
How Far Can We Reach? Breaking RSM-Masked
AES-128 Implementation Using Only One Trace

Wei Cheng1, Chao Zheng1, Yuchen Cao1,2, Yongbin Zhou1,2,
Hailong Zhang1, Sylvain Guilley3,4 and Laurent Sauvage3,4

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

4Secure-IC S.A.S., Cesson-Sévigné, France
{chengwei,zhouyongbin}@iie.ac.cn,

{sylvain.guilley,laurent.sauvage}@telecom-paristech.fr

Abstract. Rotating Sbox Masking (RSM) scheme is a lightweight and highly efficient
first-order masking scheme proposed to protect cryptographic implementations like
AES from side channel attacks. It is a Low Entropy Masking Scheme (LEMS) and has
attracted special attention from academia and industry with its low overhead and high
performance. The two public targets of DPA Contest v4 are both RSM-masked AES
implementations, specifically, AES-256 (namely RSM-AES-256) for v4.1 and AES-128
(namely RSM-AES-128) for v4.2 respectively. The security of RSM-AES-256 was
intensively studied by researchers worldwide under the framework of DPA Contest and
several flaws were identified. Its improved version is RSM-AES-128, in which several
pitfalls of RSM-AES-256 were fixed. However, the practical security of RSM-AES-128
is still not thoroughly studied. In this paper, we focus on analyzing the practical
security of RSM-AES-128 from a profiling attack point of view. Specifically, we firstly
present a Multivariate Template Attack (MTA) to maximize the success rates of key
recovery. Next, we propose a new Depth-First Key Enumeration Algorithm (DFKEA)
that could be applied to find the correct key efficiently after a side channel attack.
By combining the DFKEA to our MTA, we propose a novel multivariate profiling
attack scheme which could recover the secret key of RSM-AES-128 with over 95%
possibility only using one trace. It is the best attack among all attacks submitted to
DPA Contest Official up to now. After thoroughly analyzed our attack scheme and
RSM-AES-128, we finally present two proposals to improve the practical security of
this implementation at an acceptable overhead and performance loss.
Keywords: Side Channel Attacks · Template Attack · DPA Contest · Countermeasures
· Rotating Sbox Masking Scheme · Shuffling Scheme

1 Introduction
For several years, Side Channel Attacks (SCA) have put a great threat on practical security
of cryptographic implementations, in which an adversary always extracts the sensitive
information like secret key by statistic analysis on data-dependent side channel leakages
[Koc96, KJJ99, GMO01]. These threats tend to get much worse with the advent of the
Internet of Things (IoTs), since on one hand the IoT devices are typically too constrained
with resources to deploy complex countermeasures to achieve a high security level. On
the other hand, the adversary always has full control on these devices to carry out some
very intensive analysis and powerful attacks, especially including some profiling attacks.

mailto:{chengwei, zhouyongbin}@iie.ac.cn,
mailto:{sylvain.guilley, laurent.sauvage}@telecom-paristech.fr

2 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

To protect cryptographic implementations (devices) against these attacks, many counter-
measures and techniques have been proposed, including masking, shuffling and hiding.
Specifically, masking schemes [CJRR99, CPR07, MOP07, RP10] eliminate the dependen-
cy between sensitive data and leakages by dividing each sensitive variable into several
random shares to thwart SCAs. Shuffling schemes [HOM06, RPD09] randomize the order
of operations during the execution of cryptographic implementations. Quite differently,
by circuit-level alteration, hiding-based countermeasures [CCD00, MOP07, RGN13] make
the leakages uniformly independent to the data processed. Among them, masking schemes
are a class of the most attractive and frequently used techniques against SCA, since
they provide formally provable security and could be implemented on algorithmic-level,
which means no requirement on hardware-level alteration. Despite the improvements
with respect to SCA security, all the countermeasures always cause a significant overhead
and performance loss on cryptographic implementation compared to an unprotected one.
As a consequence, lightweight and efficient solutions for SCA countermeasures are very
attractive for researchers and designers.

Rotating Sbox Masking (RSM) [NSGD12] scheme emerges as a small and efficient
countermeasure to provide first-order SCA security, which is a typical implementation
of Low Entropy Masking Scheme (LEMS) [MGD11, NGD11, CDGM12]. It has already
attracted extensive attentions of researchers from both academia and industry. RSM is
also the core protection scheme used in the latest edition of DPA Contest, namely DPA
Contest v4 [DPA17]. DPA Contest is an international open framework for worldwide
researchers and participants to evaluate and compare their attacks under a common setting
[BBD+14]. Particularly, the forth edition of DPA Contest (both v4.1 and v4.2) are launched
to analyze and evaluate the practical security of protected software implementations of
AES running on an Atmel ATMega-163 smart-card. Specifically, the DPA Contest v4.1
(DPACv4.1) [DPA14] has closed, while the DPA Contest v4.2 (DPACv4.2) is the latest
version of contest and still open. The target of DPACv4.1 is a RSM-masked AES-256
implementation, namely RSM-AES-256. During the DPACv4.1, the practical security
of RSM-AES-256 was thoroughly studied from both non-profiling attacks and profiling
attacks, and several flaws were identified, especially the pitfalls in the RSM scheme
[BBD+14, MGH14, YE13] like constant difference in the RSM mask set, which could
be exploited to break RSM scheme and then recover the secret key only using 14 traces.
The RSM-AES-128 is the improved version of RSM-AES-256, in which these pitfalls were
fixed [BBD+14] and it is the open target of DPA Contest v4.2 (DPACv4.2). Note that the
improved version of RSM scheme in RSM-AES-128 is also called RSM scheme, since we
only focus on the improved one, thus there is no ambiguity in denotation.

Intuitively, the combination of different countermeasures could obviously improve
the practical security of the cryptographic implementations when they are carefully
implemented. This strategy was adopted in DPA Contest v4.2, in which both masking and
shuffling are applied to upgrade the first implementation in terms of SCA security. Since
several implementation flaws have been fixed (mainly by reprogrammed using assembly
language, register precharge and the improved RSM scheme) and a new shuffling scheme is
added [BBD+14], RSM-AES-128 is expected to achieve a high SCA security level. Despite
the significant improvements made from a perspective of non-profiling setting, the practical
security of RSM-AES-128 is still not intensively studied from a perspective of profiling
setting, which is worthwhile of further study and analysis. As a result, we focus on security
analysis of RSM-AES-128 using profiling attacks [SKS09] in this paper. In fact, attack is
always the most straightforward way to evaluate the practical security of cryptographic
implementations. Considering the attacking results of RSM-AES-256 implementation
during the DPA Contest v4.1 and security-oriented improvements of RSM-AES-128, our
final question is that, can we recover the secret key of RSM-AES-128 only using one trace
by profiling attacks? If possible, what’s the most efficient way to find the secret key by

Wei Cheng et al. 3

using only one trace?
From a attacker’s perspective, the more exploitable information make it easier to carry

out a successful attack. Under the framework of DPA Contest, all necessary information
and parameters including details of implementation, parameters of countermeasures and
open traces are available to global participants. For attacks against RSM-AES-128, three
main tools and observations which could be exploited by attackers are as follows.

- Onion-Peeling Strategy. Onion-Peeling strategy is type of Divide-and-Conquer
strategy widely applied in SCA. Although the combining of RSM scheme and
shuffling scheme provide RSM-AES-128 a significant security improvement, the
attackers still can use the onion-peeling strategy to break the masking scheme and
shuffling scheme independently. This strategy also can be applied to attack against
RSM-AES-256 implementation since the details of the implementation is open to
researchers. Once the combined countermeasure is deactivated, the RSM-AES-128
implementation becomes an unprotected software implementation [NSGD12], which
is much vulnerability to side channel attacks, especially for template attack.

- Template Attack (TA). Template attack is broadly accepted as the strongest
form of side channel attack from a perspective of information theory [CRR02]. The
framework of DPA Contest v4.2 provides sufficient information and datasets for
constructing accurate templates and cross-validations. Considering that our goal is
to recover secret key of RSM-AES-128 using only one trace, TA is a natural better
choice compared to other profiling attacks like Linear-Regression based attacks.
Furthermore, a critical observation is that the sensitive variables always take part in
the cryptographic operations more than once. For example with AES encryption, the
inputs of Sbox layer come from the KeyAdd layer, meanwhile the outputs of Sbox
layer feed into the ShiftRows layer, etc. Therefore the multivariate TA which exploits
the leakages of multiple sensitive variables [BGNT15] (similarly the Multi-target
DPA attacks [MOW14]) is even more powerful attacks compared to univariate TA.

- Key Enumeration Algorithms (KEA). Considering the full procedure of side
channel attacks, KEA is a powerful post-processing technique to find the correct key
effectively after an attack. Recently, several KEA [VGRS12, BKM+15, PSG16] have
been proposed to optimize their the effectiveness, efficiency, memory overhead and
parallelization. Particularly, the optimal KEA [VGRS12] provides an optimal order
to enumerate the results after an attack but with large memory overhead in terms
of "key trals", while the Histograms-based KEA [PSG16] leads to straightforward
parallelization with simple bounds of rounding errors. These KEA methods generally
assume that different chunks of subkey candidates are similarly distributed, therefore
they are breadth-first methods and adopt a combine-then-verify route. Specifically,
all attack results of different key chunks are firstly combined according to their
possibilities (or scores), and then to verify each combined key candidates ordered
with joint possibility (or overall scores). However, if the distributions of different
chunks of key candidates vary from each other, existing KEA method would be less
efficient since more key verifications are inevitable for finding the secret key.

Considering all information and tools could obtain for an attacker under the framework of
DPA Contest v4.2, we are especially interested in analyzing and evaluating the practical
security of RSM-AES-128 by trying to recover its secret key only using one trace.

Our Contributions. Keeping in mind that our goal is to recover the secret key of
RSM-AES-128 in a simple but efficient way with only one trace, our contributions mainly
are threefold as follows.

1. Multivariate Template Attack (MTA). The strong capacity on key recovering
of TA comes from the accurate characterization of the data-dependent leakages,

4 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

which is also called templates. In this paper, we propose a high-dimensional Multi-
variate Template Attack (MTA). Particularly, multivariate means attacks against
multiple sensitive variables corresponding to the same subkey chunk (byte), while
the dimensionality is the number of interesting points used in our attack. We also
use Principle Component Analysis (PCA) [SA08, SNG+10] as a leakage-feature ex-
traction tool to reduce the dimensionality of our MTA, thus to dramatically decrease
the data complexity of templates. By applying onion-peeling strategy and several
optimization, our MTA can break the RSM scheme and shuffling scheme with 100%
probability using one trace, meanwhile the partial success rates (PSR, corresponding
to recovery of each key byte) of attack varies in a range from 93% to 98%, and
the global success rate (GSR, corresponding to the recovery of entire secret key) is
increased from 55% to 83% which increased 50.91% (using one trace).

2. Depth-First Key Enumeration Algorithm (DFKEA). We propose a new key
enumeration algorithm DFKEA featured with the high efficiency in finding the secret
key after the side channel attacks. Compared to the state of the art KEA method,
on one hand, DFKEA doesn’t need to combine the possibilities of subkey candidates
in different chunks, by which eliminates the extra computations to speed up the
key-finding process. On the other hand, the ranks of correct subkey hypothesis
after side channel attacks could be very various in different chunks, especially when
the electromagnetic traces used as leakages. Based on some specific observations,
DFKEA adopts a (bounded) depth-first approach to traverse the most possible subkey
hypothesis quickly. By integrating DFKEA into our attack scheme, its success rate
(SR) is significantly increased from 83% to 95% (increased 14.46%, evaluated by DPA
Contest Official) with an acceptable computation overhead. These results distinctly
indicated that RSM-AES-128 is vulnerable to profiling attacks, especially for MTA.

3. Fully Shuffled Round Transformation (FSRT). Countermeasures are requisite
to thwart SCA. Since the shuffling scheme of RSM-AES-128 is only applied to protect
the Sbox layer [BBD+14], other three layers including KeyAdd layer, Shiftrows
layer and MixColumns layer are not shuffled to hinder SCA. As a consequence,
the shuffling scheme could be bypassed easily. One notable observation existed in
the RSM-AES-128 is that all four layer’s operation could be shuffled. Therefore,
we propose the full-round shuffling scheme to further improve the SCA security of
RSM-AES-128 with negligible overhead. We also propose an idea to improve the
security of RSM scheme by eliminating the mask-dependent leakage existing in full
rounds of encryption process.

The rest of the paper is organized as follows: Section 2 introduces the details of
RSM-AES-128 implementation and then template attacks together with some notations
used throughout this paper. Section 3 explains the rationale of multivariate template
attack and its application to break the RSM scheme and shuffling scheme and to conduct
the key-recovery attack. In section 4, the new key enumeration algorithm DFKEA is
proposed with necessary validation experiments. Next, all ideas to further improve the
practical security of RSM-AES-128 are described in section 5. Finally, conclusions are
drawn in section 6 and some evaluation results from DPA Contest Official are in Appendix.

2 Preliminary and Notations
2.1 RSM-AES-128 Implementation
RSM-AES-128 [BBD+14] is a software implementation of AES-128 [DR02] simultaneously
protected by RSM scheme and shuffling scheme. Specifically, RSM scheme is applied to full
rounds of encryption to protect all intermediate variables, while shuffling is only adopted

Wei Cheng et al. 5

in the Sbox layer of the first and last rounds of transformation to protect the commonly
"vulnerable" part of implementation [Pro05].
RSM Scheme. The well-designed masking and unmasking method makes RSM very
efficient. Essentially, RSM scheme is a low entropy boolean masking scheme, the mask set
only contains 16 fixed mask values which are selected in advance as follows.

M = { 0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,
0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc } (1)

where mi and Mi denotes the i-th mask value (i = 0, 1, . . . , 15).
In a masked cryptographic implementation, all sensitive variables are required to be

masked, and the nonlinear layer of the cipher is the most critical part for designers. In
AES, its round function consists of four subfunction, namely KeyAdd (AK), SubBytes (SB),
ShiftRows (SR) and MixColumns (MC). Therefore all these four subfunctions must be
protected by RSM. Note that SubBytes is the only nonlinear part in AES, while the other
three are linear transformations, in which the RSM could be applied straightforwardly. The
first round structure of RSM-masked implementation RSM-AES-128 is depicted as Fig.1(a).
Specifically, sixteen masks are Xored with first round key rk_0 and then the plaintext
are involved, followed by the masked SubBytes with shuffling. Next, ShiftRows (SR) and
MixColumns (MC) operated on masked intermediates, finally the mask compensation
MaskComp are used to unmasking and re-masking intermediates with proper masks.

(a) (b)

Figure 1: The overall structure of first round in RSM-AES-128 (a) and schematic of
Masked SubBytes (MSB) (b)

Let SB, MSB denote the original and masked SubBytes in AES respectively, and
x ∈ Fn

2 (n = 8 in AES) is an intermediate variable. Note that the state matrix and
operations in AES are byte-oriented, all intermediate values are elements from F8

2. Then
the RSM-masked Sbox is (as depicted in Fig.1(b))

MSBi(x) = SB(x⊕mi)⊕mi+1, i = 0, ..., 15 (2)

where the mi,mi+1 denotes the input and output mask of Sbox respectively, which are
consecutive in mask set M . The index i varies for different Sbox and determined by an

6 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

offset vector, namely
−−−−→
offset, to guarantee that all sixteen Sboxes in RSM-AES-128 are

masked independently.
Finally, the mask compensations MaskComp are applied to ensure that all intermediates

are masked properly before getting into next round.

MaskCompi,r =
{
M−−−−→

offset+r
⊕MC(SR(M−−−−→

offset+r
)), r = 1, ..., 9

SR(M−−−−→
offset+r

), r = 10 (3)

where r is the round index of AES.
Shuffling Scheme. The shuffling scheme only adopted to protect the Sbox layer (SubBytes)
in the first and last rounds of RSM-AES-128, using Shuffle0 and Shuffle10 respectively.
It is a 4-bit based permutation applied to change the order of sixteen Sboxes.

Shuffle0, Shuffle10 : {0, 1, ..., 15} −→ {0, 1, ..., 15} (4)

2.2 Template Attacks
TA are the strongest form of side channel attacks in an information theoretic sense, which
assume that the adversary can fully characterize the leakage features from an reference
device and then conduct the key-recovery attack on target device [CRR02, SKS09]. They
are two-phase attacks and consist of profiling phase and attacking phase.

Let k∗, k denote the secret key and any possible key hypothesises respectively, and T is
the plaintext or ciphertext. We suppose that all computations are done on n-bit chunks,
namely all intermediates x are element of Fn

2 . Let f(·) be a mapping from T to a sensitive
variable X, the measured leakages L can then be written as

L = L(f(k∗, T)) +Noise (5)

where L(·) denotes the data-dependent leakage function and Noise is the independent
noise (as commonly assumed). Particularly, L = [L1, L2, . . . , LD] denotes multiple points-
of-interest (PoI) in a leakage trace and D is the data dimensionality (the number of PoIs).
Thus a set of N measured traces denote as L = {L1, L2, . . . , LN}.
Profiling Phase. In this phase, templates are built for each value of targeted intermediate
v ∈ V in a cryptographic implementation. A template is parameterized by the mean and
covariance matrix of the leakages corresponding to v, namely (µv,Σv). In practice, the
tuple (µv,Σv) are estimated by empirical mean and covariance matrix (µ̂v, Σ̂v) as follows.

µ̂v = 1
Nv

Nv∑
i=1

Lv,i

Σ̂v = 1
Nv − 1

Nv∑
i=1

(Lv,i − µ̂v)T (Lv,i − µ̂v)

(6)

where Lv,i denotes the i-th trace in divided groups associated to intermediate variable v,
while Nv is the number of v-grouped traces.
Attacking Phase. Assume that all |V| templates have constructed for each value of
v ∈ V. Let the L′ = {L1, L2, . . . , LQ} denotes the traces measured from the targeted
device and Q for number of traces. In order to determine which value of v was used in Li,
the matching probabilities are computed for each template (µv,Σv) as follows.

pi,v(Li; (µv,Σv)) =
exp(− 1

2 (Li − µv)T Σ−1
v (Li − µv))√

(2π)D · det(Σv)
(7)

where again D is the dimensionality of Li, namely number of PoIs in this context.

Wei Cheng et al. 7

Finally, with Maximum Likelihood (ML) principle, the actual value of sensitive inter-
mediate v is indicated by maximal pi,v.

v∗ = arg max
v∈Fn

2

pi,v(Li; (µv,Σv)) (8)

Note that v is key-dependent intermediate, resulting that the secret key (bytes) could
be inferred immediately after all chunks of v are recovered. Under the independence
assumption among different traces, attacking results of Q traces are usually integrated for
high confidence of correct key hypothesis.

In practice, SCAs are more likely to focus on single sensitive intermediate, especially
true when against protected implementations. However, under the context of profiling
attacks like TAs, an attacker always has capacity to carry out attacks against several
connected intermediates in sequence.

3 Multivariate Template Attack against RSM-AES-128
Under the framework of DPA Contest v4.2, attackers are allowed to access all information
and datasets including the implementation details, cryptographic parameters and measured
electromagnetic traces. Therefore, TAs are practical and in order to recover the secret
key of RSM-AES-128 by one trace, we propose a Multivariate Template Attack (MTA)
in this section, in which high-dimensional leakages are exploited simultaneously. More
importantly, our attack provide a new practical perspective of TA integrated with PCA
against protected cryptographic implementation with minimal number of trace, while the
latter is mainly adopted for leakage-features extraction on measured traces rather than
data-dimension reduction. In practical, PCA works because data-dependent signals are
the dominant part in the measured traces, especially true for selected PoIs.

The Onion-peeling strategy is the core to our entire attack against RSM-AES-128,
since it is protected by combined countermeasure consisting of RSM scheme and shuffling
scheme. Therefore, firstly TAs are applied against masking scheme and shuffling scheme
by recovering

−−−−→
offset and Shuffle0, respectively. Once the combined countermeasure

is compromised, a MTA is applied to recover the secret key with as high success rates
as possible. Finally, post-processing methods like our DFKEA in Sec.4 are employed to
dramatically improve the success rates of the attack at a practical tractable cost. Note
that all operations in RSM-AES-128 are byte-oriented, therefore we follow a byte-oriented
descriptions in this paper for the sake of brevity.

Let Vi, i ∈ [1, 2, 3, 4, 5] denote the sensitive intermediates related to masks, shuffles,
inputs of Sbox (Sboxin), Outputs of Sbox (Sboxout) and inputs to the MixColumns
(MCin) respectively, thus Vi,j , j ∈ [0, 1, . . . , 15] are j-th byte of these intermediates, and
vi,j , j ∈ [0, 1, . . . , 15] is the instance of Vi,j , similar denotation for other variables.

Li = L(Vi) +Noise = HW (Vi) +Noise, for i = 1, 2, 3, 4, 5

Vi =

M−−−−→
offset

, i = 1
Shuffle0, i = 2

M−−−−→
offset

⊕K ⊕ T, i = 3
MSB(M−−−−→

offset
⊕K ⊕ T), i = 4

MSB(M−−−−→
offset

⊕K ⊕ T), i = 5

(9)

where the same as usual, the Hamming Weight (HW) model are used for leakage detection
and PoI selection.

8 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

3.1 Breaking the Combined Countermeasure

Attacking RSM scheme. All masks in RSM scheme are determined by
−−−−→
offset consisting

of sixteen elements, namely
−−−−→
offset = {s0, s1, . . . , s15}. In the first round of encryption,

all masks (indexed by si) are involved into the encryption process. As a consequence,
our TA targets all Msi in the first round for simplicity. However, it’s similar to carry out
TA targeting on last round of RSM-AES-128. The leakage features of masks in first two
byte-positions of RSM-AES-128 are depicted as Fig.2.

Figure 2: The leakage of masks in the first two bytes of RSM-AES-128 (HW, Correlation)

Therefore, our proposed TA follows a typical two-step roadmap as follows. In profiling
phase we build templates for all possible values of V1,j , j ∈ [0, 1, . . . , 15]. Apparently,
recovering masks is equivalent to recover the

−−−−→
offset. As mentioned, we use PCA to extract

device-specific leakage features. Specifically, for each V1,j , j ∈ [0, 1, . . . , 15], leakages
selected from about 1200 PoIs are integrated together, and then only top 10 components
corresponding to first 10 eigenvalue (data-dimensions are reduced from D = 1200 to
D = 10) are further chosen to build each template (µV1,j

,ΣV1,j
) using Equ.6. In attacking

phase, for each new trace treated by PCA, Equ.7 and Equ.8 are applied to determine the
most possible mask (or si, i ∈ [0, 1, . . . , 15]) hypothesis.

Our experimental results validated the effectiveness of our PCA-based TA against RSM
scheme. The success rate for recovering all masks (or si, i ∈ [0, 1, . . . , 15]) are 100%. One
main reason is that all masks take part in almost all cryptographic operations including
Xored with subkey bytes, then Xored with plains and other intermediates, thus from an
attacker’s point of view, these operations leak enough information to recover all masks.
Attacking Shuffling scheme. The attack procedure of shuffling scheme is very similar
to compromise RSM scheme. The major difference and main difficulty is the very limited
exploitable leakages only leaking from Sbox-shuffling. As a consequence, in order to recover
the shuffling vector Shuffle0 by one trace, different number of PoIs are used for each
element of Shuffle0 (as Tab.1).

Despite the varieties existed in number of PoIs when attacking different elements of
Shuffle0, the success rate of recovering Shuffle0 is 100%.

At this point, the combined countermeasure is compromised by our PCA-based TA,
which validates the effectiveness of our attack. Particularly, our experiments also validate
the effectiveness of applying PCA and high-dimension TA to break countermeasures in a
very efficient way (especially from a engineering perspective). However, RSM-AES-128
has become an unprotected cryptographic implementation once both countermeasures are
compromised, hence we can carry out the second step of Onion-Peeling strategy to recover

Wei Cheng et al. 9

Table 1: Number of PoIs for PCA and selected number of components after PCA

Byte index ‖PoIs‖ ‖Components‖ Byte index ‖PoIs‖ ‖Components‖
0 571 85 8 419 85
1 436 85 9 507 85
2 493 85 10 421 85
3 427 85 11 506 85
4 458 85 12 425 85
5 453 85 13 523 85
6 477 85 14 424 85
7 492 85 15 406 85

the secret key.

3.2 Our Multivariate Template Attack
We propose a Multivariate Template Attack (MTA) to obtain the secret key in an effective
way. Here multivariate means that multiple key-dependent variables are targeted to
co-contribute to obtain subkey candidate ranks. Specifically, our MTA targets three
sensitive variables depending on each of key bytes. There three variables are input of
Sbox (V3,j = M−−−−→

offset[j] ⊕Kj ⊕ Tj), output of Sbox (V4,j = MSB(M−−−−→
offset[j] ⊕Kj ⊕ Tj))

and input of Mixcolumns (V5,j = MSB(M−−−−→
offset[j] ⊕Kj ⊕ Tj), the ShiftRows is ignored

since it only changes the positions of different bytes while keep their values unchanged),
all of which depend on Kj , j ∈ [0, 1, . . . , 15]. Importantly note that our MTA combines
the attacking results after three univariate-oriented TAs rather than combining leakages
in measured traces before the specific attack (similar idea applied in [MOW14] named
Multi-target attacks but in a non-profiling setting).

The leakage features of first byte of these two sensitive variables are exampled as follows
(selected samples of the first 50,000 points in measured traces).

Figure 3: The leakage of Sboxin and MCin in first byte of RSM-AES-128 (HW, Correlation)

Similarly, in profiling phase, all templates are built for each possible value of V3,j , V4,j

and V5,j , j ∈ [0, 1, . . . , 15] using Equ.6. As aforementioned, the PCA is also used to extract
features of data-dependent leakages and to reduce the data complexity. Concretely, leakages
selected from 500 PoIs (D = 500) are feeded into PCA and various number of components
are chosen to build templates, which the latter differs from the component-choosing method
in recovering Shuffle0 to optimize the key-recovery success rates. The rough number of
chosen components are listed in Tab.2.

Subsequently, in attacking phase, leakages from selected PoIs firstly feed into PCA
and then Equ.7 is applied to obtain the ranked subkey candidates, which sorted by

10 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

Table 2: Number of chosen components after PCA for V3,j , V4,j and V5,j (j ∈ [0, . . . , 15])

Byte index j ‖V3,j‖ ‖V4,j‖ ‖V5,j‖ Byte index j ‖V3,j‖ ‖V4,j‖ ‖V5,j‖
0 70 50 55 8 60 50 55
1 75 50 60 9 50 50 50
2 60 50 55 10 60 50 50
3 75 50 50 11 70 50 50
4 60 50 65 12 60 50 50
5 60 50 50 13 70 50 60
6 65 50 50 14 60 50 55
7 55 50 50 15 55 50 55

their possibilities. Since the masks and shuffles have been compromised, we focus on
key-dependent variables by assuming that

−−−−→
offset and Shuffle0 are known for following

analysis.
The d-th order partial success rates (PSR) of each byte are computed by cumulatively

summed success rates. Therefore, the PSR of V3,j , V4,j , V5,j (j ∈ [0, . . . , 15]) and our
combined attack (MTA) are plotted in Fig.4 as follows.

Particularly, for our MTA, Fig.4(d) shows that the first-order PSR of all subkey bytes
are over 98%, except fourteenth subkey byte for 93%. In addition, we can observe that,

1. PSR of all subkey candidates follow a extreme Pareto distribution (or "80-20 rule"),
which means the roughly 10% of subkey candidates lead to almost 90% of PSR. The
lower the rank (from 1 to 256 and the lowest one is 256-th) of subkey candidates,
the lower possibility of one candidate to be the correct subkey hypothesis.

2. More importantly, compared to univariate TA, MTA makes the correct subkey
hypothesis approach to the highest ranks among all subkey candidates, even for
the worst subkey byte (fourteenth subkey byte, namely j = 13). This approaching
effect also validates the positive impact of our MTA on revealing the secret key.
Consequently, the GSR of MTA is significantly higher than all three univariate TAs.

3. Different positions (indexes) of bytes have small effect on attacking results except
fourteenth subkeys, which is the worst byte of all subkey bytes, no matter which
sensitive variables are targeted. However, this "information" could be exploited to
improve the success rates by post-processing techniques, especially to improve GSR.

In practice, it’s advantageous to make use of information related to subkey rank distri-
butions when maximizing the global success rate (GSR) with constrained computational
complexity. In next section, we propose the bounded Depth-First Key Enumeration Algo-
rithm (DFKEA) to dramatically improve the GSR of MTA by exploiting these distribution
information.

4 Depth-First Key Enumeration Algorithm
Our major interest is to recover the secret key of RSM-AES-128 in a very efficient way,
thus two main requirements for post-processing methods are the high efficiency of key-
finding and the maximal success rates. On one hand, the former requires the minimal
number of key verifications and less extra computations, like computations caused by
combining all sixteen sorted subkey lists together to obtain global key sorting results
[VGRS12, BKM+15, PSG16]. On the other hand, the latter requires a high coverage of
the most possible subkey candidates.

Wei Cheng et al. 11

(a) V3,j (Sboxin).

(b) V4,j (Sboxout). (c) V5,j (MCin).

(d) Our combined TA (MTA).

Figure 4: Partial Success Rates (PSR) and Global Success Rate (GSR) of key recoverys
targeted on different variables (with logarithmic X-axis). Particularly, (a). V3,j (Sboxin),
(b). V4,j (Sboxout), (c). V5,j (MCin) and (d). our combined TA (MTA) for each j-th
subkey byte, j ∈ [0, . . . , 15], only one trace is used in all four cases.

Keeping these requirements in mind, we firstly investigate the distribution of errored
subkey candidates. Here "errored" subkey means its correct subkey candidate is not ranked
first among all possible candidates. The ranks of errored subkeys and cumulative errors of
each subkey are depicted as Fig.5. Note that all 80,000 traces from DPA Contest v4.2 are
used in our experiments unless explicit stated. Unsurprisingly, same as observed in Sec.3.2,
fourteenth subkey is the worst case among all subkeys from an attacking point of view.

In order to improve the coverage of the most possible subkey candidates, we also inspect
the number of errored subkey bytes (Nerr) per attack (or per trace) as showed in Fig.6.
By using 25,000 to 40,000 traces, two main observations are Nerr ≤ 4 and number of
attacks corresponding to Nerr significantly decreases with the increase of Nerr. Hence, if
we take Nerr into consideration, which means that if we enumerate all possible subkey

12 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

(a) The ranks of errored subkeys.

(b) Cumulative errors of each subkey.

Figure 5: The distribution of errored subkey candidates, "errored" means failed to recover
a subkey by first-order rank.

candidates along with the increase of Nerr, the most possible subkey could be covered. As
a consequence, key-recovery could be very efficient. Hereafter, we propose a Depth-First
Key Enumeration Algorithm (DFKEA) to utilize these Nerr related information to find
the secret key in a very efficient way.

(a) Number of attacks corresponding to Nerr (b) Frequency

Figure 6: The distribution of number of errored subkeys (Nerr) with number of traces
from 25,000 to 40,000 (first eight datasets from Website of DPA Contest v4.2).

4.1 Proposal of DFKEA
Main idea behind the DFKEA is to enumerate all possible subkey candidates along with
increase of Nerr in a depth-first way. Specifically, we firstly enumerate and verify the
subkey candidates with Nerr = 0, which means to enumerate subkey candidates with the
highest rank. Next, subkey candidates with Nerr = 1 are enumerated, that is to test all
subkey candidates in which only one subkey is not ranked first (while other fifteen correct
subkey candidates ranked first). Similarly, subkey candidates with Nerr from 2 to 15 can

Wei Cheng et al. 13

be enumerated and then verified. Particularly, considering aforementioned observations,
our key enumerations could be efficiently done by restricting Nerr ≤ 4.

(a) state-of-the-art KEA (b) Our DFKEA with Nerr = 1

Figure 7: Main enumeration strategy of the state-of-the-art KEA vs our DFKEA.

Let dj denotes the enumeration depth of j-th subkey byte enumerated by our DFKEA
for j ∈ [0, . . . , 15], Nerr is as aforementioned and then dj,nerr

for dj with Nerr = nerr.
Note that we have different dj,nerr

according to varied nerr (namely bounded depths).
On the basis of observations from Fig.6, the schematic of our DFKEA with Nerr = 1 is
depicted as Fig.7(b). In order to have a comparison point, principles behind of the existing
state-of-the-art KEA methods are breadth-first strategy as illustrated in Fig.7(a), in which
all sixteen subkeys candidates are enumerated with an approximately equal enumeration
depth. On the contrary, our DFKEA adopts a depth-first strategy, which treat each byte
of subkey differently, resulting with different enumeration depth dj for each byte of subkey.

Our algorithm of DFKEA is described as Alg.1. Note that convertKey(ci) in line 10
converts each possible combination ci to the errored subkey indexes by which these errored
subkeys will be enumerated later. However, tradeoffs are made between the efficiency and
success rate, resulting that all possible subkey combinations are enumerated with bounded
enumeration depth dj,nerr

.
In practice, the efficiency is straightforwardly determined by the number of enumerations

(or key verifications). For our DFKEA, we assume that the enumeration depths dj,nerr

keep the same for each subkey indexed by j ∈ [0, . . . , 15], while change with different nerr.
Note that this setting is for the sake of simplicity but not necessary, since if an attacker
knows that attacks on some subkeys are always worse than others, their enumeration
depth dj,nerr could be larger to improve the coverage of possible subkey candidates. Let
EC denotes the number of enumerations, ECnerr

denotes EC for Nerr = nerr, and the
first-order success rate of each subkey is p, thus we assume that nerr obeys the binomial
distribution, nerr ∼ B(16, p). The average number of total enumerations ECtotal can be
computed as follows.

ECnerr 6 Cnerr
16 ∗ (dj,nerr − 1)nerr

ECtotal =
Nerr∑

nerr=0
Pr(nerr) ∗ ECnerr

6
Nerr∑

nerr=0
Cnerr

16 ∗ (1− p)nerr ∗ p16−nerr ∗ (dj,nerr − 1)nerr

(10)

where 6 is used because our DFKEA will stop once the correct key is found, and dj,nerr

keep the same for j ∈ [0, . . . , 15]. In particular, nerr = 0 means all correct subkeys are
ranked first thus no errored byte occurred. Typically, let nerr = 1 and dj,nerr = dj,1 = 256,
thus the maximal number of enumerations is ECnerr = EC1 = C1

16 ∗ 255 ≈ 212. For

14 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

Algorithm 1 Our Depth-First Key Enumeration Algorithm (DFKEA)
Input : Sixteen lists of possible subkey candidates, skCandi[16][256],

Nerr, dj,nerr
[], plaintexts P [][16] and ciphertexts C[][16].

Output: Secret key or the most possible subkey candidates sk[16].
1: Flag = false
2: if true == KeyVerification(P [][16], C[][16], skCandi[16][1]) then
3: Flag = true
4: return sk[16] = skCandi[16][1]
5: else
6: for nerr ∈ [0, Nerr] do
7: comb[nerr] = Cnerr

16 /* Ck
m is the combination formula */

8: for ci ∈ comb[nerr] do
9: /*convertKey(ci) converts ci to subkey indexes for enumeration */

10: keyInd = convertKey(ci)
11: for key ∈ skCandi[keyInd][dj,nerr

[]] do
12: Flag = KeyVerification(P [][16], C[][16], key)
13: if true == Flag then
14: return sk[16] = key
15: end if
16: end for
17: end for
18: end for
19: end if
20: if false == Flag then
21: /*Deal with failures on finding the correct key */
22: return sk[16] = skCandi[16][1] /* return the subkeys ranked first */
23: end if

increased nerr = 3, we set dj,nerr = dj,3 = 10, thus ECnerr = EC3 = C3
16 ∗ (10 − 1)3 ≈

218.64. Apparently, nerr (or more precisely, Nerr) and dj,nerr directly affect the number of
enumerations for our DFKEA and the coverage of possible subkey candidates.

4.2 Analysis and Experimental Results
The efficiency analysis of an algorithm is a very important issue when it’s applied in practice.
Here, we primarily take the number of enumerations EC into account, which is also the
number of key-verification. The computational complexity (number of enumerations)
comparison of our DFKEA with a simple KEA is tabled as Tab.3. Importantly note that
the enumeration principles of this simple KEA are similar to the state-of-the-art KEA,
since they all take a breadth-first strategy.

In Tab.3, it is divided into two parts by the table-cells colored with green. The upper
half part is featured with EC 6 230, while the lower half part is on the contrary. Obviously,
compared to this breadth-first KEA, our DFKEA are much powerful on enumerating
subkey candidates with high enumeration depths. Although we always theoretically assume
that attacks against different subkeys would obtain similar distribution for different subkey
candidates, in practice, attacking results of different subkeys always varies from each other,
especially when attacking electromagnetic traces (leakages). Hence, our DFKEA is very
suitable for these attacking scenarios.

With the same 40,000 traces (the same as used in Fig.6), we practical evaluate the
effectiveness of our DFKEA. Considering the high efficiency requirement of the attacks,
we restrict the enumeration depthes with EC 6 220, which means that roughly dj,1 = 256,
dj,2 = 20, dj,3 = 10 and dj,4 = 5 for nerr = 1, 2, 3, 4, respectively. For purpose of

Wei Cheng et al. 15

Table 3: Comparison of our DFKEA and a simple KEA with EC as evaluation criteria

Depth dj,nerr

DFKEA using (Equ.10) existing KEA
nerr = 1 nerr = 2 nerr = 3 total (Nerr = 3)

2 24.00 26.91 29.13 29.44 216.00

3 25.00 28.91 212.13 212.29 316 ≈ 225.36

4 25.58 210.08 213.88 213.99 416 = 232.00

5 26.00 210.91 215.13 215.21 516 ≈ 237.15

10 27.17 213.25 218.64 218.67 1016 ≈ 253.15

20 28.25 215.40 221.87 221.89 2016 ≈ 269.15

256 211.99 222.90 233.11 233.11 25616 = 2128.00

comparison, the enumeration depth of simple KEA is set to d1 = 2 and d2 = 5 which
means EC1 = 216 and EC2 = 237.15, respectively. The experimental results are depicted
as Fig.8. Quite clearly, our DFKEA is significantly better than the simple KEA, and the
success rates increase by 24.06% and 20.05% compared to the simple KEA for d1 = 2
and d2 = 5, respectively. These results are also in very accordance with our observations
from Fig.6 that the number of errored subkeys dropped off sharply with the increase of
nerr, thus it’s very advantageous to adopt depth-first strategy as in DFKEA. However, as
a post-processing technique, DFKEA also improves the error-tolerant capability of side
channel attacks, since not only the first-ranked subkey candidates, but also part of other
subkey candidates would be verified after a typical attack to obtain a high coverage of
possible subkey hypothesises.

Figure 8: Comparison between our DFKEA and the simple KEA with respect to different
enumeration depth(with logarithmic X-axis).

To summarize up, these experimental results strongly validated the effectiveness of
our DFKEA in terms of both key-recovery efficiency and attacking success rates (also
equivalent to guessing entropy). More importantly, compared to the state-of-the-art KEA,
our DFKEA doesn’t require to combine all sixteen lists of subkey candidates to get a
global key-ranking list[PSG16], which in return reduces computational burden and makes
our DFKEA much more efficient and competitive than existing KEAs. Furthermore, our
DFKEA is also generally applicable to both profiling and non-profiling attacks in SCA.

5 Ideas for Further Improving RSM-AES-128
RSM scheme is a first-order masking scheme which featured with its high efficiency and
low overhead, even integrated with shuffling scheme as implemented in RSM-AES-128.

16 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

Practically,it’s hard to retrieve masks (offsets) and shuffling vectors used in protected
cryptographic implementations (e.g. RSM-AES-128) with non-profiling attacks, but these
sensitive parameters are not immune to profiling attacks like TAs and leakage "fingerprints"
matching methods [LGT+16]. This is also evidently validated by our attacks in Sec.3. In
fact, our attack exploits the distinct leakage features to differentiate and recover the masks
and shuffle vectors. Therefore, the core to improve the practical security of RSM-AES-128
(or other protected implementations) is to reduce or even eliminate these distinguishable
leakage features.

Based on our observations and experimental results of MTA and DFKEA, we propose
two ideas to improve the practical security of RSM-AES-128, which are concentrating on
the shuffling scheme and RSM scheme adopted in RSM-AES-128, respectively.

5.1 Fully Shuffled Round Transformation
From an protecting point of view, shuffling scheme plays a important role in thwarting SCAs.
In essence, shuffling scheme only randomizes the order of operations during the execution
of cryptographic implementations, while no alteration on intermediate values. Considering
the combined countermeasure applied in RSM-AES-128, the first major vulnerability is
that shuffling scheme was only adopted in Sbox layer (SubBytes) of AES, which means the
other three transformations (KeyAdd, ShiftRows and MixColumns) are not protected
by it. As a consequence, the call order of all key-dependent variables only shuffled in Sbox
layer but kept the same during operating other three transformations. Typical leakages
of inputs of Sbox and inputs of MixColumns are depicted as Fig.3 (with the first byte).
This property was thoroughly exploited by our MTA, which not only targeted on outputs
of Sboxes, but also aimed at inputs of Sboxes (also the output of KeyAdd) and inputs of
MixColumns.

The main idea to settle this vulnerability is to apply shuffling scheme into all four
transformations of one round, namely Fully Shuffled Round Transformation (FSRT).
Importantly note that shuffling scheme only changes the order of operations, but keeps the
value of operands unchanged. Specifically, in FSRT, the shuffled Sboxes are the same as in
RSM-AES-128, and it’s similar for KeyAdd and ShiftRows since these transformations
are byte-oriented and operations are independent between different bytes. Nevertheless,
the MixColumns is complex because of its design requirements for diffusion effect. One
naive option is to update all sixteen bytes of state matrix one by one. The shuffle vectors
used in each of four transformation could be the same one like in RSM-AES-128 but
updated for different rounds. For the sake of simplicity, here we use the same shuffle vector
in these four transformations. The algorithm is showed as Alg.2.

Note that the secret key are firstly Xored with masks M−−−−→
offset+sh[0] before feeded into

the first round of AES. The MixColumns is also removed in the last round and the
unmasking of cipher is similar to RSM-AES-128 (referred to Alg.3). Finally, the entire
improved version of RSM-AES-128 is obtained by concatenating Nr rounds (Nr = 10 for
AES-128) together.

In practice, MixColumns always implemented using gf256mul function [DR02] to
reduce the redundant computations. Therefore, the shuffled MixColumns in Alg.2 (line
11 to 14) could be optimized by shuffling between four columns.

5.2 New Further Improved RSM Scheme
Considering the RSM scheme applied in RSM-AES-128, all 16 × 11 = 176 masks are
determined by sixteen offsets denoted as

−−−−→
offset. In fact, each element of

−−−−→
offset determines

all eleven masks used in entire ten rounds with the same indexes. From a attacking point
of view, it’s a deterministic relation between each offset and corresponding eleven masks.
As a result, the leakages of every eleven masks could be exploited to recover each of sixteen

Wei Cheng et al. 17

Algorithm 2 Fully shuffled round transformation
Input : Input state matrix State[16], round index r, and Round key rk[16],

Shuffle vector Shuffle[16], Offset offset[16] for masking.
Output: Updated state matrix State[16].

1: for i ∈ Shuffle([0, 15]) do
2: State[i] = State[i]⊕ rk[i] /* Shuffled KeyAdd */
3: end for
4: for i ∈ Shuffle([0, 15]) do
5: State[i] = MaskedSBoffset[i]+sh[r−1]+(r−1)(State[i]) /*New Shuffled SubBytes*/
6: end for
7: tmp = State[16] /* Shuffled ShiftRows */
8: for i ∈ Shuffle([0, 15]) do
9: State[SR(i)] = tmp[i]

10: end for
11: tmp = State[16] /* Shuffled MixColumns */
12: for i ∈ Shuffle([0, 15]) do
13: State[i] = MC(tmp) /* Column-oriented operations */
14: end for
15: /* New MaskCompensation refreshed by sh[r], where sh[r] = Shuffle[r] */
16: for i ∈ [0, 15] do
17: MaskComp[i] = MC(SR(Mask[offset[i] + sh[r − 1] + r]))
18: ⊕Mask[(offset[i] + sh[r] + r)]
19: end for
20: State[] = State[]⊕MaskComp[]

offsets [LGT+16]. The leakages of masks in the first two bytes and first four bytes are
showed in Fig.9.

In Fig.9(a), it’s obvious that each of eleven masks corresponding to the first two bytes
leaked the mask-dependent information during whole encryption process, which could be
exploited by attackers to reveal the first two offsets. Similarly, all sixteen offsets could
be revealed. In Fig.9(b), one main observation is that leakages of masks in the first four
bytes clearly occur in sequential order, which indicates the necessity of shuffling scheme in
all operations, in which our proposal in Sec.5.1 could be applied.

In order to eliminate the leakages of offsets during whole encryption (decryption)
process, we propose a new mask compensation method for RSM scheme. The rationale of
new MaskComp(·) is to update all offsets for every rounds of encryption. Considering
the implementing overhead and performance loss caused by changes, we make minimal
but effective modifications to achieve our goal. Specifically, we only change the offsets and
mask compensation adopted in RSM scheme of RSM-AES-128. Namely, the new offset
vector is determined by

−−−−→
offsetin and round index r as follows.

MSB′(X) = SB(X ⊕M−−−−→
offsetin+(r−1))⊕M−−−−→offsetin+r (11)

where MSB′(·) denotes the new masked sboxes. The mask compensation then updated as
follows.

NewMaskCompi,r =
{
M−−−−→

offsetout+r ⊕MC(SR(M−−−−→
offsetin+r)), r = 1, ..., 9

SR(M−−−−→
offsetin+r), r = 10

−−−−→
offsetout = P (

−−−−→
offsetin)

(12)

where r is the round index of AES, and P (·) : {0, . . . , 15} → {0, . . . , 15} denotes a simple
(random) permutation, which could be implemented by shuffling to update the masks used

18 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

(a) Correlation on whole traces with 1,700,000 points

(b) Zoomed in of samples from 150,000 to 450,000

Figure 9: Leakages of (a) masks used in the first two bytes and (b) masks used in the first
four bytes respectively (HW, Correlation, with 40,000 traces).

in different rounds. A straightforward way to implement P (·) is to using element-oriented
cyclic shift like ShiftRows in AES, which means

−−−−→
offsetout is generated by cyclicly shifting−−−−→

offsetin. In order to improve efficiency, we assign
−−−−→
offsetin =

−−−−→
offset + sh[r − 1] and

−−−−→
offsetout =

−−−−→
offset+ sh[r], where sh[r] is the r-th element of shuffle vector Shuffle[16].

Then the mask compensation could be done easily as follows.

MSB′(X) = SB(X ⊕M−−−−→
offset+sh[r−1]+(r−1))⊕M−−−−→offset+sh[r−1]+r

MaskCompi,r =
{
M−−−−→

offset+sh[r]+r
⊕MC(SR(M−−−−→

offset+sh[r−1]+r
)), r = 1, ..., 9

SR(M−−−−→
offset+sh[r−1]+r

), r = 10
(13)

Note that this proposal is also implemented in Alg.2.
More importantly, our new improved RSM scheme is more secure than RSM scheme

applied in RSM-AES-128, since it would be degraded to the original RSM scheme if
the shuffle vector

−−−−−−→
Shuffle is compromised or deactivated by adversaries (in the worst

cases). By adopting independent
−−−−→
offset in adjacent rounds, attacks exploiting multi-round

leakages [LGT+16] to against RSM scheme could be effectively hindered.
Apparently, both of our proposals for improving the RSM-AES-128 are compatibility

with other proposals like new ordered mask set [VG17] to provide a high level of prac-
tical security for cryptographic implementations. In addition, these proposals could be
implemented on the other platforms like FPGA integrated with typical hardware-oriented
countermeasures (e.g. random delays [MOP07]).

Wei Cheng et al. 19

6 Conclusions and Perspectives
As a highly efficient and lightweight Low Entropy Masking Scheme, Rotating Sbox Masking
(RSM) scheme is proposed to protect cryptographic implementations like AES from
side channel attacks. The public target of DPA Contest v4.2 (the latest version) is
a RSM-masked implementation called RSM-AES-128. It is protected by a combined
countermeasure composed of RSM scheme and Shuffling scheme. Although RSM-AES-128
is the improved version of the previous RSM-masked implementation, its practical security
are not intensively studied, especially from a perspective of profiling attack with minimal
traces. In this paper, by means of profiling attacks, we have thoroughly analyzed and
evaluated the practical security of RSM-AES-128 implementation in an extreme condition,
in which only one trace is used for attack. Specifically, under the framework of DPA Contest
v4.2, we firstly propose a Multivariate Template Attack (MTA) against RSM-AES-128.
Considering global success rate (GSR) as evaluation criteria, our MTA recovers the secret
key of RSM-AES-128 with first-order global success rate increased from 55% to 83%, which
significantly increased by 50.91% compared to the best univariate TA. Secondly, based on
observations from the distribution of subkey candidates after our MTA, we propose a new
Depth-First Key Enumeration Algorithm (DFKEA) to further improve the global success
rates of our attack. After integrated with DFKEA, the global success rate of our MTA
soars to about 95% (released DPA Contest Official), with a increase of 14.46% compared
to original MTA. Note that for our experiments, the global success rate is optimized to
100% (with a increase of 20.48% compared to original MTA). We also have a comparison
between our DFKEA and a simple breadth-first KEA (with the same principle applied
in the state-of-the-art KEA). Both theoretical analysis and experimental shows that our
DFKEA is significantly more effective than the breadth-first KEA. After all, the purpose of
the attack is to effectively protect cryptographic implementation. Finally, we propose two
proposals to further improve the practical security of RSM-AES-128 (and other protected
cryptographic implementations). Specifically, Fully Shuffled Round Transformation (FSRT)
makes all four layer’s operations shuffled, and the new improved RSM scheme eliminates
the directly related offsets in consecutive rounds. Therefore, these two proposals could be
applied to further improve the practical security of RSM-AES-128.

However, although our DFKEA is very efficient and effective than existing breadth-first
KEAs, there are still some theoretical and practical issues need to be studied and clarified.
The first one is the relation between the global success rate and enumeration depths (also
with number of errored subkeys). Moreover, our two proposals for improving the practical
security could be further optimized, considering when they are implemented on different
platforms like FPGA. As a consequence, we will investigate these questions (e.g. the
quantitative relation between success rate and enumeration depths) in the future.

Acknowledgments.

This work was supported in part by National Natural Science Foundation of China (Grant
No.61632020, No.61472416 and No.61602468).

References
[BBD+14] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and

Zakaria Najm. Analysis and Improvements of the DPA Contest v4 Imple-
mentation. In Security, Privacy, and Applied Cryptography Engineering - 4th
International Conference, SPACE 2014, Pune, India, October 18-22, 2014.
Proceedings, pages 201–218, 2014.

20 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

[BGNT15] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. Multi-
variate High-Order Attacks of Shuffled Tables Recomputation. In Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, pages 475–494, 2015.

[BKM+15] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and Memory-Efficient Key Recovery in Side-Channel
Attacks. In Selected Areas in Cryptography - SAC 2015 - 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected
Papers, pages 310–327, 2015.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
Power Analysis in the Presence of Hardware Countermeasures. In Crypto-
graphic Hardware and Embedded Systems - CHES 2000, Second International
Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings, pages
252–263, 2000.

[CDGM12] Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Maghrebi.
Leakage Squeezing of Order Two. In Progress in Cryptology - INDOCRYPT
2012, 13th International Conference on Cryptology in India, Kolkata, India,
December 9-12, 2012. Proceedings, pages 120–139, 2012.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages
398–412, 1999.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel
Cryptanalysis of a Higher Order Masking Scheme. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 28–44, 2007.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, pages 13–28, 2002.

[DPA14] TELECOM paristech SEN research group: DPA Contest (4th edn.) (2013-2014,
DPACv4.1), http://www.dpacontest.org/v4/index.php. 2014.

[DPA17] TELECOM paristech SEN research group: DPA Contest (4th edn.) (2014-2017,
DPACv4.2), http://www.dpacontest.org/v4/42_doc.php. 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings, number Generators, pages 251–261, 2001.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Applied Cryptography
and Network Security, 4th International Conference, ACNS 2006, Singapore,
June 6-9, 2006, Proceedings, pages 239–252, 2006.

Wei Cheng et al. 21

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Anal-
ysis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, pages 388–397, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, pages 104–113, 1996.

[LGT+16] Zeyi Liu, Neng Gao, Chenyang Tu, Jian Zhou, Yuan Ma, and Yuan Zhao.
Leakage Fingerprints: A Non-negligible Vulnerability in Side-Channel Analy-
sis. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,
2016, pages 807–818, 2016.

[MGD11] Houssem Maghrebi, Sylvain Guilley, and Jean-Luc Danger. Leakage Squeezing
Countermeasure against High-Order Attacks. In Information Security Theory
and Practice. Security and Privacy of Mobile Devices in Wireless Communica-
tion - 5th IFIP WG 11.2 International Workshop, WISTP 2011, Heraklion,
Crete, Greece, June 1-3, 2011. Proceedings, pages 208–223, 2011.

[MGH14] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting Hidden Leakages.
In Applied Cryptography and Network Security - 12th International Conference,
ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, pages
324–342, 2014.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks
- Revealing the Secrets of Smart Cards. Springer, 2007.

[MOW14] Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. Multi-target DPA
Attacks: Pushing DPA Beyond the Limits of a Desktop Computer. In Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 243–261,
2014.

[NGD11] Maxime Nassar, Sylvain Guilley, and Jean-Luc Danger. Formal Analysis of the
Entropy / Security Trade-off in First-Order Masking Countermeasures against
Side-Channel Attacks. In Progress in Cryptology - INDOCRYPT 2011 - 12th
International Conference on Cryptology in India, Chennai, India, December
11-14, 2011. Proceedings, pages 22–39, 2011.

[NSGD12] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM:
A Small and Fast Countermeasure for AES, Secure against 1st and 2nd-order
Zero-offset SCAs. In 2012 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012, pages
1173–1178, 2012.

[Pro05] Emmanuel Prouff. DPA Attacks and S-Boxes. In Fast Software Encryption:
12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005,
Revised Selected Papers, pages 424–441, 2005.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
Key Enumeration (and Rank Estimation) Using Histograms: An Integrated
Approach. In Cryptographic Hardware and Embedded Systems - CHES 2016 -

22 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, pages 61–81, 2016.

[RGN13] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally Proved Security of
Assembly Code Against Leakage. IACR Cryptology ePrint Archive, 2013:554,
2013.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, pages 413–427, 2010.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking
and Shuffling for Software Implementations of Block Ciphers. In Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 171–188, 2009.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using Subspace-Based
Template Attacks to Compare and Combine Power and Electromagnetic
Information Leakages. In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August
10-13, 2008. Proceedings, pages 411–425, 2008.

[SKS09] François-Xavier Standaert, François Koeune, and Werner Schindler. How to
Compare Profiled Side-Channel Attacks? In Applied Cryptography and Net-
work Security, 7th International Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings, pages 485–498, 2009.

[SNG+10] Youssef Souissi, Maxime Nassar, Sylvain Guilley, Jean-Luc Danger, and Flo-
rent Flament. First Principal Components Analysis: A New Side Channel
Distinguisher. In Information Security and Cryptology - ICISC 2010 - 13th
International Conference, Seoul, Korea, December 1-3, 2010, Revised Selected
Papers, pages 407–419, 2010.

[VG17] Nikita Veshchikov and Sylvain Guilley. Implementation Flaws in the Masking
Scheme of DPA Contest v4. IET Information Security, 2017.

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An Optimal Key Enumeration Algorithm and Its Application
to Side-Channel Attacks. In Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised
Selected Papers, pages 390–406, 2012.

[YE13] Xin Ye and Thomas Eisenbarth. On the Vulnerability of Low Entropy Masking
Schemes. In Smart Card Research and Advanced Applications - 12th Interna-
tional Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers, pages 44–60, 2013.

Wei Cheng et al. 23

A Appendix
A.1 RSM-AES-128 Implementation Adopted in DPA Contest v4.2
The Alg.3 is a pseudo-code form of RSM-AES-128 implementation [BBD+14] which is
adopted as open target of DPA Contest v4.2.

Algorithm 3 RSM-AES-128 for the DPA Contest v4.2
Input : Public: X ← Plain[16].

Private: Shuffle0[16], Shuffle10[16], offset[16], Key[16].
Output: X → Cipher[16].

1: RoundKey[0]← RoundKey[0]⊕Mask[offset[]]
2: for r ∈ [0, 8] do
3: X = X ⊕RoundKey[r]
4: if r=0 then
5: for i ∈ Shuffle0([0, 15]) do
6: Xi = MaskedSubBytesoffset[i]+r(Xi)
7: end for
8: else
9: for i ∈ [0, 15] do

10: Xi = MaskedSubBytesoffset[i]+r(Xi)
11: end for
12: end if
13: X = ShiftRows(X)
14: X = MixColumns(X)
15: for i ∈ [0, 15] do
16: MaskCompensation[i] = ShiftRows(MixColumns(Mask[offset[i]+(r+1)]))⊕

Mask[(offset[i] + (r + 1))]
17: end for
18: X = X ⊕MaskCompensation[]
19: end for
20: X = X ⊕RoundKey[9]
21: for i ∈ Shuffle10([0, 15]) do
22: Xi = MaskedSubBytesoffset[i]+9(Xi)
23: end for
24: X = ShiftRows(X)
25: X = X ⊕RoundKey[10]
26: for i ∈ [0, 15] do
27: MaskCompensationLastRound[i] = ShiftRows(Mask[offset[i] + 10])
28: end for
29: X = X ⊕MaskCompensationLastRound[]

A.2 Evaluation Results of Our MTA Attack from DPA Contest v4.2
Note that for our experimental results using all sixteen public datasets (80,000 traces in
total), the success rate is 100%, while the success rate is about 95% which is evaluated
DPA Contest Official with their private datasets. Although the success rate decreased,
the evaluation results still validated the effectiveness of our Multivariate Template Attack
(MTA) and Depth-First Key Enumeration Algorithm (DFKEA).

The Global Success Rate (GSR) and the Partial Success Rates (PSR) released by DPA
Contest Official are depicted as Fig.10 and Fig.11. For the purpose of comparison, the
evaluation results of Partial Guessing Entropy (PGE) are showed as Fig.12.

24 How Far Can We Reach? Breaking RSM-Masked AES-128 Implementation

Figure 10: The Global Success Rate (GSR) of our proposed attack released by DPA
Contest Official.

Figure 11: The Partial Success Rate (PSR) of our proposed attack released by DPA
Contest Official.

Figure 12: The Partial Guessing Entropy (PGE) of our proposed attack released by DPA
Contest Official.

	1 Introduction
	2 Preliminary and Notations
	2.1 RSM-AES-128 Implementation
	2.2 Template Attacks

	3 Multivariate Template Attack against RSM-AES-128
	3.1 Breaking the Combined Countermeasure
	3.2 Our Multivariate Template Attack

	4 Depth-First Key Enumeration Algorithm
	4.1 Proposal of DFKEA
	4.2 Analysis and Experimental Results

	5 Ideas for Further Improving RSM-AES-128
	5.1 Fully Shuffled Round Transformation
	5.2 New Further Improved RSM Scheme

	6 Conclusions and Perspectives
	A Appendix
	A.1 RSM-AES-128 Implementation Adopted in DPA Contest v4.2
	A.2 Evaluation Results of Our MTA Attack from DPA Contest v4.2

