
Attacks on the PUF-Based Authentication
Protocols YeHL16 and GaoMAAR17∗

Jeroen Delvaux

imec-COSIC, KU Leuven, Belgium, jdelvaux@esat.kuleuven.be

Abstract. A physically unclonable function (PUF) is a circuit of which the input–
output behavior is designed to be sensitive to the random variations of its manufac-
turing process. This building block hence facilitates the authentication of any given
device in a population of identically laid-out silicon chips, similar to the biometric
authentication of a human. The focus and novelty of this work is the development
of efficient impersonation attacks on the following two PUF-based authentication
protocols: (1) the protocol of Ye, Hu, and Li, as presented at AsianHOST 2016, and
(2) the protocol of Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe, as published in the
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems in
2017.
Keywords: physically unclonable function · entity authentication · machine learning

1 Introduction
Since their advent in the early 2000s [LDT00], physically unclonable functions (PUFs) have
been used as a building block in numerous authentication protocols. The authentication is
either unilateral, i.e., one-way, or mutual, i.e., two-way, and usually takes place between a
low-cost, resource-constrained device hosting a PUF and a high-cost, resource-rich server
storing a selection of the input–output pairs of this PUF. Delvaux [Del17, Chapter 5]
analyzed the security and practicality of 21 such protocols, thereby revealing numerous
problems to the extent that only six candidates survive. In parallel, Becker [Bec15a, Bec15b]
and Tobisch [TB15] pushed the boundaries of machine learning attacks on PUF-based
protocols. The previous analyses, however, are not up-to-date with more recently proposed
protocols. In this work, we illustrate that the research field of developing new PUF-based
authentication protocols remains a minefield. Efficient attacks on the proposals of Ye et
al. [YHL16] and Gao et al. [GMA+17] are presented.

The remainder of this paper is organized as follows. Section 2 introduces the nota-
tion and provides preliminaries. Section 3 specifies and obliterates the aforementioned
authentication protocols. Section 4 concludes this work.

2 Preliminaries
2.1 Notation
Variables are denoted by a character from the Latin alphabet: a, b, c, etc. Constants
are denoted by a character from the Greek alphabet: α, β, γ, etc. Vectors are denoted
by a bold-faced, lowercase character, e.g., x = (x1 x2). All vectors are row vectors. The

∗If you downloaded this file from any source other than https://eprint.iacr.org/, please check the
previous link to ensure that your version is the latest one.

mailto:jdelvaux@esat.kuleuven.be
https://eprint.iacr.org/

2 Attacks on Two PUF-Based Authentication Protocols

all-zeros vector is denoted by 0. Matrices are denoted by a bold-faced, uppercase character,
e.g., X. A diagonal matrix is defined by listing the entries on its main diagonal, e.g.,
X = diag(x1, x2). A random variable is denoted by an uppercase character, e.g., X. A
multivariate normal random variable X with mean µ and covariance matrix Σ is denoted
by X ∼ N(µ,Σ). A set, often but not necessarily referring to all possible outcomes of a
random variable, is denoted by an uppercase, calligraphic character, e.g., X . The set of all
λ-bit vectors is denoted by {0, 1}λ. Custom-defined functions are printed in a sans-serif
font, e.g., Hamming distance HD(x1,x2).

2.2 Arbiter PUFs and Machine Learning
A PUF maps a binary input, i.e., the so-called challenge c ∈ {0, 1}λ, to a binary, device-
specific output, i.e., the so-called response r ∈ {0, 1}η. Unfortunately, noise sources within
the device, as well as changes to its external environment, imply that an initially generated
response r slightly differs from its reproduction r̃. The value of HD(r, r̃), averaged over
numerous challenges c, typically lies between 0.05η and 0.15η. There is a special interest
for PUFs that support a large-sized challenge c, e.g., having λ = 128, because this
facilitates the design of an authentication protocol considerably. Even those who are given
unrestricted access to such a PUF can neither gather nor tabulate all of its challenge–
response pairs (CRPs) within the lifetime of its hosting device. Unfortunately, the CRPs
are all determined by the variability of a limited number of circuit elements, and are hence
correlated. For this reason, machine learning algorithms training on a relatively small set
of CRPs, i.e., {(c1, r1), (c2, r2), · · · , (cω, rω)} where ω � 2λ, can produce a model m̂ that
allows to accurately predict the unseen response rω+1 to any given challenge cω+1.

For the well-known Arbiter PUF [Lim04], which quantizes the difference v between
the propagation delays of two reconfigurable paths, a large λ can be supported. If v > 0,
the single-bit response r = 1; otherwise, r = 0. Numerous authors have experimentally
confirmed that the value of v can be accurately described by a dot product: v = m sT ,
where variability model m ∈ Rλ+1 aggregates the propagation delays of the logic gates
that constitute both paths and where s ∈ {−1, 1}λ+1 is the result of an invertible challenge
transformation ToSigns(c). To incorporate the effect of both internal noise sources and
environmental changes, the latter of which are assumed to be centered around a constant
nominal value, the quantization can be extended to (v + n) ≶ 0, where N ∼ N(0, σ2) with
respect to the infinite set of evaluations [Mae13]. A crucial insight is that the reproducibility
of the response r to a given challenge c increases monotonically with the absolute value |v|.

If pairs (s, r) instead of pairs (c, r) are used as training data, the problem of learning m
becomes quasi-linear and hence straightforward to handle for numerous algorithms. This
includes the use of artificial neural networks, support vector machines, and logistic regression.
Thanks to existing validations with experimental data, it has become a common practice to
demonstrate the feasibility of a machine learning attack on randomly generated instances
of the mathematical abstraction m. For the abstraction of an ideally manufactured
Arbiter PUF, and in disregard of an irrelevant scale factor a ∈ R0, it holds that model
M ∼ N

(
0,diag(1/2, 1, 1, · · · , 1, 1/2)

)
with respect to the infinite set of devices [Del17,

Chapter 3]. Noise sources, however, pollute both training and testing data (s, r), so if
omitted from the mathematical abstraction, the reported learning efficiency is usually
slightly higher than for experimental data.

To prevent an attacker from successfully modeling a PUF, several authentication
protocols either keep the response bits r internal to its hosting device or obfuscate the
link between the public challenges c and the released response bits r. The latter strategy
usually entails the use of a true random number generator (TRNG). As demonstrated by
Becker [Bec15b] and Tobisch [TB15], however, the release of variables that are correlated
to r might still enable a modeling attack. For example, if the protocol leaks the error
rate perror of a hidden response bit r, an estimate of the absolute value |v| can still be

Jeroen Delvaux 3

obtained. Noise sources might hence help rather than hinder an attacker.

2.3 Attacker Model
The analyzed authentication protocols adopt a frequently used attacker model [Del17,
Chapter 5]. The enrollment of a PUF-enabled device takes place in a secure environment,
and afterwards, an interface for accessing the CRPs might have to be irreversibly disabled.
In the field, the protocols should resist both impersonation and denial-of-service attacks.
Given that the device comprises a smart card, a radio-frequency identication tag, or
another mobile entity, it is assumed that an attacker may obtain physical access. The
server, however, features both secure computations and secure storage. The communication
channel between both parties is assumed to be insecure. This implies that an attacker
may not only eavesdrop on a genuine protocol run, but also manipulate, inject, and block
messages.

3 Protocols
We first specify and subsequently wipe out each of the authentication protocols. Sections 3.1
and 3.2 may be read in arbitrary order.

3.1 Ye, Hu, and Li
3.1.1 Specification

The unilateral authentication protocol of Ye, Hu, and Li [YHL16] is specified in Figure 1.
Although this specification is complete by itself, a visually oriented reader may benefit
from the block diagram of a PUF-enabled device in Figure 6(a).

3.1.2 Attack

Analogous to the growth of cracks in solid materials, the mediocre accuracy of ≈ 75%
should have been a warning of an imminent failure. Indeed, we now devise an alternative
learning strategy that is an order of magnitude more efficient, thereby allowing an attacker
to impersonate a PUF-enabled device an unlimited number of times. Given physical access
to the device, the attacker can obtain the 2γ unique responses r ∈ {0, 1}λ to each out of q
challenges c ∈ {0, 1}λ. There are hence (2γ !)q possibilities for constructing a combined
training and testing set of 2γ · q · λ transformed CRPs (s′′, r) each. When exhaustively
applying a machine learning algorithm to each out of these sets, the one and only correct
mapping can be observed to result in the highest accuracy. Alternatively, an attacker who
eavesdrops on q genuine protocol runs can iterate over 2γ·q combined training and testing
sets of q · λ transformed CRPs (s′′, r) each. Figure 2(a) shows that for either strategy, a
relatively limited computational effort corresponds to a relatively large number of CRPs.

We apply linear regression [HTF09, 12th printing, Section 4.2] to each set of transformed
CRPs (s′′, r). Although the learning capabilities of this deterministic approach are slightly
inferior to several randomized training algorithms, its speed is unparalleled and hence
favors exhaustive enumeration. As shown in (1), determining the least-squares solution of a
system of linear equations is all what is needed. Although Figure 2(b) demonstrates that a
fairly limited brute-force effort already allows for an accuracy of 90%, we suggest adopting
a more efficient two-step approach to further improve the accuracy. First, numerous
repeated executions of a small-sized exhaustive search, e.g., using q = 1 every time, can be
used to deobfuscate the mapping between numerous transformed challenges s′′ and their
corresponding response bits r. Second, a potentially slower training algorithm with superior

4 Attacks on Two PUF-Based Authentication Protocols

PUF-enabled device Server

ci ← TRNG()
n← TRNG()
c′ ← InvertOrNot(ci,n)
(c′′1 , c′′2 , · · · , c′′λ)← LFSR(c′)
∀k ∈ [1, λ], rk ← ArbiterPUF(c′′k)
ri,j ← (r1 r2 · · · rλ)

Ri ← Unique(ri,1, · · · , ri,β)
i← 0

i← i+ 1
n← TRNG()
c′ ← InvertOrNot(ci,n)
(c′′1 , c′′2 , · · · , c′′λ)← LFSR(c′)
∀k ∈ [1, λ], r̃k ← ArbiterPUF(c′′k)
r̃i ← (r̃1 r̃2 · · · r̃λ)

Reject if @r ∈ Ri,HD(r, r̃i) ≤ ε

verifies

ci

ri,j

ci

r̃i

en
ro
llm

en
t

au
th
en
tic

at
io
n
(α

tim
es
)

∀j ∈
[1, β] ∀i ∈

[1, α]

Figure 1: The unilateral authentication protocol of Ye et al. [YHL16]. To prevent the
machine learning of its Arbiter PUF, a device either does or does not invert the bits of any
received challenge c ∈ {0, 1}λ depending on the value of a nonce n ∈ {0, 1}γ . Suggested
values for λ are 32, 64, and 128. For γ = 1, it holds that c′ ∈ {c, (c̄1 c̄2 · · · c̄λ)}. For γ = 2, it
holds that c′ ∈ {c, (c1 c2 · · · cλ/2 c̄λ/2+1 c̄λ/2+2 · · · c̄λ), (c̄1 c̄2 · · · c̄λ/2 cλ/2+1 cλ/2+2 · · · cλ),
(c̄1 c̄2 · · · c̄λ)}. Larger values of γ are not deemed necessary. The randomized challenge c′
is fed into a linear-feedback shift register (LFSR) so that the 1-bit responses r to an
expanded list of λ challenges c′′ can be concatenated into a λ-bit response r. To enroll a
device, the server requests the response r to each out of α randomly generated challenges c
not once but β � 2γ times and collects the 2γ unique values. A suggested value for β is
100. Evidently, slightly differing responses r are attributed to the noisiness of the PUF
and are not considered unique. To authenticate a device up to α times, the server checks
whether the response r̃ to a challenge c is sufficiently close to one out of its 2γ prerecorded
values. The authors emphasize that the nonce N should be uniformly distributed over
{0, 1}γ . Otherwise, frequency analysis would allow an attacker to partition the unique
responses r from multiple protocol runs into 2γ sets that each correspond to a given
transformation of the challenge c. The authors collect data from numerous protocol runs
and conduct machine learning experiments that do not exceed an accuracy of ≈ 75%.
They, consequentially, consider their protocol fit for deployment in practical use cases.

Jeroen Delvaux 5

0 128 512 1,024

22

28

216

passive

active

CRPs

N
um

be
r
of

m
od

el
s

(a)
0 128 512 1,024

0.5

0.7

0.9

1.0
best

second best

CRPs

A
cc
ur
ac
y

(b)

Figure 2: The first phase of an attack on the protocol of Ye et al. [YHL16], where λ = 128
and γ = 2. For an either passive or active attacker, subplot (a) shows the number of
possible mappings between a given number of transformed challenges s′′ and an equal
number of response bits r. For each possible mapping, a model is trained and subsequently
tested. Subplot (b) shows the accuracy of the best and second-best models, which are
obtained through linear regression according to (1). Both accuracies are averaged over
1000 randomly generated and noiseless PUFs M ∼ N

(
0,diag(1/2, 1, 1, · · · , 1, 1/2)

)
. For any

given challenge c, we use round(0.8λ) = 102 and round(0.2λ) = 26 transformed CRPs
(s′′, r) for training and testing purposes respectively.

learning capabilities can be applied to a single large set of deobfuscated pairs (s′′, r). This
way, accuracies exceeding 99% can be achieved [RSS+13].

Solve

s′′1
s′′2
...

s′′ω

 (m̂T
1 m̂T

0) =

r1 r̄1
r2 r̄2
...

...
rω r̄ω

 ; predict r̂ω+1 =
{

1, if s′′ω+1m̂T
1 > s′′ω+1m̂T

0 ,

0, otherwise.
(1)

We emphasize that the previously elaborated attack cannot simply be mitigated by
increasing the value of γ. To enroll a device, the response r to every challenge c needs
to be evaluated β � 2γ times. Therefore, the attacker and the server face a similar
workload. A final note is that, depending on the non-specified internals of the LFSR, a
more straightforward deobfuscation method might exist. It is intuitive to assume that the
LFSR has a λ-bit state that is initialized by the randomized challenge c′ ∈ {0, 1}λ, and that
each out of λ2 state updates generates a single challenge bit c′′. This allows an attacker to
choose two challenges c such that for any given value of nonce n ∈ {0, 1}γ , the expanded
challenge sequences are (c′′1 , c′′2 , · · · , c′′λ) and (c′′λ/2+1, c′′λ/2+2, · · · , c′′3λ/2) respectively. The
respective responses r hence have an overlap of λ/2 bits.

3.2 Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe

3.2.1 Specification

The mutual authentication protocol of Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe [GMA+17]
is specified in Figure 3. Although this specification is complete by itself, a visually oriented
reader may benefit from the block diagram of a PUF-enabled device in Figure 6(b).

6 Attacks on Two PUF-Based Authentication Protocols

PUF-enabled device Server

ci ← TRNG()
ri ← ArbiterPUF(ci)
Disable read-out of ri m̂← TrainModel(c1, r1, · · · , cα, rα)

n1 ← TRNG()
(c1, r1, · · · , cη, rη)← StablePath(m̂,n1)

(n2,n3)← TRNG()
∀i ∈ [1, η], r̃i ← ArbiterPUF(ci)
(k, f)← FollowPath(r1, · · · , rη)
If f = 0, then a← TRNG()
Else a← Hash(r̃1‖ · · · ‖r̃k,n2)

Reject if a 6= Hash(r1‖ · · · ‖rk,n2)
b← Hash(r1‖ · · · ‖rk,n3)

Reject if b 6= Hash(r̃1‖ · · · ‖r̃k,n3)

verifies

ci
ri

c1, c2,
· · · , cη

a,
n2,n3

b

en
ro
llm

en
t

au
th
en
tic

at
io
n
(∞

tim
es
)

∀i ∈ [1, α]

Figure 3: The mutual authentication protocol of Gao et al. [GMA+17]. To enroll any given
device, each hosting an Arbiter PUF with λ = 64 challenge bits, the server collects α = 104

CRPs (c, r) so that an accurate predictive model m̂ can be trained. Both response bits r,
which are the result of a comparison v ≶ 0, and their respective error rates perror, which
decrease monotonically with |v|, can be predicted. After the enrollment, the interface
for reading out response bits r is irreversibly disabled. During any out of a virtually
unlimited number of protocol runs, the server is restricted to using the CRPs (c, r) that
have the lowest error rates perror, which is a fairly common technique to obtain a low
failure rate [Del17, Chapter 4]. Considering the noisiness of their implemented Arbiter
PUFs, the authors opt to maintain 1.8 · 1017 out of 264 CRPs, which corresponds to a
retention rate ρret ≈ 1%. For a hardwired finite state machine (FSM), having one start
state and one end state as further specified in Figure 4, the server randomly selects one
out of a large number of paths from start to finish. The corresponding sequence of state
transitions defines a sequence of η response bits (r1, r2, · · · , rη), where η is a constant and
where a variable number of k ≤ η bits suffices to reach the end state. The server randomly
selects a corresponding sequence of η challenges c that is subsequently transmitted to the
device. The latter party then reconstructs the path from newly generated response bits r̃i.
If the end state is successfully reached, i.e., flag f = 1, the first k response bits are used to
establish a shared secret with the server. This secret, in addition to nonce n2 or n3, is
then fed into a cryptographic hash function to perform the authentication. To preserve the
secrecy of flag f , an attacker is not allowed to observe whether or not the authentication
succeeds. Otherwise, an attacker would be able to replace a server-determined challenge ci
by an arbitrary challenge cj with cj 6= ci and determine whether or not ri = rj .

Jeroen Delvaux 7

0

0

0

0

0

0

0

0

0 · · · 0

0

0

0

1

0001

0110

1001

1001

1100

0111

1010

1000

0011

1001

1011

0100

1110

0101

0000

0001

1101

1100

r =0111‖0110‖1001‖0011‖1100‖0000‖1111‖1010‖1001‖ · · · ‖1100‖0000‖1100‖0111‖0011
1 δ k η

1 2 3 4 5 β − 2 β − 1 β

1

2

γ = 3

Figure 4: The FSM of Gao et al. [GMA+17] consists of β stages, where constant β is
odd. Odd- and even-numbered stages, in turn, consist of 1 and γ states respectively. The
authors suggest using β = 41 and γ = 3. A path from stage 1 to stage β is traversed using
non-overlapping δ-bit substrings of response x ∈ {0, 1}η as a sequence of inputs. A total
of k ∈ [(β − 1)δ, η] response bits suffices for this purpose. A flag f indicating whether or
not the finish is reached is 1 and 0 for stage β and stages 1 to β − 1 respectively. A value
for η has not been suggested.

3.2.2 Attack

It suffices for an attacker to eavesdrop on a single genuine protocol run in order to train
an accurate predictive model m̂ of the corresponding PUF. This model m̂, in turn, allows
the attacker to impersonate either the device or the server a virtually unlimited number
of times. Although the authors are aware of Becker’s work [Bec15a] and designed their
protocol such that not only the response bits r but also their corresponding error rates perror
remain internal to the device, it is overlooked that other variables that are correlated to
the delay difference v are released. Most notably, for each server-determined challenge c, it
is known that the absolute value |v| is relatively high. Given ω = 1 challenge c ∈ {0, 1}λ,
having transformed version s ∈ {−1, 1}λ+1, the two best guesses for a model are hence
m̂ = (s1/2 s2 s3 · · · sλ sλ+1/2) and m̂ = −(s1/2 s2 s3 · · · sλ sλ+1/2). The choice between
these two models m̂ corresponds to one bit of entropy and is hence irrelevant from a
security perspective. Figure 5(a) shows that for a retention ratio ρret = 1%, the best out
of two models already exceeds an accuracy of 85%, which suffices to consider the protocol
broken.

During a single protocol run, however, the server releases not one but η � 1 challenges ci.
There is hence plenty of margin to improve the accuracy of model m̂. We adopt a covariance
matrix adaptation (CMA) variant of an evolution strategy (ES) [Han06] and perform
minimal changes to its open-source implementation in Matlab. Similar to Darwin’s theory
on biological evolution, the fittest candidates in a population of prospective models m̂
recombine and mutate into a new and presumably fitter population. It is crucial to define
an appropriate fitness function, i.e., fitness : {0, 1}λ+1 → R. We instantiate the fitness
function as shown in (2).

fitness(m̂) = 1
ω

ω∑
i=1

∣∣si m̂T
∣∣/1

q

q∑
i=1

∣∣sref,i m̂T
∣∣ . (2)

The ω transformed challenges si in its numerator originate from a genuine protocol run
and are hence known to have stable response bits ri. The q transformed challenges sref,i
in the denominator are chosen uniformly at random from the set of all 2λ transformed
challenges and hence have response bits r that cover the full spectrum of error rates perror.

8 Attacks on Two PUF-Based Authentication Protocols

0.001 0.01 0.1 1
0.5

0.6

0.7

0.8

0.9

1.0

ρret

A
cc
ur
ac
y

(a) ω = 1

1 10 100
ω

(b) ρret = 0.01

Figure 5: The accuracy of modeling an Arbiter PUF with λ = 64 challenge bits that
is used in the protocol of Gao et al. [GMA+17]. For each dot, we generate 100 PUFs
M ∼ N

(
0,diag(1/2, 1, 1, · · · , 1, 1/2)

)
and average the best accuracies Pacc for each out of

two reproduced models m̂. Stated otherwise, we show an estimate of E[max(Pacc, 1−Pacc)],
where Pacc is the accuracy for one out of two possible models m̂. For each individual
modeling experiment, we select ω ∈ [1, 100] training and 1000 test challenges c uniformly
at random from the subset Cstab ⊆ C that contains the challenges with the most stable
responses r, where |Cstab|/|C| = ρret. We emphasize that for impersonation purposes,
an attacker is only required to predict stable response bits r. In subplot (a), models m̂
are directly derived from ω = 1 transformed challenge s. In subplot (b), we use CMA-
ES. Because its randomized training algorithm does not always converge to an accurate
model m̂, we only retain the best out of five trials.

We use the same q = 1000 transformed challenges sref,i for each evaluation of the fitness
function. The scale invariance, i.e., ∀a ∈ R0, fitness(a δ̂) = fitness(δ̂), is desired for positive
factors a ∈ R+

0 , but the inclusion of negative factors a ∈ R−0 once again implies that one
bit of entropy always remains present. Default values suffice for all parameters of the
adopted CMA-ES algorithm, e.g., the population size is 4 + b3 ln(λ + 1)c = 16. For a
retention ratio ρret = 1% and ω = 10 server-defined challenges ci, Figure 5(b) shows that
the best out of two models approaches the ideal accuracy of 100%.

The previously presented modeling techniques are successful despite disregarding the
internal specifics of the FSM. For the sake of completeness, we briefly discuss how this
disregarded knowledge could facilitate CMA-ES. For a given model m̂ and a given protocol
run, the prospective η-bit response r could be computed. For this sequence of state
transitions, the fitness of the best possible match with an available path can then be
computed. Numerous path-matching metrics could be devised but, given that our main
objective has already been achieved, we abstain from further exploration.

4 Conclusion
A fairly conservative approach to craft a PUF-based authentication protocol is to convert a
long response r ∈ {0, 1}η into a secret key k ∈ {0, 1}κ through a fuzzy extractor [DORS08]
and then use a keyed cryptographic algorithm to perform the authentication. Protocol
designers frequently aim to save resources by avoiding the use of an error-correcting code
and/or the cryptographic logic, but this often turns out to be fatal for the system security.
Through the use of custom-tailored machine learning techniques, we were able to construct
an accurate model of the Arbiter PUF that is used in the protocols of Ye et al. [YHL16]
and Gao et al. [GMA+17] and hence enable an impersonation attack.

Jeroen Delvaux 9

Future Work
It is not unlikely that, in the near future, an additional protocol might be analyzed and
appended to this manuscript.

Acknowledgement
This work is partially funded by the Research Council of KU Leuven through C16/15/058,
the Hercules Foundation through AKUL/11/19, and the European Union’s Horizon 2020
research and innovation programme under grant number 644052 (HECTOR) and the ERC
Advanced Grant 695305.

References
[Bec15a] Georg T. Becker. The gap between promise and reality: On the insecurity of

XOR arbiter PUFs. In Tim Güneysu and Helena Handschuh, editors, 17th
Workshop on Cryptographic Hardware and Embedded Systems (CHES 2015),
volume 9293 of Lecture Notes in Computer Science, pages 535–555. Springer,
September 2015.

[Bec15b] Georg T. Becker. On the pitfalls of using arbiter-PUFs as building blocks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(8):1295–1307, August 2015.

[Del17] Jeroen Delvaux. Security Analysis of PUF-Based Key Generation and Entity
Authentication. PhD thesis, KU Leuven and Shanghai Jiao Tong University,
June 2017.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM Journal on Computing, 38(1):97–139, March 2008.

[GMA+17] Yansong Gao, Hua Ma, Said F. Al-Sarawi, Derek Abbott, and Damith C.
Ranasinghe. PUF-FSM: A controlled strong PUF. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 99(99):99, 2017.

[Han06] Nikolaus Hansen. The CMA Evolution Strategy: A Comparing Review, volume
192 of Studies in Fuzziness and Soft Computing, pages 75–102. Springer, 2006.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2009.

[LDT00] Keith Lofstrom, W. Robert Daasch, and Donald Taylor. IC identification
circuit using device mismatch. In 2000 International Solid-State Circuits
Conference (ISSCC), pages 372–373. IEEE, February 2000.

[Lim04] Daihyun Lim. Extracting secret keys from integrated circuits. Master’s thesis,
Massachusetts Institute of Technology, May 2004.

[Mae13] Roel Maes. An accurate probabilistic reliability model for silicon PUFs. In
Guido Bertoni and Jean-Sébastien Coron, editors, 15th Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2013), volume 8086 of Lecture
Notes in Computer Science, pages 73–89. Springer, August 2013.

10 Attacks on Two PUF-Based Authentication Protocols

[RSS+13] Ulrich Rührmair, Jan Sölter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud,
Vera Stoyanova, Gideon Dror, Jürgen Schmidhuber, Wayne Burleson, and
Srinivas Devadas. PUF modeling attacks on simulated and silicon data. IEEE
Transactions on Information Forensics and Security, 8(11):1876–1891, Novem-
ber 2013.

[TB15] Johannes Tobisch and Georg T. Becker. On the scaling of machine learning
attacks on PUFs with application to noise bifurcation. In Stefan Mangard and
Patrick Schaumont, editors, RFIDSec 2015: Radio Frequency Identification,
volume 9440 of Lecture Notes in Computer Science, pages 17–31. Springer,
June 2015.

[YHL16] Jing Ye, Yu Hu, and Xiaowei Li. RPUF: Physical unclonable function with
randomized challenge to resist modeling attack. In 1st Asian Hardware Oriented
Security and Trust Symposium (AsianHOST 2016), pages 1–6. IEEE, December
2016.

A Block Diagrams of a PUF-Enabled Device
To facilitate the understanding of the analyzed authentication protocols for a visually
oriented reader, Figure 6 shows the hardware of a PUF-enabled device. The implementation
efficiency is reflected but is irrelevant in light of the newly revealed security issues.

InvertOrNot

ArbiterPUFLFSR

TRNG

r

c
n

c′ c′′

(a) Ye et al. [YHL16]

FollowPath

ArbiterPUF

TRNG

Hash =? b

ci

ri

a

n2,n3

(b) Gao et al. [GMA+17]

×

r̃i

f

Figure 6: The hardware of a PUF-enabled device for the analyzed authentication protocols.
Intermediary registers and control logic are not drawn. The symbol × on the boundary of
an IC denotes a one-time interface that is irreversibly disabled after its enrollment.

	Introduction
	Preliminaries
	Notation
	Arbiter PUFs and Machine Learning
	Attacker Model

	Protocols
	Ye, Hu, and Li
	Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe

	Conclusion
	Block Diagrams of a PUF-Enabled Device

