
A Zero-Knowledge Version of vSQL

Yupeng Zhang
University of Maryland

zhangyp@umd.edu

Daniel Genkin
University of Pennsylvania and

University of Maryland

danielg3@cis.upenn.edu

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Dimitrios Papadopoulos
Hong Kong University of Science and Technology

dipapado@cse.ust.hk

Charalampos Papamanthou
University of Maryland

cpap@umd.edu

Abstract

Zero-knowledge arguments of knowledge are powerful cryptographic primitives that allow a com-
putationally strong prover to convince a weaker verifier for the validity of an NP statement, without
revealing anything about the corresponding witness (beyond its existence). Most state-of-the art im-
plementations of such arguments that achieve succinct communication and verification cost follow the
quadratic arithmetic program paradigm. One notable exception to this is the vSQL system of [Zhang
et al. IEEE S&P 2017] which takes an entirely different approach resulting is significantly fewer cryp-
tographic operations. However, it has the notable downside that is not zero-knowledge (i.e., it does
not hide the witness from the verifier), a property that has proven to be of utmost importance in
many application (e.g., in cryptocurrencies). In this work, we present a zero-knowledge version of the
argument upon which vSQL is based. Our construction utilizes two separate techniques: (i) a novel
zero-knowledge verifiable polynomial delegation protocol, and (ii) running parts of the argument of
vSQL over homomorphic commitments, thus hiding the committed values.

1 Introduction

Protocols for verifiable computation (VC) allow a computationally weak verifier to outsource the execution
of a program to a powerful but untrusted prover (e.g., a cloud provider) while being assured that the
result was computed correctly. Somewhat more formally, a verifier V and prover P agree on a circuit
C and an input x. The prover then sends a result y to the verifier, and proves that there exists some
w for which y = C(x;w). (Here, w represents some auxiliary input chosen by the prover.) Starting
with the work of Kilian [23], there has been a long line of work constructing VC protocols for arbitrary
computations. For VC protocols that support general programs, the most prominent such works rely on
succinct arguments-of-knowledge (SNARKs) [5] based on quadratic arithmetic programs [17]. This has
resulted in several optimized systems that achieve excellent performance. See [29] and followup works.
Most constructions use a preprocessing phase during which a trusted party (possibly the verifier itself)
generates a set of public parameters corresponding to the specific circuit C of interest. This can be used
in two ways:

1. Computation-specific circuit. If the verifier knows ahead of time the circuit C he wants to
evaluate, he can simply execute the preprocessing phase for C. Numerous works follow this approach,
e.g., [26, 13].

2. Universal circuit. If the computation to be verified cannot be determined during preprocessing,
the verifier can always preprocess the universal circuit CU that takes as input a circuit C and an input
x and outputs C(x). Example works that follow this approach include [2, 4, 3].

1

mailto:zhangyp@umd.edu
mailto:danielg3@cis.upenn.edu
mailto:jkatz@cs.umd.edu
mailto:dipapado@cse.ust.hk
mailto:cpap@umd.edu

Both these approaches have significant drawbacks. In the first case, the verifier is unable to adaptively
change the computation to be verified without re-running the preprocessing phase (which is typically
much more costly than evaluating the function). The second approach imposes large concrete overheads,
since CU requires many more gates than C. For implemented systems, the only exception to the above is
the recent work of Ben-Sasson et al. [1] that does not utilize a preprocessing phase. However, the concrete
cost of their techniques remains significantly higher then the above preprocessing-based approaches.

An Argument System with Circuit Independent Preprocessing. Recently, Zhang et al [30]
introduced vSQL, a system for verifying the execution of arbitrary SQL queries over outsourced databases.
Their construction combines the “CMT protocol” of Cormode et al. [12] (which itself extends the work of
Goldwasser et al. [18]) for verifying the evaluation of arithmetic circuits with a new verifiable polynomial
delegation (VPD) scheme in a way that can accommodate auxiliary input. While not explicitly stated in
their paper, it can be shown that their underlying construction is an argument of knowledge for NP, which
is succinct if the circuit is “parallelizable” (i.e., can be expressed as parallel copies of smaller circuits,
possibly followed by a small “aggregation” circuit), which is the case for SQL queries. An important
feature of the argument system resulting from their work is that it has a preprocessing phase that only
depends on an upper bound on the size of the input, but not on the specific circuit to be evaluated.
This allows obtaining performance which is similar to (1) above, but in the setting of (2) where the
circuit to be verified is not known during the preprocessing phase. Another attractive property of vSQL
is its improved performance. In contrast to state-of-the-art arguments based on quadratic-arithmetic
programs [2, 26], the number of cryptographic operations used by vSQL is linear in the input size (as
opposed to linear in the number of multiplication gates of the circuit). As demonstrated in [30] for the
case of verifying SQL queries, this translates in practice to a reduction in prover time by 5–121×.

Zero-Knowledge Verifiable Computation. The scheme of [30] lacks one crucial property: it is
not zero-knowledge. Moreover, while state-of-the-art succinct non-interactive arguments of knowledge
(SNARKs) from quadratic-arithmetic programs can be made zero-knowledge by simply randomizing
proof elements, this approach is not directly compatible with vSQL.

Our Contribution. Here, we show a zero-knowledge version of the argument of knowledge implicitly
presented in vSQL [30]. At a high level, our protocol maintains the same structure as vSQL and combines
a CMT-like protocol with a VPD scheme. However, in order to obtain a zero-knowledge property we
replace both of the underlying components with zero-knowledge variants. For the CMT component, this
can be achieved by running the entire protocol inside homomorphic commitments (as first observed in a
a more general context by Cramer and Damg̊ard [14]). For the VPD part, we devise a new construction
that we call zk-VPD which is used to allow the prover to produce a proof about the correctness of a
commitment to the correct evaluation of a polynomial (rather than proving correctness of the evaluation
itself).

Asymptotically, our protocol has the same performance as that of [30] and has a preprocessing phase
that only depends on an upper bound on the size of the input, but not on the specific circuit to be
evaluated. In practice, we would expect it to have a slightly larger overhead for both parties (due to the
increased number of cryptographic operations).

Other Approaches to Making CMT Zero-knowledge. Chiesa et al. [11] showed how a large
class of algebraic protocols (including sum-check and CMT) can be made zero-knowledge using only
information theoretic techniques. While this is a very attractive property, it is not clear how to make
their approach compatible with a VPD protocol such as the one from [30] and the one we present here.
Next, in a concurrent and independent work, Wahby et al. [28] presented an efficient zero-knowledge
argument for sufficiently “parallel” circuits that utilizes the CMT protocol and uses the same general
approach for making it zero-knowledge as the one used in this work (i.e., running the CMT protocol
over homomorphic commitments). Unlike our construction which has a trusted preprocessing phase and
relies on non-standard knowledge-of-exponent assumptions, the construction of [28] does not require any
preprocessing and its security is based solely on the DDH assumption. However, while our construction

2

achieves communication size and verification time that are polylogarithmic in the size of the witness w of
the NP-relation being verified, the communication size and verification time of [28] scale with O(

√
|w|)

which might be prohibitive for some applications.

2 Preliminaries

2.1 Cryptographic Assumptions

We use the following hardness assumption over elliptic curve groups with pairings, originally introduced
in [8, 20]

Assumption 1. (q-Strong Diffie-Hellman) For any probabilistic polynomial time adversary A, the fol-
lowing probability is negligible:

Pr

 bp← BilGen(1λ);

s
R← Z∗p;

σ = (bp, gs, . . . , gs
q
)

: (x, e(g, g)
1
s+x)← A(1λ, σ)

 .
We also use a “knowledge-type” assumption, which is a slightly modified version of an assumption

originally introduced in [30]. The latter, in turn, is a generalization of Groth’s q-PKE assumption [21] for
the case of multivariate polynomials. In the following, W`,d denotes the set of all multisets of {1, . . . , `}
where the cardinality of each element is at most d.

Assumption 2 ((d, `)-Extended Power Knowledge of Exponent). For any ppt adversary A there is a
polynomial-time algorithm E (running on the same random tape) such that for all benign auxiliary inputs
z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr

bp← BilGen(1λ);

s1, . . . , s`, s`+1, α
R← Z∗p, s0 = 1;

σ1 = ({g
∏
i∈W si}W∈W`,d

, gs`+1);

σ2 = ({gα·
∏
i∈W si}W∈W`,d

, gαs`+1);

σ = (bp, σ1, σ2, g
α);

G×G 3 (h, h̃)← A(1λ, σ, z);
(a0, . . . , a|W`,d|, b)← E(1λ, σ, z)

:

e(h, gα) = e(h̃, g)
∧∏

W∈W`,d

gaW
∏
i∈W sigbs`+1 6= h

.

The results of [10, 7] show the impossibility of knowledge assumptions with respect to arbitrary
auxiliary inputs. In the above definition we use the notion of a benign auxiliary input (or, alternatively, a
benign state generator), similar to [13, 22, 15], to refer to auxiliary inputs that make extraction possible,
avoiding these negative results. Concretely, our proofs hold assuming the auxiliary input of the extractor
comes from a benign distribution (in practice, the auxiliary inputs in our construction will consist of
hiding commitments).

2.2 Interactive Proofs and Argument Systems

Interactive proofs. An interactive proof [19] is a protocol between a prover P and a verifier V which
convinces V of the validity of a statement f(x) = 1 where f and x are common inputs known to both
parties.

Definition 1. A pair of algorithms (P,V) is an interactive proof system for a function f with soundness
ε if the following properties hold:

• Completeness. For any x such that f(x) = 1 it holds that Pr[〈P,V〉(x) = 1] = 1.

3

• Soundness. For any x such that f(x) 6= 1 and for any prover P∗ it holds that Pr[〈P∗,V〉(x) = 1] ≤ ε.

Argument Systems. Let R be an NP relation. An argument system for R is a protocol between
computationally bounded prover P and a verifier V at the end of which V is convinced in the validity of a
statement made by P of the from “there exists w such that (x;w) ∈ R” for some input x. In the sequel we
focus on arguments of knowledge which have the stronger property that if the prover manages to convince
the verifier of the statement’s validity, then the prover must know w. We use the definition of [17] which
includes a parameter-generation phase executed by a trusted party, the preprocessor. Formally, consider
Definition 2 below.

Definition 2. Let R be an NP relation and let λ be a security parameter. A tuple of algorithms (G,P,V)
is a zero knowledge argument for R if the following holds.

• Completeness. For every (pk, vk) outout by G(1λ) and all (x;w) ∈ R we have

〈P(pk, w),V(vk)〉(x) = accept.

• Knowledge soundness. For any probabilistic polynomial time prover P∗ there exists a probabilistic
polynomial extractor E which runs on the same randomness as P∗ such that for any x it holds that
Pr[〈P∗(pk),V(vk)〉(x) = accept ∧ (x,w) /∈ L|(pk, vk)← G(1λ), w ← E(pk, x)] ≤ neg(λ).

• Zero knowledge. There exists a probabilistic polynomial simulator S such that for any probabilistic
polynomial time adversary A, auxiliary input z ∈ {0, 1}poly(λ) the following holds

Pr
[
(x;w) ∈ R; 〈P(pk, w),A(σ)〉(x) = accept : (pk, vk)← G(1λ); (x,w, σ)← A(z, pk, vk)

]
≈

Pr
[
(x;w) ∈ R; 〈S(trap, z, pk),A(σ)〉(x) = accept : (pk, vk, trap)← S(1λ); (x,w, σ)← A(z, pk, vk)

]
where ≈ denotes computational indistinguishability (and the definition can be extended in a straight-
forward manner for statistical and perfect zero-knowledge).

We call (G,P,V) a succinct argument system if the running time of V is poly(λ, |x|, log |w|).

2.3 Building Blocks

Linearly homomorphic commitment scheme. We assume the existence of a commitment scheme
Comm = (Setup, Com,Open) that has Zq (for prime q) as its message space. This could be instantiated
by the Pedersen commitment scheme [27], for example. We assume:

• Setup(1λ) outputs public commitment parameters cp.

• Com(cp,m, r) on input a message m ∈ Zq and randomness r outputs a commitment com.

• Open(cp, com,m, r) accepts iff Com(cp,m, r) = com.

We also require that there exists an efficient algorithm Eval(cp, com1, . . . , comn, x1, . . . , xn) that on input
n valid commitments (for some randomness values ri) for m1, . . . ,mn and coefficients x, . . . , xn ∈ F,
outputs new commitment com′ such that Open(cp, com′,

∑n
1 ximi, r

′) accepts, where r′ is computed as
a function of (r1, . . . , rn, x1, . . . , xn). For Pedersen commitments, this can be easily achieved by having
Eval(cp, com1, . . . , comn, x1, . . . , xn) outputs com′ =

∏n
1 com

xi
i and r′ =

∑n
1 xiri.

Zero-knowledge argument for commitment-preimage equality. We assume the existence of a
zero-knowledge argument ZKeq for proving that two commitments produced with Comm have the same
pre-image. Somewhat informally, we write ZKeq(m, r1, r2; com1, com2) → accept/reject to denote the

4

interaction between a prover that holds cp,m, r1, r2, com1, com2 such that Open(cp, comi,m, ri) accepts
for i = 1, 2, and a verifier that holds cp, com1, com2 will eventually accept if he believes they have the
same preimage and he will reject otherwise. For completeness, we require that the verifier accepts with
probability 1 for a valid statement. For soundness, we require that for any probabilistic polynomial-time
(cheating) prover algorithm, the verifier will accept a false statement with probability negligible in λ.
Zero-knowledge dictates that the verifier learns nothing about m1,m2. For the Pedersen commitment
scheme, such a protocol can be instantiated by first using a sigma-protocol (e.g., the one from [9]) and
then using standard techniques to make it full zero-knowledge (e.g., [16]).

Zero-knowledge argument for product of preimages. We assume the existence of a zero-knowledge
argument ZKprod for proving that for three commitments com1, com2, com3 produced with Comm it
holds that the preimage of the last is the product (in F) of the preimages of the first two. We write
ZKeq(m1,m2, r1, r2, r3; com1, com2, com3) → accept/reject to denote the interaction between a prover
that holds cp,m1,m2, r1, r2, r3, com1, com2, com3 such that Open(cp, comi,mi, ri) accepts for i = 1, 2, and
Open(cp, com3,m1 · m2, r3) accepts, and a verifier that holds cp, com1, com2, com3. For completeness,
we require that the verifier accepts with probability 1 for a valid statement. For soundness, we require
that for any probabilistic polynomial-time (cheating) prover algorithm, the verifier will accept a false
statement with probability negligible in λ. Zero-knowledge dictates that the verifier learns nothing about
m1,m2. For the Pedersen commitment scheme, this can again be instantiated via a standard combination
of [9, 16].

Exractability. Finally, we want the commitment scheme to be extractable in the manner described in [6]
for the case of collision-resistant functions, i.e., it should not be possible to output a valid commitment
without knowing a corresponding pre-image. Somewhat informally, this is captured by the existence of
an adversary-specific extractor that (given access to the adversary’s code, random tape and auxiliary
input) can output a pre-image for any commitment value the adversary produces with all but negligible
probability. For the Pedersen commitment scheme this can be achieved, under Assumption 2, via the
following modifications. (1) Parameters cp also include value gβ for β ∈ F chosen uniformly at random. (2)
Commitments consist of a pair of values from com, com′ ∈ G such that com′ = comβ. (3) Upon receiving
such a commitment com, com′, the receiving party must check the relation e(com, gβ) = e(com, g) and
abort if the check fails. To ease notation, in the following when describing a commitment value we will
only refer to com and we will omit the above validity check from the description of our protocols.

2.4 Circuit and Polynomial Notation

Let C be an arithmetic circuit. We denote the number of gates in the i-th layer of C by Si and we set
si = dlogSie (that is, si bits are sufficient in order to uniquely identify each gate is the i-th layer). The
evaluation of C on an input x assigns (in the natural way) a value from F to each gate in C. For each
layer i in C, we define the function Vi : {0, 1}si → F that takes as input a gate g ∈ {0, 1}si and outputs
its value. Note that the values returned by Vd correspond to the values of the input layer of C, i.e., x.
Finally, for each layer i we define functions addi, multi to which we refer as C’s wiring predicates. The
function addi : {0, 1}si−1+2si → {0, 1} takes as input a gate g1 from layer i− 1 and two gates g2, g3 from
layer i and outputs 1 if g1 is an addition gate whose inputs are connected to g2 and g3. The function
multi is defined similarly for multiplication gates. Finally, we notice that the value of a gate g at layer
i < d can be computed as a function of the values of gates at layer i+ 1 as

Vi(g) =
∑

u,v∈{0,1}si+1

(addi+1(g, u, v) · (Vi+1(u) + Vi+1(v)) + multi+1(g, u, v) · (Vi+1(u) · Vi+1(v))).

In the following, we define the variable-degree of a multivariate polynomial f to be the maximum degree
of f in any of its variables, and useW`,d to denote the collection of all multisets of {1, . . . , `} for which the
multiplicity of any element is at most d. The following useful lemma is due to Papamanthou et al. [25].

5

Lemma 1 ([25]). Let f : F` → F be a polynomial of variable degree d. For all t ∈ F` there exist efficiently
computable polynomials q1, . . . , q` such that: f(x)− f(t) =

∑`
i=1(xi − ti)qi(x) where ti is the ith element

of t.

3 Zero-Knowledge Polynomial Delegation Commitment Scheme

In this section we present our zero knowledge polynomial delegation scheme. At a high level, the main
idea is to modify the polynomial delegation scheme of [30] to output a commitment to the evaluation
instead of the evaluation itself. That is, instead of having Evaluate output the value y of the polynomial f
when evaluated on the input x together with a suitable proof π, the zero-knowledge polynomial delegation
commitment scheme outputs a statistically hiding and computationally binding commitment comy to the
value of y (in addition to the proof π). This hides the value of y but still supports verifying that comy is
indeed a commitment to f(x).

Figure 3 contains our definition of a zero-knowledge polynomial delegation scheme. Next, consider
the following theorem.

Theorem 1. Under Assumptions 1 and 2, Construction 1 is a zero-knowledge extractable verifiable
polynomial-delegation protocol. Moreover, for a variable-degree-d `-variate polynomial f ∈ F containing
m monomials, algorithm KeyGen runs in time O(

(`(d+1)
`d

)
), CommitPoly in time O(m), CommitValue in

time O(`dm), Ver in time O(`) and CheckCom in time O(1). If d = 1, CommitValue can be made to run
in time O(2`). The commitment produced by CommitPoly consists of O(1) group elements, and the proof
produced by CommitPoly consists of O(`) elements of G.

Proof. Completeness follows by close inspection of the algorithms. Next, we prove the rest of the prop-
erties of Definition 3.

Polynomial Extractability. Let A be a ppt adversary that on input (1λ, pp), where (pp, vp) is
the output of KeyGen(1λ, `, d), outputs commitment com∗f such that CheckCom(com∗f , vp) accepts. This
implies that e(comf,1, g

α) = e(comf,2, g). By Assumption 2, there exists ppt extractor E for A such that
upon the same input as A, and with access to same random tape, outputs a0, . . . , a|W`,d|, b ∈ F such

that
∏
W∈W`,d

gaW
∏
i∈W sigbs`+1 = comf,1, except with negligible probability. Note that, the coefficients

(a0, . . . , a|W`,d|, b) can always be encoded as an (`+ 1)-variate polynomial that consist of the sum of two
polynomials: an `-variate one with degree-variable d that is defined over variables x1, . . . , x` and has
values ai as its monomial coefficients, and the univariate, degree-1 polynomial bx`+1.

Binding. Next, we prove the binding property. Let A be a ppt adversary that wins the binding game
with non-negligible probability. For i = 1, . . . , `+1 we define adversary Ai that receives the same input as
A and executes the same code, but outputs only comi ∈ π∗ (where π∗ is the proof output by A). Moreover,
since A is ppt, all these adversaries are also ppt. Thus, for i = 1, . . . , `+1, from Assumption 2 there exists
ppt Ei (running on the same random tape as Ai) which on input (1λ, pp) outputs a0,i, . . . , a|W`,d|,i, bi ∈ F
such that the following holds: If e(comi,1, g

α) = e(comi,2, g) then
∏
W∈W`,d

gaW,i
∏
j∈W sj · gbis`+1 6= comi,1,

except with negligible probability. By the same reasoning as above, the coefficients (a0,i, . . . , a|W`,d|,ibi)
for each i = 1, . . . , ` can always be encoded as an (` + 1)-variate q′i that can be expressed as the sum of
an `-variate polynomial with variable-degree d that is defined over variables x1, . . . , x` and a univariate
degree-1 polynomial defined over x`+1.

We now proceed to build an adversary B that breaks Assumption 1 for parameter (` + 1) · d. Upon

input (1λ, bp, gs, gs
2
, . . . , gs

(`+1)·d
), B proceeds as follows:

Parameter Generation. B implicitly sets s1 = s and for i = 2, . . . , ` + 1 he chooses ρi ∈ F uniformly at
random and sets (also implicitly) si = s · ρi. Then he chooses uniformly at random values α, β ∈ F. Next
B needs to generate the terms in P = {g

∏
i∈W si , gα·

∏
i∈W si}W∈W`,d

. Since the exponent of each term is a
product of at most ` · d factors where each factor is one of the values si = s · ri (for i = 1, . . . , `), it can

6

Definition 3. Let F be a finite field, F be a family of `-variate polynomials over F, and d be a variable-degree
parameter. (KeyGen,Commit,Evaluate,CheckCom,Ver) constitute a zero-knowledge verifiable polynomial-delegation
protocol for F if:

• Perfect Completeness. For any polynomial f ∈ F and value t,

Pr
rf ,ry

 (pp, vp)← KeyGen(1λ, `, d)
comf ← CommitPoly(f, rf , pp)

(comy, π)← CommitValue(f, t, f(t), rf , ry, pp)
:

CheckCom(comf , vp) = accept ∧
Ver(comf , t, comy, π, vp) = accept

 = 1.

• Binding. For any ppt adversary A and benign auxilary inputs z1, z2 the following probability is negligible:

Pr

 (pp, vp)← KeyGen(1λ, `, d)
(π∗, com∗f , com

∗
y, state)← A(1λ, z1, pp)

(f∗, t∗, y∗, r∗f , r
∗
y)← A(1λ, z2, state, pp)

:

CheckCom(com∗f , vp) = accept ∧
Ver(com∗f , t

∗, com∗y, π
∗, vp) = accept ∧

com∗f = CommitPoly(f∗, r∗f , pp) ∧
(com∗y, π) = CommitValue(f∗, t∗, y∗, r∗f , r

∗
y, pp) ∧ f∗(t∗) 6= y∗

 .
• Zero Knowledge. For security parameter λ, polynomial f , adversary A, and simulator Sim consider the two

experiments RealA,f (1λ), IdealA(1λ), defined as follows.

RealA,f (1λ):

1. (pp, vp)← KeyGen(1λ, `, d)

2. Generate rf uniformly at random

3. comf ← CommitPoly(f, rf , pp)

4. k ← A(1λ, comf , vp)

5. For i = 1, . . . , k repeat:

(a) Generate ri uniformly at random

(b) ti ← A(1λ, comf , comy1 . . . , comyi−1 ,
π1, . . . , πi−1, vp)

(c) (comyi , πi)← CommitValue(f, ti, f(ti), rf , ri, pp)

6. b← A(1λ, comf , (comy1 . . . , comyk , π1, . . . , πk), vp)

7. Output b

IdealA,Sim(1λ):

1. (comf , pp, vp, σ)← Sim(1λ, `, d)

2. k ← A(1λ, comf , vp)

3. For i = 1, . . . , k repeat:

(a) ti ← A(1λ, comf , comy1 . . . , comyi−1
,

π1, . . . , πi−1, vp)

(b) (comyi , πi, σ)← Sim(ti, σ, pp)

4. b← A(1λ, comf , (comy1 . . . , comyk , π1, . . . , πk), vp)

5. Output b

We require that for any ppt adversary A and all f ∈ F, there exists a simulator Sim such that the following is
negligible ∣∣Pr

[
RealA,f (1λ) = 1

]
− Pr

[
IdealA,Sim(1λ) = 1

]∣∣ .
Finally, we say that (KeyGen,Commit,Evaluate,CheckCom,Ver) are an extractable zero-knowledge verifiable
polynomial-delegation protocol for F if (KeyGen,Commit,Evaluate,CheckCom,Ver) satisfy the following extraction
requirements instead of the above defined soundness requirement.

• Polynomial Extractability. For any ppt adversary A there exists a polynomial-time algorithm E with access
to A′s random tape such that for all benign auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr

 (pp, vp)← KeyGen(1λ, `, d);
com∗f ← A(1λ, pp, z);

(f, rf)← E(1λ, pp, z)
:

CheckCom(com∗, vp) = accept ∧
com∗f 6= CommitPoly(f, rf , pp)

 .
• Evaluation Extractability. For any ppt adversary A there exists a polynomial-time algorithm E with access

to A′s random tape such that for all benign auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr

 (pp, vp)← KeyGen(1λ, `, d)
(t∗, π∗, com∗f , com

∗
y)← A(1λ, pp, z)

(f, rf , y, ry)← E(1λ, pp, z)
:

CheckCom(com∗f , vp) = accept ∧
Ver(com∗f , t

∗, com∗y, π
∗, vp) = accept ∧

(f(t∗) 6= y ∨ com∗f 6= CommitPoly(f, rf , pp) ∨
(π∗, com∗y) 6= CommitValue(f, t∗, y, rf , ry, pp))

 .
7

Construction 1 (Zero-knowledge Verifiable Polynomial-Delegation Protocol). Let F be a prime-order

finite field, ` be a variable parameter, and d be a variable-degree parameter such that O(
(
`(d+1)
`d

)
) is polynomial

in λ. Consider the following protocol for the family F containing `-variate polynomials of variable-degree d over F.

1. KeyGen(1λ, `, d): Select α, β, s1, . . . , s`, s`+1 ∈ F uniformly at random, run bp ← BilGen(1λ) and compute
P = {g

∏
i∈W si , gα·

∏
i∈W si}W∈W`,d

. The public parameters are set to be pp = (bp,P, gα, gβ , gs`+1 , gαs`+1 , gβs`+1)

and the verifier parameters are set to be vp = (bp, gs1 , · · · , gs` , gs`+1 , gα, gβ).

2. CommitPoly(f, rf , pp): If f 6∈ F output null. Else, compute c1 = gf(si,...,s`)+rfs`+1 and c2 =
gα·(f(si,...,s`)+rfs`+1), and output the commitment comf = (c1, c2).

3. CheckCom(comf , vp): On input a commitment comf = (comf,1, comf,2), check whether it is well-formed,
i.e., output accept if e(comf,1, g

α) = e(comf,2, g) and reject otherwise.

4. CommitValue(f, t, y, rf , ry, pp): Choose r1, . . . , r` ∈ F uniformly at random. Next, using Lemma 1 compute
polynomials qi such that

f(x1, . . . , x`) + rfx`+1 − (y+ ryx`+1) =
∑̀
i=1

(xi − ti) · (qi(xi, . . . , x`) + rix`+1) + x`+1(rf − ry −
∑̀
i=1

ri(xi − ti)).

Set comy ← (gy+rys`+1 , gβy+βrys`+1). For i = 1, . . . , ` compute comi ← CommitPoly(qi, ri, pp). Compute

com`+1 ← (grf−ry−
∑`

i=1 ri(si−ti), gα(rf−ry−
∑`

i=1 ri(si−ti))). Output comy and the proof π := (com1, . . . , com`+1).

5. Ver(comf , t, comy, π, vp): Parse the proof π as (com1, . . . , com`+1). For i = 1, . . . , ` + 1 run
CheckCom(comi, pp). If any of them outputs reject, output reject. Otherwise, parse comf as (comf,1, comf,2)

and comy as (comy,1, comy,2) and for i = 1, . . . , ` + 1 parse comi as (comi,1, comi,2). If e(comy,1, g
β)

?
=

e(comy,2, g) and e(comf,1/comy,1, g)
?
= e(gs`+1 , com`+1,1)

∏`
i=1 e(g

si−ti , comi) output accept, otherwise output
reject.

be written as a polynomial in s with degree at most ` · d. Therefore, B can compute these terms from
the values g, gs, gs

2
, . . . , gs

`·d
and α. Then, he computes gs`+1 , gαs`+1 , gβs`+1 . Finally, B runs A on input

(1λ, pp), where pp = (bp,P, gα, gβ, gs`+1 , gαs`+1 , gβs`+1).
Query Evaluation. Upon eventually receiving (f∗, t∗, y∗, π∗, com∗f , com

∗
y, r
∗
f , r
∗
y) from A, B first checks

whether CommitPoly(f∗, r∗f , pp) = com∗f and CommitValue(f∗, t∗, r∗y, pp) = com∗f and aborts if any of

the checks fails. Then, he runs Ver(com∗f , t
∗, com∗y, π

∗, vp) where vp = (bp, gs1 , . . . , gs
`+1
, gα, gβ). If Ver

rejects B aborts, else he runs extractors E1, . . . , E`+1 (defined above) on the same input as A and receives
polynomials q′1, . . . , q

′
`+1.

If for the output of any of the Ei it holds that
∏
W∈W`,d

gaW,i
∏
j∈W sjgbis`+1 6= comi,1, B aborts. Let

δ = y∗ − f∗(t∗). If δ = 0 (i.e., y∗ = f∗(t∗)), B aborts.

Otherwise, let K(x)
def
= f∗(x)−

∑`
i=1(xi − ti)q′i(x)− x`+1q

′
`+1(x) + (rf − ry)x`+1 − f∗(t∗). Note that

by setting s1 = s, s2 = ρ2 ·s, . . . , s`+1 = ρ`+1 ·s, we implicitly set variables x2, . . . , x`+1 to ρ2 ·x1, . . . , x` =
ρ`+1 · x1. Thus, K(x) can be interpreted as an (efficiently computable) univariate polynomial of degree
at most (`+ 1) · d over variable x1, which we refer to as K ′(x1).
B then proceeds as follows. He chooses τ ∈ F uniformly at random. If gτ = g−s, he aborts. Else,

he computes univariate polynomial Q of degree at most (` + 1) · d and value R ∈ F such that K ′(x1) =
(x1 + τ)Q(x1) +R. We then distinguish two cases. (1) If R = δ then B factorizes the polynomial K ′ and
let Y ⊂ F be the set of its roots (|Y | ≤ (` + 1) · d). For each y ∈ Y , B tests whether gy = gs. If so, he

outputs (τ, e(g, g)
1

y+τ) as a challenge tuple for Assumption 1 and halts. If all these checks fail, he aborts.
(2) Else, (if R 6= δ) he outputs (τ, e(g, g)Q(s1)·(δ−R)−1

) as a challenge tuple for Assumption 1 and halts.
Recall that, (as explained above) the expression in the exponent is a (` + 1) · d degree polynomial thus

8

the challenge value is computable in polynomial time from (1λ, p,G,GT , e, g, g
s, gs

2
, . . . , gs

(`+1)·d
).

B is clearly ppt since all of Ei are ppt and he performs polynomially many operations in F,G,GT .
Next, we analyze the success probability of B. Recall that, by assumption A succeeds in breaking the
binding property of the scheme with non-negligible probability ε. We observe that, conditioned on not
aborting, B perfectly emulates the binding game to A and moreover B’s output is always a valid tuple for
breaking Assumption 1. Let us argue why this is true.

Since verification succeeded, it holds that

e(comf,1/comy,1, g) = e(gs`+1 , com`+1,1)
∏̀
i=1

e(gsi−ti , comi,1)

and since extraction succeeded this can be replaced with

e(g, g)f
∗(s1,...,s`)+rfx`+1−y∗−ryx`+1 = e(g, g)s`+1q

′
`+1(s1,...,s`+1)

∏̀
i=1

e(g, g)(si−ti)q
′
i(s1,...,s`+1)

e(g, g)f
∗(s1,...,s`)−y∗ = e(g, g)s`+1q

′
`+1(s1,...,s`+1)

∏̀
i=1

e(g, g)(si−ti)q
′
i(s1,...,s`+1)e(g, g)(ry−rf)x`+1

e(g, g)f
∗(s1,...,s`)−y∗ = e(g, g)s`+1q

′
`+1(s1,...,s`+1)+(ry−rf)x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)

e(g, g)−y
∗

= e(g, g)s`+1q
′
`+1(s1,...,s`+1)+(ry−rf)x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)

e(g, g)−δ−f
∗(t∗) = e(g, g)s`+1q

′
`+1(s1,...,s`+1)+(ry−rf)x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)

e(g, g)−δ = e(g, g)s`+1q
′
`+1(s1,...,s`+1)+(ry−rf)x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)+f∗(t∗)

e(g, g)δ = e(g, g)K(s1,...,s`+1)

e(g, g)δ = e(g, g)K
′(s1) = e(g, g)(x1+tau)Q(s1)+R

In order for the last substitution to be possible, it must the case that K ′(x1), and correspondingly
K ′(x) is non-constant polynomial (i.e., with degree > 0). Recall, that for polynomials defined over finite
fields division is always possible assuming that the divident’s degree is at least as large as that of the
divisor’s. Moreover, the degree of the quotient is at most that of the divident’s and that of the remainder
is strictly smaller than that of the divisor (i.e., R is a constant in this case).

Let us assume that K ′(x) is a constant polynomial. Since, e(g, g)δ = e(g, g)K(s1,...,s`+1) and e(g, g) is

a generator or GT , it must be that K ′(x)
def
= δ therefore we can write

f∗(x1, . . . , x`)− δ − f∗(x1, . . . , x`) = x`+1q
′
`+1(x1, . . . , x`+1) + (ry − rf)x`+1 +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1)

f∗(x1, . . . , x`)− y∗ = x`+1q
′
`+1(x1, . . . , x`+1) + (ry − rf)x`+1 +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1)

f∗(x1, . . . , x`)− (ry − rf)x`+1 − y∗ = x`+1q
′
`+1(x1, . . . , x`+1) +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1).

Now let f ′ be the `+1 variable polynomial defined as f ′(x1, . . . , x`+1)
def
= f∗(x1, . . . , x`)−(ry−rf)x`+1 and

let t′ ∈ F`+1 defined as t′ = (t∗1, . . . , t
∗
` , 0). From the above relation it follows that f ′(x1, . . . , x`+1)− y∗ =∑`+1

i=1(xi − t′i)q′i(x1, . . . , x`+1), therefore t′ is a root of the polynomial f ′′
def
= f ′(x1, . . . , x`+1) − y∗, i.e.,

9

f ′′(t′) = 0 which implies that

f ′(t1, . . . , t`+1)− y∗ = 0

f∗(t1, . . . , t`)− (ry − rf) · 0− y∗ = 0

f∗(t1, . . . , t`) = y∗

which implies that y∗ is the correct evaluation of f∗ on t∗, i.e., δ = 0. If that is the case, B has already
aborted, therefore conditioned on not aborting this will never happen.

In all other cases, the polynomial division is possible therefore we can write

e(g, g)δ = e(g, g)(s1+τ)Q(s1)+R

e(g, g)
δ

s1+τ = e(g, g)
Q(s1)+

R
s1+τ

e(g, g)
δ−R
s1+τ = e(g, g)Q(s1).

If δ = R (case (1) above), then it follows that e(g, g)0 = e(g, g)Q(s1), i.e., s1 = s is root of Q. Therefore,
s = y for some y ∈ Y (and therefore |Y | > 0). Since factorization can be done in deterministic polynomial

time B always succeeds in computing this y and e(g, g)
1

y+τ = e(g, g)
1
s+τ thus B succeeds in breaking

Assumption 1 in this case. If δ 6= R (case (2) above), from the above it holds that

e(g, g)
δ−R
s1+τ = e(g, g)Q(s1)

e(g, g)
1

s1+τ = e(g, g)Q(s1)·(δ−R)−1

therefore, in this case too, B succeeds in breaking Assumption 1 in this case.
Since the two cases are complementary, B always succeeds, conditioned on not aborting. Thus, it

remains to bound the probability of aborting. B can only abort in three cases. If extraction fails, if
y∗ = f∗(t∗), or if τ = −y. The former can only happen with negligible probability. This holds since, if
verification succeeds it must be that e(comi,2, g) = e(comi,1, g

α) for i = 1, . . . , `+ 1 and by Assumption 2,
extraction for any of E1, . . . , E`+1 fails with negligible probability. Since ` is polynomial in λ it follows
that the probability any of them fails (which by a union bound is at most equal to the sum of each
individual failure probability) is also negligible. The second happens by assumption with probability at
most 1− ε (as A wins with probability at least ε), whereas the third happens with negligible probability
O(2−λ) as τ is chosen uniformly at random from F. By a union bound, the abort probability is at most
(1−ε)+neg(λ). Thus the success probability of B is ε−neg(λ) which is non-negligible as we assumed that
ε is non-negligible. Since B succeeds in breaking Assumption 1 this contradicts our original assumption
and our proof is complete.

Evaluation Extractability. This follows almost directly from soundness and polynomial extractability.
In particular, let A be an ppt adversary that plays the evaluation extractability game. Let Af , Ay be
two adversaries that on input the same input as A, run A’s code internally but only output com∗f , com∗y
respectively and then halt. Clearly, both adversaries are ppt. Moreover, whenever CheckCom(com∗f , vp)
and Ver(com∗f , t

∗, com∗y, π
∗, vp) output accept, it follows that: (1) by polynomial extractability there exist

extractor Ef with access to the code and random tape of Af that with all but negligible probability
outputs f, rf such that CommitPoly(f, rf , pp) = com∗f , and (2) by Assumption 2, since Ver accepted (and

recall that as a sub-routine, Ver checks that e(comy,1, g
β) = e(comy,2, g)) there exists ppt extractor with

access to the code and random tape of Ay that with all but negligible probability, outputs y, ry ∈ F such
that gy+rys`+1 = comy,1.

It remains to show that the event E = {f(t∗) 6= y, where f is the output of Ef and y is the output
of Ey} occurs with negligible probability. For contradiction, assume Pr[E] = ε, for some non-negligible ε.
Then we can build adversary A′ that breaks the binding property of our scheme, as follows.

10

1. On input (1λ, pp), A′ runs A internally and receives (t∗, π∗, com∗f , com
∗
y).

2. A′ runs Ef , Ey on the same input as A to receive f, rf , y, ry.

3. A′ outputs (f, t∗, y, π∗, com∗f , com
∗
y, rf , ry) as a challenge for the soundness game.

A′ is clearly ppt asA, Ef , Ey are all ppt. Note that whenever E occurs, A′ wins. Assuming that Pr[E] = ε,
it follows that A′ breaks the binding property, for which we proved above that it can only happen with
negligible probability. This concludes our proof.

Zero Knowledge. We build our simulator Sim that operates as follows.

1. On input (1λ, `, d), run KeyGen(1λ, `, d) and receive pp, vp. Set σ = α, β, s1, . . . , s`+1. Choose rf ∈ F
uniformly at random and set comf = (grf , gα·rf). Send vp, comf to A.

2. Receive k from A.

3. For i = 1, . . . , k repeat:

(a) Receive ti from A.

(b) Choose r1i, . . . , r`i, ryi ∈ F uniformly at random.

(c) Compute comyi = (gryis`+1 , gβryis`+1), comji = (grjis`+1 , gαrjis`+1) for j = 1, . . . , ` and com`+1i =

(grf−ryi−
∑`
j=1 rji(sj−tij), gα(rf−ryi−

∑`
j=1 rji(sj−tij))).

(d) Output (comyi, πi = (com1i, . . . , com`+1i), σ).

Sim is clearly ppt as all the above steps can be computed in time polynomial in λ. Next, note that since
rf and r1i, . . . , r`i, for all i, are chosen uniformly at random, it follows that comf , com1i, . . . , com`i are
indistinguishable from uniformly chosen elements from G. Moreover, this holds both in the real and the
ideal game execution since in the former the discrete logs of these elements are computed as the sum
of a polynomial evaluation in F and an element of F chosen uniformly at random. Finally, note that
in both games, for any i, fixing comf , com1i, . . . , com`i also fixes a unique element com`+1i ∈ G. From
the above, it follows that for any (even unbounded) adversary A and all f ∈ F, it holds that the view
from the execution of RealA,f (1λ) and IdealA,Sim(1λ) is indistinguishable, thus Construction 1 is perfect
zero-knowledge.

4 A Sum-check Protocol over Homomorphic Commitments

Overview. The sum-check protocol [24] is an interactive protocol which allows a prover P to convince
a verier V of the validity of statements of the form H =

∑
b1∈{0,1} · · ·

∑
b`∈{0,1} g(b1, · · · , b`) where g :

F` → F is an `-variate polynomial over some finite field F. While V can directly compute H using O(2`)
evaluation of g, the sum-check protocol reduces V’s work to be polynomial in `. Indeed, the protocol
proceeds as follows (in ` rounds). In in the first round, P sends V the univariate polynomial g1(x) =∑

b2∈{0,1} · · ·
∑

b`∈{0,1} g(x, b2, · · · , b`). V then checks that the degree of g1 is the same as the variable
degree of x1 in g, rejecting otherwise. V then proceeds in sending P a uniform challenge r1 ∈ F. Next,
during the ith round of the sum-check protocol, i = 2, · · · , `, P sends the univariate polynomial gi(x) =∑

bi+1∈{0,1} · · ·
∑

b`∈{0,1} g(r1, · · · , ri−1, x, bi+1, · · · , b`). Upon receiving gi, V checks that gi−1(ri−1) =
gi(0) + gi(1), rejecting otherwise. V then proceeds to send a uniform ri to P, which is the challenge to
be used in the next round. Finally, at the last round, V accepts only if g(r1, · · · , r`) = g`(r`).

In the sequel, we define the degree of each monomial of g as the sum of the powers of its variables.
We then define g’s total degree as the maximal degree of any of its monomials. The following theorem is
due to [24].

11

Construction 2 (Sum-check Protocol Over Homomorphic Commitment Schemes). Let F be a prime-
order finite field, and let λ be a security parameter. In addition, let Comm be a linearly homomorphic commitment
scheme as described in Section 2.3, cp← Setup(1λ), and let g(b1, · · · , b`) be an `-variate total-degree-d polynomial
over F which is represented using m coefficients a0, · · · , am. Consider the following protocol between P and V for
convincing V that t0 =

∑
b1∈{0,1} · · ·

∑
b`∈{0,1} g(b1, · · · , b`) is a valid opening to some commitment com0. That

is, that he knows ρ0 such that com0 = Com(cp, t0, ρ0).

1. For all i = 1, · · · , ` perform the following.

(a) Define gi(x) =
∑
bi+1,··· ,b`∈{0,1} g(r1, · · · , ri−1, x, bi+1, · · · , b`) and let a0, · · · , am be the coefficients of gi.

(b) For every 0 ≤ j ≤ m P computes comaj ← Com(cp, aj , ρaj) where ρaj ∈ F is selected uniformly at random
and sends (coma0 , · · · , comam) to V.

(c) V computes com∗i−1 ← coma0 ·
∏m
k=0 comak which is a commitment to gi(0) + gi(1).

(d) V and P perform ZKeq(cp, ti−1, ρi−1, ρa0 +
∑m
j=0 ρaj ; comi−1, com

∗
i−1).

(e) V generates a random value ri and sends it to P.

(f) Both V and P compute comi ← Eval(cp, coma0 , · · · , comam , 1, ri, · · · , rmi).

(g) P sets ti ← gi(ri) and ρi ←
∑m
j=0 ρajr

j
i

2. V computes com∗` ← Com(cp, g(r1, · · · , r`), ρ`+1) and sends com∗` and ρ`+1 to P.

3. Both V and P perform ZKeq(cp, g(r1, · · · , r`), ρ`, ρ`+1; com`, com
∗
`).

Theorem 2. For any `-variate, total-degree-d polynomial g : F` → F, the sum-check protocol is an
interactive proof for the (no-input) function

∑
b1,··· ,b`∈{0,1} g(b1, · · · , b`) with soundness d·`/|F|. Moreover,

P performs O(2` ·poly(`)) arithmetic operations over F and V performs poly(`) arithmetic operations over
F and one evaluation of g on a random point r.

The Sum-check Protocol over Homomorphic Commitments. Unfortunately the messages ex-
changed during the sum check protocol reveal the coefficients of g1, · · · , g`, thus leaking additional infor-
mation about the values of g, beyond H. This is problematic since we would like to use the sum-check
protocol as part of a zero-knowledge argument system of NP, where leaking additional evaluations of g
might leak information about the prover’s witness. To that end, we execute the sum-check protocol over
an additively homomorphic commitment scheme. In particular, we consider the Pedersen commitment
scheme, modified as described in Section 2.3. The modified protocol starts by having P commit to the
coefficients of g and by providing a commitment com0 to the value H. Next, at round i, instead of having
P send to V the coefficients of gi, we modify the sum-check protocol and have P send commitments to
these coefficients to V. Since Pedersen commitments are linearly homomorphic, V can locally compute a
commitment com∗ to gi(0) + gi(1) and then check (using the ZKeq protocol) that com∗ commits to the
same value as comi−1, thus verifying that indeed gi−1(ri−1) = gi(0) + gi(1). In case this verification suc-
ceeds, V sends a uniformly random challenge ri to P, and both P and V use the homomorphic properties
of the Pedersen commitment scheme in order to obtain a commitment comi to the evaluation of gi on ri.
P and V repeat the above, using comi and ri in round i+ 1.

Formally, consider the protocol presented in Construction 2. We now state the following theorem (we
are only interested in proving “regular” soundness and not knowledge soundness).

Theorem 3. For any `-variate, total-degree-d polynomial g : F` → F with m non-zero coefficients,
assuming Comm is a linearly homomorphic commitment scheme, as described in Section 2.3, and ZKeq is
a zero-knowledge non-interactive argument for testing equality of commitments for Comm, Construction 2

12

is an interactive argument with soundness d · `/|F| for the following language

L =

(cp, com0, g; ρ0) : com0 ← Com

cp,
∑

b1,··· ,b`∈{0,1}

g(b1, · · · , b`), ρ0

 and cp← Setup(1λ)

where λ is the security parameter.

Proof Sketch. The completeness property immediately follows from Construction 2. We now proceed
to argue about the soundness property.

Soundness. Let g(b1, · · · , b`) be an `-variate total-degree-d polynomial over a finite field F. We begin by
observing that the commitment com0 and all coefficient commitments comaj ,i for i = 1, . . . , `, j = 1, . . . ,m
are extractable. That is, for each of them there exists a polynomial-time extractor that receives the same
input as the adversary A and outputs with all but negligible probability a valid pre-image from F,
whenever A succeeds in convincing V. This follows under Assumption 2 using the same argument as in
the proof of Theorem 1 (recall that, as explained in Section 2.3, we implicitly assume that whenever V
receives a commitment he checks whether it is well-formed and rejects otherwise).

Next, we distinguish between the following two complementary cases.

1. There exists 0 ≤ i ≤ ` such that the extracted pre-images for comi, com∗
i are not equal.

In this case, this directly contradicts the soundness of the ZKeq protocol executed in Steps 1d and 3
of Construction 2. This means that A can be used to construct a black box adversary A′ which breaks
the soundness of the ZKeq protocol.

2. For all 0 ≤ i ≤ ` it holds that the extracted pre-images for comi, com∗
i are equal. In this

case let t∗0 be the extracted pre-image of com0, and let h∗i be the extracted pre-image of comi for all i =
0, · · · , `−1. Also, let g∗i be the polynomial defined by coefficients a0, · · · , am which are the pre-images
extracted from the commitments coma0 , · · · , comam sent by P in Step 1b of Construction 2 during
the (i + 1)th round. Notice that since comi and com∗i have the same pre-image h∗, by construction
of com∗i is holds that h∗i = g∗i (0) + g∗i (1). Due to this, notice that (t∗0, g, (ri, g

∗
i , h
∗
i)i=1,··· ,`) is a valid

transcript for a (possibly) cheating prover P∗ controlled by A trying to convince a verifier V that
indeed t0 =

∑
b1∈{0,1} · · ·

∑
b`∈{0,1} g(b1, · · · , b`).

Thus, if t0 6=
∑

b1∈{0,1},...,b`{0,1} g(b1 . . . , b`) then A can be used in a black-box manner in order to
break the soundness property of the sum-check interactive proof protocol.

Moreover, we prove the following lemma that will be helpful for us while proving the zero-knowledge
property of our argument.

Lemma 2. For every verifier V∗ and for every `-variate, total-degree-d polynomial g : F` → F with m
non-zero coefficients, there exists a simulator Sim such that Sim is capable of simulating from cp, com0,m
and t0 (without using g) the partial view of V∗ defined by cp, com0 as well as the messages obtained during
only Step 1 of Construction 2.1

Proof Sketch. We build simulator Sim which simulates the view of V during Step 1 of Construction 2
as follows. First, Sim receives as input commitment parameters cp, commitment com0, an upper bound
m on the number of coefficients of g, as well as the value t0 =

∑
b1,··· ,b`∈{0,1} g(b1, · · · , b`). Sim proceeds

to simulate Step 1 of Construction 2 as follows.

1. For i = 1, . . . , `:

1Notice that the partial view does not include the coefficients a1, · · · , am of g.

13

(a) Sim chooses coefficients a0, . . . am−1 chosen uniformly at random from F and sets am such that
ti−1 = a0 + am +

∑m−1
j=0 aj . Let gi(x) be the polynomial denoted by coefficients a0, . . . , am and

notice that ti−1 = gi(0) + gi(1).

(b) For every 0 ≤ j ≤ m, Sim computes comaj ← Com(cp, aj , ρaj) where ρaj ∈ F is selected uniformly
at random, and sends (coma0 , · · · , comam) to V∗.

(c) Sim computes com∗i−1 ← coma0 ·
∏m
k=0 comak .

(d) Let Simeq be the simulator guaranteed from the zero knowledge property of ZKeq. Sim runs
simulator Simeq on inputs (cp, com∗i−1, comi−1) in order to simulate V∗’s view during the execution
of ZKeq the ith round.

(e) Upon receiving ri from V∗, Sim computes comi ← Eval(cp, coma0 , · · · , comam , 1, ri, · · · , rmi) and

sets ti ← gi(ri) and ρi ←
∑m

j=0 ρajr
j
i .

The produced transcript is indistinguishable from the one V∗ gets while interacting with P since: (i) the
coefficients a0, . . . , am for each round i satisfy the same relation with respect to ti−1 in both cases, (ii)
Comm is statistically hiding, i.e., each commitment is indistinguishable from a commitment to a random
value, and (iii) the output of Simeq for round i is indistinguishable from the messages received by V∗
while running ZKeq on the same values. In the following, we consider a slightly modified simulator Sim
that outputs as secret state the values (t`, ρ`) to be used when building a larger simulator that runs Sim
as a black box.

5 A CMT Protocol over Homomorphic Commitments

Cormode et al.[12] present an efficient interactive proof protocol (to which we shall refer in the sequel
as the CMT protocol) for a prover P to convince a verifier V of the validity of a statement of the form
“y = C(x)” for some depth-d arithmetic circuit C and input x. The protocol proceeds in d rounds,
processing one circuit layer at a time, from the output layer (layer 0) to the input layer (layer d). At
round i, P reduces the claim about the values of C at the ith layer to a claim about the values of C’s
values in layer i + 1. At the final round (round d), the protocol terminates with a claim about the
input wires of C. Since the input x is known to V, V directly checks the validity of this claim, rejecting
otherwise.

Concretely (using the notation of Section 2.4), at the ith round (corresponding to the ith layer of C)
V verifies that for every gate g in the ith layer of C, Vi(g) correctly outputs the values of g. Next, since
Vi already represents the values of g as summation of wiring predicates and gate values, V can verify
the correct computation of ith layer, using the sum-check protocol from Section 4. However, since the
soundness guarantee of the sum-check protocol depends on the size of the underlying field F, we replace
Vi (which is defined over GF(2)) with its multilinear extension Ṽi which is defined over a finite field F as

Ṽi(z) =
∑

g∈{0,1}si
u,v∈{0,1}si+1

fi,z(g, u, v)
def
=

∑
g∈{0,1}si

u,v∈{0,1}si+1

β̃i(z, g) ·
(

˜addi+1(g, u, v) · (Ṽi+1(u) + Ṽi+1(v)) (1)

+ ˜multi+1(g, u, v) · (Ṽi+1(u) · Ṽi+1(v))
)
,

where ˜addi (resp., ˜multi) is the multilinear extension of addi (resp., multi) and β̃i is the multilinear
extension of the selector function that takes two si-bit inputs a, b and outputs 1 if a = b and 0 else.

Assume that the output of C is a single value. At a high level, the protocol proceeds as follows. At
the first round, P claims that y = Ṽ0(0) for some value y. V and P now execute the sum-check protocol,
verifying that Ṽ0(r0) =

∑
g∈{0,1}s0
u,v∈{0,1}s1

f0,r0(g, u, v) at a random point r0 ∈ Fs0 which is generated by V. At

the last step of the sum-check protocol, the sum-check verifier Vsc needs to evaluate f0,r0 at a random

14

point ρ0 ∈ Fs0+2s1 generated by Vsc. Next, since f0,r0 depends on Ṽ1, in order to evaluate f0,r0(ρ0) it is
the case that Vsc needs to evaluate Ṽ1(q1) and Ṽ1(q2) where (q1, q2) ∈ F2s1 are the last 2s1 entries of ρ0.
However, since V does not have access to the correct gate values of layer-1 and thus cannot evaluate Ṽ1 on
his own, he relies on P to provide him with two values a1, a2 claiming that a1 = Ṽ1(q1) and a2 = Ṽ1(q2).
Finally, P and V now again execute the sum-check protocol in order to verify the validity of the two
claims made by P’ thus reducing P’s claims regarding the correct computation of the ith layer of C to
claims about correct computation of layer i− 1. Applying this method repeatedly for d rounds, the final
claim made by P is with regards to an evaluation of Ṽ (the multilinear extension of the circuits inputs)
which can be directly checked by V since he has access to x.

Unfortunately, utilizing the above-described approach directly leads to the number of claims being
verified by V to double with each circuit layer. For a depth-d circuit, this results in a total of 2d executions
of the sum-check protocol. We now describe the method for condensing the CMT protocol to use a single
claim to be verified by V per layer. Indeed, instead of having V verify Ṽ1(q1) and Ṽ1(q2) directly, let
γ : F → Fs1 be the unique line such that γ(0) = q1 and γ(1) = q2. P then sends V the degree-s1
polynomial h(x) = Ṽ1(γ(x)). V then checks that h(0) = a1 and that h(1) = a2. Next, V generates a
random point r and both P and V perform a single execution of the sum-check protocol in order to verify
that h(r1) = Ṽ1(γ(r)). Thus, this procedure reduces the total number of the invocations of the sum-check
protocol from O(2d) to O(d).

Formally, consider the following theorem.

Theorem 4 ([18, 12]). Let C : Fn → Fk be a depth-d layered arithmetic circuit over a finite field F.
The CMT protocol described above is an interactive proof for the function computed by C with soundness
O(d · logS/|F|), where S is the maximal number of gates per circuit layer. Moreover, P’s running time
is O(|C| logS) and the protocol uses O(d logS) rounds of interaction. Finally, in case ˜addi and ˜multi
are computable in time O(polylogS) for all the layers of C, then the running time of the verifier V is
O(n+ k + d · polylogS).

The CMT Protocol over Homomorphic Commitments. Similarly to the case of the standard
sum-check protocol, the messages exchanged during the CMT execution leak information about the
intermediate values of the circuit C and thus potentially about the circuit’s input (which in our case
will include the prover’s witness). Thus, similarly to Section 4, we execute the CMT protocol over
homomorphic commitments and use the commitment’s hiding property to conceal from V information
regarding the circuit’s internal wires.

The modified protocol proceed as follows. First, P sends to V commitments comx1 , . . . , comxn to the n
inputs of C and a commitment com0 to 1 (the claimed output of the circuit when evaluated on x). Next,
at round-i, both P and V use the first step of the sum-check protocol over homomorphic commitments,
resulting in V obtaining a commitment com′i on ai which is claimed by P to be equal to Ṽi−1(r

′
i), where

r′i is uniformly generated by V. Let q1, q2 be the last 2si elements of r′i. P then computes t1 = Ṽi(q1),
t2 = Ṽi(q2), t3 = t1 · t2 and commits to t1, t2, t3 resulting in comt1 , comt2 , comt3 . V then verifies (using
the ZKprod protocol) that indeed comt3 is a commitment to the multiplication of t1 and t2 and uses the
homomorphic properties of the commitment scheme and the ZKeq protocol in order to check that the
value com′i provided earlier by P is indeed a commitment to the evaluation of Ṽi−1(r

′
i). Both V and P

then use the homomorphic properties of the commitment scheme and the ZKeq protocol in order for V to
obtain a commitment comi to a value ai = Ṽi(γ(r′′i)), where r′′i is generated by V, and proceed to the next
round of the protocol using ai and random point ri = γ(r′′i). Finally P reveals x and r0 to V who then
checks their consistency with the initial commitments, evaluates the polynomial Ṽx on the last random
point established rd and both parties use ZKeq to establish that a commitment to this evaluation has the
same pre-image as comd. We stress that this entire last step (which clearly would violate any notion of
zero-knowledge) will not be a step of our final construction; it will instead by replaced with appropriate
evocations of zk-VPD.

Formally, consider the protocol presented in Construction 3 and the following theorem.

15

Construction 3 (CMT Protocol Over Homomorphic Commitment Schemes). Let F be a prime-order
finite field, and let λ be a security parameter, Comm be a linearly homomorphic commitment scheme as described
in Section 2.3, and let cp ← Setup(1λ). In addition, let C : Fn → F be a depth-d layered arithmetic circuit and
let x ∈ Fn be inputs of C such that C(x) = 1. Consider the following protocol between P and V for convincing V
that x is a valid opening to a series of commitments comxi ← Com(cp, xi, ρxi), where xi ∈ F is the i-th element
of input x.

1. Both parties set a0 = 1 and r0 = 0. P generates ρ0 uniformly at random, computes com0 ← Comm(cp, a0, ρ0)
and sends it to V.

2. For all i = 1, · · · , d perform the following.

(a) V and P execute Step 1 of Construction 2 on input ai−1, polynomial Ṽi−1 (as per Equation 1), and
randomness ρi−1 for P and comi−1, ri−1 for V. As a result, V obtains a commitment com′i = Com(t, ρi)
(where t and ρi are known to P and not to V) where P claims that t = Ṽi−1(r′i) with r′i having been
selected uniformly at random by V.

(b) Let (q1, q2) be the last 2si elements of r′i. P computes t1 = Ṽi(q1), t2 = Ṽi(q2), and t3 = t1 · t2. P then
computes commitments comt1 ← Com(cp, t1, ρt1), comt2 ← Com(cp, t2, ρt2), and comt3 ← Com(cp, t3, ρt3)
which he sends to V.

(c) V and P perform ZKprod(cp, t1, t2, t3, ρt1 , ρt2 , ρt3 ; comt1 , comt2 , comt3).

(d) Using Equation 1 V can express Ṽi−1(r′i) as a linear function of r′i, Ṽi(q1), Ṽi(q2), Ṽi(q1)·Ṽi(q2). Thus, using
Eval, V can obtain a new commitment com∗i to the evaluation of Ṽi−1(r′i) and let ρ∗i be the corresponding
randomness.

(e) V and P perform ZKeq(cp, Ṽi−1(r′i), ρi, ρ
∗
i ; com

′
i, com

∗
i).

(f) Let γ : F → Fsi be the line defined by γ(0) = q1 and γ(1) = q2 and let h(x) be the degree-si polynomial
such that h(x) = Ṽi(γ(x)) and h0, . . . , hsi be its coefficients. For j = 0, . . . , si, P computes commitments
comhj

← Com(cp, hj , ρhj
) and sends them to V.

(g) V computes comh(0) ← comh0
and comh(1) ←

∏si
j=0 comhj

which are commitments to h(0) and h(1)
respectively.

(h) V and P perform ZKeq(cp, t1, ρt1 , ρh0 ; comt1 , comh(0)) and ZKeq(cp, t2, ρt2 ,
∑si
j=0 ρhj ; comt2 , comh(1)).

(i) V chooses r′′i ∈ F uniformly at random, sets ri ← γ(r′′i) and sets comi ←
Eval(cp, comh0

, · · · , comhsi
, 1, r′′i , · · · , r′′si).

(j) V sends r′′i and comi to P. P sets ri ← γ(r′′i), ai ← Ṽi(γ(r′′i)) and ρi ←
∑si
j=0 r

′′jρhj
.

3. P sends to V the input x and randomness ρ0 and ρxi
for 1 ≤ i ≤ n. V verifies that comxi

= Com(cp, xi, ρxi
)

for 1 ≤ i ≤ n and that com0 = Com(cp, 1, ρ0).

4. Let Ṽx be the multilinear extension of the polynomial Vx satisfying Vx(i) = xi for all i = 1, · · · , n. The verifier
computes com∗x ← Com(cp, Ṽx(rd), ρ

∗
d) where ρ∗d is chosen uniformly at random.

5. V and P perform ZKeq(cp, Ṽx(rd), ρd, ρx; com∗x, comd). V accepts if the protocol accepts and rejects otherwise.

Theorem 5. Let C : Fn → Fk be a depth-d layered arithmetic circuit over a finite field F. Assuming
Comm is an linearly homomorphic commitment scheme as described in Section 2.3, ZKeq is a zero-
knowledge argument for testing equality of committed values, and ZKprod is a zero-knowledge argument
for testing the product relation between three commitments in Comm, the CMT protocol presented in
Construction 3 is an interactive argument with soundness O(d · logS/|F|) for for the following relation

R =

{(
(cp, C, comx1 , . . . , comxn); (x1, · · · , xn, ρx1 , . . . , ρxn)

)
: C(x1, · · · , xn) = 1 ∧

n∧
i=1

comxi = Com(cp, xi, ρxi)

}

where cp← Setup(1λ), λ is the security parameter, n is the input size of C, and S is the maximal number

16

of gates per circuit layer in C.

Proof Sketch. The completeness property immediately follows from Construction 3. We now proceed
to argue about the soundness property.

Soundness. Soundness follows by a similar argument as in Theorem 3. Indeed, let P∗ be an cheating
prover which convinces V (with non-negligible probability) of a claim “1 = C(x)” for some x and C,
such that 1 6= C(x). Using Assumption 2, for each commitment that V receives from P∗, there exists a
polynomial-time extractor with access to P∗’s code and random tape that outputs (with all but negligible
probability) a corresponding commitment pre-image.

Next, we define the following events.

1. Event A takes place if the extracted pre-image for comd is not equal to Ṽx(rd) or there exists 1 ≤ i ≤ d
such that the extracted pre-images for com′i, com

∗
i during Step 2e, or the extracted pre-images for

comt1 , comh(0) or comt2 , comh(1) during Step 2h are not equal.

2. Event B takes place if there exists 1 ≤ i ≤ d such that the extracted pre-image for comt3 is not equal
to the product of the extracted pre-images for comt1 , comt2 during Step 2c

3. Event Ci (for 0 ≤ i ≤ d) takes place if Ṽi(ri) = ai (where Ṽi is as defined in Equation 1) when
evaluating C on the extracted pre-image of comx and ai is the extracted pre-image of comi.

Note that assuming C(x) 6= 1 is equivalent to assuming Ṽ0(r0) 6= a0 i.e., that ¬C0 occurred. Next, we
study the following (exhaustive) cases.

• Event A occurs. We argue about this case in exactly the same manner as in the proof of Theorem 3.
That is, this directly contradicts the soundness of the ZKeq protocol executed in Steps 5, 2e, or 2h of
Construction 2 since P∗ can be used in a black box manner to construct an adversary A which breaks
the soundness of the ZKeq protocol.

• Event B occurs. Again, this directly contradicts the soundness of the ZKprod protocol executed in
Step 2c of Construction 2 since P∗ can thus be used in a black box manner to construct an adversary
A which breaks the soundness of the ZKprod protocol.

• There exist 1 ≤ i ≤ d such that ¬Ci−1 occurs and events A, B do not. We will now
prove that this case contradicts the soundness property of Construction 2. Note that since V computes

Ṽx(rd)
def
= Ṽd(rd) himself and since event A did not occur, Cd must occur. Therefore in this case it

holds ¬A ∧ ¬B ∧ ¬Ci ∧ ¬C0 ∧ Cd. Therefore, there must exist i′ such that ¬Ci′−1 ∧ Ci′ .
Let a∗i′−1 be the extracted pre-image of comi′−1, a

∗
i′ be the extracted pre-image of comi′ . Since ¬Ci′−1∧

Ci′ holds we obtain that a∗i′ = Ṽi′(ri) and that a∗i′−1 6= Ṽi′−1(ri′−1). Next, since a∗i′ = Ṽi′(ri) from
Steps 2f-2h we obtain that (except with negligible probability) it holds that the extracted pre-images
of comt1 , comt2 are indeed equal to Ṽi′(q1), Ṽi′(q2) (where (q1, q2) are the last 2si elements of r′i).

We now claim that P∗ can be used in black-box manner to construct an adversary A that succeeds in
falsely proving that a∗i′−1 is equal to Ṽi′−1(ri′−1), thus contradicting the soundness of Construction 2.

Indeed, let Vsum−check be a verifier for Construction 3 using the coefficients of Ṽi′−1. A then performs
(using the code of P∗) Step 1 of Construction 2. Since the verifier V for Construction 3 did not reject
while interacting with P∗ (and in particular, did not reject during Step 2a with i = i′), Vsum−check will
not reject as well. Notice that, at this point in Construction 2, it is the case that com` is a commitment
to Ṽi′−1(r

′
i) and so is com′i′ (defined in Step 2a of Construction 3 with i = i′).

Next, Vsum−check and A proceed by performing Steps 2 and 3 of Construction 2. We now argue that
Vsum−check will not reject during Step 3 of Construction 2. Indeed, since the extracted pre-images

17

t1, t2 of comt1 , comt2 are equal to Ṽi′(q1), Ṽi′(q2) and since V did not reject during Step 2c and 2d
of Construction 3 with i = i′, we obtain that V successfully performed a step which is equivalent
to Step 2 of Construction 2. Thus, V holds a commitment com∗i′ to Ṽi′−1(r

′
i) (using the notation of

Construction 3) and Vsum−check holds a commitment com∗` to the same value Ṽi′−1(r
′
i). At this point,

ass explained above we also have that that the pre-images of com` and com′i′ are both equal to Ṽi′−1(r
′
i)

as well. Since event A did not occur, it holds that the pre-images of com′i′ and com∗i′ also have the
same pre-image. By transitivity, we obtain that com∗` is a commitment to the same value as com`, thus
Vsum−check will not reject during Step 3 of Construction 2. Therefore, we have violated the soundness
of Construction 2 by allowing A to falsely prove that a∗i′−1 = Ṽi′−1(ri′−1).

Moreover, we prove the following lemma that will be helpful for us while proving the zero-knowledge
property of our argument.

Lemma 3. For every verifier V∗ and for every depth-d layered circuit C : Fn → Fk over a finite field
F there exists a simulator Sim such that Sim is capable of simulating the view of V∗ in steps 1 and 2 of
Construction 3 from C, without access to x.

Proof Sketch. We build simulator Sim that simulates the view of V during Steps 1 and 2 of Con-
struction 3. The simulator gets as input commitment parameters cp and a circuit C and proceeds as
follows.

1. Sim sets a0 = 1 and r0 = 0, and computes comx ← Com(cp, 0, ρx) for some ρx generated at random.
Sim then sends comx to V∗.

2. Sim generates ρ0 uniformly at random, computes com0 ← Com(cp, a0, ρ0) and sends it to V.

3. Sim proceeds to simulate Step 2 of Construction 3 as follows. For all i = 1, · · · , d Sim performs the
following.

(a) Let Simsum−check be the simulator from the proof of Lemma 2. Sim runs Simsum−check on input
(cp, comi−1, si−1, ai−1), in order to simulate V∗’s view during the execution of Step 2a. In addition
to the final message com′i sent to V∗, Simsum−check also outputs a secret state (ai, ρi) which is not
forwarded to V∗. Notice that ai is the simulated value of Ṽi−1(r

′
i) where r′i was chosen by V∗.

(b) Let (q1, q2) be the last 2si elements of r′i. Sim chooses simulated values t1, t2 ∈ F for Ṽi(q1) and
Ṽi(q2) such that ai (which is the simulated value Ṽi−1(r

′
i)), t1, t2 (which are the simulated values

for Ṽi(q1) and Ṽi(q2)) and r′i satisfy Equation 1.

(c) Sim then computes comtj ← Com(cp, tj , ρtj) for j = 1, 2, 3, where t3 = t1 · t2 and ρt1 , ρt2 , ρt3 are
chosen uniformly at random from F, and forwards them to V∗.

(d) Let Simprod be the simulator guaranteed from the zero knowledge property of ZKprod. Sim
runs simulator Simprod on input cp, comt1 , comt2 , comt3 in order to simulate V∗’s view during the
execution of Step 2c of Construction 3).

(e) Sim performs Step 2d of Construction 3 using the values r′i, t1, t2, t3. This results in a commitment
com∗i to the value of Ṽi−1(r

′
i).

(f) Sim runs simulator Simeq on input cp, com′i, com
∗
i in order to simulate V∗’s view during the exe-

cution of Step 2e of Construction 3).

(g) Sim computes comh(0) as a fresh commitment to t1. For j = 1, . . . , si − 1, Sim chooses values
hj ∈ F uniformly at random. Moreover, he chooses hsi such that

∑si
j=1 hj + t1 = t2 and for

j = 1, . . . , si he computes comhj ← Com(cp, hj , ρhj). Sim then sends comh0 , . . . , comhsi
to V∗.

(h) Sim computes comh(1) ← comh(0) ·
∏si
j=1 comhj .

(i) Sim runs simulator Simeq on input cp, comt1 , comh(0) and on input cp, comt2 , comh(1) in order to
simulate V∗’s view during the execution of Step 2h of Construction 3).

18

(j) Finally, Sim sets ri ← γ(r′′i) (where r′′i was sent by V∗ in Step 2j of Construction 3) and ai ←
H(r′′i) (where H is the degree-si polynomial that has as coefficients t1 = h0, h1, . . . , hsi) and
ρi ←

∑si
j=0 r

′′jρhj . Finally, Sim computes comi ← Comm(ai, ρi).

We claim that the view of V∗ while interacting with Sim (for Steps 1,2 of Construction 2) is indistin-
guishable from the view he gets while interacting with the honest prover P since: (i) All triplets ai
and t1, t2 (for each round i) chosen by Sim satisfy Equation 1, (ii) All values hj (for each round i)
satisfy the condition h0 = t1 and

∑si
j=1 hj + t1 = t2, (iii) by assumption, the messages received by V∗

by Simeq,Simprod,Simsum−check (forwarded via Sim) are indistinguishable form the ones received while
running ZKeq,ZKprod and Construction 2 with the honest prover, and (iv) (ii) Comm is statistically
hiding.

6 A Zero-knowledge Argument with Function Independent Prepro-
cessing

In this section we construct our zero knowledge proof system with function independent preprocessing.
At a high level, similarly to [30], we observe that it is possible to use the CMT protocol in order to verify
the correct evaluation of a circuit C on input x and a witness w assuming that V can somehow evaluate
a specific polynomial P (which only depends on x and w but not on C) on a random point r generated
by V. Adopting the approach of [30], we observe that the evaluation of P can be done using a verifiable
polynomial evaluation protocol (VPD). Since the CMT protocol does not require any preprocessing, the
only part of our construction where preprocessing is required is the VPD protocol. Next, since the VPD
protocol is only used to verify the input layer of the circuit, our preprocessing depends only on (an upper
bound on) the length of the circuit’s input and witness, and not on the circuit’s size of specific wiring
pattern.

While the above-outlined construction does produce an argument with function independent prepro-
cessing, the messages exchanged during the CMT and VPD protocol leak information about the values of
the internal wires of C and thus can potentially leak information about the witness w. We remove such
leakdge, by running the CMT protocol over homomorphic commitments, as described in Sections 4 and 5,
and by replacing the VPD construction of [30] with our zk-VPD construction from Section 3. Formally,
consider the protocol presented in Construction 4 and the following theorem.

Theorem 6. For any circuit size parameter t, input size n and finite field F, Construction 4 is a zero-
knowledge argument system for the relation

R = {(C, x;w) : C ∈ CF ∧ |C| ≤ t ∧ inp(C) ≤ n ∧ C(x;w) = 1}.

Moreover, for every (C, x;w) ∈ R the running time of P is O(|C| · log(width(C))) and if C is log-space
uniform then the running time of V is O(|x|+d·poylog(|C|)). Finally P and V interact O(d log(width(C)))
rounds where d is the depth of C. In case d is polylog (|C|), the above construction is a succinct argument.

Proof Sketch. The completeness property immediately follows from Construction 4. We now proceed
to argue about the knowledge soundness property.

Knowledge Soundness. Let A be a reduced version of P∗ that aborts right after outputting comṼd
.

By the polynomial extractability property of Construction 1, there exists extractor E ′ that upon the
same input as P∗ and the same random tape, outputs a n-variable degree-variable 1, polynomial f and
randomness ρf such that CommitPoly(f, ρf , pp) = comṼd

with all but negligible probability. We are now
ready to build our extractor E as follows:

1. Run E ′(1λ, pp) and receive polynomial f and randomness ρf . If f is not a n-variable degree-variable
1, polynomial f , abort.

19

Construction 4 (Zero-knowledge Delegation Protocol). Let λ be a security parameter and let F be a prime
order field such that |F| is exponential in λ. In additional, let n be an input size parameter and let t be a circuit
size parameter. In the following, for simplicity of exposition we assume that n is a power of 2. Consider the
algorithms G,P,V described below.

• Preprocessing Phase. The parameter generator G on input 1n, 1t, 1λ runs (pp, vp)← KeyGen(1λ, n, 1). The
proving key pk is set to be pp and the verification key vk is set to be vp.

• Evaluation Phase. Let C : Fnx+nw → F be a depth-d layered arithmetic circuit over F such that |C| ≤ t and
nx + nw ≤ n. In addition, let x ∈ Fnx and w ∈ Fnw such that C(x;w) = 1. Assume that nw/nx = 2m − 1 for
some m ∈ N. Consider the following protocol between P and V.

1. Let Ṽd be the multilinear extension of the input layer of C evaluated on (x;w). P commits to the values
of Ṽd by executing comṼd

← CommitPoly(Ṽd, ρṼd
, pp) where ρṼd

is generated uniformly at random. P then
sends comṼd

to V.

2. V runs CheckCom(comṼd
, vp). In case CheckCom rejects, V rejects as well.

3. V and P execute Steps 1 and 2 of Construction 3. In case Construction 3 rejects, so does V. Otherwise, at
the end of Step 2 of Construction 3 V holds a commitment comd of an evaluation of Ṽd at a random point
rd chosen by V while P holds the randomness ρd used to generate comd.

4. P executes (com∗d, π) ← CommitValue(Ṽd, rd, Ṽd(rd), ρṼd
, ρṼd(rd)

, pp) where ρṼd(rd)
is generated uniformly at

random and sends (com∗d, π) to V.

5. Upon receiving (com∗d, π), V executes Ver(com∗d, rd, comṼd
, π, vp). In case Ver rejects, so does V.

6. P and V perform ZKeq(cp, Ṽd(rd), ρd, ρṼd(rd)
; com∗d, comd). (Note that cp is a subset of vp.) In case ZKeq

rejects so does V.

7. V computes the multilinear extension x̃ of the input x, generates a random point rx ∈ (Flognx × 0lognw) and
sends r to P.

8. Upon receiving rx, P executes (com∗x, πx) ← CommitValue(Ṽd, rx, rṼd
, ρrx , pp) where ρrx is generated uni-

formly at random and sends (com∗x, πx) to V. Next, V executes Ver(com∗x, rx, comṼd
, πx, vp). In case Ver

rejects, so does V.

9. V computes comx ← Com(vp, x̃(r′x), ρ′x) where ρ′x is generated uniformly at random and r′x is defined to be
the first log nx elements of rx. V sends ρ′x to P.

10. Both P and V perform ZKeq(cp, Ṽd(rx), ρrx , ρ
′
x; comx, com

∗
x). In case ZKeq rejects so does V.

2. Output w = (f(nx), . . . , f(nw − 1)).

We now argue that assuming P∗ successfully convinced a verifier V, it is indeed the case that C(x,w) = 1.
First, notice that com∗x (produced via CommitValue) and comx are of the same format, i.e., regu-

lar Pedersen commitments under the same cp parameters (as described in Section 2.3). Thus, by the
soundness property of the ZKeq protocol we obtain that comx and com∗x are commitments to the same
pre-image. Next, let Evpd,x be the extractor for P∗ (limited to Steps 1 and 8 of Construction 4) guaranteed
by the evaluation extractability of property of Construction 1, as per Definition 3. Since P∗ convinces
V we obtain that Evpd,x on the same inputs as P∗ outputs f(rx) as the pre-image of com∗x (with high
probability).

We now argue that (f(0), · · · , f(nx − 1)) = x. Indeed, notice that f is an n-variate variable-degree-1
polynomial and it is thus a multilinear extension. In addition, by construction of x̃ (Step 7 of Construc-
tion 4) it holds that (x̃(0), · · · , x̃(nx− 1)) = x. Next, since comx and com∗x are commitments to the same
value, we obtain that x̃(r′x) = f(rx). Thus, by the properties of multilnear extensions we obtain that
with high probability it holds that (f(0), · · · , f(nx − 1)) = (x̃(0), · · · , x̃(nx − 1)) = x.

We now proceed to argue that C(x,w) = 1. Let x′ = (x,w). We now show how to construct a
prover P∗cmt which will convince a verifier Vcmt from Construction 3 that C(x′) = 1. Using the soundness

20

property of Construction 3 we shall obtain that C(x,w) = C(x′) = 1 with high probability. Indeed, let
x′ = (x′1, · · · , x′n), P∗cmt starts by computing comx′i

← Com(cp, x′i, ρx′i) where ρx′i is generated uniformly
at random and cp was given to P∗ by the parameter generator G. P∗cmt then sends comx′1

, · · · , comx′n to
Vcmt and proceeds as follows.

1. P∗cmt sets a0 = 1, r0 = 0, generates ρ0 uniformly at random, computes com0 ← Comm(cp, a0, ρ0) and
sends it to Vcmt. P∗cmt then emulates G and runs P ∗ until Step 3 of Construction 4, discarding messages
sent to Vcmt.

2. Using P (restricted to Step 3 of Construction 4), P∗cmt now interacts with Vcmt during Step 2 of
Construction 3 by forwarding messages between Vcmt and P. At the end of this step P∗cmt and Vcmt
hold a commitment comd and a random point rd chosen by V∗cmt.

3. P∗cmt then sends x′ and the randomness ρx′1 , · · · , ρx′n to Vcmt.

4. P∗cmt then runs P ∗ until Step 6 of Construction 4 again discarding messages sent to Vcmt.

5. Using P (restricted to Step 6 of Construction 4), P∗cmt now interacts with Vcmt during Step 5 of
Construction 3 by forwarding messages between Vcmt and P.

We now proceed to argue that since P convinces V it is the case that P∗cmt convinces Vcmt. Indeed,
first notice that since Step 2 of Construction 4 involve running running Steps 1 and 2 of Construction 3
and since V did not reject we have that V∗cmt will not reject as well. Next, since the commitments
comx′1

, · · · , comx′n to Vcmt sent by P∗cmt to Vcmt are honestly computed commitments to the values of x′

using the randomness ρx′1 , · · · , ρx′n , we obtain that V∗cmt will not reject during Step 3 of Construction 3.
It remains to show that V∗cmt will not reject during Step 5 of Construction 3.

Indeed, notice that f is the unique multilinear extension of x′ = (x,w). Thus we have that the
polynomial Ṽx defined in Step 4 of Construction 3 actually equals f . Let Evpd,d be the extractor for P∗
(limited to Steps 1 and 4 of Construction 4) guaranteed by the evaluation extractability of property of
Construction 1, as per Definition 3. Since P convinces V we have that with high probability Evpd,d on the
same inputs as P∗ outputs f(rd) as the pre-image of com∗d. Next, by uniqueness property of multilinear
extensions, we have that the multilinear extension Ṽx′ of x′ computed in Step 2 of Construction 3 equals
f . This implies that commitment com∗x′ computed in Step 4 of Construction 3 (executed on input x′) is
also to a commitment to Ṽx′(rd) = f(rd). Overall, since comd is produced the same way in Construction 3
and Construction 4, we obtain that the ZKeq protocol is executed on commitments to the same values.
Thus, if P convinces V we obtain that Vcmt will also be convinced by P∗cmt.
Zero Knowledge. Let Simvpd be the simulator from Theorem 1 and Simcmt be the simulator from
Lemma 3. Consider the simulator Sim which is defined as follows.

1. On input (1λ, C, x), Sim runs Simvpd on input (1`, n, 1) where n is the input size of C and receives
commitment comṼd

, parameters pp, vp, and state σ. Note that pp contains commitment parameters
cp for the Pedersen commitment scheme, as defined in Section 2.3. Sim sends vp to V∗.

2. Sim runs Simcmt on input (cp, C), in order to simulate V∗’s view during the execution of Step 3 of
Construction 4. Let comd be the corresponding output forwarded to V∗ and rd be the last random
point chosen by V∗.

3. In order to simulate V∗’s view during Step 4 of Construction 4, Sim runs Simvpd on input (rd, σ, pp)
and receives commitment com∗d, proof π, and new state σ. Sim then forwards (com∗d, π) to V∗.

4. Sim runs simulator Simeq on input comd, com
∗
d in order to simulate V∗’s view during the execution of

Step 6 of Construction 4.

21

5. Upon receiving rx from V∗, Sim simulates V∗’s view during Step 8 of Construction 4. To that end,
Sim runs Simvpd on input (rx, σ, pp) and receives commitment com∗x, proof πx, and new state σ. Sim
then forwards (com∗x, πx) to V∗.

6. Upon receiving ρ′x from V∗, Sim computes comx ← Comm(vp, x̃(rx), ρ′x). Next, Sim runs simulator
Simeq on input comx, com

∗
x in order to simulate V∗’s view during the execution of Step 10 of Construc-

tion 4.

We claim that the view of V∗ while interacting with Sim is indistinguishable from the view he gets while
interacting with the honest prover P since: (i) Comm is statistically hiding, (ii) the messages received by
V∗ by Simeq (forwarded via Sim) are indistinguishable from the ones received while running ZKeq with
the honest prover, (iii) the messages received by V∗ by Simcmt (forwarded via Sim) are indistinguishable
from the ones received while running Construction 3 with the honest prover, and (iv) the messages
received by V∗ by Simvpd (forwarded via Sim) are indistinguishable from the ones received while running
Construction 1 with the honest prover. Note that the values of commitments comd, com

∗
d, comx, com

∗
x are

independent of each other (modulo the common commitment parameters cp) in both the real and the
ideal execution. In particular, the messages exchanged during Step 3 of Construction 1 do not depend
on the value of comx (comṼd

in the real execution).

Asymptotic Complexity. Firstly, we note that Pedersen commitments, as well as protocols ZKeq,
ZKprod, require a constant number of exponentiations and field operations (when instantiated as explained
in Section 2.3). Then, the analysis of the asymptotic complexity of our argument follows in a straight
forward manner from: (i) the analysis of CMT [12], (ii) the analysis of the standard VPD [30], (iii) the
fact that the zk-VPD protocol of Section 3 has the same asymptotic behavior as the plain VPD of [30].

Acknowledgments

This work was supported in part by NSF awards #1514261 and #1526950, financial assistance award
70NANB15H328 from the U.S. Department of Commerce, National Institute of Standards and Tech-
nology, the 2017-2018 Rothschild Postdoctoral Fellowship, and the Defense Advanced Research Project
Agency (DARPA) under Contract #FA8650-16-C-7622.

References

[1] E. Ben-Sasson, I. Bentov, A. Chiesa, A. Gabizon, D. Genkin, M. Hamilis, E. Pergament, M. Riabzev,
M. Silberstein, E. Tromer, and M. Virza. Computational integrity with a public random string from
quasi-linear PCPs. In Advances in Cryptology—Eurocrypt 2017, pages 551–579, 2017.

[2] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In CRYPTO 2013, pages 90–108. 2013.

[3] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles of elliptic
curves. In CRYPTO 2014, pages 276–294. 2014.

[4] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge for a
von Neumann architecture. In USENIX Security 2014, 2014.

[5] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In ITCS 2012, pages 326–349, 2012.

[6] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 326–349, 2012.

22

[7] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable one-way functions.
STOC 2014, pages 505–514.

[8] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT 2004, pages
56–73, 2004.

[9] J. Bootle, A. Cerulli, P. Chaidos, and J. Groth. Efficient zero-knowledge proof systems. In Founda-
tions of Security Analysis and Design VIII - FOSAD 2014/2015/2016 Tutorial Lectures, pages 1–31,
2016.

[10] E. Boyle and R. Pass. Limits of extractability assumptions with distributional auxiliary input. In
ASIACRYPT 2015, pages 236–261.

[11] A. Chiesa, M. A. Forbes, and N. Spooner. A zero knowledge sumcheck and its applications. Cryp-
tology ePrint Archive, Report 2017/305, 2017. http://eprint.iacr.org/2017/305.

[12] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming inter-
active proofs. In ITCS 2012, pages 90–112, 2012.

[13] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, and S. Zahur.
Geppetto: Versatile verifiable computation. In S&P 2015, pages 253–270, 2015.

[14] R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or: Can zero-knowledge
be for free? In Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, pages 424–441, 1998.

[15] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno. Hash first, argue later:
Adaptive verifiable computations on outsourced data. Cryptology ePrint Archive, 2016.

[16] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signa-
tures. J. Cryptology, 19(2):169–209, 2006.

[17] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct nizks
without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, pages 626–645, 2013.

[18] S. Goldwasser, Y. T. Kalai, and G. Rothblum. Delegating computation: interactive proofs for
muggles. In STOC 2008, pages 113–122, 2008.

[19] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems.
In STOC 1985, pages 291–304.

[20] V. Goyal. Reducing trust in the PKG in identity based cryptosystems. In Advances in Cryptology -
CRYPTO 2007, 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, pages 430–447, 2007.

[21] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Advances in Cryptology
- ASIACRYPT 2010 - 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings, pages 321–340, 2010.

[22] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, pages
305–326, 2016.

23

http://eprint.iacr.org/2017/305

[23] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria,
British Columbia, Canada, pages 723–732, 1992.

[24] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J.
ACM, 39(4):859–868, 1992.

[25] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC 2013, pages
222–242, 2013.

[26] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation.
In S&P 2013, pages 238–252, 2013.

[27] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Ad-
vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1991, Proceedings, pages 129–140, 1991.

[28] R. S. Wahby, I. Tzialla, abhi shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs without
trusted setup.

[29] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them. Commun. ACM,
58(2):74–84, 2015.

[30] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vSQL: Verifying arbitrary
SQL queries over dynamic outsourced databases. In IEEE Symposium on Security and Privacy
(S&P) 2017, 2017.

24

	Introduction
	Preliminaries
	Cryptographic Assumptions
	Interactive Proofs and Argument Systems
	Building Blocks
	Circuit and Polynomial Notation

	Zero-Knowledge Polynomial Delegation Commitment Scheme
	A Sum-check Protocol over Homomorphic Commitments
	A CMT Protocol over Homomorphic Commitments
	A Zero-knowledge Argument with Function Independent Preprocessing

