
PIR with compressed queries and amortized query processing

Sebastian Angel⋆†, Hao Chen‡, Kim Laine‡, and Srinath Setty‡

⋆The University of Texas at Austin †New York University ‡Microsoft Research

Abstract
Private information retrieval (PIR) is a key building block in
many privacy-preserving systems. Unfortunately, existing con-
structions remain very expensive. This paper introduces two
complementary techniques that make the computational variant
of PIR (CPIR) more efficient in practice. The first technique
targets a recent class of CPU-efficient CPIR protocols where the
PIR query sent by the client is a vector containing a number of
ciphertexts proportional to the size of the server’s database. We
propose a new method to compresses this vector into a single
ciphertext, thereby reducing query sizes by up to 256×.

The second technique is a new data encoding called a proba-
bilistic batch code (PBC). We use PBCs to build a multi-query
PIR scheme that allows the server to amortize the computational
cost of processing a batch of requests. The protocol achieves
up to 50× speedup over processing queries one at a time, and
is significantly more efficient than related encodings. We ap-
ply our techniques to the Pung unobservable communication
system which relies on a custom multi-query CPIR protocol
for its privacy guarantees. Replacing Pung’s protocol with our
schemes, we find that we can simultaneously reduce network
costs by 36× and increase throughput by 3×.

1 Introduction
A key cryptographic building block in recent privacy-preserving
systems is private information retrieval (PIR) [32]. Examples in-
clude anonymous and unobservable communication [11, 58, 63],
privacy-preserving media streaming [8, 48], ad delivery [46],
friend discovery [18], and subscriptions [30].

PIR allows a client to download an element (e.g., movie, Web
page, friend record) from a database held by an untrusted server
(e.g., streaming service, social network) without revealing to the
server which element was downloaded. PIR is very powerful,
but it is also very expensive—and unfortunately this expense is
fundamental: PIR schemes force the database server to perform
some computation on every element in the database to answer a
single client query [32]. After all, if the server were to omit an
element when answering a query it would learn that the omitted
element is of no interest to the client.

We are interested in the computational variant of PIR
(CPIR) [57]. This variant is desirable because it relies only on
cryptographic hardness assumptions; the information-theoretic
variant of PIR requires multiple non-colluding servers, an as-
sumption that conflicts with many deployment scenarios. Un-
fortunately, the costs of even the most recent CPIR construc-
tions [8, 56, 60] are so significant that all CPIR-backed sys-
tem of which we are aware must settle with supporting small
databases with fewer than 100,000 entries [8, 11, 46, 48].

In this paper we discuss two orthogonal but complementary
techniques that make CPIR more efficient in practice. The first

is the introduction of SealPIR, a new CPIR library that extends
the most computationally efficient CPIR protocol, XPIR [8],
with a new query compression procedure that reduces network
costs (§3). Specifically, a query in XPIR (and its base proto-
col [72]), consists of a vector of n ciphertexts, where n is the
number of elements in the server’s database. Stern [72] showed
that it is possible to reduce the number of entries in the vector
to d d
√

n ciphertexts for any positive integer d, therefore mak-
ing network costs sublinear in the size of the database. The
downside of Stern’s approach is that it comes at an exponential
increase in the size of the response (§3.4). As we show in our
evaluation, values of d > 3 in XPIR lead to responses that are
so large that they outweigh any reduction in query size (§7.1).

SealPIR adopts a fundamentally different approach. Instead
of creating a query vector, SealPIR has the client send a single
ciphertext containing an encoding of the index of the desired
element. The server then executes a new oblivious expansion
procedure that extracts the corresponding n-ciphertext vector
from the single ciphertext, without leaking any information
about the client’s index, and without increasing the size of the
response (§3.3). The server can then proceed with the XPIR
protocol on the extracted vector as before.

In terms of concrete savings over XPIR, SealPIR results in
queries that are 256× smaller and are 28× less expensive for the
client to construct. However, SealPIR introduces between 8%
and 31% CPU overhead to the server (over XPIR) to obliviously
expand queries. We think this is an excellent trade-off since
XPIR’s protocol is embarrassingly parallel and one can regain
the lost throughput by employing additional servers. Also, PIR
with low network overheads will make it usable in applications
where clients are likely to be devices with limited bandwidth
(e.g., private variants of mobile messaging apps). Furthermore,
many ISPs set strict data limits on wireless and wired plans [7].

Our second contribution is a new technique to amortize the
server’s CPU cost when processing multiple queries from the
same client. Our technique is a relaxation of batch codes [51],
a data encoding that can in principle be used for this purpose.
In practice, most batch code constructions target a different
domain—providing load balancing and availability guarantees
to distributed storage [67, 69] and network switches [77]; using
these constructions to amortize the processing of a batch of PIR
queries is not worthwhile since they introduce absurd network
costs while yielding only modest CPU speedups (§4.1).

Our encoding, called probabilistic batch codes (PBC), ad-
dresses this issue at the expense of introducing a small probabil-
ity of failure (§4.2). In the context of multi-query PIR, failure
simply means that a client only gets some (not all) of her queries
answered in a single interaction. While the implications of fail-
ure depend on the application, we argue that in many cases this
is not an issue in practice (§5). Furthermore, the failure prob-

1

ability of our constructions is very low—about 1 in a trillion
multi-queries would be affected.

The key idea behind our PBC construction is a simple new
technique called hashing in the head (§4.3). This technique flips
the way that hashing (e.g., multi-choice [64], cuckoo [66]) is
typically used in distributed systems to achieve load balancing:
instead of executing the hashing algorithm during data place-
ment, it is executed during data retrieval. Like batch codes, our
PBC constructions amortize CPU costs when processing a batch
of queries. Unlike batch codes, they are more network-efficient:
they introduce orders of magnitude less network overheads than
existing batch codes (§7.3). Furthermore, PBCs are general and
can be used to amortize computation on any PIR scheme (even
the information-theoretic variants).

We demonstrate the concrete benefits of our techniques
through an extensive evaluation of several deployments that
include well-provisioned clients, bandwidth-limited mobile
clients, and geo-distributed clients on databases of up to four
million entries. We also integrate SealPIR and PBCs into a re-
cent unobservable communication system called Pung [11] that
uses CPIR for its privacy guarantees.

In summary, the contributions of this work are:
• SealPIR, a new CPIR library that reduces network costs

through a novel oblivious query expansion procedure (§3).
• The introduction of PBC, a new probabilistic data encoding

suitable to building multi-query PIR protocols that amortize
computational costs (§4.2).

• The design of a PBC construction from a simple technique
that we call hashing in the head (§4.3).

• The implementation and evaluation of SealPIR and PBC on
a variety of settings (§7), including porting these techniques
to the Pung communication system (§7.4).
Despite the above contributions, there remains a large per-

formance gap between current CPIR implementations and
widespread adoption. Nevertheless, we hope that the content of
this work can help usher a way forward.

2 Background and related work
We begin by giving some background on PIR and existing multi-
query proposals that relate to our work.

2.1 Private information retrieval (PIR)

Chor et al. [32] introduced private information retrieval (PIR)
to address the following problem: how can a client retrieve an
element from a remote database managed by an untrusted server
(or set of servers) such that the server does not learn which
element was retrieved by the client? And whether this can be
done more efficiently than the trivial solution where the client
simply downloads the entire database from the server and locally
selects the desired element? This effort served as the catalyst
for two lines of work that remain highly active: information
theoretic PIR (IT-PIR) and computational PIR (CPIR).1

In IT-PIR schemes [15, 32, 35, 36, 45] the database is repli-
cated across several non-colluding servers. The client issues

1These two lines of work are sometimes known as multi-database PIR (for
IT-PIR) and single-database PIR (for CPIR).

a carefully-crafted query to each server and combines the re-
sponses from all the servers locally. IT-PIR schemes have two
benefits. First, the servers’ computation is relatively inexpen-
sive (an XOR for each entry in the database). Second, the pri-
vacy guarantees are information-theoretic, meaning they hold
against a computationally-unbounded adversary and avoid cryp-
tographic hardness assumptions. However, basing systems on
IT-PIR poses significant deployment challenges since it is diffi-
cult to enforce the non-collusion assumption in practice.

On the other hand, CPIR protocols [8, 23, 26, 39, 44, 56,
57, 59, 60, 78] can be used with a database controlled by a
single administrative domain (e.g., a company), under cryp-
tographic hardness assumptions. The drawback is that they
are more expensive than IT-PIR protocols as they require the
database operator to perform costly cryptographic operations
on each database element. Fortunately, there is a long line of
work to improve the resource overheads of CPIR (see [8, 56] for
the state-of-the-art), and recent work [8] proposes a construc-
tion that achieves, for the first time, plausible (although still
high) computational costs. Unfortunately, this construction has
high network costs that scale unfavorably with the size of the
database (e.g., O(

√
n)). Figure 1 depicts a simplified version of

this protocol (more specifically it depicts Stern’s protocol [72]).
Regardless of which flavor of PIR a system implements, the

costs remain undeniably high. As a result, it is hard for sys-
tems to support large databases or handle many requests. While
addressing the former issue (i.e., supporting large databases)
remains elusive—although Section 3 makes progress towards
this goal—supporting many concurrent queries is the focus of
many existing proposals. We discuss them next.

2.2 Existing multi-query PIR schemes

Given PIR’s high costs, it is desirable to amortize the servicing
of many requests. Such scenarios include privacy-preserving
variants of databases that serve many users concurrently (e.g.,
Netflix, Spotify), or databases that process a batch of request
from the same user (e.g., Gmail, Slack, bulletin boards). The
most general approach to achieve this goal is to use batch
codes [51]. In a batch code, the database is encoded such that
the server (or servers) can respond to any k requests (from the
same user) more cheaply (computationally) than the baseline
solution of running k parallel instances of PIR. The trade-off
is that batch codes require more network resources (than the
baseline solution). Furthermore, in concrete terms, this network
overhead is onerous; we discuss this further in Section 4.1.

Other existing proposals tailor the amortization to particular
PIR protocols or particular applications, as we discuss next.

Amortization for particular PIR protocols. Beimel et
al. [16] describe two query amortization techniques. The first
is based on the observation that queries in many PIR schemes
consist of a vector of entries, and answering these queries is
equivalent to computing a matrix-vector product (where the
product could be over ciphertexts instead of plaintexts, or it
could be an XOR operation). By aggregating multiple queries—
even from different users—the server’s work can be expressed
as a product of two matrices. As a result, leveraging sub-cubic
matrix multiplication algorithms (e.g., [33, 73]) provides amor-

2

tization over multiple matrix-vector multiplication instances.
This approach is further studied by Lueks and Goldberg [62] in
the context of Goldberg’s IT-PIR scheme [45].

The second proposal described by Beimel et al. [16] is to per-
form preprocessing over the database in certain IT-PIR schemes
to reduce the cost of future queries. This works well, so recent
works [19, 25] employ an analogous preprocessing approach
in CPIR schemes. However, making the database accessible
by more than a single client under existing CPIR preprocess-
ing schemes requires prohibitively expensive cryptography (a
virtual black-box obfuscation primitive [14] instantiated from
indistinguishability obfuscation [42]).

Groth et al. [47] extend Gentry and Ramzan’s [44] CPIR
scheme to retrieve k elements at lower amortized network
cost by having the client compute k discrete logarithms (with
tractable but expensive parameters) on the server’s answer. This
results in very low network costs, but Gentry and Ramzan’s
scheme is computationally expensive (on the order of hours to
process a single PIR query, based on our estimates); Groth et
al.’s extension compounds this issue. With a similar goal but in
the context of amortizing CPU rather than network resources,
Henry et al. [49, 50] and RAID-PIR [35] extend specific IT-PIR
protocols. While these techniques result in good amortization,
they are only applicable to particular IT-PIR schemes.

Amortization for particular apps. Popcorn [48] pipelines
the processing of queries in IT-PIR in order to amortize disk
I/O which is a bottleneck for databases with very large files.
Pung [11] hybridizes an existing batch code due to Ishai et
al. [51] with a probabilistic protocol that exploits the setting of
online communication where users can coordinate a priori (e.g.,
chat, e-mail). This enables Pung to amortize CPU costs with
less network expense than traditional batch codes.

In contrast with the above, our multi-query scheme is ag-
nostic to the particular PIR protocol or application being used.
Compared to batch codes [51], our technique has weaker prop-
erties (sufficient for most applications) but is significantly more
efficient. Compared to Pung’s technique, our approach is gen-
eral, more efficient, and application-independent (§4.2).

3 SealPIR: An efficient CPIR library
Our starting point for SealPIR is XPIR [8], a recent CPIR con-
struction that introduces several optimizations to Stern’s CPIR
scheme [72]. We give a rough sketch of these protocols in Fig-
ure 1. The key idea in XPIR is to perform the encryption and
homomorphic operations using a lattice-based cryptosystem
(the authors use the BV cryptosystem [21]), and preprocess the
database in a way that greatly reduces the cost of the operations
in Lines 11 and 12 in Figure 1. To our knowledge, this makes
XPIR the only CPIR implementation that is usable in practice.

A major drawback of XPIR is network costs. In particular,
the query sent by the client is large: in the basic scheme, it
contains one ciphertext (encrypting 0 or 1) for each entry in an
n-element database. Furthermore, lattice-based cryptosystems
have a high expansion factor, F, which is the size ratio between
a ciphertext and the largest plaintext that can be encrypted; for
recommended security parameters, F ≥ 6.4 [10, 27].

1: function SETUP(DB)
2: Represent DB in an amenable format (see [8, §3.2])
3:
4: function QUERY(pk, idx, n)
5: for i = 0 to n− 1 do
6: ci ← Enc(pk, i == idx? 1 : 0)
7: return q← {c0, . . . , cn−1}
8:
9: function ANSWER(q = {c0, . . . , cn−1}, DB)

10: for i = 0 to n− 1 do
11: ai ← DBi · ci // plaintext-ciphertext multiplication
12: return a← Σn−1

i=0 ai // homomorphic addition

13:
14: function EXTRACT(sk, a)
15: return Dec(sk, a)

FIGURE 1—CPIR protocol from Stern [72] and XPIR [8] on a database
DB of n elements. This protocol requires an additively homomorphic
cryptosystem with algorithms (KeyGen, Enc, Dec), where (pk, sk) is
the public and secret key pair generated using KeyGen. We omit the
details of all optimizations. The client runs the QUERY and EXTRACT

procedures, and the server runs the SETUP and ANSWER procedures.
Each element in DB is assumed to fit inside a single ciphertext. Oth-
erwise, each element can be split into ℓ smaller chunks, and Lines 11
and 12 can be performed on each chunk individually; in this case
ANSWER would return ℓ ciphertexts instead of one.

To improve network costs, Stern [72] describes a way to
represent the query using d d

√
n ciphertexts (instead of n) for any

positive integer d. Unfortunately, this increases the response size
exponentially from 1 to Fd−1 ciphertexts (Section 3.4 explains
this). If the goal is to minimize network costs, a value of d = 2
or 3 is optimal in XPIR for the databases that we evaluate (§7.1).
As a result, even with this technique the query vector is made
up of hundreds or thousands of ciphertexts.

3.1 Compressing queries

At a high level, our goal is to realize the following picture:
the client sends one ciphertext containing an encryption of its
desired index i to the server, and the server inexpensively eval-
uates a function EXPAND that outputs n ciphertexts containing
an encryption of 0 or 1 (where the ith ciphertext encrypts 1 and
others encrypt 0). The server can then use these n ciphertexts as
a query and execute the protocol as before (Figure 1, Line 9).

A straw man approach to construct EXPAND is to create a
Boolean circuit that computes the following function: “if the
index encrypted by the client is i return 1, else return 0”. The
server can then evaluate this circuit on the client’s ciphertext
using a fully homomorphic encryption (FHE) scheme (e.g.,
BV [21], BGV [20], FV [40]) passing in values of i ∈ [0, n− 1]
to obtain the n ciphertexts. Unfortunately, this approach is very
expensive. First, FHE supports addition and multiplication oper-
ations, but not Boolean operations (AND, XOR, etc.), which are
needed for comparisons. As a result, the client has to express its
index as a bit string and encrypt each bit individually, resulting
in a query of log(n) ciphertexts. Second, to operate on these
encrypted bits, the server has to emulate Boolean operations

3

operation CPU cost (ms) noise growth
addition 0.002 additive
plaintext multiplication 0.141 multiplicative⋆

multiplication 1.514 multiplicative

substitution 0.279 additive

FIGURE 2—Cost of operations in SEAL [4]. The parameters used are
given in Section 7. Every operation increases the noise in a ciphertext.
Once the noise passes a threshold, the ciphertext cannot be decrypted.
For a given computation, parameters must be chosen to accommodate
the expected noise. ⋆While plaintext multiplication yields a multiplica-
tive increase in the noise, the factor is always 1 (i.e., no noise growth)
in EXPAND because it is based on the number of non-zero coefficients
in the plaintext [27, §6.2].

using addition and multiplication,2 resulting in a log(n)-depth
circuit. Finally, this circuit must be evaluated n times, one for
each possible value of i.

Instead, we propose a new algorithm to implement EXPAND.
It relies on FHE, but perhaps surprisingly, it does not require
encrypting each bit of the index individually, emulating Boolean
gates, or performing any homomorphic multiplications. This
last point is the most critical for performance, since homomor-
phic multiplications are very expensive and require using larger
security parameters (Figure 2). We note that the underlying
cryptosystem used by XPIR (BV [21]) is an FHE scheme, so
we could implement EXPAND using that. However, we choose
to implement all of SealPIR using the SEAL homomorphic
library [4] which implements the Fan-Vercauteren (FV) [40]
cryptosystem instead. We make this choice for pragmatic rea-
sons: EXPAND requires the implementation of a new homomor-
phic group operation, and the SEAL library is a mature code
base that already implements many of the necessary building
blocks. Below we give some background on FV.

Fan-Vercauteren FHE cryptosystem (FV). In FV, plaintexts
are polynomials of degree at most N with integer coefficients
modulo t. The polynomials are from the quotient ring Rt =
Zt[x]/(xN + 1), where N is a power of 2, and t is the plaintext
modulus that determines how much data can be packed into a
single FV plaintext. In Section 6 we discuss how regular binary
data, for example a PDF file, is encoded in an FV plaintext, and
what these polynomials actually look like in code.

Ciphertexts in FV consist of two polynomials, each in Rq =
Zq[x]/(xN + 1). Here q is the coefficient modulus that affects
how much noise a ciphertext can contain, and the security of
the cryptosystem. When a ciphertext is created it contains noise
that increases as operations are performed on the ciphertext.
Once the noise passes a threshold the ciphertext cannot be
decrypted. The noise growth of operations depends heavily
on t, so t should be kept small. However, lower t means that
more FV plaintexts are needed to represent the binary data
(PDF, movie, etc.). Larger q supports more noise, but results
in lower security. The expansion factor is F = 2 log(q)/ log(t).
We discuss concrete parameters in Section 7.

2For example, when both operands a and b are single bits, AND (a ∧ b) is the
same as multiplication (a · b); NAND (¬(a ∧ b)), which is a universal gate
that can be used to represent all other Boolean gates, is 1 + (−1 · (a · b)).

In addition to the standard operations of a cryptosystem (key
generation, encryption, decryption), FV also supports homo-
morphic addition, multiplication, and relinearization (which is
performed after multiplications to keep the number of polyno-
mials in the ciphertext at two); for our purposes we care about
the following operations.

• Addition: Given ciphertexts c1 and c2, which encrypt FV
plaintexts p1(x), p2(x) ∈ Rt, the operation c1 + c2 results in
a ciphertext that encrypts their sum, p1(x) + p2(x).

• Plaintext multiplication: Given a ciphertext c that encrypts
p1(x) ∈ Rt, and given a plaintext p2(x) ∈ Rt, the operation
p2(x) · c results in a ciphertext that encrypts p1(x) · p2(x).

• Substitution: Given a ciphertext c that encrypts plaintext
p(x) ∈ Rt and an odd integer a, the operation Sub(c, a)
returns an encryption of p(xa). For instance if c encrypts
p(x) = 7+ x2 + 2x3, then Sub(c, 3) returns an encryption of
p(x3) = 7 + (x3)

2
+ 2(x3)

3
= 7 + x6 + 2x9.

Our implementation of the substitution group operation is
based on the plaintext slot permutation technique discussed
by Gentry et al. [43, §4.2]. Fortunately, substitution requires
only a subset of the operations needed by the arbitrary permuta-
tions that Gentry et al. consider, so we can implement it very
efficiently, as shown in the last row of Figure 2.

3.2 Encoding the index.

A client that wishes to retrieve the ith element from the server’s
database using SealPIR generates an FV plaintext that encodes
this index. The client does so by representing i ∈ [0, n− 1] as
the monomial xi ∈ Rt. The client then encrypts this plaintext to
obtain query = Enc(xi), which is then sent to the server. The
case where the database is so large that the index cannot be
represented by a single FV plaintext is discussed in Section 3.5.

3.3 Expanding queries obliviously

To explain how the server expands query = Enc(xi) into a
vector of n ciphertexts where the ith ciphertext is Enc(1) and all
other are Enc(0), we first give a description for n = 2.

As we discuss in the previous section, the server receives
query = Enc(xi), with i ∈ {0, 1} in this case (since n = 2) as
the client’s desired index. The server first expands query into
two ciphertexts c0 = query and c1 = query · x−1:

c0 =

{
Enc(1) if i = 0
Enc(x) if i = 1

c1 =

{
Enc(xi · x−1) = Enc(x−1) if i = 0
Enc(xi · x−1) = Enc(1) if i = 1

The server computes c′j = cj + Sub(cj, N + 1) for j ∈ {0, 1}.
Since operations in Rt are defined modulo xN +1,3 a substitution
with N + 1 transforms the plaintext encrypted by c0 and c1 from
p(x) to p(−x). Specifically, we have:

c′0 =

{
Enc(1) + Enc(1) = Enc(2) if i = 0
Enc(x) + Enc(−x) = Enc(0) if i = 1

3For example, xN + 1 ≡ 0 (mod xN + 1) and xN+1 ≡ −x (mod xN + 1).

4

1: function EXPAND(query = Enc(xi))
2: find smallest m = 2ℓ such that m ≥ n
3: ciphertexts← [query]
4: // each outer loop iteration doubles the number of ciphertexts,
5: // and only one ciphertext ever encrypts a non-zero polynomial
6: for j = 0 to ℓ− 1 do
7: for k = 0 to 2j − 1 do
8: c0 ← ciphertexts[k]
9: c1 ← c0 · x−2j

10: c′k ← c0 + Sub(c0, N/2j + 1)
11: c′k+2j ← c1 + Sub(c1, N/2j + 1)

12: ciphtertexts← [c′0, . . . , c′2j+1−1]

13: // ciphertext at position j encrypts m and all others encrypt 0
14: inverse← m−1 (mod t)
15: for j = 0 to n− 1 do
16: oj ← ciphertexts[j] · inverse
17: return output← [o0, . . . , on−1]

FIGURE 3—Procedure that expands a single ciphertext query that
encodes an index i into a vector of n ciphertexts, where the ith entry
is an encryption of 1, and all other entries are encryptions of 0. We
introduce a new group operation Sub (see text for details). Plaintexts
are in the polynomial quotient ring Zt[x]/(XN + 1). N ≥ n is a power
of 2, and n is the number of elements in the server’s database.

c′1 =

{
Enc(x−1) + Enc(−x−1) = Enc(0) if i = 0
Enc(1) + Enc(1) = Enc(2) if i = 1

Finally, assuming t is odd, we can compute the multiplicative
inverse of 2 in Zt, say α, encode it as the monomial α ∈ Rt,
and compute oj = α · c′j . It is the case that o0 and o1 contain the
desired output of EXPAND: oi encrypts 1, and o1−i encrypts 0.

We can generalize this approach to any power of 2 as long
as n ≤ N. In cases where n is not a power of 2, we can run the
algorithm for the next power of 2, and take the first n output
ciphertexts as the client’s query. Figure 3 gives the generalized
algorithm, and Figure 4 depicts an example for a database of 4
elements. We prove the correctness of EXPAND in Appendix A.1,
and bound its noise growth in Appendix A.2.

3.4 Reducing the cost of expansion

One issue with EXPAND is that despite each operation being
inexpensive (Figure 2), O(n) operations are needed to extract
the n-entry query vector. This is undesirable, since EXPAND

could end up being more expensive to the server than computing
the answer to a query (see Figure 1, Line 9). We show how to
reduce this cost by having the client send multiple ciphertexts.

Stern [72] proposes the following modification to the protocol
in Figure 1. Instead of structuring the database DB as an n-entry
vector (where each entry is an element), the server structures
the database as a

√
n ×
√

n matrix M: each cell in M is a
different element in DB. The client sends 2 query vectors, vrow

and vcol, each of size
√

n . The vector vrow has the encryption of
1 at position r, while vcol has the encryption of 1 at position c
(where M[r, c] is the client’s desired element). The server, upon
receiving vrow and vcol, computes the following matrix-vector
product: Ac = M · vcol, where each multiplication is between
a plaintext and ciphertexts, and additions are on ciphertexts.

initial plaintext (encodes index 2): x2

x0 x1 x2 x3

Expand (j = 0)

Expand (j = 1)

inverse

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0

FIGURE 4—Example of EXPAND’s effect on the extracted vector’s
plaintext on each iteration of its outer loop. This example assumes a
database with 4 elements, and a query retrieving the third item. Each
plaintext is a polynomial represented as an array of coefficients. Note
that the server only sees the corresponding ciphertexts (not depicted).

Observe that Ac is a vector containing the encryption of all
entries in column c of M.

The server then performs a similar step using Ac and vrow.
There is, however, one technical challenge: each entry in Ac

is a ciphertext, so it is too big to fit inside another ciphertext
(recall that the largest plaintext that can fit in a ciphertext has
size |ciphertext|/F). To address this, the server splits elements
in Ac into F chunks, so Ac can be thought of as a

√
n by F

matrix. The server can now repeat the process as before on the
transpose of this matrix: it computes AT

c · vrow, to yield a vector
of F ciphertexts, which it sends to the client. The client then
decrypts all F ciphertexts and combines the result to obtain
Enc(M[r, c]). The client can then decrypt Enc(M[r, c]) to obtain
M[r, c]—the desired element in DB. This scheme generalizes
by structuring the database as a d-dimensional hypercube and
having the client send d query vectors of size d

√
n. The server

then returns Fd−1 ciphertexts as the response.
We use the above scheme to reduce the computational cost of

EXPAND (in contrast, Stern and XPIR use the above technique to
reduce network costs by reducing the size of the query vector).
Instead of encoding one index, the client encodes d indices (on
different ciphertexts), one for each dimension of the database.
The server then calls EXPAND on each of the d ciphertexts, and
extracts a d

√
n-entry vector from each. The server uses the above

scheme with the extracted d vectors, which results in the CPU
costs of EXPAND being O(d d

√
(n)). Of course, this approach has

the downside that the PIR response gets larger because of the
cryptosystem’s expansion factor (F). Specifically, the network
cost is d ciphertexts to encode the indices, and Fd−1 ciphertexts
to encode the response. The good news is that for small values
of d (2 or 3), this results in major computational savings while
still reducing network costs by orders of magnitude over XPIR.

3.5 Indexing large databases

As we discuss in Section 3.3, the size of the query vector that
EXPAND can generate is bounded by N, which bounds the degree
of the polynomials used in FV. Based on recommended security
parameters [10, 27], N is typically 2048 or 4096 (larger N
improves security but reduces performance). So how can one
index into databases with more than N elements?

We propose two solutions. First, the client sends multiple

5

ciphertexts and the server expands them and concatenates the
results. For instance, if N is 2048, the database has 4096 ele-
ments, and the client wishes to get the element at index 2050,
the client sends 2 ciphertexts: the first encrypts 0 and the second
encrypts x2. The server expands both ciphertexts into 2048-entry
vectors and concatenates them to get a 4096-entry vector where
the entry at index 2050 encrypts 1, and all others encrypt 0.

A more efficient solution is to represent the database as a
d-dimensional hypercube as we discuss in Section 3.4. This
allows the client to send d ciphertexts to index a database of
size Nd. For d = 2 and N = 4096, two ciphertexts are sufficient
to index 16.7 million entries. One can also use a combination
of these solutions. For example, given a database with 230 en-
tries, SealPIR would use d = 2 (so the database is a 215 × 215

matrix), and will represent the index for each dimension using
215/4096 = 8 ciphertexts. The server expands these 8 cipher-
texts and concatenates them to obtain a vector of 215 entries. In
total, this approach requires the client to send 16 ciphertexts as
the query (8 per dimension), and receive F ≈ 7 ciphertexts as
the response (d = 3 would lead to 3 ciphertexts as the query,
but F2 ciphertexts as the response).

4 Amortizing computational costs in PIR
Answering a PIR query requires computation that is linear in
the size of the database, so a promising way to save computa-
tional resources is for the server to amortize costs by processing
a batch of queries. Batch codes [51] are a data encoding that,
among other applications, can be used to achieve this goal. In
particular, the server can use a batch code to encode its database
in a way that it can answer a batch of queries more cheaply
(computationally) than answering each query individually. Un-
fortunately, despite a large body of work on batch codes, we
find that most constructions do not focus on PIR amortization.
Instead, they target load balancing in distributed storage sys-
tems [67, 69] and network switches [77], which have different
requirements. Using batch codes to amortize PIR query process-
ing would incur prohibitive network costs.

Our key observation is that certain guarantees of batch codes
are not necessary for many PIR-backed systems. Relaxing those
guarantees leads to constructions that are not only asymptoti-
cally better, but also concretely efficient—without compromis-
ing the functionality of our target system. Below we give a
description of batch codes, highlight the sources of overhead,
and then introduce our construction.

4.1 Batch codes and their cost

A (n, m, k, b)-batch code B takes as input a collection DB con-
sisting of n elements and produces a set of m codewords C.
These codewords are then distributed among b buckets. For-
mally, B : DB → (C0, . . . , Cm−1), where |Ci| is the number
of codewords in bucket i, and the sum of codewords across
all buckets is m = Σb−1

i=0 |Ci| ≥ n. The goal of these codes is
two-fold. First, they ensure that any k elements from DB can
be retrieved from the b buckets by fetching at most one code-
word from each bucket. Second, they keep the number of total
codewords (i.e., m) lower than k · n.

Example. We now give an example of a (4, 6, 2, 3)-batch
code, specifically the subcube batch code [51]. Let DB =
{x1, x2, x3, x4}. For the encoding, DB is split in half to pro-
duce 2 buckets, and the XOR of the entries in these buckets
produces elements that are placed in a third bucket: B(DB) =
{x1, x2}, {x3, x4}, {x1⊕x3, x2⊕x4}. Observe that one can obtain
any 2 elements in DB by querying each bucket at most once.
For example, to obtain x1 and x2, one would get x1 from the first
bucket, x4 from the second bucket, and x2 ⊕ x4 from the third
bucket. One would then compute x2 = x4 ⊕ (x2 ⊕ x4).

This encoding is helpful for PIR because a client wishing to
retrieve 2 elements from DB can instead issue one query to each
bucket, which forces the server to compute over 3 “databases”
of 2 elements each. This results in 25% fewer computation
than answering two queries to the original database DB (which
requires the server to compute over 4 elements twice).

Costs of PIR with batch codes. Figure 5 depicts the relation-
ship between the number of codewords (m) and the number of
buckets b, as a function of the database size (n) and the batch
size (k) for several constructions. In multi-query PIR, the client
issues one query to each of the b buckets, and therefore receives
b responses (§5). To answer these b queries, the server computes
over all m codewords exactly once; lower values of m lead to
less computation, and lower values of b lead to lower network
costs. Since m < k · n, the total computation done by the server
is lower than answering each of the k queries individually with-
out a batch code. The drawback is that existing batch codes
produce many buckets (cubic or worse in k). As a result, they
introduce significant network overhead over not using a batch
code at all. This makes batch codes unappealing in practice.

4.2 Probabilistic batch codes (PBC)

Batch codes have exciting properties, but existing constructions
offer an unattractive trade-off: they reduce computation but
introduce significant network overhead. While we cannot con-
struct codes that save computation and avoid network overhead,
we can make this trade-off more appealing.

A probabilistic batch code (PBC) differs from a traditional
batch code in that it fails to be complete with probability p. That
is, a collection encoded with a PBC may have no way to recover
a specific set of k elements by retrieving exactly one codeword
from each bucket. The probability of encountering one such set
is p. In the example of Section 4.1, this would mean that under
a PBC, a client may be unable to retrieve both x1 and x2 by
querying each bucket at most once (whereas a traditional batch
code guarantees that this is always possible). In practice, this
is not really an issue: our construction has parameters that can
result in roughly 1 in a trillion queries failing, which we think
is a sufficiently rare occurrence. Furthermore, as we discuss in
Section 5, this is an easy failure case to address in multi-query
PIR since a client learns whether or not it can get all of the
elements before issuing any queries.

Definition 1 (PBC). A (n, m, k, b, p)-PBC is given by three
polynomial-time algorithms (Encode, GenSchedule, Decode):

• (C0, . . . , Cb−1) ← Encode(DB): Given an n-element col-
lection DB, output a b-tuple of buckets, where b ≥ k, each

6

batch code codewords (m) buckets (b) probability of failure (p)

subcube (ℓ ≥ 2) [51, §3.2] n · ((ℓ+ 1)/ℓ)log2(k) (ℓ+ 1)log2(k) 0
combinatorial (

(r
k−1

)
≤ n/(k − 1)) [67, §2.2] kn− (k − 1) ·

(r
k−1

)
r 0

Balbuena graphs [69, §IV.A] 2(k3 − k · ⌈n/(k3 − k)⌉) 2(k3 − k) 0

Pung hybrid⋆ [11, §4.4] 4.5n 9k ≈ 2−20

3-way cuckoo hashing in the head (this work, §4.5) 3n 1.5k ≈ 2−40

FIGURE 5—Cost of existing batch codes and the probabilistic batch code (PBC) construction given in Section 4.5. n indicates the number of
elements in the database DB. k gives the number of elements that can be retrieved from DB by querying each bucket in β(DB) at most once,
where β is the batch code. Building a multi-query PIR scheme from any of the above constructions leads to computational costs to the server
proportional to O(m), and network communication proportional to O(b). We list batch codes that have explicit constructions and can amortize
CPU costs for multi-query PIR. Other batch codes have been proposed (e.g., [61, 70, 71, 76]) but they either have no known constructions, or they
seek additional properties (e.g., tolerate data erasures, optimize for the case where n = b, support multisets) that introduce structure or costs that
makes them a poor fit for multi-query PIR. ⋆The scheme in Pung is neither a batch code nor a PBC since it relies on clients replicating the data to
buckets (rather than the server). It is, however, straightforward to port Pung’s allocation logic via hashing in the head (§4.4) to construct a PBC.

bucket contains zero or more codewords and the total number
of codewords across all buckets is m = Σb−1

i=0 |Ci| ≥ n.
• {σ,⊥} ← GenSchedule(I): Given a set of k indices I cor-
responding to the positions of elements in DB, output a
schedule σ : I → {0, . . . , b− 1}+. The schedule σ gives, for
each position i ∈ I, the index of one or more buckets from
which to retrieve a codeword that can be used to reconstruct
element DB[i]. GenSchedule outputs ⊥ if it cannot produce
a schedule where each index ∈ I is associated with at least
one bucket, and where no buckets is used more than once.
This failure event occurs with probability p.

• element← Decode(W): Given a set of codewords W ⊆ C,
outputs the corresponding element ∈ DB.
We are now ready to discuss an efficient PBC construction.

Our key idea is as follows. Observe that batch codes are de-
signed to spread out elements in a clever way such that re-
trieval requests are well-balanced among the buckets. Relat-
edly, many data structures and networking applications use
different variants of hashing—consistent [53], asymmetric [75],
weighted [74], multi-choice [13, 64], cuckoo [12, 66], and oth-
ers [22, 38]—to achieve the same goal. While there is no obvi-
ous way to use these hashing schemes to implement multi-query
PIR directly, we can do it indirectly: we first build a PBC from
a simple technique that we call hashing in the head,4 and then
use the PBC to implement multi-query PIR (§5). We detail this
process in the next few sections.

4.3 Randomized load balancing

A common use case for (non-cryptographic) hash functions is to
build efficient data structures such as hash tables. In a hash table,
the insert procedure consists of computing one or more hash
functions on the key of the item being inserted. Each application
of a hash function returns an index into an array of buckets in
the hash table. The item is then placed into one of these buckets
following an allocation algorithm. For example, in multi-choice
hashing [13, 64], the item is placed in the bucket least full
among several candidate buckets. In Cuckoo hashing [66], items

4The phrase “in the head” was introduced by Ishai et al. [52] to describe the
action of an entity who simulates the execution of a protocol (multiparty
computation in their case). We borrow this phrase.

〈1, A〉

h1(1)

h2(1)

〈2, B〉

h1(2)

h2(2)

〈3, C〉

h2(3)

h1(3)

1

A

1

A

2

B

1

A

2

B

3

C

FIGURE 6—Logic for two-choice hashing [13] when allocating three
key-value tuples to buckets: ⟨1, A⟩, ⟨2, B⟩, ⟨3, C⟩. Tuples are inserted
into the bucket least full. Arrows represent the choices for each tuple
based on different hashes of the tuple’s key (here we depict an opti-
mistic scenario). The red solid arrow indicates the chosen mapping.

are moved around following the Cuckoo hashing algorithm (we
explain this algorithm in Section 4.5).

An ideal allocation results in items being assigned to buckets
such that all buckets have roughly the same number of items
(since this lowers the cost of lookup). In practice, collisions are
frequent and many items might map to the same bucket. To look
up an item by its key, one computes the different hash functions
on the key to obtain the list of buckets in which the item could
have been placed; one then scans each of those buckets for the
desired item. An example of the insertion process for multi-
choice hashing is given in Figure 6.

Abstract problem: balls and bins. In the above example,
hashing is used to solve an instance of the classic n balls and
b bins problem, which arises during insertion. The items to be
inserted into a hash table are the n balls, and the buckets in the
hash table are the b bins; using w hash functions to hash a key to
w candidate buckets approximates an independent and uniform
random assignment of a ball to w bins. The number of collisions
in a bucket is the load of a bin, and the highest load across all
bins is the max load. In the worst case, the max load is n/w (all
balls map to the same w candidate buckets), but there are useful
bounds that hold with high probability.

Interestingly, if we examine other scenarios abstracted by the
balls and bins problem, a pattern becomes clear: the allocation
algorithm is always executed during data placement. In the hash
table example, the allocation algorithm determines where to
insert an element. In the context of a transport protocol [54],

7

〈2, 〉

h1(2)

h2(2)

〈3, 〉

h2(3)

h1(3)

〈1, A〉

h1(1)

h2(1)

〈2, B〉

h1(2)

h2(2)

〈3, C〉

h2(3)

h1(3)

(a) consumer s simulation

(b) producer s allocation

2

2

3

1

A

1

A

1

A

2

B

2

B

1

A

1

A

2

B

3

C

2

B

1

A

3

C

FIGURE 7—Example of two-choice hashing in the head. (a) shows the
consumer’s simulation when inserting two tuples ⟨2, ⋆⟩, ⟨3, ⋆⟩. The ⋆
indicates that the value is not known, so an arbitrary value is used. (b)
shows a modification to two-choice hashing where the producer stores
the tuple in all possible choices. This ensures that the final allocation
is always compatible with the consumer’s simulation.

the allocation algorithm dictates on which path to send a packet.
In the context of a job scheduler [65], the allocation algorithm
selects the server on which to run a task. The result is that the
load balancing effect is achieved at the time of “data placement”.
However, to build a PBC, we must do it at the time of “data
retrieval”. Hashing in the head achieves this.

4.4 Hashing in the head

We start by introducing two principals: the producer and the
consumer. The producer holds a collection of n items where
each item is a key-value tuple. It is in charge of data placement:
taking each of the n elements and placing them into one of b
buckets based on their keys (e.g., insert procedure in a hash
table). The consumer holds a set of k keys (k ≤ n), and is
in charge of data retrieval: it fetches items by their key from
the buckets that were populated by the producer (e.g., lookup
procedure in a hash table). The goal is for the consumer to get
all k items by probing each bucket as few times as possible.
That is, the consumer has an instance of a k balls and b bins
problem, and the goal is to reduce its max load.

Note that the consumer is not inserting elements into buckets
(that is the job of the producer). Instead, the consumer is placing
“retrieval requests” into the buckets. The challenge is that any
clever allocation chosen by the consumer must be compatible
with the actions of the producer (who populates the buckets).
That is, if the consumer, after running its allocation algorithm
(e.g., multi-choice hashing) decides to retrieve items x1, x2,
and x3, from buckets 2, 3, and 7, it better be the case that
the producer previously placed those elements in those exact
buckets. We describe how we guarantee compatibility below.

Protocol. The consumer starts by imagining in its head that it
is a producer with a collection of k elements. In particular, the
consumer converts its k keys into k key-value tuples by assign-
ing a dummy value to each key (since it does not know actual
values). In this simulation, the consumer follows a specific allo-
cation algorithm (e.g., 2-choice hashing, cuckoo hashing) and
populates the b buckets accordingly. The result is an allocation
that balances the load of the k elements among the b buckets
(as we discuss in Section 4.3). The consumer then ends its sim-
ulation and uses the resulting allocation to fetch the k elements
from the buckets that were populated by the real producer.

Guaranteeing that the consumer’s allocation is compatible
with the producer’s actions is challenging. One reason is that
the consumer’s simulation is acting on k items whereas the real
producer is acting on n items. If the allocation algorithm being
used (by the consumer and the producer) is randomized or de-
pends on prior choices (this is the cases with most multi-choice
hashing schemes), the allocations will be different. Indeed, ob-
serve that if a producer generates the allocation in Figure 6 it
would not be compatible with the consumer’s simulation in Fig-
ure 7a despite both entities using the same algorithm (since the
producers places the item under key “2” in the middle bucket,
but the consumer’s simulation maps it to the top bucket).

To guarantee compatibility we employ a simple solution:
the producer follows the same allocation algorithm as the con-
sumer’s simulation (e.g., 2-choice hashing) on its n elements but
stores the elements in all candidate buckets. That is, whenever
the algorithm chooses one among w candidate buckets to store
an element, the producer stores the element in all w buckets.
This ensures that regardless of which k elements are part of the
consumer’s simulation or which non-deterministic choices the
algorithm makes, the allocations are always compatible (Fig-
ure 7b). Of course this means that the producer is replicating
elements, which defeats the point of load balancing. However,
PBCs only need load balancing during data retrieval.

4.5 A PBC from cuckoo hashing in the head

We give a construction that uses cuckoo hashing [66] to allocate
balls to bins. However, the same method can be used with other
algorithms (e.g., multi-choice Greedy [13], LocalSearch [55])
to obtain different parameters. We give a brief summary of
Cuckoo hashing’s allocation algorithm below.

Cuckoo hashing algorithm. Given n balls, b buckets, and w
independent hash functions h0, . . . , hw−1, compute w candi-
date buckets for each ball by applying the w hash functions:
hi(b) mod b. For each ball x, place x in any empty candidate
bucket. If none of the w candidate buckets are empty, select one
of the candidate buckets at random, remove the ball currently in
that bucket (xold), place x in the bucket, and re-insert xold as be-
fore. If re-inserting xold causes another ball to be removed, this
process continues recursively for a maximum number of rounds.
If this maximum number is reached, the algorithm aborts.

Construction. Let H be an instance (producer, consumer) of
hashing in the head where the allocation algorithm is Cuckoo
hashing with w hash functions and b bins (we discuss con-
crete values for w and b later in this section). We construct a

8

(n, m, k, b, p)-PBC as follows.
Encode(DB). Given a collection DB of n elements, follow

H’s producer algorithm to allocate the n elements to the b buck-
ets. This results in m = wn total elements distributed across
the b buckets (each bucket may contain a different number of
elements). Return the buckets.

GenSchedule(I). Given a set of indices I, follow H’s con-
sumer algorithm to allocate the k indices to the b buckets. Return
the mapping of indices to buckets. If more than one index maps
to the same bucket (i.e., if there are collisions), return⊥ instead.

Decode(W). Since Encode performs only replication, all
codewords are elements in DB and require no decoding. Fur-
thermore, σ, which is returned by GenSchedule, has only one
entry for each index. As a result, W contains only one codeword.
Decode returns that codeword.

Concrete parameters. Analyzing the exact failure probability
of Cuckoo hashing remains an open problem (see [37] for the
most recent progress). However, several works [28, 68] have
estimated this probability empirically for different parameter
configurations. Following the analysis in [28, §4.2], we choose
w = 3 and b = 1.5k. In this setting, the failure probability is
estimated to be p ≈ 2−40 for k > 200 (for smaller k it is closer
to 2−20). This means that, assuming the mapping from indices to
buckets is pseudorandom, the probability that GenSchedule(I)
returns ⊥ for a set of indices I is p. Figure 5 compares this
result with existing batch code constructions and the scheme
proposed in Pung [11, §4.4].

5 Multi-query PIR from PBCs
We give the pseudocode for a PBC-based multi-query CPIR
scheme in Figure 8. At a high level, the server encodes its
database by calling the PBC’s Encode procedure. This produces
a set of buckets, each of which can be treated as an independent
database on which clients can perform PIR. A client who wishes
to retrieve elements at indices I = {i0, . . . , ik−1} can then lo-
cally call GenSchedule(I) to obtain a schedule σ. This schedule
states, for each index, the bucket from which to retrieve an el-
ement using PIR. Because of the semantics of GenSchedule
it is guaranteed that no bucket is queried more than once (or
σ = ⊥). As a result, the client can run one instance of PIR on
each bucket. However, a challenge is determining which index
to retrieve from each bucket: by assumption (of PIR) the client
knows the index in DB, but this has no relation to the index of
that same element in each bucket. To address this, we introduce
an oracleO that provides this information (we discuss it below).
If the client has nothing to retrieve from a given bucket, the
client simply queries a random index for that bucket.

Constructing the oracle O. There are several ways that the
client can construct O. The simplest solution is to obtain the
mapping from each bucket to the index of elements in DB (for
example, items 3, 4, 5 in DB are in bucket 0, 3, 7, 5 in DB are in
bucket 1, etc.). While this might sound unreasonable, observe
that PIR has an implicit assumption that the client knows the
index in DB of the desired element. The client could use the
same technique to obtain the corresponding w indices in B(DB).
For example, in the Pung communication system [11], clients

1: function SETUP(DB)
2: (C0, . . . , Cb−1)← Encode(DB)
3: for j = 0 to b− 1 do
4: SETUP(Cj) // See Fig. 1, Line 1
5:
6: function MULTIQUERY(pk, I, M = {|C0|, . . . , |Cb−1|})
7: σ ← GenSchedule(I)
8: if σ ̸= ⊥ then
9: // get an element for each bucket

10: // pick a random index if the bucket is not used in σ
11: for j = 0 to b− 1 do
12: idxj ← index for bucket j (based on σ and O)
13: qj ← QUERY(pk, idxj, |Cj|) // see Fig. 1, Line 4
14: return q← (q0, . . . , qb−1)
15: else
16: Deal with failure (see §5)
17:
18: function MULTIANSWER(q, (C0, . . . , Cb−1))
19: for j = 0 to b− 1 do
20: aj ← ANSWER(qj, Cj) // see Fig. 1, Line 9
21: return a← (a0, . . . , ab−1)

22:
23: function MULTIEXTRACT(sk, a, I,σ)
24: // extract the codewords from the provided PIR answers into cw
25: for j = 0 to b− 1 do
26: cwj ← EXTRACT(sk, aj) // see Fig. 1, Line 14
27: // select codewords from cw that are relevant to each index in I
28: for i = 0 in k − 1 do
29: W ← codewords from cw (based on σ[Ii])
30: ei ← Decode(W)

31: return (e0, . . . , ek−1)

FIGURE 8—Multi-query CPIR protocol based on a CPIR protocol and
a PBC (Encode, GenSchedule, Decode). I is the set of k desired
indices and M is the set of bucket lengths. As in Figure 1, this protocol
requires an additively homomorphic cryptosystem with algorithms
(KeyGen, Enc, Dec), where (pk, sk) are generated from KeyGen.

obtain this mapping in a succinct Bloom filter [17].
Another option is for the client to fetch elements using PIR

not by index but by some label using PIR-by-keywords [31].
Examples of labels include the name or UUID of a movie, the
index in the original DB, etc. One last option is for the clients
to construct O directly. This requires the server to share with
clients its source of randomness (e.g., a PRF seed). Clients can
then simulate the server’s encoding procedure on a database
of n dummy elements (replicating each element into w can-
didate buckets), which yields O. Furthermore, this process is
incremental for many hashing schemes: if a client has O for an
n-element database, it can constructO for a database with n+ 1
elements by simulating the insertion of the last element.

Dealing with failures in the schedule. If the PBC being used
has p > 0, then it is possible that for a client’s choice of indices,
σ = ⊥. In this case, the client is unable to fetch all k elements
that it wishes to retrieve privately. However, notice that the
client learns of this fact before issuing any PIR query (see
Figure 8, Line 8). As a result, the client has a few options. First,
the client can adjust its set of indices (i.e., choose different

9

elements to retrieve). This is possible in applications where the
client needs to retrieve more than a batch of k items. Second,
the client can retrieve a subset of the elements. In a messaging
application, this would mean that the client would not retrieve
all unread messages. In many cases, this is acceptable since
messages are not ephemeral so the client can try again at a later
time (presumably with a new set of indices). Lastly, the client
can fail silently. Which of these strategies is taken by a client
depends on the application.

6 Implementation
We build SealPIR by implementing XPIR’s protocol [8] on
top of version 2.3.0-4 of the SEAL homomorphic encryption
library [4]. This required around 2,000 lines of C++ and Rust.
The most difficult component to implement was EXPAND (Fig-
ure 3), which required the introduction of the substitution homo-
morphic operation (§3.1). We implement this group operation
in SEAL by porting the Galois group actions algorithm from
Gentry et al. [43, §4.2]. This required 400 lines of C++, and our
changes are now part of the latest version of SEAL.

SealPIR exposes the API described in Figure 1 to applications.
One difference with XPIR is that the substitution operation used
in EXPAND requires a special cryptographic key (Galois key) to
be generated by the client and be sent to the server. However, a
client can reuse this key across any number of requests and the
key is relatively small (2.9 MB).

Encoding elements into FV plaintexts. In SealPIR, an FV
plaintext is represented as an array of 64-bit integers, where
each integer is mod t. Each element in the array represents
a coefficient of the corresponding polynomial. We encode an
element e ∈ DB into an FV plaintexts p(x) by storing log(t)
bits of e into each coefficient of p(x). If elements are small, we
store many elements into a single FV plaintext (for example,
the first element is stored in the first 20 coefficients, the second
element in the next 20 coefficients, etc.).

Optimizations. We implement an optimization for EXPAND. In
FV, an encryption of 2ℓ (mod 2y), for y ≥ ℓ, is equivalent to
an encryption of 1 (mod 2y−ℓ). Observe that in Lines 14–16 of
Figure 3, EXPAND multiplies the n ciphertexts by the inverse of m
where m = 2ℓ. Instead, we change the plaintext modulus of the
n ciphertexts from t = 2y to t′ = 2y−ℓ, which allows us to avoid
the plaintext multiplications and the inversion, and reduces the
noise growth of EXPAND. The result is n−1 ciphertexts encoding
0, and one ciphertext encoding 1, as we expect. This also allows
us to use any value of t and not just an odd integer (since we
avoid inverting m). The one (minor) drawback is that the server
must represent the database using FV plaintexts defined with
the plaintext modulus t′ (rather than t). As a result, we must
pack fewer database elements into a single FV plaintext.

Implementing PBCs. We have also implemented mPIR, a
multi-query PIR library based on PBCs. mPIR implements
5 different PBC constructions: each is a different instance of
hashing in the head (§4.4) with a different allocation algorithms
(e.g., two-choice hashing, Cuckoo hashing, the Hybrid alloca-
tion scheme in Pung [11]). This library works transparently on
top of both XPIR and SealPIR, and is written in 1, 700 lines of

Rust. It uses SHA-256 with varying counters to implement the
different hash functions.

7 Evaluation
Our evaluation answers four questions:
1. What are the concrete resource costs of SealPIR, and how

do they compare to XPIR?
2. What is the throughput and latency achieved by SealPIR

under different deployment scenarios?
3. What are the concrete benefits provided by PBCs, and how

do they compare to existing batch codes?
4. What is the impact of using SealPIR and mPIR on a repre-

sentative system?

Experimental setup. We run our experiments using Mi-
crosoft’s Azure instances in three data centers: West US, South
India, and West Europe. We run the PIR servers on H16 in-
stances (16-core 3.6 GHz Intel Xeon E5-2667 and 112 GB
RAM), and clients on F16s instances (16-core, 2.4 GHz Intel
Xeon E5-2673 and 32 GB RAM), all running Ubuntu 16.04.
We compile all our code with Rust’s nightly version 1.25. For
XPIR, we use the publicly available source code [9]. We report
all network costs measured at the application layer. We run each
experiment 10 times and report averages from those 10 trials.
Standard deviations are less than 10% of the reported means.

Parameters. We choose FHE’s security parameters following
XPIR’s latest estimates [5], which are based on the analysis by
Albrecht et al. [10]. We set the degree of ciphertexts’ polyno-
mials to 2048, and the size of the coefficients to 60 bits (N and
q in the terminology of Section 3). More specifically, SEAL
needs values of q ≡ 1 (mod 218), whereas XPIR needs values
of q ≡ 1 (mod 214) [6]. q = 260 − 218 + 1 works for both.

Each database element is 288 bytes. We choose this size since
the Pung communication system uses 288-byte messages (§7.4).
Unless otherwise stated, for SealPIR we use a plaintext modulus
value of t = 223. A larger value of t leads to lower network and
computational costs, but might cause noise to grow too much,
which can make the result to be not decryptable (we lower t
in some experiments to ensure that we can always decrypt the
result). For XPIR, we use α = 16, meaning that we pack α
elements into a single logical element, thereby reducing the
number of elements in the database by a factor of α. For 288-
byte elements and our security parameters, setting α = 16 has
roughly the same effect as setting t = 223 in SealPIR (although
our optimization to EXPAND, which we discuss in Section 6,
means that SealPIR packs fewer elements together).

7.1 Cost and performance of SealPIR

To evaluate SealPIR, we run a series of microbenchmarks to
measure: (i) the time to generate, expand, and answer a query;
(ii) the time to extract the response; and (iii) the time to prepro-
cess the database. We study several database sizes and repeat the
same experiment for XPIR using two different depth parameters
d (§3.4). Figure 9 tabulates our results.

CPU costs. We find that the computational costs of the client
are lower under SealPIR than under XPIR. This is because
the client in SealPIR generates d ciphertexts as a query rather

10

XPIR (d = 2) XPIR (d = 3) SealPIR (d = 2)

database size (n) 65,536 262,144 1,048,576 65,536 262,144 1,048,576 65,536 262,144 1,048,576

client CPU costs (ms)
QUERY 18.43 44.16 90.39 7.51 11.26 20.08 3.11 3.20 3.20
EXTRACT 0.86 0.86 0.86 6.03 6.61 6.91 1.91 1.91 1.91

server CPU costs (sec)
SETUP 0.61 2.43 7.53 0.18 2.14 7.24 0.32 1.18 5.46
EXPAND N/A N/A N/A N/A N/A N/A 0.068 0.13 0.28
ANSWER 0.26 0.71 2.50 0.25 1.17 3.22 0.15 0.51 1.99

network costs (KB)
query 4,096 8,192 16,384 1,248 2,464 3,872 64 64 64
answer 512 512 512 3,424 3,872 3,872 256 256 256

FIGURE 9—Microbenchmarks of CPU and network costs for XPIR and SealPIR under varying database sizes (n). Elements are of size 288 bytes.

than d · d
√

n ciphertexts as in XPIR (§3.4). Furthermore, XPIR
with d = 3 produces larger answers (i.e., they contain more
ciphertexts) which require more time to decrypt.

However, SealPIR’s EXPAND procedure introduces CPU over-
heads to the server. Specifically, the overhead over computing
an answer using an expanded query vector (as in XPIR) is be-
tween 14% and 45% depending on the database size. While
this is high, we think this is an excellent trade-off given the
significant network savings (which we discuss below). Also,
for answering a query (after it has been expanded), SealPIR
is always faster than XPIR. Furthermore, the total CPU cost
of answering a query including the expansion of the query is
competitive with XPIR’s cost of answering a query.

We note that larger values of d lead to more computation
for the server for two reasons. First, structuring the database
as a d-dimensional hyperrectangle often requires padding the
database with dummy plaintexts to fit all dimensions. Second,
as we discuss in Section 3.4, the ciphertext expansion factor ef-
fectively increases the size of the elements by a factor of F after
processing each dimension, necessitating more computation.

Network costs. For network costs, SealPIR enjoys a signifi-
cant reduction owing to its query encoding and EXPAND proce-
dure (§3.3). For larger databases, the query size reductions over
XPIR are 256× when d = 2, and 60× when d = 3.

7.2 SealPIR’s response time and throughput

While microbenchmarks are useful for understanding how
SealPIR compares to XPIR, another important axis is under-
standing how these costs affect response time and throughput.

7.2.1 Response times

To measure response time, we run experiments where we de-
ploy a PIR server in Azure’s US West data center, and place a
PIR client under four deployment scenarios. We then measure
the time to retrieve a 288-byte element using SealPIR, XPIR,
and scp (i.e., secure copy command line tool). We use scp to
emulate a naive version of PIR in which a client downloads the
entire database.

Deployment scenarios. We consider a variety of deployment
scenarios as detailed below to measure response times.

intra-DC: the client and the server are both in the US West

data center. The bandwidth between the two VMs is approxi-
mately 3.4 Gbps (measured using the iperf measurement tool).
This scenario is optimistic since it makes little sense to use PIR
inside two VMs in the same data center controlled by the same
party. Nevertheless, it gives an idea of the performance that PIR
schemes could achieve if network bandwidth were plentiful.

inter-DC: the client is placed in the South India data cen-
ter. The bandwidth between the two VMs is approximately
800 Mbps. This scenario represents clients who deploy their
applications in a data center (or well-provisioned proxy) that
they trust, and access content from an untrusted data center.

home network: the client is placed in the South India data
center. However, we use the tc traffic control utility to configure
the Linux kernel packet scheduler in both VMs to maintain a
20 Mbps bandwidth. We choose this number as it is slightly over
the mean download speed in the U.S. (18.7 Mbps) according
to Akamai’s latest connectivity report [1, §4]. This scenario is
optimistic to XPIR since it ignores the asymmetry present in
home networks where the uplink bandwidth is typically much
lower (meanwhile in XPIR, the queries are large). Nevertheless
our aim is to give a rough estimate of a common PIR use case
in which a client accesses an element from their home machine.

mobile carrier: the client is placed in the South India data
center. We use the tc utility to configure VMs to maintain a
10 Mbps bandwidth. We choose this number as it approximates
the average data speed achieved by users across all U.S. carri-
ers according to OpenSignal’s 2017 State of Mobile Networks
report [2] and Akamai [1, §8]. As with the home network, this
scenario is optimistic (for XPIR) as it ignores the discrepancy
between download and upload speeds. It aims to represent the
use of PIR from a mobile device, which is a common deploy-
ment for applications such as private communication (§7.4).

Results. Figure 10 depicts the results. At very high speeds
(intra-DC), naive PIR (scp) is currently the best option, which
is not surprising given the computational costs introduced by
PIR. However, for all other network speeds, XPIR and SealPIR
significantly outperform downloading the entire database. As
network bandwidth decreases (e.g., home, mobile), SealPIR’s
lower network consumption and competitive computational
costs yield up to a 42% reduction in response time.

11

 0

 3

 6

 9

 12

2
16

2
18

2
20

2
22

intra-DC (3.4 Gbps)
re

sp
o

n
se

 t
im

e
(s

ec
)

elements

 0

 4

 8

 12

 16

2
16

2
18

2
20

2
22

inter-DC (800 Mbps)

re
sp

o
n

se
 t

im
e

(s
ec

)

elements

 0

 6

 12

 18

 24

2
16

2
18

2
20

2
22

home (20 Mbps)

re
sp

o
n

se
 t

im
e

(s
ec

)

elements

 0

 16

 32

 48

 64

2
16

2
18

2
20

2
22

mobile (10 Mbps)

re
sp

o
n

se
 t

im
e

(s
ec

)

elements

SealPIR
XPIR (d=2)
XPIR (d=3)

scp

FIGURE 10—Mean response time experienced by a client under different deployments (see text for description of different network conditions)
with different PIR schemes. When the network bandwidth is plentiful (e.g., intra-DC), downloading the entire database from the server (scp)
achieves the best response time. However, when the network bandwidth is limited (e.g., home, mobile), SealPIR outperforms both XPIR and scp.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9m
ea

n
 r

es
p
o
n
se

 t
im

e
(s

ec
)

throughput (queries/sec)

SealPIR
XPIR (d=2)
XPIR (d=3)

scp

FIGURE 11—Comparing throughput vs. mean response time under
SealPIR and XPIR (with d = 2 and d = 3) when using a database with
220 elements where each element is 288 bytes long. We find that XPIR
with d = 2 saturates at 8 requests/second whereas SealPIR saturates at
6 requests/second (a 25% reduction in throughput). When XPIR uses
d = 3, SealPIR achieves about 50% higher throughput.

7.2.2 Throughput

To measure throughput, we deploy the PIR server in Azure’s
US West data center, but access it with an increasing number of
concurrent PIR clients deployed across the South India and EU
West data centers. The server’s bandwidth is 800 Mbps.

We then measure the number of requests serviced per minute
at the server, and the request completion times at the clients.
Figure 11 depicts the results of running from 4 to 256 clients
each requesting one 288-byte element from a database with 220

entries. In our experiments, we ensure that the bottleneck is the
server’s CPU or WAN network connection, and not the clients
or some link between specific data centers.

We find that SealPIR achieves a 50% higher throughput than
XPIR with d = 3, but a 25% lower throughput than XPIR with
d = 2. Most of the difference can be attributed to EXPAND, but
we believe that with further engineering we can close this gap
(since SealPIR is computationally more efficient than XPIR ac-
cording to microbenchmarks). Compared to naive PIR via scp,
SealPIR and XPIR achieve over 20× higher throughput since
the primary bottleneck in naive PIR is network bandwidth and
not CPU (which are bottlenecks for both SealPIR and XPIR).

7.3 Benefits of PBCs

To understand how PBCs can improve throughput and what type
of network overhead they add, we repeat the microbenchmark

experiments of Section 7.1, but this time we use mPIR. To put
the benefits and costs in context, we also evaluate the multi-
query PIR scheme found in Pung [11]. Pung’s protocol, like
PBCs, is probabilistic and significantly improves over existing
batch codes in terms of costs.

Figure 12 tabulates the results. We find that mPIR does a
better job than Pung’s scheme at amortizing CPU costs across all
batch sizes. This is a direct effect of the Cuckoo PBC producing
fewer total codewords (see Figure 5), since computational costs
are proportional to the number of elements after encoding (m).
At k = 256 and 288-byte elements, mPIR achieves a 2.7×
reduction in CPU cost for the server when answering queries
over Pung’s scheme. Over the naive approach of processing
queries independently, the per-request CPU cost of mPIR is
50.3× lower. Repeating the experiment in Figure 11 we find
that mPIR (with SealPIR as the underlying PIR scheme) and a
batch of k = 256 achieves a throughput of 197 queries/sec.

The difference in network costs is more pronounced. This
owes to Pung’s scheme building on the subcube batch code
of Ishai et al. [51] which creates a large number of buckets
(see Figure 5); to preserve privacy, clients must issue a PIR
query to each bucket. In terms of concrete savings, mPIR is
7× more network efficient (upload and download) than Pung’s
scheme. Considering that mPIR also has a lower failure prob-
ability (around 2−40, compared to Pung’s 2−20), this suggests
that mPIR is an attractive replacement to Pung’s multi-query
protocol, offering improvements on all axes.

7.4 Case study: Pung with SealPIR and mPIR

To get a sense of the end-to-end benefits that SealPIR and mPIR
provide to actual applications, we modify the available imple-
mentation of the Pung unobservable communication system [3].
Pung is a messaging service that allows users to exchange mes-
sages in rounds without leaking any metadata (who they are
talking to, how often, or when). We choose Pung because it
uses XPIR to achieve its privacy guarantees, and because it also
relies on multi-query PIR to allow clients to receive multiple
messages simultaneously. Consequently, we can switch Pung’s
PIR engine from XPIR to SealPIR, and we can replace Pung’s
custom multi-query PIR scheme with mPIR.

Experiment. In our experiment, we have clients send and re-
trieve k messages in a closed-loop, meaning that we advance
rounds as soon as all clients have sent and retrieved the mes-

12

single-query Pung’s multi-retrieval mPIR (Cuckoo hashing)

batch size (k) 1 16 64 256 16 64 256

client CPU costs (ms)
MultiQuery 3.19 28.77 28.56 28.2 4.85 4.33 4.17
MultiExtract 2.58 19.56 15.97 15.97 2.87 2.96 2.97

server CPU costs (sec)
MultiSetup 7.41 2.18 0.68 0.30 1.67 0.42 0.12
MultiAnswer 3.62 1.31 0.47 0.19 0.65 0.21 0.072

network costs (KB)
query 64 577 577 577 84 84 83
answer 384 2,885 2,308 2,308 420 420 333

FIGURE 12—Per-request (amortized) CPU and network costs of two multi-query PIR schemes on a database consisting of 220 elements, with
varying batch sizes. The schemes are Pung’s multi-retrieval protocol and mPIR, which is based on PBCs (Cuckoo variant). The second column
gives the cost of retrieving a single element (no amortization). The underlying PIR library is SealPIR with t = 220 and elements are 288 bytes.

0

50 K

100 K

150 K

1 16 64 256

th
ro

u
g
h
p
u
t

(m
es

sa
g
es

/m
in

)

message batch size (k)

Pung

Pung+S

Pung+M

Pung+MS

FIGURE 13—Throughput of Pung on a deployment of 4 servers with
256K users, each sending and retrieving k 288 byte messages per round.
The label “Pung” indicates the implementation as given in [3], with
updated security and XPIR parameters (§7). “Pung+S” corresponds to a
version of Pung that uses SealPIR with t = 220; “Pung+M” corresponds
to a version of Pung that uses mPIR; and “Pung+MS” corresponds to a
version of Pung that uses both mPIR and SealPIR.

sages, rather than waiting for a timeout. To experiment with
many clients we employ the same simulation technique used in
Pung: we have 64 real clients accessing each server, and simu-
late additional clients by pre-populating the servers’ databases
with random messages.

Figure 13 shows the throughput in messages per minute
that Pung achieves with mPIR and SealPIR (“Pung+MS”).
Pung+MS yields better performance than the existing Pung
code base for all batch sizes greater than 1. There are three
reasons for this. First, Pung’s multi-retrieval scheme produces
50% more codewords than mPIR, and therefore has to process
over more elements. Second, Pung’s multi-retrieval scheme pro-
duces 7× more buckets than mPIR. This forces Pung to run
XPIR on many small databases that contain an average of 500
to 8,000 elements (depending on the batch size), which exacer-
bates XPIR’s fixed costs (it is more efficient to run one instance
of XPIR on a database of 100,000 elements than two instances
of XPIR on databases of 50,000 elements).

Last, even though SealPIR incurs additional CPU costs than
XPIR (d = 2) on large databases as we show in Section 7.1 (this
is also why Pung has higher throughput than Pung-MS when
the batch size is 1), SealPIR is actually faster when the database
is small (see the columns with 65,536 elements in Figure 9).
Ultimately, thanks to these factors we find that if clients send

0

 500

 1000

 1500

1 16 64 256to
ta

l
n
et

w
o
rk

 c
o
st

 (
M

B
)

message batch size (k)

Pung

Pung+S

Pung+M

Pung+MS

FIGURE 14—Per-user total network cost (upload and download) of
a Pung deployment with 256K users. Each user sends and retrieves k
288-byte messages. See Figure 13 for an explanation of the legend.

k = 64 messages per round, Pung+MS processes 3.1× more
messages per minute than Pung.

When it comes to network costs, the benefits of SealPIR and
mPIR are considerable. Figure 14 depicts the total network cost
incurred by a single client for one round of the Pung protocol.
We find that the compressed queries and fewer buckets result in
savings of over 36×. In particular, the per-client communication
costs are cut down to 7 MB per round for a batch size of 16
(versus 279 MB in the original Pung implementation).

8 Discussion
SealPIR significantly reduces the network cost of XPIR, while
introducing modest computational overheads. However, there
are several opportunities to reduce CPU costs further. Observe
that in EXPAND and Stern’s protocol, when the database dimen-
sion (d) is greater than 1 (see Section 3.4) the computation
consists of several matrix-vector products. We can therefore
implement the optimization described by Beimel et al. [16]
where multiple queries (from potentially different users) are
aggregated to form a matrix; the server can then use a subcubic
matrix multiplication algorithm to compute the result (§2.2).

Another area of potential improvement is in the design of
PBCs. As we show in our evaluation, PBCs built from hashing
in the head reduce costs over existing methods, but so far we
have only studied allocation strategies that are typically used for
online load balancing (i.e., balls arrive one at a time). We could
also consider strategies that optimize for the offline setting in
which all balls are available at the same time (which is the case

13

in PBCs). In this setting, the allocation process can be phrased
in terms of orienting the edges of undirected graphs in order
to obtain directed graphs with minimum in-degree [24]. Opti-
mal solutions for this problem can be computed in polynomial
time [29], and linear time approximations also exist [24, 34, 41].

Appendix
A Query expansion
A.1 Correctness of query expansion

Below we prove that EXPAND (Figure 3) correctly expands one
ciphertext into a vector of n ciphertexts with the desired contents.
The following theorem makes this formal.

Theorem 1. Let N be a power of 2, N ≥ n, and query = Enc(xi)
be the client’s encoding of index i. The n output ciphertexts
o0, . . . , on−1 of EXPAND(query) satisfy, for all 0 ≤ k ≤ n− 1:

ok =

{
Enc(1) if i = k
Enc(0) otherwise

Proof. It suffices to prove the case for n = 2ℓ. For j =
{0, 1, . . . , ℓ − 1}, we claim that after the jth iteration of the
outer loop, we have ciphertexts = [c′0, . . . , c′2j+1−1] such that

ciphertexts[k] =

{
Enc(2j+1xi−k) if i ≡ k (mod 2j+1)

Enc(0) otherwise

We prove the claim by induction on j. The base case j = 0 is
explained in the main text of Section 3.3. Suppose the claim is
true for some j ≥ 0. Then in the next iteration, we compute an
array ciphertexts′.

For the first half of the array, i.e., 0 ≤ k < 2j+1, we have
ciphertexts′[k] = ciphertexts[k] + Sub(ciphertexts[k], N/2j+1 +
1). If i ̸= k (mod 2j+1), then ciphertexts′[k] is an en-
cryption of 0; otherwise, there is an integer r such that
i − k = 2j+1 · r, and Sub(ciphertexts[k], N/2j+1 + 1) =

Enc(2j+1x(N/2j+1+1)(2j+1r)) = Enc(2j+1(−1)rxi−k). Hence, if
r is odd, then ciphertexts′[k] is an encryption of 0; otherwise,
ciphertexts′[k] is an encryption of 2j+2xi−k. So the claim follows
because r is even if and only if i ≡ k (mod 2j+2).

We now prove the claim for the second half of the ar-
ray ciphertexts′. The only interesting case is i ≡ k − 2j+1

(mod 2j+1). In this case, it is easy to see that ciphertexts′[k]
is again Enc(2j+1(−1)(i−k)/2j+1

xi−k). So the same argument
applies.

Finally, using the above claim we can show that after the
outer loop in EXPAND, we have an array of 2ℓ ciphertexts such
that:

ciphertexts[k] =

{
Enc(2ℓxi−k) if i ≡ k (mod 2ℓ)

Enc(0) otherwise

However, note that i < n = 2ℓ, so i ≡ k (mod 2ℓ) implies
i = k. Hence ciphertexts[k] is either an encryption of 0 or an
encryption of 2ℓ. To obtain an encryption of 0 or 1, we multiply
ciphertexts[k] by the inverse of 2ℓ modulo t in the last step
(Figure 3, Line 14).

A.2 Noise growth of query expansion

One advantage of our query expansion technique over the straw
man FHE solution given in Section 3.1 (besides the one men-
tioned in that section) is that our approach has much smaller
noise growth. We bound the noise growth of EXPAND (Figure 3)
in the theorem below. Before stating the theorem, we give some
background on noise. See the SEAL manual [27] for a more
detailed explanation. We have that the noise of the addition of
two ciphertexts is the sum of their individual noises. Plain mul-
tiplication by a monomial xj (for some j) with coefficient 1 does
not change the noise, and plain multiplication by a constant α
multiplies the noise by α. Substitution adds a constant additive
term Bsub to the noise, which depends on the FV parameters.

Theorem 2. Let vout be the output noise of EXPAND, and vin be
the input noise. Let t denote the plaintext modulus in EXPAND,
and let k = ⌈log(n)⌉. We have that

vout ≤ t · (2k(vin + 2Bsub))

Proof. Let vi be the noise after the ith iteration in EXPAND (set-
ting v0 = vin). Then vi = 2(vi−1 + Bsub). Carrying out the sum,
we get

vk = 2kv0 + 2(2k − 1)Bsub < 2k(v0 + 2Bsub)

Since inverse ≤ t, the final plain multiplication results in
vout ≤ tvk. This completes the proof.

B Cost of PBC variants
We have implemented five PBCs with different allocation al-
gorithms using hashing in the head. Our goal is to show that
all of them admit efficient encoding and decoding procedures.
For the purpose of building a multi-query PIR scheme, we wish
to select a PBC variant that reduces the number of codewords
(m) and buckets (b). Our hypothesis is that PBCs that produce
low values of m and b result in more expensive encoding and
schedule generation procedures.

To test this hypothesis we create a collection with 131K
elements, each of which is 1 KB, and encode the collection
with the different PBCs for a batch size of k = 64. We then
measure the time to encode, decode, and generate a schedule.
We also experiment with other element and collections sizes
and find that while the absolute costs vary, they are still small
(considering Encode is a one-time operation), and the relative
costs are consistent.

Figure 15 lists the CPU time taken by various operations for
all the variants we have implemented. Our hypothesis holds to
an extent: all the variants that are based on replication (for the
producer) and hashing (for the consumer) follow our prediction.
The source of costs for schedule generation corresponds to the
time taken to find a solution to a k balls, b bins, and w choices
problem. The different allocation strategies approximate the
optimal solution, and among them, Cuckoo hashing yields the
best approximation by recursively relocating elements when
there are collisions (§4.5). Encoding performance, on the other
hand, is based on the number and the cost of the memory copies,
since encoding is a simple repetition code.

14

PBC scheme Encode GenSchedule Decode

k-way replication 22.5 ms 5.8 µs 0.1 µs
sharding 52.1 ms 112.8 µs 0.3 µs
2-choice hashing 103.6 ms 212.9 µs 0.2 µs
Pung Hybrid 101.8 ms 42.3 µs 1.2 µs
Cuckoo hashing 154.1 ms 319.2 µs 0.15 µs

FIGURE 15—Cost of operations for five PBCs implemented as part of
mPIR. The collection size (n) is 524,288 and the batch size (k) is 64.
Each element in the collection is 288 bytes. k-way replication simply
replicates the n balls into k-bins during the producer’s allocation, and
picks a different bin for the k balls during the consumer’s simulation.
Sharding maps balls to a single bin during the producer’s allocation,
and the consumer uses a hash function during simulation (this variant
has a high failure rate which we improve by replicating buckets).

Our hypothesis does not hold for the PBC variant that cor-
responds to a port of Pung’s Hybrid multi-retrieval protocol.
The reason is that this variant is partially based on the subcube
batch code of Ishai et al. [51], for which the final position of
each input element is statically determined and does not require
computing a hash function (unlike our hashing variants). This
allows computing a schedule by consulting a lookup table.

Finally, as mentioned above, our goal with this experiment
was to confirm that all PBCs have reasonably efficient encoding,
decoding, and schedule generation procedures. As such, our
evaluation (§7) focuses only on the Cuckoo variant since it
yields the most efficient parameters, and the second lowest
failure probability (k-way replication never fails, but has a very
high value of m).

Acknowledgments
We thank Jay Lorch, Trinabh Gupta, Esha Ghosh, Michael Wal-
fish, and Sergey Yekhanin for their helpful feedback. Sebastian
Angel was supported by NSF grant CNS-1514422 and AFOSR
grant FA9550-15-1-0302.

References
[1] Akamai state of the internet connectivity report.

https://www.akamai.com/fr/fr/multimedia/
documents/state-of-the-internet/q1-2017-state-
of-the-internet-connectivity-report.pdf, May 2017.

[2] Opensignal state of mobile networks: Usa.
https://opensignal.com/reports-
data/national/data-2017-08-usa/report.pdf, Aug.
2017.

[3] Pung: Unobservable communication over fully untrusted
infrastructure. https://github.com/pung-project/pung,
Sept. 2017.

[4] Simple encrypted arithmetic library — SEAL.
https://sealcrypto.org, 2017.

[5] XPIR: NFLLWE security estimator.
https://github.com/XPIR-team/XPIR/blob/master/
crypto/NFLLWESecurityEstimator/
NFLLWESecurityEstimator-README, June 2017.

[6] XPIR NFLParams. https://github.com/XPIR-
team/XPIR/blob/master/crypto/NFLParams.cpp, June
2017.

[7] Internet providers with data caps.

https://broadbandnow.com/internet-providers-
with-data-caps, Jan. 2018.

[8] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian.
XPIR: Private information retrieval for everyone. In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS), July
2016.

[9] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian.
XPIR: Private information retrieval for everyone.
https://github.com/xpir-team/xpir/, 2016.

[10] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. Journal of Mathematical
Cryptology, 9(3), Oct. 2015.

[11] S. Angel and S. Setty. Unobservable communication over fully
untrusted infrastructure. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Nov. 2016.

[12] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation.
In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), Oct. 2010.

[13] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced
allocations. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), May 1994.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. P. Vadhan, and K. Yang. On the (im)possibility of obfuscating
programs. Journal of the ACM, 59(2), 2012.

[15] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. Breaking
the O(n1/(2k−1)) barrier for information-theoretic private
information retrieval. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), Nov. 2002.

[16] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers
computation in private information retrieval: PIR with
preprocessing. In Proceedings of the International Cryptology
Conference (CRYPTO), Aug. 2000.

[17] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), July 1970.

[18] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private
presence service. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), June 2015.

[19] E. Boyle, Y. Ishai, R. Pass, and M. Wootters. Can we access a
database both locally and privately? Cryptology ePrint Archive,
Report 2017/567, Sept. 2017.
https://eprint.iacr.org/2017/567.pdf.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings
of the Innovations in Theoretical Computer Science (ITCS)
Conference, Jan. 2012.

[21] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic
encryption from Ring-LWE and security for key dependent
messages. In Proceedings of the International Cryptology
Conference (CRYPTO), Aug. 2011.

[22] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and
D. M. Tullsen. Horton tables: Fast hash tables for in-memory
data-intensive computing. In Proceedings of the USENIX
Annual Technical Conference (ATC), June 2016.

[23] C. Cachin, S. Micali, and M. Stadler. Computationally private
information retrieval with polylogarithmic communication. In
Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), May
1999.

[24] J. A. Cain, P. Sanders, and N. Wormald. The random graph
threshold for k-orientability and a fast algorithm for optimal

15

https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf
https://opensignal.com/reports-data/national/data-2017-08-usa/report.pdf
https://opensignal.com/reports-data/national/data-2017-08-usa/report.pdf
https://github.com/pung-project/pung
https://sealcrypto.org
https://github.com/XPIR-team/XPIR/blob/master/crypto/NFLLWESecurityEstimator/NFLLWESecurityEstimator-README
https://github.com/XPIR-team/XPIR/blob/master/crypto/NFLLWESecurityEstimator/NFLLWESecurityEstimator-README
https://github.com/XPIR-team/XPIR/blob/master/crypto/NFLLWESecurityEstimator/NFLLWESecurityEstimator-README
https://github.com/XPIR-team/XPIR/blob/master/crypto/NFLParams.cpp
https://github.com/XPIR-team/XPIR/blob/master/crypto/NFLParams.cpp
https://broadbandnow.com/internet-providers-with-data-caps
https://broadbandnow.com/internet-providers-with-data-caps
https://github.com/xpir-team/xpir/
https://eprint.iacr.org/2017/567.pdf

multiple-choice allocation. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), Jan. 2007.

[25] R. Canetti, J. Holmgren, and S. Richelson. Towards doubly
efficient private information retrieval. Cryptology ePrint
Archive, Report 2017/568, Sept. 2017.
https://eprint.iacr.org/2017/568.pdf.

[26] Y.-C. Chang. Single database private information retrieval with
logarithmic communication. In Proceedings of the Australasian
Conference on Information Security and Privacy, July 2004.

[27] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine. Simple
encrypted arithmetic library v2.3.0.
https://https://www.microsoft.com/en-
us/research/publication/simple-encrypted-
arithmetic-library-v2-3-0/, Dec. 2017.

[28] H. Chen, K. Laine, and P. Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
Oct. 2017.

[29] L. T. Chen and D. Rotem. Optimal reponse time retrieval of
replicated data. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS), May 1994.

[30] R. Cheng, W. Scott, B. Parno, I. Zhang, A. Krishnamurthy, and
T. Anderson. Talek: a private publish-subscribe protocol.
Technical Report UW-CSE-16-11-01, University of Washington
Computer Science and Engineering, Nov. 2016.

[31] B. Chor, N. Gilboa, and M. Naor. Private information retrieval
by keywords. Cryptology ePrint Archive, Report 1998/003, Feb.
1998. https://eprint.iacr.org/1998/003.

[32] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), Oct. 1995.

[33] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), May 1987.

[34] A. Czumaj and V. Stemann. Randomized allocation processes.
In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), Oct. 1997.

[35] D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:
Practical multi-server PIR. In Proceedings of the ACM Cloud
Computing Security Workshop (CCSW), Nov. 2014.

[36] C. Devet, I. Goldberg, and N. Heninger. Optimally robust
private information retrieval. In Proceedings of the USENIX
Security Symposium, Aug. 2012.

[37] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari,
R. Pagh, and M. Rink. Tight thresholds for Cuckoo hashing via
XORSAT. In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), July 2010.

[38] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal
class of hash functions and dynamic hashing in real time. In
Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP), July 1990.

[39] C. Dong and L. Chen. A fast single server private information
retrieval protocol with low communication cost. In Proceedings
of the European Symposium on Research in Computer Security
(ESORICS), Sept. 2014.

[40] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report
2012/144, Mar. 2012.
https://eprint.iacr.org/2012/144.pdf.

[41] D. Fernholz and V. Ramachandran. The k-orientability
thresholds for Gn,p. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), Jan. 2007.

[42] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and
M. Zhandry. Secure obfuscation in a weak multilinear map
model. In Proceedings of the Theory of Cryptography
Conference (TCC), Oct. 2016.

[43] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic
encryption with polylog overhead. In Proceedings of the
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), Apr. 2012.

[44] C. Gentry and Z. Ramzan. Single-database private information
retrieval with constant communication rate. In Proceedings of
the International Colloquium on Automata, Languages and
Programming (ICALP), July 2005.

[45] I. Goldberg. Improving the robustness of private information
retrieval. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), May 2007.

[46] M. Green, W. Ladd, and I. Miers. A protocol for privately
reporting ad impressions at scale. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
Oct. 2016.

[47] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query
computationally-private information retrieval with constant
communication rate. In Proceedings of the International
Conference on Practice and Theory in Public Key Cryptography
(PKC), May 2010.

[48] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and
M. Walfish. Scalable and private media consumption with
Popcorn. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Mar.
2016.

[49] R. Henry. Polynomial batch codes for efficient IT-PIR. In
Proceedings of the Privacy Enhancing Technologies Symposium
(PETS), July 2016.

[50] R. Henry, Y. Huang, and I. Goldberg. One (block) size fits all:
PIR and SPIR with variable-length records via multi-block
queries. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2013.

[51] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes
and their applications. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), June 2004.

[52] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Zero-knowledge from secure multiparty computation. In
Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 21–30, 2007.

[53] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web.
In Proceedings of the ACM Symposium on Theory of Computing
(STOC), May 1997.

[54] P. Key, L. Massoulié, and D. Towsley. Path selection and
multipath congestion control. In Proceedings of the IEEE
International Conference on Computer Communications
(INFOCOM), May 2007.

[55] M. Khosla. Balls into bins made faster. In Proceedings of the
European Symposium on Algorithms (ESA), Sept. 2013.

[56] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang.
Optimal rate private information retrieval from homomorphic
encryption. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2015.

[57] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval.
In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), Oct. 1997.

16

https://eprint.iacr.org/2017/568.pdf
https://https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
https://https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
https://https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/2012/144.pdf

[58] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An efficient
communication system with strong anonymity. In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS), July
2016.

[59] H. Lipmaa. First CPIR protocol with data-dependent
computation. In Proceedings of the International Conference on
Information, Security and Cryptology (ICISC), Dec. 2009.

[60] H. Lipmaa and K. Pavlyk. A simpler rate-optimal CPIR protocol.
In Proceedings of the International Financial Cryptography
Conference, Apr. 2017.

[61] H. Lipmaa and V. Skachek. Linear batch codes. In Proceedings
of the International Castle Meeting on Coding Theory and
Applications, Sept. 2014.

[62] W. Lueks and I. Goldberg. Sublinear scaling for multi-client
private information retrieval. In Proceedings of the International
Financial Cryptography and Data Security Conference, Jan.
2015.

[63] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg.
PIR-Tor: Scalable anonymous communication using private
information retrieval. In Proceedings of the USENIX Security
Symposium, Aug. 2011.

[64] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed
Systems, 12(10), Oct. 2001.

[65] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Nov. 2013.

[66] R. Pagh and F. F. Rodler. Cuckoo hashing. In Proceedings of the
European Symposium on Algorithms (ESA), Aug. 2001.

[67] M. B. Paterson, D. R. Stinson, and R. Wei. Combinatorial batch
codes. Advances in Mathematics of Communications (AMC),
3(1), Feb. 2009.

[68] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set
intersection based on OT extension. Cryptology ePrint Archive,
Report 2016/930, Sept. 2016.
https://eprint.iacr.org/2016/930.pdf.

[69] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál. Batch codes
through dense graphs without short cycles. IEEE Transactions
on Information Theory, 62(4), Apr. 2016.

[70] N. Silberstein. Fractional repetition and erasure batch codes. In
Proceedings of the International Castle Meeting on Coding
Theory and Applications, Sept. 2014.

[71] N. Silberstein and T. Etzion. Optimal fractional repetittion codes
and fractional repetition batch codes. In Proceedings of the
IEEE International Symposium on Information Theory (ISIT),
June 2015.

[72] J. P. Stern. A new and efficient all-or-nothing disclosure of
secrets protocol. In International Conference on the Theory and
Application of Cryptology and Information Security
(ASIACRYPT), Oct. 1998.

[73] V. Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13(4), Aug. 1969.

[74] K. Talwar and U. Wieder. Balanced allocations: the weighted
case. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), June 2007.

[75] B. Vöcking. How asymmetry helps load balancing. Journal of
the ACM, 50(4), 2003.

[76] Z. Wang, H. M. Kiah, and Y. Cassuto. Optimal binary switch
codes with small query size. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), June
2015.

[77] Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck. Codes for

network switches. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT), July 2013.

[78] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino. Single-database
private information retrieval from fully homomorphic encryption.
IEEE Transactions on Knowledge and Data Engineering, 25(5),
May 2013.

17

https://eprint.iacr.org/2016/930.pdf

