctness of proof-of-product that X,Y, Z

will pass all the checks of that subprocess. Moreover, for all k it
holds that

Com((zc3,k , zc2,k , zc1,k , zc0,k ); zδk )

= Com((c · c3,k + dc3,k , c · c2,k + dc2,k ,

c · c1,k + dc1,k , c · c0,k + dc0,k ); c · rαk
+ rδk )

=
(
Com((c3,k, c2,k, c1,k, c0,k); rαk

)
)c
⊙

Com((dc3,k , dc2,k , dc1,k , dc0,k ); rδk )

= αc
k ⊙ δk

It also holds that

(Cρ1
0 ⊙ X−JX ⊙ Y−JZ ⊙ Z−JZ )c ⊙ C

= Com(c(ρ1 · s0 − JX · x − JY · y − JZ · z) + ⟨ ®J∗, ®d⟩;
c(ρ1 · rC0 − Jx · rX − JY · rY − JZ · rZ ) + rC)

= Com(c · ⟨ ®J∗, ®π∗⟩ + ⟨ ®J∗, d⟩; zC)

= Com(⟨ ®J∗, ®z⟩; zC)

Generalized special soundness. For theorem instance
(C0, (α1, . . . αn), (M1, . . . , Mn+1), X,Y, Z), the transcripts:(

Trprod, (δ1, . . . , δn), (ρ1, . . . ρn+1),C, c, (®z, {zδk }, zC)
)(

Trprod, (δ1, . . . , δn), (ρ1, . . . ρn+1),C, c′, (®z′, {z′δk }, z
′
C)

)(
Tr′prod, . . .

)
are sufficient to extract a witness for the statement except with
negligible probability, where Trprod and Tr′prod are transcripts for
proof-of-product. In this context, by witness we mean openings
to the prover’s messages that satisfy the checks that the verifier of
Gir++ does during the corresponding invocation of the sum-check
protocol.

The extractor proceeds as follows:
1. Exploiting the first condition checked by the verifier in Figure 1

(Step 7), extract openings for {αk} via

αc−c′

k = Com
(
(zc3,k − z′c3,k

, zc2,k − z′c2,k
,

zc1,k − z′c1,k
, zc0,k − z′c0,k

); zδk − zδ′
k

)
i.e., rαk

=
zδk −zδ′k
c−c′ and cj,k =

zc j,k −z
′
c j,k

c−c′ , j ∈ {0, 1, 2, 3}.

2. Use the extractor for proof-of-product and Trprod,Tr′prod to
extract openings x̂, rX, ŷ, rY, ẑ, rZ of X,Y, Z .

3. Use the openings from the previous step to extract an opening
for C0. Specifically, exploiting the second condition checked
by the verifier in Figure 1 (Step 7), we have:

(c − c′)(s0 − JX · x̂ − JY · ŷ − JZ · ẑ) = ⟨ ®J∗, ®z − ®z′⟩,

from where we can solve for s0.

4. Check that Equality (5) holds for the extracted values. If not,
reject and output ⊥.
Note that the extractor aborts only when for the extracted

witness, ⟨(
∑
ρk · Mk) , ®π⟩ = ρ1 · s0 but Equality (5) does not hold.



From Lemma 3 the probability that this happens is at most 1/|F|,
which is negligible when the field is of superpolynomial size.
Also, note that we are exploiting the fact that proof-of-product
ensures that ẑ = x̂ · ŷ, since the verifier’s checks in the sum-check
protocol require this.

Honest-verifier perfect zero-knowledge. The simulator, on in-
put statement (C0, (α1, . . . αn), (M1, . . . , Mn+1), X,Y, Z) and mes-
sages fromV, will work as follows. First it uses the simulator for
proof-of-product to produce a valid transcript Trprod for proof-
of-product (X,Y, Z). Then, it follows the below steps to simulate
the rest of the interaction between P andV:
1. Pick random ®z and values zδ1, . . . , zδn, zC .

2. For all k, set δk = Com((zc3,k , zc2,k , zc1,k , zc0,k ); zδk ) ⊘ α
c
k

and
set C = Com(⟨J∗, ®z⟩; zC) ⊘ (C

ρ1
0 ⊙ X−JX ⊙ Y−JZ ⊙ Z−JZ )c .

3. Output the transcript:(
Trprod, (δ1, . . . , δn), (ρ1, . . . ρn+1),C, c, (®z, {zδi }, zC)

)
By construction this passesV’s checks. It remains to show that
the distribution of transcripts produced by S and those produced
by the honest prover and honest verifier are identical. To show
this, we show a one-to-one mapping between every transcript
produced by the honest prover and a transcript produced by
the simulator. We fix a theorem statement, a witness, and V’s
challenges. Since Trprod is produced by the simulator for proof-
of-product its distribution is identical to the distribution of the
messages of an honest prover.

Now, we analyze the rest of the transcript. P’s random coins
comprise the (5bN+8bG+1)-tuple ( ®d, rδ1, . . . , rδn, rC). Given the
fixed statement, witness, and challenges, each such tuple uniquely
determines (δ1, . . . , δn), C and the values ®z, zδ1, . . . , zδn, zC . This
(5bN + 8bG + 1)-tuple is chosen uniformly over Z5bN+8bG+1

qG .
Likewise, the simulator S uses a (5bN + 8bG + 1)-tuple
(®z, zδ1, . . . , zδn, zC) chosen uniformly at random over the proba-
bility space. We show a one-to-one mapping between the prover’s
coins and the simulator’s output. We define this mapping as:

M(®z) = ®z − c · π∗

M(zδk ) = zδk − c · rαk
, k ∈ {1, . . . , n}

M(zC) = zC − c · (ρ1 · rC0 − JXrX − JYrY − JZrZ )

By inspection, this mapping is one-to-one, and when the prover
runs with coins

(
M(®z), M(zδ1 ), . . . , M(zδn ), M(zC)

)
, it produces

the same transcript as the simulator. Thus, the output distribution
of S is identical to that of the prover on this instance. This
holds for all instances and any challenge c, which concludes the
proof. □

A.5 Proof of Lemma 5
We now show how the matrix T can be extracted from the prover
in the protocol of Section 6.1. That protocol first compresses T
into one vector commitment T ′, and then uses prooflog-of-dot-
prod (Appx. A.3) to show the dot-product relation for this vector.
By the properties of prooflog-of-dot-prod, 2ℓ−ℓ/ι + 2 transcripts
with the same first message can be used to extract the underlying

witness, which is the vector:

©«
2ℓ/ι−1∑
i=0

wi χ̌i,

2ℓ/ι−1∑
i=0

wi+2ℓ/ι χ̌i, . . . ,

2ℓ/ι−1∑
i=0

w2ℓ−2ℓ/ι+i χ̌i
ª®¬

In other words, each term is a weighted sum of one column
of T , with weights given by the χ̌i values. For ι ≥ 2, given
2ℓ/ι ·

(
2ℓ−ℓ/ι + 2

)
≤ 2ℓ+1 = 2 |w | transcripts with linearly inde-

pendent ( χ̌0, . . . , χ̌2ℓ/ι−1) (which happens except with negligible
probability for randomly selected rk), an extractor can solve the
resulting system of linear equations for the values w0, . . . ,w2ℓ−1.

A.6 Witness-extended emulation from perfect generalized
special soundness

We employ a lemma from Bootle et al. [23, Lem. 1] which shows
that generalized special soundness implies witness-extended
emulation. Bootle et al. analyze the case where the extractor
always succeeds, but their argument establishes the statement
below directly.

Lemma 13 (Forking lemma [23]). Let (P,V) be a (2µ+1)-move,
public coin interactive protocol. Let ExGSS be a witness extrac-
tion algorithm that extracts a witness from an (n1, . . . , nµ)-tree
of accepting transcripts (Def. 4, §3.1) in probabilistic polyno-
mial time with at most negligible failure probability. Assume
that

∏n
i=µ ni is bounded above by a polynomial in the security

parameter λ. Then (P,V) has witness-extended emulation.

B Proofs of Hyrax-I’s properties
Theorem 14. Hyrax-I is complete: if the prover knows a wit-
ness w s.t. y = C(x,w) and follows the prescribed steps in the
pseudocode (Appx. D), the verifier will accept.

Proof. The completeness of Hyrax-I follows from the complete-
ness of Gir++ and the completeness of all the ZK sub-protocols
used to establish that the verifier’s checks hold. □

Theorem 15. Hyrax-I is honest-verifier perfect ZK.

Proof. On input a theorem instance (C, x, y), and a set of mes-
sages (q′0, q0,0, q′1, q1,0, q1,1, ...) of the verifier, the simulator S
proceeds as follows:
1. For i = 1, . . . ,

√
|w |, set Ti = Com(0; rTi ) for random rTi .

2. Compute Ṽy(q′0, q0,0) and set a0 = Com(Vy(q′0, q0,0); 0)

3. For each layer i = 1, . . . , d, for all sum-check rounds j, pick ri, j
uniformly at random and set αi, j = Com((0, 0, 0, 0); ri, j). At
the end of the sum-check, pick rXi , rYi , rZi uniformly at random
from F and set Xi = Com(0; rXi ), Yi = Com(0; rYi ) and Zi =

Com(0; rZi ). Use the simulator of proof-of-sum-check (Fig. 1,
§5; Appx. A.4) to get a valid transcript Tri for the theorem state-
ment

(
ai−1, (αi,1, . . . αi,n), (M1, . . . , Mn+1), Xi,Yi, Zi

)
. Pick

random µi,0, µi,1 from F and set ai = Xµi .0
i ⊙ Yµi,1

i (Line 19,
Fig. 9).

4. For all j = 0, . . . , bG pick rHj uniformly at random from F
and set Com(Hj) = Com(0; rHj )



5. Run the simulator of proof-of-opening for the values
Com(H0), . . . ,Com(HbG ) and get back the accepting tran-
scripts TrH0, . . . ,TrHbG

6. Run the simulator of proof-of-equality for the input statement
(Com(H0), X) and get back the accepting transcript Trsame,X

7. Run the simulator of proof-of-equality for the input statement
(Com(HbG ) ⊙ . . . ⊙ Com(H0),Y ) and get back the accepting
transcript Trsame,Y

8. Compute qd , ζ and T ′ as in Lines 24–26 of Figure 10

9. Run the simulator of prooflog-of-dot-prod (Appx. A.3) for the
input statement (T ′, ζ ⊘ g(1−qd [0])Ṽx (qd [1,...,bN+bG−1]), R) and
get back the accepting transcript TrdotProd

10. Output the transcript:
(T1, . . . ,T√ |w |, q

′
0, q0,0, q1,0, α1,0, . . . , X1,Y1, Z1,Tr1, . . . ,

Trd,Com(H0), . . . ,TrHbG
,Trsame,X,Trsame,Y, τ,TrdotProd)

The above transcript is accepting: The verifier can only reject
during one of the ZK subroutines prooflog-of-dot-prod, proof-
of-opening, etc., but the simulators of these routines produce
accepting transcripts for each of the input theorem statements.

By a standard hybrid argument, the distribution of tran-
scripts produced by S and those produced by the honest prover
and honest verifier are identical. We fix a theorem statement
(C, x, y), a witness w and verifier’s challenges q′0, q0,0, . . .. Recall
View (⟨P(w),V∗(z)⟩(x)) denotes the distribution of transcripts
that the prover produces when interacting with the honest verifier.
In the following we define experiments Exp1,Exp2, . . . which pro-
duce a distribution of transcripts, and show that each is identical
to the previous.
1. Let Exp1 be the experiment that outputs a transcript in which

the prover behaves as the honest prover except that in Line 28
of Figure 10, instead of executing the protocol prooflog-of-dot-
prod honestly, the protocol’s simulator is used to produce the
transcript for the same theorem. From Theorem 11, since this
simulator produces transcripts that are identically distributed
to those that an honest prover produces, the distributions Exp1
and View (⟨P(w),V∗(z)⟩(x)) are identical.

2. Let Exp2 be the experiment in which the prover behaves
as the prover in Exp1 except that in Line 3 of Figure 10, a
commitment to 0 is used. By Theorem 7 which establishes
that the Pedersen commitment scheme is perfectly hiding,
each of these commitments to zero is identically distributed
to commitment used in Exp1. As a result, the distributions
Exp2 and Exp1 are identically distributed.

3. Let Exp3 be the experiment in which the prover behaves as
the prover in Exp2 except that in each of the Lines 21 and 22
of Figure 10, the simulator of the protocol proof-of-equality
is used to generate the transcript instead of executing the
protocol. By Theorem 9 this simulator produces transcripts
for each of these relations that are identical to those that an
honest prover would produce.

4. Let Exp4 be the experiment in which the prover behaves as
the prover in Exp3 except that in the bG iterations of Line 20
of Figure 10, the simulator of the protocol proof-of-opening

is used to generate a transcript instead of executing it honestly.
From Theorem 8, this simulator produces transcripts that are
identically distributed to those that an honest prover produces.
So, the distributions H4 and H3 are identical.

5. Let Exp5 be the experiment in which the prover behaves
as the prover in Exp4 except that in Line 18 of Figure 10,
commitments to 0 are used. By Theorem 7 which establishes
that the Pedersen commitment scheme is perfectly hiding, the
distribution Exp5 is identical to the distribution Exp4

6. For all sum-check iterations i = d, . . . , 1 :

• Let Exp3(d−i)+6 be the experiment in which the prover be-
haves as the prover of the previous experiment Exp3(d−i)+5
except that in Line 54 of figure 11, the simulator for the
protocol proof-of-sum-check is used to generate the tran-
script. From Lemma 4 this simulator produces transcripts
that are identically distributed to those that an honest prover
produces. So, the distributions Exp3(d−i)+6 and Exp3(d−i)+5
are identical.

• Let Exp3(d−i)+7 be the experiment in which the prover be-
haves as the prover of the previous experiment E xp3(d−i)+6
except that in Line 52 of figure 11 produces the commit-
ments Xi,Yi, Zi by committing to 0. By Theorem 7 which
establishes that the Pedersen commitment scheme is per-
fectly hiding, the distribution Exp3(d−i)+7 is identical to the
distribution Exp3(d−i)+6.

• Let Exp3(d−i)+8 be the experiment in which the prover be-
haves as the prover of the previous experiment Exp3(d−i)+8
except that for all sum-check rounds j = 1 = n, . . . , 1, in
Lines 19 and 47 of figure 11 the commitments αi are
produced by committing to the zero vector. By Theorem 7
which establishes that the Pedersen commitment scheme is
perfectly hiding, the distribution Exp3(d−i)+8 is identical to
the distribution Exp3(d−i)+7

Thus, View (⟨P(w),V∗(z)⟩(x)) is identically distributed to
Exp3(d−1)+8. The experiment Exp3(d−1)+8 is identical to running
the Simulator S on the instance (C, x, y) and verifier’s chal-
lenges q′0, q0,0, . . .. As a result, Exp3(d−1)+8 corresponds to the
distribution of transcripts that S produces which completes the
proof. □

Theorem 16. Under the discrete log assumption, Hyrax-I has
witness-extended emulation.

Proof. We construct an extractor E that simultaneously outputs
a transcript and a witness for a given theorem x with roughly
the same probability that prover P∗ causes the honest verifier to
accept theorem (C, x, y). At a high level, this extractor E uses
P∗ as an oracle, and runs the extractor from Lemma 5 in order to
find a witness w. It checks the validity of the witness by verifying
that C(x,w) = y and outputs w or else aborts by outputting ⊥.
We show that when the extractor succeeds in recovering w, then
(except with negligible probability) it indeed outputs w and thus
satisfies witness-extended emulation. The last condition follows
by the soundness of the Gir++ protocol: a P∗ that succeeds
at convincing the verifier to accept with some non-negligible



probability ϵ , but which causes E to abort, can be used to break
the soundness of Gir++. We use a proof technique borrowed from
the elegant analysis of various parallel repetition theorems where
the same style of soundness reduction (albeit more complicated)
is required.

To simplify the presentation, we assume that the Hyrax-I
verifier runs all zero-knowledge proofs at the very end of the
protocol (even though the pseudocode describes these checks
as occurring over the course of the interaction); we refer to this
ZK challenge step as Step (∗). By moving all sigma protocols to
the end in Hyrax-I, and by standard AND composition of sigma
protocols [32], all ZK proofs can use the same verifier challenge
c ∈ F and the combined proof enjoys the same honest-verifier
zero-knowledge and special soundness properties (we think of
Step (*) as consisting of one giant ZK proof instead of many
separate ZK proofs). Similarly, the Gir++ verifier defers all checks
to the end of the interaction. This change to Gir++ does not affect
soundness.
On input theorem statement (C, x, y), the extractor EP

∗

(C, x, y)
works as follows:
1. Run the honest Hyrax-I verifierV on instance (C, x, y) with

prover P∗(C, x, y) and record the partial transcript Tr′ until
Step (∗) when the zero-knowledge proof is given.

2. By Lemma 13, there exist witness-extended emulators EP
∗

w

and EP
∗

O
for the protocols of Lemma 5 and Theorem 8,

respectively. Run (Tr′′e ,we) ← EP
∗

w (C, x, y) to extract the
witness we. Run (Tr′′Hi

, (Hi, rHi )) ← EP
∗

O
to extract openings

for each Com(Hi) (Fig. 9, Line 26), and use these openings
to compute the opening (mζ, rζ ) of ζ (Fig. 9, Line 32).

3. Run the rest of the ZK sub-protocols of Step (*) and record
the transcript Tr′′rest. Let Tr′′ = Tr′′e | |Tr′′H0

| |Tr′′H1
| | . . . | |Tr′′rest,

and let Tr = Tr′ | |Tr′′.

4. If mζ is not consistent with (x,we) or if Tr is rejecting, output
(Tr, 0) and halt. Otherwise, if C(x,we) = y, then output
(Tr,we). Otherwise, output ⊥.

Fix a polynomial-time adversary A and P∗. Without loss of
generality, assume that A,P∗ are deterministic (i.e., their best
random tapes are hard-wired). Thus, the instance and state given
by (uλ=(C, x, y), sλ) ← A(1λ) are just indexed on the security
parameter. We must show that E runs in expected polynomial
time (which follows by inspection of each step) and that

Pr [Tr← tr⟨P∗(sλ),V⟩(uλ) : A(Tr) = 1] (18)

and

Pr
[
(Tr,w) ← EP

∗(sλ)(uλ) : A(Tr) = 1 ∧
if Tr is an accepting transcript, C(x,w) = y.

]
(19)

differ by a negligible amount in the security parameter.
When E outputs a pair, it outputs the transcript Tr produced

by an honest verifier interacting with P∗, and thus the proba-
bility that A(Tr) = 1 when E does not abort is identical in (19)
and (18). As we show below in Claim 17, the probability that
E aborts is a negligible function η(·), and thus, it follows that
Pr

[
(Tr,w) ← EP

∗(u,s)(u) : A(Tr) = 1
]
≥ (1 − η(·)) · Eq. (18).

Furthermore, when E does not abort and the transcript is ac-
cepting, then because of Step 4, E outputs a pair (Tr,w) such
that C(x,w) = y. Thus, the second condition of Eq. (19) also
holds, and equations (18) and (19) differ by at most a negligible
function, which completes the proof of the theorem.

E only aborts when P∗ succeeds in creating an accepting
transcript, extractor Ew succeeds in extracting a witness we, but
C(x,we) , y. Denote this event as badwit.
Claim 17. For every P∗, there exists a P̂ that runs in expected
time poly(|uλ | + time(P∗)) such that if Pr[badwit] = ϵ(λ), then

Pr[⟨P̂(sλ),Vg⟩(uλ) = 1] > ϵ(λ)2 − η(λ)

whereVg is the Gir++ verifier and η is a negligible function.
By the soundness of Gir++ from Theorem 1, it follows that

ϵ(λ)2 − η(λ) < O(|uλ |/|F|)

and by rearranging, that ϵ(λ) <
√

O(|uλ |/|F|) + η(λ) which
shows that ϵ is a negligible function because |F| is assumed
exponential in the security parameter.

The idea of the construction of P̂. Both the Gir++ verifier’s
(Vg) challenge messages and the Hyrax-I verifier’s (V) challenge
messages are (µ0,0, µ0,1, r1,1, r1,2, . . . , rd,bG , τ), and in addition,
the Hyrax-I verifier makes a single challenge c in Step (∗). For
simplicity, we denote these challenges ®r = (r1, . . . , rℓ) ∈ Fℓ and
c ∈ F and assume that |F| > 2λ.

The only difference between Vg and V is that the latter
performs its checks “under the commitments” by verifying a
ZK proof instead of directly checking the provers responses
(m1, . . . ,mℓ) after every step. Thus the job of P̂ is to forward the
messages “under the commitments” from P∗ toVg.

In particular, P̂ needs to sample an accepting transcript be-
tweenV and P∗, and then rewind the challenge message of the
ZK proof to extract the witness we from the session and initiate a
session of Gir++ withVg on the theorem statement C(x,we) = y.
As it receives the challenges from Vg for the sum-check itera-
tions, it forwards the same challenge to P∗, awaits a response
commitment, and then extracts the value from the commitment
by completing the execution and extracting a witness from the
ZK proof at Step (∗) by using the (generalized) special soundness
of each sub-protocol along with Lemma 13.

Bounding the probability that P∗ aborts. A natural concern
is handling provers P∗ that abort the Hyrax-I protocol during P̂’s
attempts to find a completion of a partial transcript. Intuitively,
P∗ succeeds on ϵ-fraction of allV challenges, and thus sufficient
sampling should lead to a success with high probability.

More formally, consider a j-move partial execution between
P∗ and V in which V’s challenges are ®rj = (r1, . . . , rj). A
continuation of ®rj is a set of challenges (rj+1, . . . , rℓ, c), and a good
continuation is one in which P∗ responses to (r1, . . . , rℓ, c) causes
V to accept. Define the set Gλ to be Gλ = {®r = (r1, . . . , rℓ)}
the set of ℓ-move challenges such that each prefix ®rj of ®r ∈ Gλ,
has an ϵ/ℓ-fraction of good continuations. These are the “heavy”
challenges for which P∗ produces accepting transcripts that
facilitate extraction via special-soundness. Let νλ = Pr

®r
$←Fℓ
[®r ∈

Gλ]. Next we lower bound νλ.



Lemma 18. νλ ≥ ϵ/8 for ℓ ≥ 3, ℓ ∈ N.

Proof. Consider the tree of transcripts with leaves (r1, . . . , rℓ) ∈
Fℓ representing the portion of an execution of Hyrax-I right
before the challenge c for the ZK proof is given. Level j of this
tree contains the internal nodes ®rj = (r1, . . . , rj) ∈ Fj (so there
are |F| j nodes at layer j of the tree); we are interested in analyzing
good continuations over these leaves. Let ρ®rj be the fraction of
good continuations for prefix ®rj . Suppose that over all nodes at
level i, an ϵi fraction of continuations are good. Define the heavy
set Hi as those prefixes for which at least an ϵi/ℓ-fraction of
continuations succeed.
Claim 19. If an ϵi fraction of continuations of all nodes ®ri at level
i succeed, then at least an ϵi(1 − 1/ℓ) fraction of continuations of
nodes in Hi at level i succeed. That is, if

∑
®ri ∈Fi ρ®ri > ϵi , then∑

Hi
ρ®ri ≥ ϵi(1 −

1
ℓ−1 ).

Proof. Partition the sum

|F|(ℓ−i)
∑
®ri ∈Fi

ρ®ri = |F|
(ℓ−i) ©«

∑
Hi

ρ®ri +
∑
Hi

ρ®ri
ª®¬ ≥ ϵi · |F|ℓ (20)

Using the fact that |Hi | + |Hi | = |F|
i , we bound |Hi | by overes-

timating its weight as follows:

|F|(ℓ−i)
(
|Hi | · 1 +

���Hi

��� ( ϵi
ℓ

))
≥ ϵi · |F|

ℓ

|F|(ℓ−i)
(
(|F|i −

���Hi

���) + ���Hi

��� ( ϵi
ℓ

))
≥ ϵi · |F|

ℓ

|F|(ℓ−i)
(
|F|i +

���Hi

��� (−1 +
( ϵi
ℓ

)))
≥ ϵi · |F|

ℓ

|F|(ℓ−i)
���Hi

��� (−1 +
( ϵi
ℓ

))
≥ (−1 + ϵi) · |F|ℓ���Hi

��� ≤ (1 − ϵi)(
1 −

( ϵi
ℓ

) ) · |F|i (21)

Substituting (21) into (20)∑
Hi

ρ®ri ≥ ϵi · |F|
i −

∑
Hi

ρ®ri

≥ ϵi · |F|
i −
(1 − ϵi)(
1 −

( ϵi
ℓ

) ) · |F|i · ϵi
ℓ

= ϵi · |F|
i

[
1 −
(1 − ϵi)
ℓ − ϵi

]
≥ ϵi · |F|

i

[
1 −

1
ℓ − 1

]
□

Thus, at level i, the probability mass over the “heavy” prefixes
remains roughly the same. At level ℓ in the tree (i.e., full chal-
lenges), we have by assumption that an ϵ fraction succeeds, and
thus by the calculation above, at least (1 − 1/(ℓ−1)) fraction are
heavy leaves for which ϵ/ℓ-fraction of the continuations (over
the ZK challenge c) succeed. Now consider the parents of these
heavy leaves at level ℓ−1. At least an ϵℓ−1 = ϵ(1−1/(ℓ−1)) fraction
of nodes at this level have children which are heavy. Applying

Claim 19, it follows that an ϵℓ−1 · (1− 1/(ℓ−1)) fraction of the nodes
at this level are heavy. By induction, we have that at the top-level
of the tree, at least a fraction of all challenges

ϵ

[
1 −

1
ℓ − 1

]ℓ
≥ ϵ/8.

are heavy, because (1 − 1/(x−1))x ≥ 1/8 for x ≥ 3, x ∈ N. □

We now consider the task of sampling an accepting transcript
that allows extracting w starting from a partial transcript with
challenges ®rj = (r1, . . . , rj). Define procedure samP∗λ,u(®rj) as:
1. For up to t attempts:

(a) Sample (r ′
j+1, . . . , r

′
ℓ) ← F

ℓ−j

(b) Run V with P∗ (from its current state) using challenges
(r ′

j+1, . . . , r
′
ℓ) until P̂ generates the first message of the ZK

proof, and then sample t transcripts with randomly sampled
ZK challenges c← F. Succeed if 2 |uλ | transcripts accept,
and return the accepting transcripts.

Since |uλ | > |w |, 2 |uλ | transcripts are sufficient to extract w
(Appx. A.5). Further, sam always runs in time polynomial in
time(P∗) and 2 |uλ | (which are both polynomial in the instance
size) and t, which we set below. More importantly, for j ∈
{1, . . . , ℓ}, conditioned on ®rj being the prefix of some ®r∈Gλ,
then sam succeeds with high probability. In particular, for sam
to fail, all t attempts at sampling (rj+1, . . . , rℓ) must fail to yield
a candidate ®r ∈ Gλ and more than t − 2 |uλ | attempts to find
good continuations of each such candidate fail. For the first case,
because the samples are independent, the failure probability is
less than (1 − ϵ/8)t . For the second case, failure occurs when
there are fewer than 2 |uλ | accepting transcripts. Conditioned on
the prefix being in Gλ, an ϵ/ℓ fraction of continuations result in
accepting transcripts, so sampling 2 |uλ | accepting transcripts
requires an expected 2 |uλ | ·ℓ/ϵ attempts. Setting t ≥ 20 |uλ | ·ℓ/ϵ ·λ
makes the first case negligible by inspection and the second case
negligible by a Chernoff bound.

Details of P̂. For theorem (C, x, y), P̂ does the following:
1. Sample Trfull ← ⟨P

∗,V(C, x, y)⟩. If Trfull is not accepting,
then abort.

2. Rewind P∗ to Step (∗) and sample accepting transcripts until
there are enough to extract the witness we and an opening
(mζ, rζ ) of ζ via the perfect generalized special soundness
of the ZK step (Step (*)) and Lemma 13. Send we to Gir++
verifierVg (Line 3 of Figure 12), thereby making the claim
that C(x,we) = y.

Rewind P∗ to after it sends its first commitment message
(Line 3, Fig. 14). From this point, P̂ plays man in the middle
betweenVg and P∗ as follows.

3. Repeat to determine each message that the Gir++ prover P̂
sends to the Gir++ verifierVg:

(a) For message j, await the random challenge rj from Vg,
forward rj to P∗. Run sam to generate enough accepting
continuations and ZK transcripts to extract prover messages
(m j

1, . . . ,m
j
ℓ
) for every committed message in the protocol.



(b) For any k < j, if there exists a pair mk
k
, m j

k
, (i.e., the ex-

tracted value of message k differs from a previous extraction
of message k), then abort.

(c) Forward the extracted message m j
j toVg.

During its execution, P̂ samples fresh random challenges on
behalf of the Hyrax-I verifier, and it receives challenge messages
fromVg. Let coll denote the event that two such samples are equal
(over the entire execution including all sampling of continuations).
Because both P̂ andVg choose samples randomly and uniformly
from F, and because the expected number of samples chosen is
O(poly(d log(NG))) over all rewinds, it follows that Pr[coll] ≤
η1(λ) for a negligible function η1. For the rest of this argument,
we condition on the event coll, which implies that every extraction
of a witness succeeds by perfect generalized special soundness
and Lemma 13.
P̂ may abort in Step 3b. Denote this event by bind; when this

event occurs, P̂ can be modified to output a commitment αj and
two different openings of αj . This event occurs with negligible
probability η2 by the binding of the Pedersen commitment, and
we also condition the rest of the analysis on the event bind.

We can view verifier Vg as sampling all of its challenges
®r ∈ Fℓ at the start of the protocol (but only sending them one
by one). Let event good occur when Vg’s sampled challenge
®r ∈ Gλ. By Lemma 18, this event occurs with probability
ϵ/8. Even conditioned on good, the invocations of sam may
fail, via the union bound, with negligible probability at most
η3 ≥ e−λ · poly(d, log(NG)).

The first step of P̂ succeeds with probability ϵ . When this
occurs, the second step runs an expected 2 |uλ | /ϵ times to recover
enough transcripts to extract the witness. Conditioned on the four
events above, P̂ always succeeds in convincingVg, thus:

Pr[⟨P̂(sλ),Vg⟩(uλ) = 1] ≥ ϵ · ϵ/8 · (1 − η1(λ))

· (1 − η2(λ)) · (1 − η3(λ))

≥ ϵ2/8 − η4(λ)

where η4 is a negligible function and η1, η2, and η3 correspond
to the events bind, coll and sam.

To compute the running time, there are three cases: (a) when
step 1 fails (with probability 1− ϵ), (b) when step 1 succeeds and
events good, bind, and coll all occur, (c) when step 1 succeeds
and good occurs. In (a), P̂ runs one execution of P̂, in (b), P̂
makes an expected polynomial number of executions of P̂, and
in (c), we use the loop bound t to ensure that the runtime remains
polynomial.

Finally, the loop bound t in sam relies on ϵ . We can either
estimate this probability after Step 1 using an analysis technique
from Goldreich and Kahan [50], or we can be given this value
as advice for this security parameter. Furthermore, we can use
a standard technique of aborting the reduction after 2λ steps
to catch the unexpected steps that may occur due to sampling
errors. □

C Randomized checks “inside the AC”
We describe a simple technique for running randomized tests
“inside the AC.” We use this technique improve the cost of

modulo-232 addition in an AC for SHA-256, but it is applicable
to many randomized checks. Zhang et al. use a related approach
to verify set intersections in vSQL [110].

Our implementation of SHA-256 uses a prior technique [12]
to compute h = f + g mod 232 in an AC over a large prime
field. Specifically, P supplies witness elements {bi} that are
purportedly the binary digits of f + g, i.e., f + g =

∑
i 2ibi . The

AC computes and outputs the value f + g −
∑

i 2ibi , which V
checks is equal to zero. The AC also encodes “bit tests” that ensure
bi ∈ {0, 1}, namely, it computes and outputs {bi · (1−bi)}, which
V also checks are zero. Finally, the AC uses {bi} to compute h,
i.e., h =

∑31
i=0 2ibi = f + g mod 232.

In our implementation, the SHA-256 AC entails more than
7 000 bit tests. Because Gir++ requires layered ACs (§3.2), the
results of these tests must be passed layer-by-layer to the output,
meaning that they cost ≈7000d gates in total. As a result, bit tests
nearly double the size of the AC.

To avoid this, we observe that it is safe forV to believe that all
bit tests have passed if

∑
i ri · bi · (1 − bi) = 0 for ri ∈R F—as

long asP does not know {ri}when it chooses {bi}. To ensure this,
we introduce a small modification to Hyrax-I. Specifically, V
first encodes the above check into the AC. Then, during protocol
execution, afterV sends x, P commits to the witness (including
{bi}; §6); nowV chooses and sends {ri}, after which P returns
y and the protocol continues as normal.V rejects if the output
corresponding to the above sum is not 0. Informally, since P
commits to {bi} beforeV chooses {ri}, it cannot “fool” the test.

Completeness follows by inspection; soundness follows from
the Schwartz-Zippel lemma. This protocol is public coin, so
it can be made non-interactive with the Fiat-Shamir heuristic.
Finally, we note that in the data-parallel settingV can supply a
single {ri} for all N sub-ACs (because P commits to the entire
witness at once).

D Hyrax-I pseudocode
In this section, we provide pseudocode for Hyrax-I. Figure 9
detailsV’s work; Figures 10 and 11 detail P’s. Our presentation
borrows from Wahby et al. [107].

E Gir++ specification
In this section, we provide pseudocode for Gir++. Figures 12
and 13 detail V’s work; Figures 14 and 15 detail P’s. Our
presentation borrows from Wahby et al. [107].



1: function Hyrax-Verify(ArithCircuit c, input x, output y, parameter ι)
2: // Receive commitments to the rows of the matrix T
3: (T0, . . . , T|w |1/ι ) ← ReceiveFromProver() // see Line 3 of Figure 10
4: bN ← log N , bG ← logG
5: (q′0, q0,L )

R
←− FbN × FbG

6: µ0,0 ← 1, µ0,1 ← 0, q0,R ← q0,L

7: a0 ← Com(Ṽy (q
′
0, q0,0); 0)

8: SendToProver((q′0, q0,0)) // see Line 5 of Figure 10
9: d ← c.depth
10:
11: for i=1,. . . ,d do
12: (X,Y, r′, rL, rR ) ← ZK-SumCheckV(i, ai−1, q

′
i−1, qi−1,L, qi−1,R )

13: // X = Com(v0),Y = Com(v1)

14:
15: if i<d then
16: // Pick the next random µi,0, µi,1 and
17: // compute random linear combination (§3.2)
18: µi,0, µi,1

R
←− F

19: ai ← Xµi,0 ⊙ Yµi,1

20: (q′i, qi,L, qi,R ) ← (r
′, rL, rR )

21: SendToProver(µi,0, µi,1) // see Line 14 of Figure 10

22:
23: // For the final check, reduce from two points to one point (§3.2)
24: (Com(H0), . . . , Com(HbG

)) ←ReceiveFromProver() // see Line 18 of Figure 10
25: for i = 0, . . . , bG do
26: proof-of-opening (Com(Hi ))

27: proof-of-equality (Com(H0), X)
28: proof-of-equality (Com(HbG

) ⊙ . . . ⊙ Com(H0),Y)

29: τ
R
←− F

30: SendToProver(τ) // see Line 23 of Figure 10
31: qd ← (r

′, (1 − τ) · rL + τ · rR )
32: ζ = Com(HbG

)τ
log G

⊙ Com(HbG−1)
τ log G−1

⊙ . . . ⊙ Com(H0)

33: T ′ ←
⊙|w |1/ι−1

i=0 T
χ̌i
i // χ̌b is defined in Section 6

34: R ← (χ̂0, χ̂|w |1/ι , . . . , χ̂|w |1/ι ·(|w |1/ι−1)) // χ̂b is defined in Section 6

35: prooflog-of-dot-prod (T ′qd [0], ζ ⊘ g(1−qd [0])Ṽx (qd [1, . . .,bN +bG−1]), R)
36: return accept

37:
38: function ZK-SumCheckV(layer i,ai−1, q

′
i−1, qi−1,L, qi−1,R )

39: (r′, rL, rR )
R
←− Flog N × Flog G × Flog G

40: r ← (r′, rL, rR )

41: for j = 1, . . . , log N + 2 logG do
42: αj ← ReceiveFromProver() // αj is Com(sj ); see Lines 19,47 of Figure 11
43: SendToProver(r[j]) // see Lines 20,48 of Figure 11

44: (X,Y, Z) ← ReceiveFromProver() // see Line 52 of Figure 11
45: // X = Com(v0),Y = Com(v1), Z = Com(v0v1)

46: // V computes {Mj } as defined in Equation (5)
47: proof-of-sum-check (ai−1, {αj }, {Mj }, X,Y , Z) // see Figure 1
48: return (Com(v0), Com(v1), r

′, rL, rR )

Figure 9—Pseudocode forV in Hyrax-I (§7). P’s work is described in
Figures 10 and 11. For notational convenience, we assume |x | = |w |, as
in Section 6.1.

1: function Hyrax-Prove(ArithCircuit c, input x, witness w, parameter ι)
2: // Commit to the rows of T via commitments T1, . . . , T|w |1/k

3: SendToVerifier(T0, . . . , T|w |1/k−1) // see Line 3 of Figure 9
4: bN ← log N , bG ← logG
5: (q′0, q0,L ) ← ReceiveFromVerifier() // see Line 8 of Figure 9
6: µ0,0 ← 1, µ0,1 ← 0, q0,R ← q0,L

7: a0 ← Com(Ṽy (q
′
0, q0,L ); 0)

8: d ← c.depth
9:
10: for i=1,. . . ,d do
11: (X,Y, q′i, qi,L, qi,R ) ← ZK-SumCheckP(c, i, ai−1, µi−1,0, µi−1,1,

12: q′
i−1, qi−1,L, qi−1,R )

13: if i<d then
14: (µi,0, µi,1) ← ReceiveFromVerifier() // see Line 21 of Figure 9
15: ai ← Xµi,0 ⊙ Yµi,1

16:
17: // Compute Coefficients of the degree bG polynomial H: H0, . . . , Hlog G

18: SendToVerifier(Com(H0), . . . , Com(HbG
)) // see Line 21 of Figure 9

19: for i = 0, . . . , bG do
20: proof-of-opening (Com(Hi ))

21: proof-of-equality (Com(H0), X)
22: proof-of-equality (Com(HbG

) ⊙ . . . ⊙ Com(H0),Y)

23: τ ← ReceiveFromVerifier() // see Line 30 of Figure 9
24: qd ← (q

′
d
, (1 − τ) · qd,L + τ · qd,R )

25: ζ = Com(HbG
)τ

log G
⊙ Com(HbG−1)

τ log G−1
⊙ . . . ⊙ Com(H0)

26: T ′ ←
⊙|w |1/k−1

i=0 T
χ̌i
i // χ̂b is defined in Section 6

27: R ← (χ̂0, χ̂|w |1/ι , . . . , χ̂|w |1/ι ·(|w |1/ι−1)) // χ̂b is defined in Section 6

28: prooflog-of-dot-prod (T ′qd [0], ζ ⊘ g(1−qd [0])Ṽx (qd [1, . . .,bN +bG−1]), R)

Figure 10—Pseudocode for P in Hyrax-I (§7). The ZK-SumCheckP
subroutine is defined in Figure 11.V’s work is described in Figure 9.
For notational convenience, we assume |x | = |w |, as in Section 6.1.



1: function ZK-SumcheckP(ArithCircuit c, layer i, ai−1,)
2: µi−1,0, µi−1,1, q

′
i−1, qi−1,L, qi−1,R

3: for j = 1, . . . , bN do
4: // In these rounds, prover sends commitment to degree-3 polynomial sj
5: for all σ ∈ {0, 1}bN − j and g ∈ {0, 1}bG and k ∈ {−1, 0, 1, 2} do
6: s ← (g, gL, gR ) // gL, gR are labels of g’s layer-i inputs in sub-circuit.
7: termP← ẽq(q′

i−1, r
′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j]) ·

8:
(
µi−1,0 · χg (qi−1,L ) + µi−1,1 · χg (qi−1,R )

)
9: termL← Ṽi (r

′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j], gL )

10: termR← Ṽi (r
′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j], gR )

11:
12: if g is an add gate then sj [σ, g][k] ← termP · (termL + termR)
13: else if g is a mult gate then sj [σ, g][k] ← termP · termL · termR

14:
15: for k ∈ {−1, 0, 1, 2} do
16: sj [k] ←

∑
σ∈{0,1}bN − j

∑
g∈{0,1}bG

sj [σ, g][k]

17:
18: // Compute coefficients of sj and create a multi-commitment (§5)
19: SendToVerifier(Com(sj )) // see Line 42 of Figure 9
20: r′[j] ← ReceiveFromVerifier() // see Line 43 of Figure 9

21:
22: r′ ← (r′[1], . . . , r′[bN ]) // notation
23:
24: for j = 1, . . . , 2bG do
25: // In these rounds, prover sends commitment to degree-2 polynomial sbN + j

.
26: for all gates g ∈ {0, 1}bG and k ∈ {−1, 0, 1} do
27: s ← (g, gL, gR ) // gL, gR are labels of g’s layer-i inputs in subcircuit
28: uk,0 ← (qi−1,L [1], . . . , qi−1,L [bG ], r[1], . . . , r[j−1], k)
29: uk,1 ← (qi−1,R [1], . . . , qi−1,R [bG ], r[1], . . . , r[j−1], k)
30: termP← ẽq(q′

i−1, r
′) ·

(
µi,0 ·

∏bG+ j

ℓ=1 χs[ℓ](uk,0[ℓ]) +

31: µi,1 ·
∏bG+ j

ℓ=1 χs[ℓ](uk,1[ℓ])
)

32:
33: if j ≤ bG then
34: termL← Ṽi (r

′, r[1], . . . , r[j − 1], k, gL [j+1], . . . , gL [bG ])

35: termR← Ṽi (r
′, gR )

36: else // bG < j ≤ 2bG

37: termL← Ṽi (r
′, r[1], . . . , r[bG ])

38: termR← Ṽi (r
′, r[bG+1], . . . , r[j−1], k, gR [j−bG+1], . . . , gR [bG ])

39:
40: if g is an add gate then sbN + j

[g][k] ← termP · (termL + termR)
41: else if g is a mult gate then sbN + j

[g][k] ← termP · termL · termR

42:
43: for k ∈ {−1, 0, 1} do
44: sbN + j

[k] ←
∑

g∈{0,1}bG
sbN + j

[g][k]

45:
46: // Compute coefficients of sbN + j

and create a multi-commitment (§5)
47: SendToVerifier(Com(sbN + j

)) // see Line 42 of Figure 9
48: r[j] ← ReceiveFromVerifier() // see Line 43 of Figure 9

49:
50: r0 ← (r[1], . . . , r[bG ]) r1 ← (r[bG + 1], . . . , r[2bG ]) // notation
51: v0 ← Ṽi (r

′, r0) v1 ← Ṽi (r
′, r1) // X = Com(v0),Y = Com(v1), Z = Com(v0v1)

52: SendToVerifier(X,Y , Z) // see Line 44 of Figure 9
53: // P computes {Mk } as defined in Equation (5).
54: proof-of-sum-check (ai−1, {Com(sj )}, {Mk }, X,Y , Z) // see Figure 1
55:
56: return (Com(v0), Com(v1), r

′, r0, r1)

Figure 11—P’s side of the zero-knowledge sum-check protocol in
Hyrax-I (§7).

1: function Verify(ArithCircuit c, input x, output y)
2: // P sends witness w to V in the clear at start of protocol.
3: w ← ReceiveFromProver() // see Line 3 of Figure 14
4: (q′0, q0)

R
←− Flog N × Flog G

5: a0 ← Ṽy (q
′
0, q0) // Ṽy is the multilin. ext. of the output y

6:
7: // The first iteration of sum-check only involves a claim about a single
8: // evaluation of Ṽ0, rather than a linear combination of two evaluations;
9: // we encode this as a trivial linear combination.
10: µ0,0 ← 1, µ0,1 ← 0, q0,L ← q0, q0,R ← q0

11:
12: SendToProver(q′0, q0) // see Line 4 of Figure 14
13: d ← c.depth
14:
15: for i = 1, . . . , d do
16: // Reduce µi−1,0 · Ṽi−1(q

′
i−1, qi−1,L ) + µi−1,1 · Ṽi−1(q

′
i−1, qi−1,R )

?
= ai−1 to

17: // Qi (r
′, rL, rR )

?
= e, where Qi is given in §3.2

18: (e, r′, rL, rR ) ← SumCheckV(i, ai−1)

19:
20: if i < d then
21: (q′i, qi,L, qi,R ) ← (r

′, rL, rR )

22: v0, v1 ← ReceiveFromProver() // see Line 53 of Figure 15
23: termA1← µi−1,0 · ˜addi (qi−1,L, rL, rR )

24: termA2← µi−1,1 · ˜addi (qi−1,R, rL, rR )

25: termM1← µi−1,0 · ˜multi (qi−1,L, rL, rR )

26: termM2← µi−1,1 · ˜multi (qi−1,R, rL, rR )

27:
28: if e , ẽq(q′

i−1, r
′) ·

[ (
termA1 + termA2

)
· (v0 + v1)

29: +
(
termM1 + termM2

)
· v0 · v1

]
then

30: return reject

31:
32: // Reduce the two v0, v1 questions to a random linear combination thereof
33: µi,0, µi,1

R
←− F

34: ai ← µi,0 · v0 + µi,1 · v1

35:
36: SendToProver(µi,0, µi,1) // see Line 12 of Figure 14

37:
38: // For the final layer, P and V reduce two points to one point (§3.2)
39: (H0, . . . , HbG

) ← ReceiveFromProver() // see Line 56 of Figure 15

40: τ
R
←− F

41: q′
d
← r′

42: qd ← (1 − τ) · rL + τ · rR
43: ad ← HbG

· τlog G + HbG−1 · τ
log G−1 + . . . + H0

44:
45: // Ṽd (·) is the multilinear extension of (x, w) where x is input and w is witness
46: if Ṽd (q

′
d
, qd ) , ad then

47: return reject

48: return accept

Figure 12—V’s side of our non-zero-knowledge interactive proof
Gir++. Gir++ is equivalent to the interactive proof in Giraffe, but
incorporates a technique of Chiesa et al. [33] in place of GKR’s “reducing
from two points to one point” step.V’s side of the sum-check protocol
and P’s work are described in Figures 13, 14, and 15.



1: function SumCheckV(layer i, ai−1)
2: e← ai−1
3:
4: (r ′, rL, rR)

R
←− FbN × FbG × FbG

5: r ← (r ′, rL, rR)
6:
7: for j = 1, 2, . . . , (bN + 2bG) do
8:
9: // Fj is a degree-2 or degree-3 polynomial

10: Fj ← ReceiveFromProver() // see Lines 18,47 of Figure 15
11:
12: if Fj (0) + Fj (1) , e then
13: return reject
14:
15: SendToProver(r[ j]) // see Lines 19,48 of Figure 15
16:
17: e← Fj (r[ j])

18:
19: return (e, r ′, rL, rR)

Figure 13—V’s side of the sum-check protocol within Gir++. This
protocol reduces the claim that ai equals the sum

∑
n,hL,hR

Qi(n, hL, hR)
(this sum equals µi−1,L · Ṽi−1(q′i−1, qi−1,L)+ µi−1,R · Ṽi−1(q′i−1, qi−1,R),
per §3.2, “Random linear combination”) to the claim e = Qi(r ′, rL, rR).

1: function Prove(ArithCircuit c, input x, output y)
2: // Let w be a witness such that c(x,w) = y

3: SendToVerifier(w) // see Line 3 of Figure 12.
4: (q′0, q0) ← ReceiveFromVerifier() // see Line 12 of Figure 12
5: µ0,0 ← 1, µ0,1 ← 0, q0,L ← q0, q0,R ← q0.
6: d ← c.depth
7:
8: // each circuit layer induces one sum-check invocation
9: for i = 1, . . . , d do

10: (q′i, qi,L, qi,R) ← SumCheckP(c, i, q′
i−1, µi−1,0, qi−1,L, µi−1,1, qi−1,R)

11: if i < d then
12: (µi,0, µi,1) ← ReceiveFromVerifier() // see Line 36 of Figure 12

Figure 14—Pseudocode for P in Gir++. SumCheckP is defined in
Figure 15.



1: function SumCheckP(ArithCircuit c, layer i, q′
i−1, µi−1,0, qi−1,0, µi−1,1, qi−1,1)

2: for j = 1, . . . , bN do
3: // Prover sends degree-3 polynomial Fj . Does this by computing Fj (−1), Fj (0), Fj (1), Fj (2) and then interpolating.
4:
5: for all σ ∈ {0, 1}bN−j and g ∈ {0, 1}bG and k ∈ {−1, 0, 1, 2} do
6: s← (g, gL, gR) // gL, gR are labels of g’s layer-i inputs in sub-circuit.
7:
8: termP← ẽq(q′

i−1, r
′[1], . . . , r ′[ j − 1], k, σ[1], . . . , σ[bN − j]) ·

(
µi−1,0 · χg(qi−1,0) + µi−1,1 · χg(qi−1,1)

)
9: termL← Ṽi (r ′[1], . . . , r ′[ j − 1], k, σ[1], . . . , σ[bN − j], gL)

10: termR← Ṽi (r ′[1], . . . , r ′[ j − 1], k, σ[1], . . . , σ[bN − j], gR)
11:
12: if g is an add gate then Fj [σ, g][k] ← termP · (termL + termR)
13: else if g is a mult gate then Fj [σ, g][k] ← termP · termL · termR
14:
15: for k ∈ {−1, 0, 1, 2} do
16: Fj [k] ←

∑
σ∈{0,1}bN − j

∑
g∈{0,1}bG Fj [σ, g][k]

17: // Use Lagrange interpolation to compute coefficients of Fj and send them toV
18: SendToVerifier(Fj , 3) // see Line 10 of Figure 13
19: r ′[ j] ← ReceiveFromVerifier() // see Line 15 of Figure 13
20:
21: r ′ ← (r ′[1], . . . , r ′[bN ]) // notation
22:
23: for j = 1, . . . , 2bG do
24: // In these rounds, prover sends degree-2 polynomial FbN+j .
25: for all gates g ∈ {0, 1}bG and k ∈ {−1, 0, 1} do
26:
27: s← (g, gL, gR) // gL, gR are labels of g’s layer-i inputs in subcircuit
28: uk,0 ← (qi−1,0[1], . . . , qi−1,0[bG], r[1], . . . , r[ j−1], k)
29: uk,1 ← (qi−1,1[1], . . . , qi−1,1[bG], r[1], . . . , r[ j−1], k)

30: termP← ẽq(q′
i−1, r

′) ·

(
µi,0 ·

∏bG+j
ℓ=1 χs[ℓ](uk,0[ℓ]) + µi,1 ·

∏bG+j
ℓ=1 χs[ℓ](uk,1[ℓ])

)
31:
32: if j ≤ bG then
33: termL← Ṽi (r ′, r[1], . . . , r[ j − 1], k, gL[ j+1], . . . , gL[bG])
34: termR← Ṽi (r ′, gR)
35: else // bG < j ≤ 2bG
36: termL← Ṽi(r ′, r[1], . . . , r[bG])
37: termR← Ṽi (r ′, r[bG+1], . . . , r[ j−1], k, gR[ j−bG+1], . . . , gR[bG])
38:
39: if g is an add gate then
40: FbN+j [g][k] ← termP · (termL + termR)
41: else if g is a mult gate then
42: FbN+j [g][k] ← termP · termL · termR
43:
44: for k ∈ {−1, 0, 1} do
45: FbN+j [k] ←

∑
g∈{0,1}bG FbN+j [g][k]

46: // Use Lagrange interpolation to compute coefficients of FbN+j and send them to verifier
47: SendToVerifier(FbN+j , 2) // see Line 10 of Figure 13
48: r[ j] ← ReceiveFromVerifier() // see Line 15 of Figure 13
49:
50: r0 ← (r[1], . . . , r[bG]) r1 ← (r[bG+1], . . . , r[2bG]) // notation
51:
52: if i < c.depth then
53: SendToVerifier(Ṽi(r ′, r0), Ṽi(r ′, r1)) // see Line 22 of Figure 12
54: else // in the last sum-check invocation, P andV reduce two points to one point (§3.2)
55: // First, compute coefficients of H(·), i.e., Ṽd restricted to the line passing through (r ′, r0) and (r ′, r1).
56: SendToVerifier((H0, . . . ,HbG

)) // see Line 39 of Figure 12
57:
58: return (r ′, r0, r1)

Figure 15—P pseudocode in our non-zero-knowledge interactive proof Gir++ for the layer-i sum-check invocation.


