
Faster isogeny-based compressed key agreement

Gustavo H. M. Zanon1, Marcos A. Simplicio Jr1,
Geovandro C. C. F. Pereira2, Javad Doliskani2, and

Paulo S. L. M. Barreto3

1 Escola Politécnica, University of São Paulo
{gzanon,msimplicio}@larc.usp.br

2 Institute for Quantum Computing, University of Waterloo
{geovandro.pereira,javad.doliskani}@uwaterloo.ca

3 University of Washington Tacoma
pbarreto@uw.edu

Abstract. Supersingular isogeny-based cryptography is one of the more recent
families of post-quantum proposals. An interesting feature is the comparatively
low bandwidth occupation in key agreement protocols, which stems from the
possibility of key compression. However, compression and decompression intro-
duce a significant overhead to the overall processing cost despite recent progress.
In this paper we address the main processing bottlenecks involved in key com-
pression and decompression, and suggest substantial improvements for each of
them. Some of our techniques may have an independent interest for other, more
conventional areas of elliptic curve cryptography as well.

1 Introduction

In the Supersingular Isogeny Diffie-Hellman (SIDH) protocol [9], the two parties need
to exchange a representation of their public keys each consisting of an elliptic curve E
together with two points P,Q on E. The curve E is supersingular and is defined over an
extension field Fp2 for a prime of the form p = `mA `

n
B − 1 where `A, `B are small primes,

usually equal to 2 and 3, respectively. Originally, this exchange was done using triples
of the form (E, xP , xQ) where E : y2 = x3 + ax + b and xP , xQ are the abscissas of P
and Q. Two extra bits were also needed to recover the correct y-coordinates. Thus, the
public keys are transfered using essentially the four elements a, b, xP , xQ ∈ Fp2 which
require 8 log p bits.

A different representation of the SIDH public keys was proposed by [1] that reduced
the size to 4 log p bits. The idea was to first represent the curve E using its j-invariant,
which is an element of Fp2 , rather than the coefficients a, b. This way E is represented
using 2 log p bits. The isomorphism class of an elliptic curve is uniquely determined
by its j-invariant. Second, since the points P,Q are always in the torsion subgroups
E[`mA] or E[`nB], they can be represented using elements of Zt ⊕ Zt where either t = `mA
or t = `nB . Since the parameters are such that `mA ≈ `nB , a pair (t1, t2) ∈ Zt ⊕ Zt is
represented using 2 log p bits. This reduction of size of the public keys, however, comes
with a rather high computational overhead. The conversion between the coefficients a, b
of a curve E and its j-invariant is done efficiently; the expensive part is the conversion
between elements of Zt ⊕ Zt and the points P,Q. As reported in [1], the compression

phase for each party was slower than a full round of uncompressed key exchange by a
factor of more than 10 times.

Costello et al. [5] further improved the key compression scheme by reducing the
public key sizes to 3.5 log p bits and decreasing the runtime by almost an order of
magnitude. With this improvement, the key compression phase for each party is as fast
as one full round of uncompressed key exchange. This certainly motivates the idea of
including the compression and decompression phases as default parts of SIDH. However,
compared to the currently deployed (classical) schemes, the compression/decompression
runtime is unfavorable, requiring further research on sppedup techniques.

Our contributions. We propose new algorithms that further decrease the runtime of
SIDH compression and decompression. In contrast to previous works that have deployed
“known” algorithms to optimize the performance of key compression, some of the al-
gorithms presented here are new and of broader interest than isogeny-based crypto. A
summary of the improvements follows.

– Constructing torsion bases. Assuming the usual parameters `A = 2, `B = 3, we
improve basis generation for both E[2m] and E[3n]. To generate a basis for the
2m-torsion, we propose an algorithm dubbed entangled basis generation. This
algorithm is around 15.9× faster than the usual basis generation presented in [5].
For the 3n-torsion, we observed that the naive algorithm is more efficient (both in
theory and practice) than the explicit 3-descent of [12] used by Costello et al. [5].

– Computing discrete logarithms. Inspired by the optimal strategy method of [6] to
compute smooth degree isogenies, we propose an algorithm to compute discrete logs
in the group µ`n where ` is a small prime. For a window of size w = 6, our algorithm
is 3.9× and 4.6× faster than the algorithm used by [5] for the groups µ2372 and µ3239

respectively.
– Pairing computation. We exploit the special shapes of pairs of points generated as

entangled bases and the existence of a subfield dismissed by [5] to optimize the Tate
pairing. We achieve a speedup of 1.4× for the pairing phase over the algorithms
used by [5] for both binary and ternary pairings.

– Other improvements. We introduce reverse basis decomposition, which combined
with the previous improvements, allows for further optimizations of compression
and decompression. For example each party only needs to compute 4 pairings rather
than 5. Also, two expensive cofactor multiplications by 3n are saved during Bob’s
compression, and one cofactor multiplication by 3n is saved during Alice’s decom-
pression.

We have implemented the above improvements on top of (the then-latest version of)
the Microsoft SIDH library [10]. The library is designed for the specific prime p =
23723239− 1 of size log p = 751 bits. Our software can be found at https://github.
com/geovandro/PQCrypto-SIDH.

1.1 Notations and conventions

For simplicity, we assume that finite field arithmetic is carried out in a base field Fp
and its quadratic extension Fp2 for a prime p of form p := 2m · 3n − 1 for some m > 2

2

https://github.com/geovandro/PQCrypto-SIDH
https://github.com/geovandro/PQCrypto-SIDH

and n > 1, so that p ≡ 3 (mod 4). The quadratic extension Fp2/Fp is represented as
Fp2 = Fp[i]/〈i2 + 1〉, and arithmetic closely mimics that of the complex numbers.

All curves are represented using the Montgomery model unless otherwise specified.
We follow the convention of using subscripts A and B for Alice and Bob, respectively.
For example, the secret isogeny φA is computed by Alice and her public parameters are
denoted by the points PA, QA and the curve EA. Similarly, Bob’s isogeny is denoted by
φB , and his public parameters are PB , QB , EB .

We denote by i, c, m, s, and a the costs of inverting, cubing, multiplying, squaring,
and adding/subtracting/shifting in Fp, respectively, and by I, C, M, S, and A the costs
of the corresponding operations in Fp2 . We disregard the cost of changing a sign (for
instance, when handling the conjugate of a field element). The costs of the Fp2 operations
relative to the costs of operations in Fp can be approximated by 1I = 1i+2m+2s+1a,
1C = 2m+2s+6a, 1M = 3m+5a, 1S = 2m+3a, and 1A = 2a, by using the finite-field
analogues to well-known Viète multiple-angle trigonometric identities [15, Formulas 5.68
and 5.69].

2 Reverse basis decomposition

In this section, we use reverse basis decomposition to speed up both Alice’s and Bob’s
key compression by saving one pairing computation. Later in Section 3.1 we show that,
when combined with an entangled basis generation, this technique will allow for avoiding
two cofactor multiplications by 3n in Bob’s key compression and one in Alice’s key
decompression. We prove our results from Alice’s point of view. The proofs for Bob are
similar.

The main previous idea to achieve key compression [1,5] is the following: instead of
transmitting points φA(PB), φA(QB) ∈ EA[3n], which are represented by two abscissas
in Fp2 and consume 4 log p bits, Alice computes a canonical basis R1, R2 ∈ EA[3n]
and expresses the expanded public key in that basis as φA(PB) = a0R1 + b0R2 and
φA(QB) = a1R1 + b1R2. In matrix notation,[

φA(PB)
φA(QB)

]
=

[
a0 b0
a1 b1

] [
R1

R2

]
. (1)

This representation consists of four smaller integers (a0, b0, a1, b1) ∈ (Z/3nZ)4 of total
size 2 log p bits as suggested in [1]. This was improved in [5] by transmitting only the
triple (a−10 b0, a

−1
0 a1, a

−1
0 b1) ∈ (Z/3nZ)3 or (b−10 a0, b

−1
0 a1, b

−1
0 b1) ∈ (Z/3nZ)3 depending

on whether a0 or b0 is invertible. Therefore, only (3/2) log p, plus one bit indicating the
invertibility of a0 or b0 modulo 3n, is needed. In the above mentioned techniques, the
coefficients a0, b0, a1, b1 can be computed using five Tate pairings given by

g0 = e3n(R1, R2)

g1 = e3n(R1, φA(PB)) = e3n(R1, a0R1 + b0R2) = gb00
g2 = e3n(R1, φA(QB)) = e3n(R1, a1R1 + b1R2) = gb10
g3 = e3n(R2, φA(PB)) = e3n(R2, a0R1 + b0R2) = g−a00

g4 = e3n(R2, φA(QB)) = e3n(R2, a1R1 + b1R2) = g−a10 .

(2)

From this, Alice can recover a0, b0, a1, and b1 by solving discrete logs in a multiplicative
subgroup of smooth order 3n using the Pohlig-Hellman algorithm.

3

Now since φA(PB) and φA(QB) also form a basis for EA[3n], we see that the coeffi-
cient matrix in (1) is invertible modulo 3n. So, we can write[

R1

R2

]
=

[
c0 d0
c1 d1

] [
φA(PB)
φA(QB)

]
(3)

by inverting the matrix in (1). Changing the roles of the bases {R1, R2} and
{φA(PB), φA(QB)} in (2) we get

h0 = e3n(φA(PB), φA(QB))

h1 = e3n(φA(PB), R1) = e3n(φA(PB), c0φA(PB) + d0φA(QB)) = hd00
h2 = e3n(φA(PB), R2) = e3n(φA(PB), c1φA(PB) + d1φA(QB)) = hd10
h3 = e3n(φA(QB), R1) = e3n(φA(QB), c0φA(PB) + d0φA(QB)) = h−c00

h4 = e3n(φA(QB), R2) = e3n(φA(QB), c1φA(PB) + d1φA(QB)) = h−c10 .

(4)

The first pairing in (4) is computed as h0 = e3n(PB , φ̂A ◦ φA(QB)) =
e3n(PB , [deg φA]QB) = e3n(PB , QB)2

m

, which only depends on the public parameters
PB , QB and m. Therefore, it can be computed once and for all and be included in
the public parameters. In particular, only the pairings h1, h2, h3 and h4 need to be
computed at runtime. The discrete logs are computed as before using Pohlig-Hellman,
yielding c0 = − logh0

h3, d0 = logh0
h1, c1 = − logh0

h4 and d1 = logh0
h2. Next, Alice

inverts the computed coefficients matrix of (3) to obtain the coefficient matrix of (1).
Explicitly, [

a0 b0
a1 b1

]
=

1

D

[
d1 −d0
−c1 c0

]
where D = c0d1 − c1d0. Notice that the extra inversion of D−1 does not need to be
carried out when using the technique in [5]. More precisely, since at least one of d0 and
d1, say d1, is invertible modulo 3n, Alice transmits the tuple

(a−10 b0, a
−1
0 a1, a

−1
0 b1) = (−d−11 DD−1d0,−d−11 DD−1c1, d

−1
1 DD−1c0)

= (−d−11 d0,−d−11 c1, d
−1
1 c0)

which is independent of D.

3 Entangled basis generation

We now introduce a technique to create a complete basis of the 2m-torsion from a
single (albeit specific) point of order 2m. In other words, the cost involved is essentially
that of creating a generator for a single subgroup of order 2m in E[2m]: a generator
for the linearly independent subgroup becomes immediately available almost for free.
Consequently, the linear independence test consisting of two scalar multiplications by
2m−1 can be avoided. This is akin to distortion maps even though none is typically
available for the curves involved in SIDH. We call the resulting bases “entangled” by
analogy with the quantum phenomenon whereby the properties of one entity are entirely
determined by the properties of another entity despite their separation4.

4 We stress, however, that here the naming is purely analogous: there is no quantum process
involved in the construction.

4

In order to build an entangled basis 〈P,Q〉 = E[2m] for E : y2 = x3 + Ax2 + x, we
somewhat “subvert” the original Elligator 2 formulas [3] under a different motivation
than encoding points to random strings: obtaining two linearly independent points on
E at once. Herein the value t := ur2, for u ∈ Fq and r ∈ F∗p will be a square rather than
a non-square. The new construction is proved in Theorem 1.

Theorem 1. Given a Montgomery elliptic curve EA(Fq) : y2 = x(x2 + Ax + 1) where
p = 2m · 3n − 1 and A 6= 0, let t ∈ Fq be a field element such that t2 ∈ Fq \ Fp and
let x1 := −A/(1 + t2) be a quadratic non-residue that defines the abscissa of a point
P1 ∈ EA(Fq). Then x(P2) := −x1 −A defines the abscissa of a point P2 ∈ EA(Fq) such
that 〈[h]P1, [h]P2〉 = EA[2m], where h := 3n is the cofactor of the 2m-torsion group.

Proof. Since x(P2) = t2x1, both abscissas are quadratic non-residues and by [8, Chapter
1 (§4), Theorem 4.1] the two points P1 = (x1, y1), P2 = (t2x1, ty1), with x1+t2x1+A = 0,
are not in [2]EA. So the points [h]P1 and [h]P2 are full 2m-torsion points. To prove that
h·P1, h·P2 generate EA[2m] we have to prove that [h·2m−1](P1−P2) 6= 0, or equivalently
that (u, v) = P1 + (−P2) 6∈ [2]EA.

By the addition law [14, Algorithm 2.3] on EA we get

λ =
y2 − y1
x2 − x1

=
−ty1 − y1
t2x1 − x1

=
−(t+ 1)y1
(t2 − 1)x1

=
−y1

(t− 1)x1
,

µ =
y1x2 − y2x1
x2 − x1

=
t(t+ 1)y1x1

(t+ 1)(t− 1)x1
=

y1
(t− 1)x1

tx1 = −λtx1,

u = λ2 −A− x1 − x2 = λ2,

v = −λu− µ = −λu− (−λtx1) = −λ(u− tx1).

From the above equalities we see that v2 = λ2(u − tx1)2 = u(u2 + Au + 1) and hence
u2+Au+1 = (u−tx1)2. Let w := u−tx1 =

√
u2 +Au+ 1. Then 1−(u−w)2 = 1−t2x21 =

x21+Ax1+1, which is a quadratic non-residue because x1 is itself a quadratic non-residue
while their product is obviously a square, x1(x21 + Ax1 + 1) = y21 . A straightforward
calculation shows that (1 − (u + w)2)(1 − (u − w)2) = u2(A2 − 4). But A2 − 4 is a
quadratic residue since EA has the full 2-torsion over Fp2 . Therefore, both (u±w)2− 1
have the same quadratic residuosity, that is, they are both quadratic non-residues by
the above.

Now5 assume by contradiction that P1 − P2 ∈ [2]EA, i.e. that there is a point
(x, y) ∈ EA(Fq) such that [2](x, y) = (u, v). From the doubling formula on EA we get

u =
(x2 − 1)2

4x(x2 +Ax+ 1)
.

From this we get a quartic equation (x2 − 1)2 − 4ux(x2 +Ax+ 1) = 0. Since x 6= 0, we
can divide both sides by x2 and rearrange some terms to get(

x+
1

x

)2

− 4u

(
x+

1

x

)
− 4(Au+ 1) = 0.

5 This part closely follows the idea behind [8, Chapter 1 (§4), Theorem 4.1].

5

From this we obtain

x+
1

x
=

4u±
√

16(u2 +Au+ 1)

2
=

4u± 4w

2
= 2(u± w).

In turn, from this we get x2 − 2(u± w)x+ 1 = 0. Again since x ∈ Fq, the discriminant
4(u± w)2 − 4, and hence at least one of the (u± w)2 − 1 must be a quadratic residue.
But this contradicts the earlier observation that (u ± w)2 − 1 are both quadratic non-
residues. Therefore P1 −P2 6∈ [2]E, yielding the claim that 〈[h]P1, [h]P2〉 = EA[2m]. ut

In practice, one can efficiently implement entangled basis generation as follows. Let
u0 ∈ Fq\Fp such that u := u20 ∈ Fq\Fp, e.g. u0 = 1 + i and u = 2i. Define two separate
tables of pairs (r, v) with v := 1/(1 + ur2):

– table T1 contains pairs (r, v) in which v is quadratic non-residue,

– table T2 contains pairs (r, v) in which v is quadratic residues.

Performing one quadraticity test on A, only once per curve, and restricting table lookup
to the table of opposite quadraticity ensures that x := −Av is a non-square. Repeating
quadraticity tests to ensure that a corresponding y exists, and completing one square
root extraction in Fq to obtain y, one gets 2 points whose orders are multiples of 2m at
once. This is detailed in Algorithm 3.1.

Let us compare the number of operations required by the entangled basis algorithm
with the plain basis generation algorithm used in Costello et al. [5].

Entangled basis: testing the quadraticity of A takes (m + n + 1)s + nm. The main
loop runs twice on average at a cost 2(m+ n+ 1)s + (2n+ 22)m. The last stage is
to complete a square root and costs (m+ n− 1)s+ (n+ 1)m+ 1i. The total cost of
the algorithm is then

(4m+ 4n+ 2)s + (4n+ 23)m + 1i.

Plain basis: To get the abscissa of a point on the curve takes (2n+22)m+2(m+n+1)s.
Clearing the cofactor 3n requires n point tripling at a cost 32nm. We also need to
compute m− 1 point doubling for linear independence check that is required in the
next steps. So obtaining the first basis point costs (34n+16m+6)m+2(m+n+1)s.
The second basis point is obtained exactly the same way, except we also need a linear
independence check. This is done in loop that runs twice on average. The expected
cost of obtaining the second point is then twice the cost of obtaining the first point
including the the m− 1 doubling step. The last stage of the algorithm is to recover
the y coordinates of the points which costs (4m+ 4n)s + (4n+ 36)m + 2i. Adding
all these, the total cost of the algorithm is

(10m+ 10n+ 6)s + (48m+ 106n+ 54)m + 2i.

For the values m = 372 and n = 239, and assuming s = 0.8m and i = 100m, we get the
performance ratio of 15.92.

6

Algorithm 3.1 Entangled basis generation for E[2m](Fq) : y2 = x3 +Ax2 + x

Input: A = a + bi ∈ Fq; u0 ∈ Fq : u = u2
0 ∈ Fq\Fp; tables T1, T2 of pairs (r ∈ Fp, v =

1/(1 + ur2) ∈ Fq) of QNR and QR.
Output: {S1, S2} such that 〈[3n]S1, [3

n]S2〉 = E[2m](Fq).

1: z ← a2 + b2, s← z(p+1)/4

2: T ← (s2
?
= z) T1 : T2 // select proper table by testing quadraticity of A

3: repeat
4: lookup next entry (r, v) from T
5: x← −A · v // NB: x nonsquare
6: t← x · (x2 +A · x+ 1) // test quadraticity of t = c+ di
7: z ← c2 + d2, s← z(p+1)/4

8: until s2 = z // compute y ←
√
x3 +A · x2 + x

9: z ← (c+ s)/2, α← z(p+1)/4, β ← d · (2α)−1

10: y ← (α2 ?
= z) α+ βi : −β + αi // compute basis

11: return S1 ← (x, y), S2 ← (ur2x, u0ry)

3.1 Avoiding cofactor multiplication

Combining reverse basis decomposition and entangled basis generation enables us to
further avoid two scalar multiplications by the large cofactor 3n during Bob’s public
key compression, and one during Alice’s decompression. First notice that Algorithm 3.1
already incorporates the mentioned optimization, i.e. the output points S1 and S2 satisfy
(R1, R2) := ([3n]S1, [3

n]S2) such that 〈R1, R2〉 = E[2m]. This is only possible because
in reverse basis decomposition the Tate pairings hi take the points Si in their sec-
ond argument which does not need to be necessarily cofactor-reduced. In this case, for
R1 = c0φB(PA) + d0φB(QA) and R2 = c1φB(PA) + d1φB(QA), the respective pairing
computations are

k0 = e2m(φB(PA), φB(QA))

k1 = e2m(φB(PA), S1) = e2m(φB(PA), [3−n]R1) = k3
−nd0

0

k2 = e2m(φB(PA), S2) = e2m(φB(PA), [3−n]R2) = k3
−nd1

0

k3 = e2m(φB(QA), S1) = e2m(φB(QA), [3−n]R1) = k−3
−nc0

0

k4 = e2m(φB(QA), S2) = e2m(φB(QA), [3−n]R2) = h−3
−nc1

0 .

Thus, the discrete logarithms are the desired ones up to a factor 3−n, and given by
ĉ0 = − logk0 k3 = 3−nc0, d̂0 = logk0 k1 = 3−nd0, ĉ1 = − logk0 k4 = 3−nc1, and d̂1 =

logk0 k2 = 3−nd1. Notice that 3−n mod 2m must be odd which implies that ĉ0 or d̂0
is invertible if and only if c0 or d0 is invertible. Similar to the situation in Section 2,
when using the compression with only 3 coefficients as in [5] Bob transmits exactly the
original coefficients: assuming ĉ0 is invertible, then

(ĉ−10 d̂0, ĉ
−1
0 ĉ1, ĉ

−1
0 d̂1) = (c−10 3n3−nd0, c

−1
0 3n3−nc1, c

−1
0 3n3−nd1)

= (c−10 d0, c
−1
0 c1, c

−1
0 d1)

The derivation when d0 is invertible is analogous.
To decompress Bob’s public key, Alice needs to perform a single cofactor multi-

plication by 3n as follows. Assume that a0 is invertible modulo 2m so that Alice re-

7

ceives the triple (a−10 b0, a
−1
0 a1, a

−1
0 b1). She needs to compute the kernel ker(φAB) =

〈φB(PA) + skA · φB(QA)〉 which can be written as

〈a0R1 + b0R2 + skA · (a1R1 + b1R2)〉 = 〈(a0 + skAa1)R1 + (b0 + skAb1)R2〉

As noted in [5], one computes ker(φAB) as a−10 ker(φAB) = 〈(1+skAa
−1
0 a1)R1+(a−10 b0+

skAa
−1
0 b1)R2〉, which can be done with one scalar multiplication and one point addi-

tion by writing ker(φAB) = 〈R1 + (1 + skAa
−1
0 a1)−1(a−10 b0 + skAa

−1
0 b1)R2〉. Now if

Alice uses Algorithm 3.1, she obtains an entangled basis {S1, S2} such that (R1, R2) =
([3n]S1, [3

n]S2). She can then compute T = 〈S1+(1+skAa
−1
0 a1)−1(a−10 b0+skAa

−1
0 b1)S2

first and then recover the correct kernel ker(φAB) = 〈[3n]T 〉 by performing one cofactor
scalar multiplication.

4 Pairing computation

The pairing computation techniques by Costello et al. [5] are based on curves in a variant
of the Montgomery model, with projective coordinates (X2, XZ,Z2, Y Z), which turned
out to be the best setting among several models they assessed. We will argue that
the older and today less favored short Weierstraß model leads to more efficient pairing
algorithms. For convenience, we extend Jacobian coordinates [X : Y : Z] with a fourth
component, [X : Y : Z : T] with T = Z2.

Interestingly, Costello et al. dismiss the technique of denominator elimination [2]
and keep numerators and denominators separate during pairing evaluation. We point
out, however, that pairing values are defined over Fp2 and the inverse of a field element
a+bi is (a−bi)/(a2 +b2). Hence, rather than keeping a separate denominator a+bi one
can simply and immediately multiply the pairing value by the conjugate a− bi instead;
the result only differs from the original one by a denominator consisting of the norm
a2 + b2 ∈ Fp, and this denominator does get eliminated by the final exponentiation
in the reduced Tate pairing computation. This leaves the cost of pairing computation
unchanged, but it simplifies the implementation as it entirely does away with separate
numerators and denominators.

Let r ≥ 0 be the pairing order. For embedding degree k = 2, r | Φ2(p) = p+1 = 2m ·
3n, and by construction r is always either 2m or 3n. We will be interested in computing
reduced Tate pairings of order r, whose first argument must have that order as well. In
the case of compressed SIDH keys, pairings of the following forms are computed together
(recall that a fifth pairing e0 := er(P,Q) = er(P0, Q0)deg φ is readily available through
precomputation):

e1 := er(P,R1), e2 := er(P,R2), e3 := er(Q,R1), e4 := er(Q,R2),

where the first two pairings share the same first argument P , and next two pairings
share the same first argument Q.

From now on, we will split the discussion into two cases: binary-order pairings,
r = 2m, and ternary-order pairings, r = 3n.

4.1 Binary-order pairings

The computation of the reduced Tate pairing er(P,Q) of order r = 2m proceeds as
described in Algorithm 4.1, which requires doubling a point V ∈ E(Fp2). The doubling

8

formulas in Jacobian coordinates have a single exception, that occurs when the point
being doubled has order 2. That is, when y = 0, since the angular coefficient of the
tangent to the curve at that point becomes undefined. That exception, however, can
only occur deterministically in the scenario contemplated here, namely at the last step
of the Miller loop; since by definition the first pairing argument is always a point of
order 2m, chosen by the very entity that is computing the pairing.

Besides, the difference in running time reveals no private information, since the
pairing arguments are either already public for being part of a conventional torsion
basis, or else are about to be made public for being part of a public key.

Algorithm 4.1 Tate2(P,Q): basic reduced Tate pairing of order r = 2m:

Input: points P,Q.
Output: er(P,Q).

1: f ← 1, V ← P
2: for i← 0 to m− 1 do
3: f ← f2 · gV,V (Q)/g[2]V (Q), V ← [2]V
4: end for
5: return er(P,Q)← f (p2−1)/r

The most efficient doubling method known for Jacobian coordinates is due to Bern-
stein and Lange [4]. Let V = [X : Y : Z : T] and 2V = [X ′ : Y ′ : Z ′ : T ′] in the extended
coordinate system defined above. Then

X2 ← X2; Y2 ← Y 2; Y4 ← Y 2
2 ;

S ← 2((X + Y2)2 −X2 − Y4); M ← 3X2 +A · T 2; X ′ ←M2 − 2S;
Y ′ ←M · (S −X ′)− 8Y4; Z ′ ← (Y + Z)2 − Y2 − T ; T ′ ← (Z ′)2;

The cost is 2M + 8S + 15A = 2(3m + 5a) + 8(2m + 3a) + 15(2a) = 22m + 64a. The
curve coefficient A typically lacks any structure that might enable optimizations, and
hence incurs full multiplication cost.

This algorithm yields the values λN := M and λD := Z ′ = 2Y Z, besides X, X ′,
T , T ′, and Y2. These values are useful in the calculation of a function equivalent to
gV,V (Q)/g[2]V (Q), namely [M · (T · x−X) +W − L · y] ·R · (T ′ · x−X ′)∗ when V 6= O
and [2]V 6= O (i.e. Z 6= 0 and Z ′ 6= 0), (T · x−X) · T ∗ when V = −V 6= O (i.e. Z 6= 0
and Z ′ = 0), or simply 1 when Z = O. where L := Z ′ · T , R := Z ′ · T ∗, W ← 2Y2.
Denominators in the base field (|Z2 · (T ′ · x−X ′)|2 ∈ Fp in the first case, |Z2|2 ∈ Fp in
the second case) are eliminated.

Since the scenario where the pairing computations take place only involve bases
of the 2m-torsion group, and hence points of full order 2m, the exceptional formula is
indeed never invoked until the end of Miller’s loop. The difference in processing time
is irrelevant for security here, since the computations only involve information that is
meant to be public.

However, one can further optimize the computation of (a function equivalent to)
gV,V (Q)/g[2]V (Q). First, the expression (T ′ · x −X ′) that occurs at a certain step will
play the role of (T · x − X) at the next step, so one can simply store it from one
step to the next and thus save 1M. Second, the R factor above is irrelevant to the
pairing value. Let Zj denote the computed z-coordinate of [2j]P , let Tj := Z2

j and let

9

Rj := Zj+1 · T ∗j = Zj+1 · (Z∗j)2 denote the contribution of the R factor above at the
j-th step in Miller’s loop for 0 ≤ j < m − 1, with Rm−1 := 1, rather than 0 as the
general expression would yield, for convenience. One can show by induction that the
contribution of all R factors to the pairing value before the final exponentiation is

R̂ :=

m−1∏
j=0

R2m−1−j

j =

m−1∏
j=0

(
Zj+1 · T ∗j

)2m−1−j

,

which can be rearranged as

R̂ = (T ∗0)2
m−1

Z2
m−1

m−2∏
j=1

(
Z2m−j

j (T ∗j)2
m−1−j

)
= (Z∗0)2

m

Tm−1

m−2∏
j=1

(
ZjZ

∗
j

)2m−j

.

But the final exponentiation will erase the first factor as ((Z∗0)2
m

)(p
2−1)/2m =

(Z∗0)(p
2−1) = 1, and also the last product above, which only involves norms in Fp.

Hence the actual contribution is simply R̂(p2−1)/2m = T
(p2−1)/2m
m−1 , but the line func-

tion at the last step of Miller’s loop contributes a factor (T · x − X) · T ∗ to the
pairing value before the final exponentiation, so R̂ could be incorporated there as
(T ·x−X) ·T ∗m−1 ·Tm−1 ∼ T ·x−X. This simplified formula can be used instead without
making any reference at all to the R factors. Consequently, initializing h← T ·x−X be-
fore Miller’s loop at a cost of 1M per pairing, the line function value g can be evaluated
as

g ←M · h+W − L · y; h← T ′ · x−X ′; g ← g · h∗

at a cost of 4M + 3A = 12m + 26a per step of Miller’s loop. The cost of computing
L← Z ′ ·T alone is 1M = 3m+5a and that of computing W is 1A = 2a. This completes
the line function construction.

The updating of f at each step as f ← f2 · gV,V (Q)/g[2]V (Q) incurs a cost 2m + 3a
to compute the complex square f2 plus 3m+ 5a to compute f2 · gV,V (Q)/g[2]V (Q) from
f2 and gV,V (Q)/g[2]V (Q), totaling 5m + 8a. Therefore, the proposed variant has the
following overall cost per step:

– (shared) cost of point doubling and line function construction: 22m+64a+3m+7a =
25m + 71a;

– (individual) cost of line function evaluation and accumulation: 12m+26a+5m+8a =
17m + 34a.

In summary, in our method the total cost for t parallel pairings that share the same
first argument is 25m + 71a + t · (17m + 34a) per step. This means 42m + 105a for an
individual pairing, and 59m + 139a for two parallel pairings that share the same first
argument.

By comparison, the Costello et al. [5] technique has the following costs:

– (shared) cost of point doubling and line function construction: 9M+ 5S+ 1s+ 7a =
37m + 1s + 67a;

– (individual) cost of line function evaluation and accumulation: 5M+2S+2s+1a =
19m + 2s + 32a;

10

In summary, in their method the total cost for t parallel pairings that share the same
first argument is 37m+1s+67a+t·(19m+2s+32a) per step. This means 56m+3s+99a
for an individual pairing, and 75m + 5s + 131a for two parallel pairings that share the
same first argument. We see that, for the case of interest here, which is two parallel
pairings, our technique costs a fraction ≈ 59.0/79.0 ≈ 74.7% of the Costello et al.
method, assuming 1s ≈ 0.8m and essentially ignoring a.

Pairings on an entangled basis. If two pairings e(P,R1), e(P,R2) sharing the same first
argument P are computed on an entangled basis R1 = (x1, y1), R2 = (x2, y2) with
x2 = t2 · x1, y2 = t · y1, one can slightly improve the line function evaluation and
accumulation, exploiting the fact that multiplication by carefully chosen t or t2 given
the values of T ′ · x1 or L · y1 is less expensive than the full multiplications T ′ · x2 or
L · y2 for generic (x2, y2).

Specifically, for t = (1 + i)r and t2 = 2ir2 with some small r ∈ Fp, the cost of a ded-
icated implementation of parallel entangled pairings drops by 2m+ 10a, thus becoming
only 57m + 129a, or about 72.2% of the cost of the Costello et al. method. The per-
formance improvements brought about by the techniques we proposed are summarized
on Table 1. Our proposed variant of the parallel reduced Tate pairing is shown in full
detail as Algorithm A.1 in the Appendix.

Table 1: Cost of the binary Miller loop, assuming s ≈ 0.8m and ignoring a.

t Costello et al. ours ratio

1 56m + 3s + 99a 42m + 105a 42.0/58.4 ≈ 0.719

2 75m + 5s + 131a 59m + 139a 59.0/79.0 ≈ 0.747

2† 75m + 5s + 131a 57m + 129a 57.0/79.0 ≈ 0.722

†Parallel entangled basis

4.2 Ternary-order pairings

The computation of the reduced Tate pairing er(P,Q) of order r = 3n proceeds as
described in Algorithm 4.2. Again, the tripling formulas in Jacobian coordinates have
an exception when y = 0, but this can be handled in a similar fashion to the binary
case. The difference in running time reveals no private information for the same reason,
namely only public data is involved in the pairing computations.

Algorithm 4.2 Tate3(P,Q): basic reduced Tate pairing of order r = 3n:

Input: points P,Q.
Output: er(P,Q).

1: f ← 1, V ← P
2: for i← 0 to n− 1 do
3: f ← f3 · gV,V (Q) · gV,[2]V (Q)/g[2]V (Q)/g[3]V (Q), V ← [3]V
4: end for
5: return er(P,Q)← f (p2−1)/r

11

The most efficient tripling algorithm known for Jacobian coordinates is due to Bern-
stein and Lange [4]. Let V = [X : Y : Z : T] and [3]V = [X ′ : Y ′ : Z ′ : T ′] in the
extended coordinate system as before. Then:

X2 ← X2; Y2 ← Y 2; Y4 ← Y 2
2 ;

T2 ← T 2; M ← 3X2 + a · T2; M2 ←M2;
D ← (X + Y2)2 −X2 − Y4; F ← 6D −M2; F2 ← F 2;
W ← 2Y2; W ′ ← 2W S ← 16Y4;
U ← (M + F)2 −M2 − F2 − S; U ′ ← S − U ;
X ′ ← 4(X · F2 −W ′ · U); Y ′ ← 8Y · (U · U ′ − F · F2);
Z ′ ← (Z + F)2 − T − F2; T ′ ← (Z ′)2;

The cost is 6M+ 10S+ 25A = 6(3m+ 5a) + 10(2m+ 3a) + 25(2a) = 38m+ 110a. The
pairing computation requires constructing and evaluating a parabola function equiva-
lent to gV,V (Q) · gV,[2]V (Q)/g[2]V (Q)/g[3]V (Q) at each step together with point tripling.
Assuming initially [3]V 6= O and reusing variables available from point tripling, this can
be carried out as:

L← ((Y + Z)2 − Y2 − T) · T ; F ′ ← 2F R← F · T ∗;
d←W − L · y; h← T · x−X; h3 ← T ′ · x−X ′;

and then the parabola value is g ← (M · h+ d) · (U ′ · h+ F ′ · d) · (W ′ · h+ F)∗ ·R · h∗3.
However, one can further optimize the computation of (a function equivalent to) the

above parabola in a similar fashion to what was done for the binary case. First, the
expression (T ′ · x − X ′) that occurs at a certain step will play the role of (T · x − X)
at the next step, so one can simply store it from one step to the next and thus save
1M. Second, the above R factor is again irrelevant to the pairing value. Let Zj denote
the computed z-coordinate of [3j]P , and let Tj := Z2

j , and let Rj := 2|Zj |2 · Rj =

(2Fj · Zj) · (Z∗j · T ∗j) = Zj+1 · (Z∗j)3 denote a contribution equivalent to that of the R
factor above at the j-th step in Miller’s loop for 0 ≤ j < n − 1, with Rn−1 := 1 for
convenience. One can show by induction and term rearrangement that the contribution
of all R factors to the pairing value before the final exponentiation is

R̂ := (Z∗0)3
n

· Z3
n−1 ·

n−2∏
j=1

(
Zj · Z∗j

)3n−j

.

Therefore, the actual contribution after the final exponentiation is simply R̂(p2−1)/3n =
(Z3

n−1)(p
2−1)/3n , but the parabola function at the last step of Miller’s loop contributes

a factor ((M · h + d) · L∗)3 to the pairing value before the final exponentiation, so R̂
could be incorporated to that expression as (M · h + d)3 · (L∗)3 · Z3

n−1 = ((M · h +
d) · Y ∗)3 · (2Z∗n−1 · Zn−1)3 ∼ ((M · h + d) · Y ∗)3. This simplified formula can be used
instead without making any reference at all to the R factors. Consequently, the parabola
function construction can be completed by computing only L and F ′ as above at a cost
1M + 1S + 3A + 1A = 5m + 16a. After initializing h← T · x−X before Miller’s loop
at a cost of 1M per pairing, the parabola function value g can be evaluated as

d←W − L · y; g ← (M · h+ d) · (U ′ · h+ F ′ · d) · (W ′ · h+ F);
h← T ′ · x−X ′; g ← g · h∗;

12

at a cost 9M+5A = 27m+55a per step of Miller’s loop. The updating of f at each step
as f ← f3 · gV,V (Q) · gV,2V (Q)/g2V (Q)/g3V (Q) incurs a cost 2m + 2s + 6a to compute
the complex cube f3, plus 3m+ 5a to compute f3 · gV,V (Q) · gV,2V (Q)/g2V (Q)/g3V (Q)
from f3 and gV,V (Q) · gV,2V (Q)/g2V (Q)/g3V (Q), totaling 5m+ 2s+ 11a. Therefore, the
proposed variant has the following overall cost per step:

– (shared) cost of point tripling and parabola function construction: 38m + 110a +
5m + 16a = 43m + 126a;

– (individual) cost of parabola function evaluation and accumulation: 27m + 55a +
5m + 2s + 11a = 32m + 2s + 66a.

In summary, in our method the total cost for t parallel pairings that share the same first
argument is 43m + 126a + t · (32m + 2s + 66a) per step. This means 75m + 2s + 192a
for an individual pairing, and 107m+ 4s+ 258a for two parallel pairings that share the
same first argument.

By comparison, the Costello et al. [5] technique has the following costs:

– (shared) cost of point tripling and construction of the parabola functions: 19M +
6S + 6s + 15a = 69m + 6s + 128a;

– (individual) cost of evaluating the parabola functions and accumulating the results:
10M + 2S + 4a = 34m + 60a;

In summary, in their method the total cost for t parallel pairings that share the same first
argument is 69m+6s+128a+t·(34m+60a) per step. This means 103m+6s+188a+60a
for an individual pairing, and 137m+ 6s+ 248a for two parallel pairings that share the
same first argument.

For the case of interest here, which is two parallel pairings, our technique costs a
fraction ≈ 110.2/141.8 ≈ 77.7% of the Costello et al. method, assuming 1s ≈ 0.8m and
essentially ignoring a as before. In contrast with the binary case, no effective entangled
basis construction is known for the ternary case, and a mere repetition of the same
technique is unlikely to improve performance, so we refrain from extending the discussion
here.

The performance improvements brought about by the techniques we propose are
summarized on Table 2. Our proposed variant of the parallel reduced Tate pairing is
shown in full detail in the Appendix as Algorithm A.2.

Table 2: Cost of the ternary Miller loop, assuming s ≈ 0.8m and ignoring a

t Costello et al. ours ratio

1 103m + 6s + 188a 75m + 2s + 192a 76.6/107.8 ≈ 0.711

2 137m + 6s + 248a 107m + 4s + 258a 110.2/141.8 ≈ 0.777

5 Discrete logarithm computation

Let µ`e ⊂ Fp2 be the set of `e-th root of unity in Fp2 , i.e. µ`e := {v ∈ Fp2 | v`
e

= 1}.
Inverting in µ`e is a mere conjugation, (a + bi)−1 = a − bi since the norm is 1. The

13

Pohlig-Hellman method (Algorithm 5.1) to compute the discrete logarithm of c ∈ µ`e
requires solving an equation of the form:

r`
e−1−k

k = sdk

where s = g`
e−1

has order ` and, for k = 0, . . . , e − 1, dk ∈ {0, . . . , ` − 1} is an `-ary
digit, r0 = c, and rk+1 depends on rk and dk.

Algorithm 5.1 Basic Pohlig-Hellman discrete logarithm algorithm

Input: generator g ∈ µ`e , challenge c ∈ µ`e .
Output: d := logg c, i.e. gd = c.

1: s← g`
e−1

// NB: s` = 1
2: d← 0, r0 ← c
3: for k ← 0 to e− 1 do
4: vk ← r`

e−1−k

k

5: find dk ∈ {0, . . . , `− 1} such that vk = sdk

6: d← d+ dk`
k, rk+1 ← rk · g−`kdk

7: end for // NB: gd = c
8: return d

Assuming that g−`
k

is precomputed and stored for all k as a by-product of the
computation of s, the naive strategy to obtain the discrete logarithm requires repeatedly

computing the exponential r`
e−1−k

k at the cost of e−1−k raisings to the `, then solving
a small discrete logarithm instance in a subgroup of order ` to get one `-ary digit, then
clearing that digit in the exponent of rk at a cost not exceeding ` multiplications to
obtain rk+1. The overall cost is thus O(e2).

It turns out that this strategy is far from optimal, as pointed out by Shoup [13,

Chapter 11]. The crucial task is to obtain the sequence r`
e−1

0 , r`
e−2

1 , r`
e−3

2 , . . . , r`
0

e−1 in
this order, since each rk depends on the previous one. We can visualize this task using
a directed acyclic graph ∆ strikingly similar to De Feo et al.’s Tn graph, which they
call a “discrete equilateral triangle”, that models the construction of smooth-degree
isogenies [6, Section 4.2.2].

In our case, the set of vertices is {∆jk | j + k ≤ e − 1} where ∆jk := r`
j

k . Each
vertex has either two downward outgoing edges, or no edges at all. Vertices ∆jk with
j + k > e− 1 have two edges: a left edge ∆jk → ∆j+1,k that models raising the source

vertex to the `-th power to yield the destination vertex, r`
j+1

k ← (r`
j

k)`, and a right edge
∆jk → ∆j,k+1 that models clearing the (j + k)-th digit in the exponent of the source

vertex, r`
j

k+1 ← r`
j

k · g−`
(j+k)dk . Vertices ∆jk with j + k = e − 1 are leaves since they

have no outgoing edges.
De Feo et al. [6, Equation 5] describe an O(e2) dynamic programming algorithm

that computes the cost of an optimal subtree of ∆ with root at ∆00 and covering all
leaves. If the cost of traversing a left or right edge is p or q respectively, and the cost
of an optimal subtree of k edges is Cp,q(k), their algorithm is based on the relations
Cp,q(1) = 0 and Cp,q(k) = min1≤j<k (Cp,q(j) + Cp,q(k − j) + (k − j)p+ jq) for k > 1.

The naive dynamic programming approach is to store the values of Cp,q(k) for
k = 1 . . . e, invoking the above relation k−1 times at each step to find the corresponding

14

minimum, for a total e(e − 1)/2 invocations, hence the O(e2) cost. However, because
Cp,q(k) has no local minimum other than the single global minimum (or two adjacent,
equivalent copies of the global minimum at worst), one can find that minimum with a
variant of binary search that compares two consecutive values near the middle of the
search interval [1 . . . k−1] and then halves that interval. This yields the O(e log e) Algo-
rithm 5.2, which computes Cp,q(k) and the structure of the optimal traversal strategy
by storing the values of j above that attain the minimum at each step.

Algorithm 5.2 OptPath(p, q, e): optimal subtree traversal path

Input: p, q: left and right edge traversal cost; e: number of leaves of ∆.
Output: P : optimal traversal path

1: Define C[1 . . . e] as an array of costs and P [1 . . . e] as an array of indices.
2: C[1]← 0, P [1]← 0
3: for k ← 2 to e do
4: j ← 1, z ← k − 1
5: while j < z do
6: m← j + b(z − j)/2c, m← m+ 1
7: t1 ← C[m] + C[k −m] + (k −m) · p+m · q
8: t2 ← C[m] + C[k − m] + (k − m) · p+ m· q
9: if t1 ≤ t2 then

10: z ← m
11: else
12: j ← m

13: end if
14: end while
15: C[k]← C[j] + C[k − j] + (k − j) · p+ j · q, P [k]← j
16: end for
17: return P

5.1 Discrete logarithm computation cost

The cost of an optimal strategy depends on the individual costs of traversing a left edge
and a right edge. We now show that, because of our proposed reversed base decomposi-
tion technique, the total cost of discrete logarithm computation is drastically reduced.
A left edge traversal represents the computation r`

j+1

k ← (r`
j

k)` at a cost wS ≈ 2wm in
the binary case and wC = w(2m + 1s) ≈ 2.8wm in the ternary case, with windows of
size w.

A right edge traversal represents the computation r`
j

k+1 ← r`
j

k · g−`
(j+k)dk , which

can be performed via table lookup r`
j

k+1 ← r`
j

k · T [j + k][dk] where T [u][d] := g−`
u·d.

Since j + k ≤ e − 1, the table size is (e/w) · `w field elements. However, no more than
a single multiplication is incurred regardless of `, e, or w, namely, 1M ≈ 3m. When
w is very small, avoiding the multiplication for dk = 1 noticeably reduces the running
time and requires fewer table entries. Moreover, the table is fixed with the reverse basis
decomposition technique, because g = e(PB , QB)deg φA , or g = e(PA, QA)deg φB , thus
incurring no table building cost at running time for each newly generated key. Even the
simple discrete logarithm instances at the leaves only incur O(`) lookups on the same
table, since sdk = T [e− 1][dk]∗.

15

Table 3: Discrete logarithm computation costs (assuming s ≈ 0.8m)

group Costello et al. [5] ours, w = 1 (ratio) ours, w = 3 (ratio) ours, w = 6 (ratio)

µ2372 8271.6m 4958.4m (0.60) 3127.9m (0.39) 2103.7m (0.25)

µ3239 7999.2m 4507.6m (0.56) 2638.1m (0.33) 1739.8m (0.22)

Algorithm 5.3 summarizes the proposed technique, combining Shoup’s RDL algoritm
[13, Section 11.2.3] with the optimal divide-and-conquer strategy of De Feo et al. and
the efficient table lookup enabled by reverse basis decomposition.

Algorithm 5.3 Traverse(r, j, k, z, P, T, d)

Input: r: value of root vertex ∆jk, i.e. r := r`
j

k ; j, k: coordinates of root vertex ∆jk; z: number
of leaves in subtree rooted at ∆jk; P : traversal path; T : lookup table.

Output: d: digits (base `) of logg r0.
Remark: initial call is Traverse(r0, 0, 0, e, P, T, d).

1: if z > 1 then
2: t← P [z] // z leaves: t to the left exp, z − t to the right

3: r′ ← r`
z−t

// go left (z − t) times
4: Traverse(r′, j + (z − t), k, t, P, T)
5: r′ ← r ·

∏k+t−1
h=k T [j + h][dh] // go right t times

6: Traverse(r′, j, k + t, z − t, P, T)
7: else // leaf
8: find t ∈ {0, . . . , `− 1} such that r = T [e− 1][t]∗

9: dk ← t // recover k-th digit dk of the discrete logarithm from r = sdk

10: end if

The resulting improvements are substantial. For discrete logs in µ2372 , the optimal
cost is ≈ 4958.4m with windows of size w = 1, ≈ 3127.9m with windows of size w = 3,
and ≈ 2103.7m with windows of size w = 6. For discrete logs in µ3239 , the optimal cost
is ≈ 4507.6m with windows of size w = 1, ≈ 2638.1m with windows of size w = 3, and
≈ 1739.8m with windows of size w = 6.

Tradeoffs are also possible. Instead of being a matrix of size (e/w) · `w, the lookup
table could be restricted to a single array T1[u] := g−`

u

of (e/w) entries, by computing
T1[u]d = g−`

u·d on demand using an optimal multiplication chain for cyclotomic expo-
nentiation. For instance, discrete logs in µ2372 with windows size w = 3 would require
a table of size 124 at an average cost ≈ 4453.9m. For comparison, the best results
reported in [5, Section 5] are 5320m + 3349s ≈ 8271.6m for discrete logs in µ2372 and
5320m + 3349s ≈ 7999.2m for discrete logs in µ3239 , both with windows of size w = 3,
which is optimal in that technique; increasing the window size actually causes a cost
increase.

Table 3 summarizes the gains our technique makes possible and compares them
against the results from Costello et al., in terms of both the raw number of multiplica-
tions in the base field and the ratio between our results and theirs. We recall that no
side-channel security concern arises from this technique, since all information involved
in the processing is public.

16

6 Point tripling on Montgomery curves

Multiplication by 3n, be it as a cofactor in the case of the 2m torsion or as a tool to
test linear independence in the 3n torsion, is a computationally expensive operation.
We describe in Algorithm 6.1 an improved method for point tripling on Montgomery
curves that, though modest, directly addresses this bottleneck.

Algorithm 6.1 Improved tripling on the Montgomery curve By2 = x3 +Ax2 + x

Input: P = (x, z): Montgomery curve point in xz representation.
Output: [3]P = (x′, z′).

1: t1 ← x2; t2 ← z2;
2: t3 ← t1 + t2
3: t4 ← (A/2) · ((x+ z)2 − t3) + t3 // NB: A/2 can be precomputed for a given curve
4: t3 ← (t1 − t2)2;
5: t1 ← (4t1 · t4 − t3)2; t2 ← (4t2 · t4 − t3)2;
6: x′ ← x · t2; z′ ← z · t1;
7: return (x′, z′)

The cost of our tripling is 5M+6S+9A (or one less multiplication in scenarios where
the curve coefficient A can be carefully chosen and fixed) with 4 ancillary variables,
counting each left shift as an addition. It is less expensive than the previously best
tripling algorithm in the literature, which only attains 6M + 5S + 7A with 8 ancillary
variables [11, Appendix B]. Note that this tripling algorithm can be employed in the
key (de)compression operations since they do not require the curve coefficient A to be
in projective form. The projective version is only required in the computation of 3n-
isogenies, where field inversions can be avoided if the projective form is adopted. That
is the case of the tripling formula by Faz et al. [7], which costs 7M + 5S + 9A.

7 Implementation and experimental results

Our improved key compression and decompression techniques have been implemented
on top of the SIDH C library [10] to make full-fledge key exchange available. We left
the previous (de)compression functions in the new version to enable replicating the
experiments and comparisons.

Since we only process public information (compression and decompression of public
keys), side-channel attacks are not an issue, and faster non-isochronous algorithms like
extended Euclidean algorithm have been adopted.

17

Table 4: Benchmarks in cycles on an Intel Core i5 clocked at 2.9 GHz (clang compiler
with -O3 flag, and s = m in this implementation).

2m-torsion (w = 2) 3n-torsion (w = 1)

operations SIDH v2.0 [5] ours ratio SIDH v2.0 [5] ours ratio

basis generation 24497344 1690452 14.49 20632876 17930437 1.15

discrete log. 6206319 2776568 2.24 4710245 3069234 1.53

pairing phase 33853114 25755714 1.31 39970384 30763841 1.30

compression 78952537 38755681 2.04 78919488 61768917 1.28

decompression 30057506 9990949 3.01 25809348 23667913 1.09

The initial public curve is the usual supersingular curve E0 : y2 = x3 + x defined
over Fp2 where p = 23723239 − 1. It is worth mentioning that before applying our
(de)compression techniques, the SIDH v2.0 library was first modified to perform Alice’s
key generation with both points PA and QA defined over the extension E0(Fq)\E0(Fp)
instead of defining PA in the base field as suggested in [5]. The approach in [5] starts with
point PA = (x, y) ∈ E0(Fp) over the base field and then applies the distortion map τ to
get a linearly independent point QA = τ(PA) = (−x, iy) lying on the trace zero group.
This optimization cannot be combined with our techniques because using distortion
maps on binary torsions only gives a basis 〈PA, τ(PA)〉 = E0[2m−1] of a smaller group
of order 22(m−1), and in this case the images of PA and QA = τ(PA) under Bob’s isogeny
consequently generate a smaller torsion as well, i.e. 〈φB(PA), φB(QA)〉 = EB [2m−1]. In
particular, the reverse basis decomposition technique combined with entangled basis
would not work since an entangled basis generates the full 2m-torsion, and this basis
cannot be converted to a basis of a smaller torsion, i.e. the change of basis matrix in
Equation 3 would not exist. Therefore, we selected the new points

PA := 3239 · (5 + i,
√

(5 + i)3 + 5 + i) ∈ E0(Fq)\E0(Fp)

and QA := τ(PA) ∈ E0(Fq)\E0(Fp). Points PB and QB are the ones in [5] since for `n

torsions with ` odd, distortion maps do generate the full group E0[`n] and PB can be
kept over the base field. For the discrete logarithms we set w = 2 for the binary case and
w = 1 for the ternary one. Table 4 summarizes our experimental results with respect to
the previous state-of-the-art implementation.

8 Conclusion

In this paper we proposed a range of new algorithms and techniques to speed up the
supersingular isogeny Diffie-Hellman. For example, in the 2m-torsion using w = 2 for the
discrete logarithms, the key compression is about 2× faster than the SIDH library and
decompression achieves a factor of 3×, while the basis generation itself is nearly 14.5×
faster. The main bottleneck now, by far, is the pairing phase, that takes about 25.8M
cycles against 1.7M for basis generation and 2.8M for the discrete logarithm phase. It
is worthwhile to point out that the techniques of entangled basis generation and the
optimal strategy applied to solve smooth-order discrete logarithms not only set up new

18

speed records for those tasks, but might find new applications in different contexts in
cryptography. We leave the possibility of extending the new entangled basis generation
technique to non-binary torsions as an open problem.

References

1. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key compression for
isogeny-based cryptosystems. In Proceedings of the 3rd ACM International Workshop on
ASIA Public-Key Cryptography, pages 1–10. ACM, 2016.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in Cryptology – Crypto 2002, number 2442 in Lecture
Notes in Computer Science, pages 354–368, Santa Barbara (CA), USA, 2002. Springer.

3. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve points
indistinguishable from uniform random strings. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 967–980. ACM, 2013.

4. D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-scalar
multiplication. In Finite Fields and Applications: Proceedings of Fq8, number 461 in Con-
temporary Mathematics, pages 1–18, Providence (RI), USA, 2008. American Mathematical
Society.

5. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Efficient compression
of SIDH public keys. In Advances in Cryptology – Eurocrypt 2017, number 10210 in Lecture
Notes in Computer Science, pages 679–706, Paris, France, 2017. Springer.

6. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

7. A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez. A faster
software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol.
Cryptology ePrint Archive, Report 2017/1015, 2017.

8. D. Husemöller. Elliptic Curves, volume 111 of Graduate Texts in Mathematics. Springer,
New York, USA, 2nd edition, 2004.

9. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In Post-Quantum Cryptography – PQCrypto 2011, number 7071 in Lecture
Notes in Computer Science, pages 19–34, Taipei, Taiwan, 2011. Springer.

10. MS SIDH team. SIDH v2.0, 2017. https://github.com/Microsoft/
PQCrypto-SIDH.

11. S. R. S. Rao. Three dimensional Montgomery ladder, differential point tripling on Mont-
gomery curves and point quintupling on Weierstrass and Edwards curves. In Progress in
Cryptology – AfricaCrypt 2016, number 9646 in Lecture Notes in Computer Science, pages
84–106, Fes, Morocco, 2016. Springer.

12. E. Schaefer and M. Stoll. How to do a p-descent on an elliptic curve. Transactions of the
American Mathematical Society, 356(3):1209–1231, 2004.

13. V. Shoup. A computational introduction to number theory and algebra. Cambridge Uni-
versity Press, 2005.

14. J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics. Springer, New York, USA, 2nd edition, 2009.

15. M. R. Spiegel and J. Liu. Mathematical Handbook of Formulas and Tables. Schaum’s
Outline Series. McGraw-Hill, New York, USA, 2nd edition, 1999.

19

https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH

A Pairing algorithms

Algorithm A.1: Tate2(P, [Qj],m): reduced Tate pairing
of order r = 2m

Input: Curve E : y2 = x3 + ax+ b
− Point P = [XP : YP : ZP] on E of order 2m

− t points Qj = [XQj
: YQj

: ZQj
] on E, ZQj

∈ {0, 1}
Output: List of t values e2m(P,Qj)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2

. NB: the following operations are in Fp2
2: for j ← 0 to t− 1 do
3: fj ← 1; hj ← T ·XQj

−X;
4: end for
5: for k ← 0 to m− 1 do
. point doubling and line function construction:
6: X2 ← X2; Y2 ← Y 2; Y4 ← Y 2

2

7: M ← 3X2 + a · T 2

8: S ← 2((X + Y2)2 −X2 − Y4)
9: X ′ ←M2 − 2S

10: Y ′ ←M · (S −X ′)− 8Y4
11: Z ′ ← (Y + Z)2 − Y2 − T ;
12: T ′ ← (Z ′)2; L← Z ′ · T ; W ← 2Y2
13: if Z ′ = 0 then // exception for points in [2]E
14: X ′ ← 0; Y ′ ← 1
15: end if
. line function evaluation and accumulation:

16: for j ← 0 to t− 1 do
17: if Z ′ 6= 0 then
18: g ←M · hj +W − L · YQj

19: hj ← T ′ ·XQj
−X ′

20: g ← g · h∗j
21: else // exception for points in [2]E
22: g ← hj ;
23: end if
24: fj ← f2j ; fj ← fj · g;
25: end for
26: X ← X ′; Y ← Y ′;
27: Z ← Z ′; T ← T ′;
28: end for

29: return [(ZQj

?

6= 0) f
(p2−1)/r
j : 1 | j = 0 . . . t− 1]

Algorithm A.2: Tate3(P, [Qj], n): reduced Tate pairing
of order r = 3n

Input: Curve E : y2 = x3 + ax+ b
− Point P = [XP : YP : ZP] on E of order 3n

− t points Qj = [XQj
: YQj

: ZQj
] on E, ZQj

∈ {0, 1}
Output: List of t values e3n(P,Qj)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2;
. NB: the following operations are in Fp2
2: for j ← 0 to t− 1 do
3: fj ← 1; hj ← T ·XQj

−X;
4: end for
5: for k ← 0 to n− 1 do
. point tripling and parabola function construction:
6: X2 ← X2; Y2 ← Y 2; Y4 ← Y 2

2 ; T2 ← T 2;
7: M ← 3X2 + a · T2; M2 ←M2

8: D ← (X + Y2)2 −X2 − Y4;
9: F ← 6D −M2; F2 ← F 2

10: W ← 2Y2; W ′ ← 2W ; S ← 16Y4
11: U ← (M + F)2 −M2 − F2 − S; U ′ ← S − U
12: X ′ ← 4(X · F2 −W ′ · U)
13: Y ′ ← 8Y · (U · U ′ − F · F2)
14: Z ′ ← (Z + F)2 − T − F2; T ′ ← (Z ′)2

15: L← ((Y + Z)2 − Y2 − T) · T ; F ′ ← 2F ;
16: if Z ′ = 0 then // exception for points in [3]E
17: X ′ ← 0; Y ′ ← 1
18: end if
. parabola function evaluation and accumulation:

19: for j ← 0 to t− 1 do
20: d←W − L · YQj ;
21: if Z ′ 6= 0 then
22: g ← (M ·h+d)(U ′ ·h+F ′ ·d)(W ′ ·h+F)∗

23: h← T ′ ·XQj
−X ′; g ← g · h∗

24: else // exception for points in [3]E
25: g ← (M · h+ d) · Y ∗
26: end if
27: f ← f3; f ← f · g
28: end for
29: X ← X ′; Y ← Y ′; Z ← Z ′; T ← T ′

30: end for

31: return [(ZQj

?

6= 0) f
(p2−1)/r
j : 1 | j = 0 . . . t− 1]

20

	Faster isogeny-based compressed key agreement

