
Under Pressure: Security of Caesar Candidates
beyond their Guarantees
Serge Vaudenay and Damian Vizár

EPFL, Switzerland

Abstract. The Competition for Authenticated Encryption: Security, Applicability and Robust-
ness (CAESAR) has as its official goal to “identify a portfolio of authenticated ciphers that
offer advantages over AES-GCM and are suitable for widespread adoption.” Each of the 15
candidate schemes competing in the currently ongoing 3rd round of CAESAR must clearly
declare its security claims, i.a. whether or not it can tolerate nonce misuse, and what is the
maximal data complexity for which security is guaranteed. These claims appear to be valid for
all 15 candidates. Interpreting “Robustness” in CAESAR as the ability to mitigate damage
even if security guarantees are void, we describe attacks with birthday complexity or beyond,
and/or with nonce reuse for each of the 15 candidates. We then sort the candidates into classes
depending on how powerful does an attacker need to be to mount (semi-)universal forgeries,
decryption attacks, or key recoveries. Rather than invalidating the security claims of any of
the candidates, our results provide an additional criterion for evaluating the security that
candidates deliver, which can be useful for e.g. breaking ties in the final CAESAR discussions.

Keywords: Authenticated Encryption · CAESAR Competition · Forgery · Decryption Attack ·
Birthday Bound · Nonce Misuse

1 Introduction
Authenticated encryption (AE) is a symmetric key primitive that simultaneously ensures confi-
dentiality, integrity and authenticity of encrypted messages [BR00, KY01]. Most of existing AE
schemes also allow to authenticate a public string, the associated data, along with the message
and are called schemes for AE with associated data (AEAD)[Rog02]. During the decade and a
half of its existence, AE has been not just a frequent research object but also a frequently used
tool (e.g. in IEEE 802.11i, IPsec ESP and IKEv2, NIST SP 800-38D, ANSI C12.22, and ISO/IEC
19772:2009), especially because most practical applications of symmetric key cryptography require
both confidentiality and integrity at the same time.

In 2013, the Competition for Authenticated Encryption: Security, Applicability and Robustness
(CAESAR) was announced. The reason for launching the competition was, in part, a startling
amount of recently discovered issues with applications of symmetric cryptography, as well as with
the most popular AE schemes CCM [WFH03, Jon03] and GCM [MV04]. The security misses in the
applications of symmetric encryption constituted practically exploitable vulnerabilities [Berb] while
in the case of CCM and GCM, concerns were expressed about their applicability [RW03], their
security proofs [IOM12] or their susceptibility to devastating attacks when the usage conditions
were violated [Fer05, Jou06].

Thus CAESAR’s main goal has been set to “identify a portfolio of authenticated ciphers
that offer advantages over AES-GCM and are suitable for widespread adoption” [Bera]. GCM
instantiated with the AES blockcipher has been used as a reference that ought to be surpassed
by the CAESAR candidates, while the name of the competition spells out the properties the
candidates are expected to guarantee: security, applicability and robustness. Out of 57 submissions
to the first round of CAESAR, 15 candidates still compete in the 3rd round [CAE]. All of the 3rd

Table 1: Classification of 3rd round CAESAR candidates based on their claimed security guarantees w.r.t
the nonce misuse and quantitative security. Here “birthday bound” informally refers to about 264 processed
bits. For security in presence of nonce misuse, we consider MRAE [RS06], OAE [FFL12] or RAE [HKR15].
For each candidate, we consider an instance with 128-bit secret key.

up to “birthday bound” beyond “birthday bound”

unique nonces OCB, NORX, Jambu, CLOC&SILC
Tiaoxin, Morus, Keyak, Ketje,
Deoxys I&II, Ascon, AEGIS,

ACORN

nonce misuse Deoxys II, COLM, AEZ -

round candidates’ security claims are supported by a solid amount of cryptanalysis and/or security
proofs, and are generally believed to be sound.

Birthday bound and nonce-misuse. All of CAESAR candidates must accept so called public
message number, a.k.a. nonce along with the secret key, AD and the message as an input. The
nonce is akin to an initialization vector, and it can be assumed to have a unique value for every
encryption query. The candidates are allowed to request that the nonce must not repeat in order
for their security guarantees to apply. This is the case for 12 3rd round CAESAR candidates.
AEZ and Deoxys guarantee no degradation of authenticity, and the minimal (and unavoidable)
degradation of confidentiality1 even if the nonces are misused, i.e. repeated. COLM guarantees
a weaker version of confidentiality protection in presence of nonce misuse. Each candidate must
also specify how much data can be securely processed with a single secret key. Most CAESAR
candidates guarantee security up to the so called birthday-bound; for AES-based AE schemes, this
means processing no more than about 264 blocks of data per key and making no more than 264

encryption queries. In this paper, we abuse the term “birthday bound” and let it refer to this data
complexity - about γ · 264 processed bits for a small γ.

We sort the 3rd round candidates, as well as CCM and GCM, into four classes based on their
security claims w.r.t. the nonce misuse and quantitative security in Table 1. We consider a scheme
to claim security against nonce reuse if it targets MRAE [RS06], OAE [FFL12] or RAE [HKR15]
security. For each candidate, we consider an instance with 128-bit secret key.

Robustness: (in)security beyond guarantees. All CAESAR candidates clearly state what secu-
rity properties do they guarantee as long as the usage conditions, such as respecting the nonces or
data limits, are respected. However, they give little or no information on what exactly happens
when their guarantees become void.

This is what we aim to determine in this work. We take the liberty to interpret robustness of
AE schemes as the ability to resist powerful attacks, possibly beyond the limitations guaranteed by
the designers, and analyze the security of all 15 3rd round CAESAR candidates against attacks at
the birthday bound or beyond, and against nonce-misuse attacks. We consider secret keys of 128
bits, and we informally call “birthday bound” a complexity with order of magnitude 264, in order
for the results for different candidates to be comparable.

Our contribution. For each candidate we present one or more attacks. We sort the CAESAR
candidates into five categories based on the adversarial powers necessary to break them: (A) Those
for which we have a nonce-respecting universal forgery and a decryption attack at the birthday
bound. (B) Those others for which we have a nonce-respecting universal forgery and a decryption
attack beyond the birthday bound, but below exhaustive search. (C) Those others for which we

1As the encryption is required to be a deterministic algorithm, repeating all inputs unavoidably means repeating
the ciphertexts as well.

2

Table 2: A summary of attacks on 3rd round CAESAR candidates and their clustering based on the type
of attack. The categories (A), (B), (C), (D) and (E) are listed from top to bottom. Reusability means that
forging/decrypting multiple ciphertexts without significantly increasing the time/data complexity, and the
comments “(but N,A)”, “(but N)” and “(but A)” mean that the reusability is limited to fixed values of the
listed parameters. The values in the column “nonce-misuse” indicate maximal number of times any nonce
is used (so 1⇒ nonce respecting) and q denotes the number of forgeries intend to do in a single attack.

algorithm type of attack nonce-reuse # queries reusable
AES-GCM (|N | > 128 only) universal forgery 1 3 · 264 yes
AEZ key recovery 1 3 · 264

OCB universal forgery & CCA decryption 1 2 (one of length 264) yes
AES-OTR universal forgery & CPA decryption 1 2 (one of length 264) yes
CLOC universal forgery & CPA decryption 1 280 yes
AES-GCM universal forgery & CPA decryption 2 2 yes
CCM CPA decryption 2 1
DEOXYS-I universal forgery & CCA decryption 3 3 yes
AEGIS-128 universal forgery & CPA decryption 40 40 yes (but N,A)
ACORN-128 universal forgery & CPA decryption 300 300 yes (but N,A)
CLOC & SILC CPA decryption 2 1 no
Ketje Sr key recovery 50 50
Tiaoxin key recovery 50 16
MORUS 640 universal forgery & CPA decryption 8 8 yes (but N)
NORX32-4-1 CPA decryption |C|/384 |C|/384 no
Ascon-128 CPA decryption |C|/64 |C|/64 no
Lake Keyak CPA decryption |C|/1344 |C|/1344 no
COLM semi-universal forgery 1 + q 264 yes (but N,A)
JAMBU universal forgery 1 264 (decryption) no
Deoxys-II semi-universal forgery & CCA decryption 2m 2128−m yes (but A)

have a forgery or a decryption attack with small complexity, possibly with nonce-misuse. (D)
Those others for which we have a forgery or a decryption attack at the birthday bound, possibly
with nonce-misuse. (E) Remaining ones.

Our results are summarized in Table 2, where the categories (A), (B), (C), (D) and (E) are
listed in this order. For each candidate, we indicate what type of attack is mounted, what is the
query complexity2, whether it needs nonce misuse, and whether it is reusable. We call a forgery
or decryption attack reusable, if forging/decrypting multiple ciphertexts does not significantly
increase the time/data complexity of the attack. The comments “(but N,A)”, “(but N)” and
“(but A)” mean that the reusability is limited to a fixed pair of nonce and AD, a fixed nonce or a
fixed AD, respectively. All attacks presented in Table 2 succeed with high probability.

The contribution of this result is twofold. Firstly, Table 1 shows a situation that is quite
different from the one suggested by Table 2. Based on the former, one could think that any of the
schemes within the same category would provide the same kind of security. Table 2 does however
suggest, that this may not at all be the case, and that the exact security provided by candidates
with the same kind of guarantees differs. This can be very useful to break ties at the end of 3rd

round of CAESAR competition.
Secondly, some of these attacks can be viewed as disturbingly powerful (e.g. key recoveries).

Taking into consideration the circumstances that led to the start of CAESAR competition, it is
debatable whether schemes that succumb to such attacks are robust enough (in the specific sense
we picked for this paper) to be recommended as CAESAR finalists.

Disclaimer. We understand that none of the attacks we present violates the security claims of
any of the CAESAR candidates. That is not the goal of our work. Our goal is to determine to

2The time and memory complexities of the attacks mentioned in the table are small multiples of the query
complexity.

3

what degree will the security of respective candidates deteriorate after the guarantees become void.

Related work. The (in)security of GCM mode was treated by a number of works [IOM12, Saa12,
HP08, PC15], in particular Joux authored the “forbidden” nonce misusing attack [Jou06]. Collision
attack similar to ours, or inspiring ours, were described for previous versions of AEZ by Fuhr
et al. [FLS15], and Chaigneau and Gilbert [CG16]. Collision attack on OCB were given by Ferguson
[Fer02] and Sun et al. [SWZ13]. Reusable forgery attacks on OCB, OTR and COLM were described
by Forler et al. [FLLW17]. Collision-based attacks on COPA and ELmD (the predecessors of
COPA) were described by Bay et al. [BEK16] and Lu [Lu17]. Bost and Sanders found a flaw in the
masking shceme of an earlier version of OTR [BS16], Huang and Wu described a collision based
forgery [HW]. Mileva et al. describe a nonce misusing distinguisher attack for MORUS [MDV16].
The collision-based forgeries on NORX, Ascon and Keyak are matching Lemma 2 of the work on
provable generic security of full-state keyed duplex by Daemen et al. [DMA17].

Acknowledgements. We would like to thank all CAESAR designers who provided us with their
feedback. We would like to thank the Ascon team for pointing out that generic attacks with
the same time but much lower data complexity than our forgery exist, and the Deoxys team for
suggesting a better way to measure adversarial resources for nonce misuse.

Organization of the paper. In Section 2 we introduce notations that are used in the paper. Then
we address CCM, GCM abd each CAESAR candidate in a separate section.

2 Preliminaries
When presenting the CAESAR candidates, we try to respect the original notations but deviate a
bit to unify the notation of the common input/output values. Hence, the secret key is denoted
by K, the nonce (or IV) is denoted by N , the associated data is denoted by A, the plaintext is
denoted by M , the ciphertext is denoted by C, and the tag (if any) is denoted by T . We further
use τ to denote the tag length (or the ciphertext expansion/stretch, in general).

Syntax and attack model. Each of the candidates defines an encryption algorithm E that maps a
tuple (K,N,A,M) to a ciphertext. For most candidates, the ciphertext consists of a core ciphertext
C and a tag T . The candidates also define a decryption algorithm D that maps (K,N,A,C) or
(K,N,A,C, T) to a message M or to an error symbol ⊥, if the authentication fails.

For our attacks, we assume the adversary can make black-box oracle queries to the encryption
algorithm, and possibly to the decryption algorithm as well, both initialized with an unknown key.
The adversary is able to choose all inputs freely, but it may be forced to use unique nonces for
encryption queries.

In a decryption attack, we are given a tuple (N,A,C, T) produced with an unknown message
and we try to recover the underlying message without making the decryption query (N,A,C, T).
In a forgery attack, we aim at producing a valid tuple (N,A,C, T) that authenticates correctly,
but was not obtained from a previous encryption query.

Notations. Each of the candidates internally partitions the inputs into blocks of constant size.
We use several symbols to denote the length of the blocks, e.g. n, r or ν, in order to respect the
notation of each candidate as much as possible. We use subscript to index blocks in a query and
superscript to index queries, e.g. M j

i is the ith message block in jth query. We letM1, . . . ,M`
n←M

denote the partitioning of a string M into blocks of n bits, except for 1 ≤ |M`| ≤ n, such that
` = d|M |/ne. We let |M |n = d|M |/ne. We let ε denote the empty string and |X| the length of a
string X in bits. For two strings X,Y with |X| = |Y |, we let X&Y denote the bitwise AND of X
and Y . With a slight abuse of notation, we let X0∗1 denote extending a string X with the smallest
number of zero bits followed by a “1” that will yield a string whose length is a multiple of a block

4

size, when a block size is implicit from the context. We let msba(X) denote the a most significant
bits of a string X, and similar applies to lsba. We let encn(a) denote the n-bit canonical encoding
of an integer 0 ≤ a ≤ 255.

3 AES-CCM
CCM [WFH03] combines encrypted CBC MAC for authentication with CTR mode for message
encryption. We assume the blockcipher E is AES. To encrypt a query (N,A,M), CCM first
computes the value U = CBCK(B) with (with no IV for CBC) where the string B is an injective,
prefix-free encoding of N,A,M, τ and other parameters, s.t. 128 divides |B|. In particular, N and
|M | is encoded in B0 and |A| is encoded in B1. The ciphertext is computed as Ci = Mi⊕EK(I(N, i))
for i = 1, . . . , |M |128 where I(N, i) is a 128-bit injective encoding of N and i, such that I(N, i) 6= B0
for i ≥ 0. The tag is computed as T = msbτ (U ⊕EK(I(N, 0))).

CPA decryption (nonce-misuse, tiny complexity). If we are able to force a nonce to be reused
with the same secret key, then decrypting a ciphertext-nonce pair N,C is simply achieved by
querying (N, ε, 0|C|) to get the ciphertext C ′ and the tag, and computing the message M ← C ⊕C ′.

Semi-universal forgery (nonce-misuse, birthday bound). We assume that τ = 128. This forgery
is semi-universal, we can only choose M and have no control over N and A. We make 264 queries
(N i, Ai,M ′) where N i-s are distinct, each Ai is a distinct randomly chosen string of 240 bits (this
makes sure that length of N and A encoded in B is exactly 3 blocks), and M ′ 6= M but |M ′| = |M |.
We expect to find i 6= j with T i = T j , for which we deduce that the internal states of the CBC
MAC just after processing of AD collided. Then we make a query (N,Ai,M), get C, T , and forge
with (N,Aj , C, T).

4 AES-GCM
AES-GCM [MV04] combines counter mode for message encryption with a Wegman-Carter MAC
(based on a polynomial AXU hash called GHASH) for authentication. It uses AES as the blockcipher
E, and derives a key for GHASH as L = EK(0). GHASH takes two strings as input and computes

GHASHL(A,C) =
`⊕

i=1

L`−i+1 ·Xi, with X = A‖0∗‖C‖0∗‖enc64(|A|)‖enc64(|C|)

where ` = |A|128 + |C|128 + 1 and the multiplications are done in GF(2128). To encrypt a query
(N,A,M), we first set I ← N‖0311 if |N | = 96 and to I ← GHASHL(ε,N) if |N | 6= 96. Then we
compute the ciphertext C as counter mode encryption ofM , using3 inc(Y) 7→ msb96(Y)‖(lsb32(Y)+
1) as the incrementation function and inc(I) as the initial counter value. Then we compute the tag
as T = msbτ (GHASHL(A,C)⊕EK(I)).

CPA decryption (nonce-misuse, tiny complexity). The nonce-misuse decryption attack on CCM
is applies to GCM as well.

Universal forgery (nonce misuse, tiny complexity). This attack has been first described by Joux
as the “forbidden attack” [Jou06] (as nonce misuse is “forbidden” by GCM’s security model). The
core of the attack is recovering the derived key L, which makes forging very easy. We assume that
τ = 128.

We make two queries (N, ε,M i) with all M1,M2 random distinct strings of 128 bits, and get
Ci, T i for i = 1, 2. We then compute the polynomial over GF(2128) P (Λ) = (C1

1⊕C2
1)·Λ2⊕(T 1⊕T 2).

As T1 and T2 are computed with the same nonce, T 1⊕T 2 will be an XOR of the underlying outputs
3We abuse the notation slightly; the incrementation is done with integer representation of lsb(Y).

5

of GHASH and thus L will be a root of P (Λ). Moreover, L will be the only root as squaring yields
a bijection over GF(2128). Then, to forge a ciphertext for a tuple (N,A,M), we make a query
(N,A′,M ′) with arbitrary A′ and M ′ such that |M | = M ′. We forge with (N,A,C, T) where
C = C ′⊕M ′⊕M and T = T ′⊕GHASHL(A′, C ′)⊕GHASHL(A,C).

Universal forgery (nonce respecting, birthday bound, |N | > 128). If nonces longer than 128
bits are allowed, it is possible to recover L in a nonce-respecting birthday attack. We note, however,
that the use of nonce length other than 96 bits is uncommon and discouraged [IOM12]. We assume
that τ = 128. We make 264 encryption queries (N i, ε,M i) with all N i random distinct strings of 256
bits,M i = B‖M i

2 for a fixed block B and eachM i
2 a random distinct string of 128 bits and get Ci, T i-

s. We expect to find i 6= i′ such that Ci1 = Ci
′

1 , which implies GHASHL(ε,N i) = GHASHL(ε,N i′).
We construct the polynomial P (Λ) = (Ci2 ⊕ Ci

′

2) · Λ2⊕(T i⊕T i′) for this pair, and recover L as in
the previous attack.

5 AEZ v5
AEZ encryption [HKR] (in the AEZ-core case: the general one) has the following structure

Encrypt(K,N,A, τ,M) = f(I, J, L,∆,M)

where K is the secret key, N is a nonce, A is the associated data, τ is the stretch, M is the
plaintext, (I, J, L) = KDF(K), and the value ∆ = H(I, J, L, τ,N,A) is computed using a dedicated
hash function H. So, getting (I, J, L) is equivalent to getting K in terms of total break attacks.
All binary inputs can have an arbitrary length and are internally processed in blocks of 128 bits.

Furthermore, whenever we encrypt the same message M with the same key K, any collision on
the hash function results in getting the same ciphertext. Conversely, if the message is long enough,
any collision on the ciphertext when encrypting the same plaintext with the same key must imply
a collision on the hash function. So, it is easy to detect collisions on the hidden variable ∆ in a
chosen message attack.

In what follows, we denote k = (0, J, I, L, 0) a sequence of 5 blocks which are used as round
keys in AES4, a subroutine of H based on AES [DR02] reduced to 4 rounds. We further denote
H(I, J, L, τ,N,A) = hk(τ,N,A). We will use another subroutine Ej,iK defined by

Ej,i
K (X) = AES4k(X ⊕ jJ ⊕ 2di/8eI ⊕ (i mod 8)L)

for j ≥ 0 and where and integer times a block (badly) denotes the classical GF(2128) multiplication.

I, J, L-recovery attack. The Chaigneau-Gilbert attack [CG16] on AEZ v4.1 can be applied to
AEZ v5 to extract J by a nonce-respecting chosen message attack at the birthday bound. When
N and A are single blocks, then based on the AEZ v5 specification [HKR] H becomes

hk(τ,N,A) = E3,1
K (τ)⊕ E4,1

K (N)⊕ E5,1
K (A)

= E3,1
K (τ)⊕ AES4k(N ⊕ 4J ⊕ 2I ⊕ L)⊕ AES4k(A⊕ 5J ⊕ 2I ⊕ L)

If we limit ourselves to queries with A = N ⊕ c for a fixed block c and variable nonces, a ciphertext
collision with the pair (N,N ′) will mean that N ′ = N ⊕ c⊕ J . The attack runs as follows:

1: pick an arbitrary block c and a long enough (a few blocks) message M
2: make chosen message encryption queries with input (N,A, τ,M), for a random (but fresh) N

and A = N ⊕ c, until we see a ciphertext collision with N and N ′
3: deduce J = N ⊕N ′ ⊕ c

The Chaigneau-Gilbert attack requires little efforts to be adapted to AEZ v5 but it can recover
I and L with a nonce-misuse attacks. Here, we notice that we can use a feature of AEZ allowing to

6

use nonces of several blocks to have a similar attack as the one above [HKR]. We now use an empty
A and N of several blocks. If |N |128 = 2, then following the AEZ v5 specifications H becomes

hk(τ, (N1, N2)) = E3,1
K (τ)⊕ E4,1

K (N1)⊕ E4,2
K (N2)

= E3,1
K (τ)⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L)⊕ AES4k(N2 ⊕ 4J ⊕ 2I ⊕ 2L)

We limit ourselves to encryption queries where N2 = N1 ⊕ c for a fixed block c and we see that
a ciphertext collision with N and N ′ such that yields L = N1 ⊕N ′1 ⊕ c.Thus we recover L in a
similar attack as before.

Next, we see that when |N |128 = 9, the hash function H becomes

hk(τ, (N1, . . . , N9)) = E3,1
K (τ)⊕ E4,1

K (N1)⊕ · · · ⊕ E4,9
K (N9)

= E3,1
K (τ)⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L)⊕ · · · ⊕

AES4k(N7 ⊕ 4J ⊕ 2I ⊕ 7L)⊕ AES4k(N8 ⊕ 4J ⊕ 2I)⊕
AES4k(N9 ⊕ 4J ⊕ 4I ⊕ L)

We limit ourselves to encryption queries where N2, . . . , N8 are constant and N9 = N1 ⊕ c for a
constant block c and we see that a ciphertext collision with N and N ′ yields 6I = N1⊕N ′1⊕ c. We
recover I in a similar attack as we mounted for J . So, we recover I, J, L with a nonce-respecting
chosen message attack at the birthday bound.

6 OCB3 (OCB v1.1)
OCB [KR] (a.k.a. OCB3) uses AES-128 as the blockcipher E and derives two secret offset values:
L from the secret key K only, and R from K, the nonce N (a string of no more than 120 bits),
and the stretch τ . Each plaintext block Mi is encrypted into Ci by

Ci = EK(Mi ⊕∆i)⊕∆i

with
∆i = R⊕ γi · L

where · denotes the multiplication in GF(2128) and γi is a 128-bit block that takes a unique value
for every 1 ≤ i ≤ 2120. The nonce N has up to 120 bits. We have that L = 4 · EK(0). The way to
compute R is a bit complicated but there is a simple particular case: when the 6 least significant
bits of N are all zero, then R = EK(0∗1‖N).

When the last block M` of M is complete and τ = 128, the tag is computed as

T = EK

(
2−1 · L⊕∆` ⊕

`⊕
i=1

Mi

)
⊕HK(A)

where (assuming the last block of A is complete)

HK(A) =
⊕

i

EK(Ai ⊕ γi · L)

and · denoting the multiplication in GF(2128). The attacks we describe can be easily generalized
to the case when the last block of M and the last block of A are not 128 bits long

L-recovery attack. An attack by Ferguson [Fer02] allows to recover L. Essentially, it encrypts a
very long random message and looks for collisions of the values Mi ⊕ Ci. If such a collision occurs
for i 6= j, we deduce Mi ⊕ γi · L = Mj ⊕ γj · L. Indeed, if Mi ⊕ γi · L = Mj ⊕ γj · L, we have
Mi ⊕∆i = Mj ⊕∆j so Mi ⊕ Ci = Mj ⊕ Cj . With this equation, we deduce L. This attack is
nonce-respecting and works at the birthday bound.

Querying a huge message can be avoided in the nonce-misuse setting: make many queries
(N,Ai,M) withM = ε empty and Ai = Ai1‖Ai1 of two equal blocks. Then, if Ai1 = Aj1⊕(γ1⊕γ2) ·L
for some i 6= j, we observe a collision T ′ = T . This allows us to recover L.

7

Universal forgery (tiny complexity, using L). Using L, we can make a universal forgery for
(N,A,M ′). If |M ′|128 = ` > 1, we

• define a permutation π : {1, . . . , `} → {1, . . . , `} as π(i) = (i+ 1 mod `) + 1,

• construct a message M with Mi = M ′π(i)⊕ γi · L⊕ γπ(i) for every i

Then, we make a query with (N,A,M) to get (C, T). We compute C ′ by C ′i = Cπ−1(i) ⊕ (γi ⊕
γπ−1(i)) · L for every i and it gives a valid encryption (C ′, T) of (N,A,M ′). This attack is
nonce-respecting and using a single encryption query, but needs L.

If |M ′|128 = 1, we construct M = M ′‖(γ1⊕ γ2) · L, make a query with (N,A,M) to get (C, T),
and take C ′ = C1, which again gives a valid encryption (C ′, T) of (N,A,M ′).

EK oracle (tiny complexity, using L). We can also implement an EK oracle: first, encrypt a
random message M with A = ε such that |M |128 = ` and

⊕
i>1 Mi = (2−1⊕ γ1⊕ γ`) ·L. This way,

we have T = EK(M1⊕R⊕γ1 ·L) = C1⊕R⊕γ1 ·L from which we deduce R. Additionally, we obtain
` pairs (xi, EK(xi)) from the (Mi, Ci) pairs, with known xi = Mi ⊕R⊕ γi ·L. When ` = 214 (so a
message of 256KB), we expect to have one index i for which xi is of form xi = 071‖N ′ for some N ′
ending with six zero bits. (We can even make sure this happens by taking Mi = (ai‖B‖bi)⊕ γi · L
with ai of eight bits, bi of six bits, and i 7→ (ai‖bi) being surjective onto the 14-bit strings.) So, we
can deduce R′ = EK(0∗1‖N ′) for the unused nonce N ′. Using this (N ′, R′) pair, we can make a
nonce-respecting query with nonce N ′ to obtain many new (x′i, EK(x′i)) pairs with all x′i chosen.
We can even prepare the next nonces to be respectfully used and we implement an EK oracle this
way. This attack is nonce-respecting with tiny complexity but using L. It uses an encryption query
with a message of 256KB for the first time it is run. Then, it uses a single encryption query of size
corresponding to the values we want to encrypt (plus one block).

CCA decryption attack for messages of odd length (tiny complexity, using L). Assume that
we want to decrypt (N,A,C, T) (let M be its decryption). We can first compute R associated with
N with the above EK oracle, as well as some fresh N ′ and its associated R′ with tiny complexity.
The message M ′ defined by M ′i = Mi ⊕R⊕R′ encrypts into (C ′, T ′) such that C ′i = Ci ⊕R⊕R′
and T ′ = T when ` is odd. So, a CCA decryption query with (N ′, A,C ′, T) gives M ′ from which
we deduce M .

7 AES-OTR v3.1
AES-OTR v3.1 with parallel AD processing [Min] produces a tag T which is msbτ (TA⊕TE) where
TA and TE are tags for the associated data A and the pair (N,M), respectively. We assume that
|N | = 120. Interestingly, TA does not depend on the nonce N . When |A| is a multiple of 128, it is
computed as

TA = EK

((
a−1⊕
i=1

EK(Ai ⊕ 2i ·Q)

)
⊕Aa ⊕ 2a−1 · 33 ·Q

)
where a = |A|128, EK is AES-128 with key K, Q = EK(0) and · denotes the multiplication in

GF(2128). When |M |128 = 2` and |M2`| = 128, blocks are encrypted in pairs (M2i−1,M2i) into
(C2i−1, C2i) by a two-round Feistel scheme

C2i−1 = EK(2i−1 · L⊕M2i−1)⊕M2i C2i = EK(2i−1 · 3 · L⊕ C2i−1)⊕M2i−1

where L = EK(ε(τ)‖0∗1‖N) and ε(τ) is a 7-bit encoding of τ . The tag TE is obtained by

TE = EK

(
7 · 2`−1 · 3 · L⊕

`⊕
i=1

M2i

)

8

L-recovery attack (nonce-misuse). If we use the same nonce N (so with nonce misuse), L is
fixed. We can encrypt messages of four blocks and look for a matching

C1 ⊕M2 = C′3 ⊕M ′4

It occurs at the birthday bound. Clearly, this is equivalent to

M1 ⊕ L = M ′3 ⊕ 2 · L

which reveals L.

L-recovery attack (nonce respecting). We encrypt a huge random message (with |M |128 ≈ 264)
with a nonce N and look for an internal collision

C2i ⊕M2i−1 = C2j ⊕M2j−1

with i 6= j Clearly, this is equivalent to

C2i−1 ⊕ 2i−1 · 2 · L = C2j−1 ⊕ 2j−1 · 2 · L

which reveals L for this N . We also expect to find many values of 1 ≤ i ≤ |M |128/2 for which
2i−1 · L⊕M2i−1 (or 2i−1 · 3 · L⊕ C2i−1) will be a string of the form ε(τ)‖1‖N ′. For any such N ′
we can use L′ = C2i−1 (or L′ = C2i) to bootstrap the following attack.

EK oracle (using (N, L) pair). Assuming that we know an (N,L) pair (either from the L-recovery
attack or from a previous execution of the present EK oracle), by a single encryption query with
nonce N we can obtain EK(x1), . . . , EK(xr) for a list x1, . . . , xr as follows: setM2i−1 = xi⊕22i−1 ·L
and M2i arbitrarily for i = 1, . . . , r. Then, EK(xi) = M2i ⊕ C2i−1.

The first time we use this oracle may be a nonce misuse case or not (depending on the way we
obtain N,L), but then we can always add the block xr+1 = ε(τ)‖1‖N ′ to the list to prepare an
(N ′, L′) pair for the next execution of the EK oracle, with N ′ a fresh nonce.

The oracle EK can be used to mount universal forgeries and CPA decryption attacks with tiny
complexity (but needs L).

Q-recovery attack (nonce-misuse). Assuming all encryption queries we make use the same N
and M (so with nonce misuse), a collision on the tag is equivalent to a collision on TA. We make
queries with associated data of three blocks with A3 and A1 ⊕A2 = δ constant. Clearly, a collision
between A and A′ is equivalent to

EK(A1 ⊕Q)⊕ EK(A1 ⊕ δ ⊕ 2 ·Q) = EK(A′1 ⊕Q)⊕ EK(A′1 ⊕ δ ⊕ 2 ·Q)

which can be caused by
A′1 = A1 ⊕ δ ⊕ 3 ·Q

Once this event occurs (at the birthday bound), we can deduce Q.

8 CLOC and SILC
CLOC and SILC v3 [IMG+] use the nonce N of 96 bits. They compute V = HASHK(N,A), then
C = ENCK(V,M), and finally T = PRFK(V,C). In ENC, we compute C1 = M1 ⊕ EK(V). Then,
C2, . . . , Cm is a function of K, C1, and M2, . . . ,Mm only (where m = |M |128). More precisely, we
have

Ci = Mi ⊕ EK(fix1(Ci−1))

for i > 0, where fix1 just forces the most significant bit to 1 and the blockcipher E is AES-128.

9

CPA decryption attack (tiny complexity, nonce-misuse). To decrypt (N,A,C, T), we can first
set an arbitrary message M ′ of one block and make a query (N,A,M ′). We obtain C ′ and deduce
M1 = C ′1 ⊕C1 ⊕M ′1. Then, we can set an arbitrary message M ′ of two blocks with M ′1 = M1 and
make a query (N,A,M ′). We obtain C ′ and deduce M2 = C ′2 ⊕ C2 ⊕M ′2. We proceed iteratively
until all blocks of M are recovered. This is a nonce-misuse CPA attack with very low complexity.

EK oracle with input of msb equal to 1 (tiny complexity, nonce-misuse). When x has its most
significant bit set to 1, we can easily compute EK(x) with two nonce-misuse queries: make one
first query with an arbitrary (N,A,M) with M of at least one block, then get (C, T), then make
a nonce-misuse query with (N,A,M ′) with M ′ arbitrary such that M ′1 = M1 ⊕ C1 ⊕ x. We get
(C ′, T ′) and C ′2 ⊕M2 = EK(x).

As both CLOC and SILC start with the first EK evaluation with an input having an msb set
to zero, this cannot be used to make a forgery.

Existential forgery. If we make many (about 264) encryption queries (N i, A,M i) with random
N i and M i and fixed A in a nonce-respecting way, we find i 6= j with Ci = Cj , which implies a
collision on V . Then, (N i, A,Cj , T j) is a valid forgery for the query (N i, A,M j).

EK oracle in CLOC (nonce-respecting, beyond birthday bound). We can make many encryp-
tion queries (N i, A,M i) with a fixed A until we have a collision M i

1 ⊕ Ci1 = M j
2 ⊕ C

j
2 with i 6= j.

This indicates that V = fix1(C ′1) so we deduce the V value for a random nonce N with A. In
CLOC, we have

V = f1(W ⊕ ozp(param‖N))

for some W depending on K and A only, and some easy-to-invert function f1. So, from the
knowledge of V , we can deduce W from which we can compute the V̄ value associated to an
arbitrary N̄ and the same A. Hence, we can make chosen queries (N̄ , A, M̄) that will use a
predictable value V̄ in a nonce-respecting way.

If we want to compute EK(x), if f−1
1 (x) ⊕W is of form ozp(param‖N̄), we can just make a

random query with this N̄ then deduce EK(x) = M1 ⊕ C1. If we do not have the correct form, it
is bad luck. When using nonces of 112 bits, which is the maximum, the probability to have the
correct form is 2−16. But we could run the previous attack 216 times to get more chances. So, with
complexity 280, we collect many Wi to make sure that at least one is such that f−1

1 (x)⊕Wi is of
the correct format.

This attack does not work on SILC, in which W depends on the nonce as well.

Universal forgery and CPA decryption attack in CLOC (nonce-respecting, beyond birthday
bound). With the previous EK oracle, we can simulate the encryption or the decryption process
and thus mount universal forgeries and CPA decryption.

9 Deoxys v1.41
Deoxys v1.41 [JNP] has two instantiations: Deoxys-I, which claims no nonce-misuse security, and
Deoxys-II, which claims to resist nonce misuse attacks. The internal design is very similar to OCB,
except that it relies on an ad-hoc tweakable encryption ETK instead of AES with the input and
output masks ∆. The block size of E is 128 bits. We have

HK(A) =
⊕

i

E
2‖(i−1)
K (Ai)

(when the last block of A is complete) which is nonce-independent. In Deoxys-I, we have

T = E
1‖N‖`
K

(
`⊕

i=1

Mi

)
⊕HK(A)

10

(when the last block M` of M is complete). In Deoxys-II, we have

T = E
1‖04‖N
K

(
HK(A)⊕

`⊕
i=1

E
0‖(i−1)
K (Mi)

)
(when the last block M` of M is complete) and

Ci = Mi ⊕ E1‖(T⊕(i−1))
K (08‖N)

Universal forgery and CCA decryption attack of Deoxys-I (tiny complexity, nonce-misuse).
Deoxys-I is susceptible to low-complexity nonce-misuse attacks. Indeed, given EK(N,A,M) = (C, T)
and EK(N,A′,M) = (C, T ′), we deduce T ⊕ T ′ = HK(A)⊕HK(A′). Then, EK(N̄ , A, M̄) = (C̄, T̄)
can be transformed into (C̄, T̄ ⊕ T ⊕ T ′) which is a valid forgery of EK(N̄ , A′, M̄). Furthermore,
we can decrypt (N̄ , A, C̄, T̄) in a CCA attack by querying (N̄ , A′, C̄, T̄ ⊕ T ⊕ T ′) which has the
same decryption.

Semi-universal forgery and CCA decryption attack of Deoxys-II (reusable, nonce-misuse). We
assume that every nonce can be repeated 2m times. We make 2128−2m batches of 2m queries.
In the ith batch, we query EK(N i, Ai,j ,M) = (Ci,j , T i,j) for j = 1 . . . , 2m with N i fixed in the
batch, M fixed globally, and random Ai,j . We then find i and j 6= j′ such that Ai,j 6= Ai,j

′ and
T i,j = T i,j

′ . We deduce that HK(Ai,j) = HK(Ai,j′). Then, assume we want to make a forgery for
(N̄ , Ai,j , M̄) (i.e. Ai,j′ is imposed). We can query EK(N̄ , Ai,j′ , M̄) = (C̄, T̄) and deduce the forgery
EK(N̄ , Ai,j , M̄) = (C̄, T̄). Similarly, we can decrypt (N̄ , Ai,j , C̄, T̄) by making a CCA decryption
query on (N̄ , Ai,j′ , C̄, T̄). This can only decrypt messages using Ai,j as associated data. The total
complexity of the attack is 2128−m queries. Note that if m = 64, the complexity becomes birthday
bounded.

10 AEGIS v1.1
AEGIS v1.1 [WP] uses the notion of state. In the AEGIS-128 version (the lightest of the three
proposed ones), one state consists of five AES states, i.e. five 4× 4 matrices of bytes. AEGIS first
computes an initial state which depends on the key K and the nonce N . Then, neither K nor N is
used any more. It processes A and M as a sequence of 4× 4 matrices of bytes. Each matrix X is
processed to update the state S0, . . . , S4 into

S0
S1
S2
S3
S4

 =

R(S4)⊕X ⊕ S0
R(S0)⊕ S1
R(S1)⊕ S2
R(S2)⊕ S3
R(S3)⊕ S4

where R is a single AES round function without the addition of a round key. Before this
transformation, S1 ⊕ (S2 ∧ S3)⊕ S4 is revealed for encryption, if X is a message block. After all
blocks are processed, a function transforms the state using the length of A and M , and one tag is
extracted from the result.

Universal forgery and decryption attack (tiny complexity, nonce-misuse). Assume we want
to forge the encryption of (N,A,M) or that we want to decrypt (N,A,C, T). We can run an
attack to recover the state after processing A with nonce N . With this state, we can run the
encryption or decryption ourselves. To recover the state, we will make nonce-misuse encryption
queries with the same (N,A) and changing messages M i. We notice that the first block M i

1 of M i

only directly influences S0, so for i 6= i we always have Ci2 = Cj2 . But a difference becomes visible
in C3. Indeed, we can see that the difference Ci3⊕C

j
3 (associated to M i

1 6= M j
1) is equal to the

11

difference R(R(S4)⊕ S0 ⊕M i
1)⊕R(R(S4)⊕ S0 ⊕M j

1)⊕M i
3⊕M

j
3 . Since R is a single AES round,

with several chosen M i
1 values we can fully reconstruct R(S4)⊕ S0 (just after the processing of A).

Presumably, with only 10 chosen M i
1 we can, by analyzing the differences get S′0 = R(S4)⊕S0, the

first matrix in the next round state. Using the same strategy in changing M2, we deduce R(S4) so
S4. We can iterate with M3 and M4 and we fully reconstruct the state.

This attack is already mentioned in the AEGIS v1.1 specifications [WP].

11 ACORN v3
ACORN v3 [Wu] uses the notion of state and processes the bits of A and M iteratively, i.e. the
“block” size is 1 bit. ACORN-128 has a state S of 293 bits. First, ACORN initializes a state
depending on the key K and the nonce N . Then, it processes each bit of A iteratively by

Si+1 = StateUpdate128(Si,mi, cai, cbi)

where mi is a new bit of A, cai is a control bit set to 1, and cbi is a control bit set to 1. After
processing A, the process continues for 128 more iterations with mi set to 1 in the first iteration
and to 0 in the remaining 127 iterations. It continues again with mi = 0 and cai = 0 for 128 more
iterations. Encryption can then start with the same iterative process, where mi is a new bit of
M , then set to 1 once, then set to 0 255 times. One difference is that cbi is set to 0. The other
difference is that there is one output bit produced for encryption per state update when bits of the
message are processed. Namely, we have

o = |A|+ 256
Si+1+o = StateUpdate128(Si+o,Mi, 1, 0)

Ci = Mi ⊕ ksi+o
ksi+o = Si+o,12 ⊕ Si+o,154 ⊕maj(Si+o,235, Si+o,61, Si+o,193)⊕ ch(Si+o,230, Si+o,111, Si+o,66)

where o is an offset, and maj and ch are two boolean functions of algebraic degree two. After
processing the message bits, there are two sets of 128 iterations like for processing A. Then, there
are 768 more iterations with various control bits and mi = 0 before a tag is computed from the
state. Another observation from the specifications shows that Si+1,[0···j] is a linear function of
Si,[0···j+1] for j < 292 and that the last bit Si+1,292 ⊕mi ⊕maj(Si+o,244, Si+o,23, Si+o,160) is also
linear in Si. So, Si+j,[0···k] is a linear function of Si,[0···k+j] for k + j ≤ 292.

Universal forgery and decryption attack (tiny complexity, nonce-misuse). Assume we want to
forge the encryption of (N,A,M) or that we want to decrypt (N,A,C, T). We can run an attack
to recover the internal state So just after processing A with the nonce N . With this state, we can
run the encryption or decryption ourselves.

To recover the state, we will make nonce-misuse encryption queries with the same (N,A) and
changing messages. By changing M j

0 , we can see that ksji+o is constant for i = 0, . . . , 57. We can
easily see that for j 6= j′, ksj58+o⊕ ksj

′

58+o = S58+o,61 ⊕ S58+o,193, which is a linear function in So.
So, we have one linear equation in the bits of So. We can do the same by fixing M j

0 and changing
M j

1 and so on to recover more equations. We could reconstruct So like this by collecting enough
linear equations.

12 Ketje
Ketje v2 [BDP+a] is a sponge-based mode for an iterated cryptographic permutation f : {0, 1}b →
{0, 1}b with a tunable number of rounds, aggressively optimized for low computational cost. We
focus on the main recommendation Ketje Sr (further simply Ketje) with 400-bit permutation, but
the observations are easily generalised to the three remaining named instances.

12

fInit(K,N) f f

A1‖0‖11

tr[r − 4]

C1

M1‖11‖11

f

M2‖10‖10
∗1

C2

f

T1 T2

nstart nstep nstep nstepnstride

tr[|M2|]

0‖10∗1

tr[r − 4] tr[r − 4]

f

A2‖01‖10
∗1

nstep

r

c

recover

Figure 1: The encryption algorithm of Ketje [BDP+a] with two-block A and two-block M as input.
We let tr[x] denote truncation to x leftmost bits.

Ketje operates over byte strings, and It works with a rate r = 36 bits, capacity c = 364 bits,
and tags of 64 bits. We assume the use of secret key and nonces of 128 bits.

In an encryption query (K,N,A,M), Ketje first sets the state to the value Init(K,N) =
enc8(32)‖K‖10119‖N‖10∗1 and applies nstart = 12 rounds of the permutation f . Both the message
M and AD A are partitioned into blocks of r− 4 bits, the last block of each possibly being shorter.
The blocks are then processed using nstep = 1-round calls to f , as illustrated in Figure 12, treated
with two-bit domain separation flags and 10∗1 padding. The tag is derived using two calls to f ,
first of which uses nstride = 6 rounds.

Key recovery (tiny complexity, nonce-misusing). The authors of Ketje themselves point at the
possibility of this attack. Because Ketje uses only a single round of the Keccak−f function [BDP+a],
the diffusion between two consecutive sponge states is low. In addition, the algebraic degree of
a single round of Keccak−f is only 2. Thus by making queries (N,A,M i

1‖0r−4) with some fixed
(N,A) for i = 1, . . . , θ, we obtain the ciphertexts Ci1‖Ci2 and the tags, and for each i we can derive
low-degree equations about the bits in the inner (capacity) state just after the processing of N and
A (marked red in Figure 12).

Each bit in Ci2 depends on 31 bits of the previous state on average [BDPVA09], so we expect
an overwhelming majority of the bits of the attacked state to be covered by the derived equations.
We need the number of nonce misusing queries θ to be a small multiple of b−r+4

r−4 = 11, 5 in order
to fully determine the system. Moreover, no more than a single unique monomial of degree 2 per
every bit of the state appears in the system, so with θ = 60, we should be able to linearize the
system and solve it for the state. Once the state is recovered, we can invert the encryption process
and recover the key K.

13 Tiaoxin-346
Tiaoxin-346v2.1 [Nik] loads the key K and the nonce IV in a state, then applies a reversible
transformation. Each block is represented by a 4× 4 matrix of bytes. The state consists of three
arrays T [3], T [4], and T [6], of respectively 3, 4, and 6 blocks. Given a state (T [3], T [4], T [6]), we
load the plaintext by pairs (M0,M1) of blocks and output two blocks (C0, C1). This operation
works in five steps:

1. T [3]← R(T [3],M0)

2. T [4]← R(T [4],M1)

3. T [6]← R(T [6],M0 ⊕M1)

4. C0 = T [3]0 ⊕ T [3]2 ⊕ T [4]1 ⊕ (T [6]3&T [4]3)

5. C1 = T [6]0 ⊕ T [4]2 ⊕ T [3]1 ⊕ (T [6]5&T [3]2)

13

The R(T [s],M) operation consists of

R(T [s],M) = (A(T [s]s−1)⊕ T [s]0 ⊕M,A(T [s]0)⊕ Z0, T [s]1, . . . , T [s]s−2)

where Z0 is a constant and A is one AES round without round key:

A(x) = MixColumns(ShiftRows(SubBytes(x)))

Nonce-misuse key recovery. Assume that we encrypt two messages M = (M0,M1,M2,M3) and
M̄ = (M̄0, M̄1, M̄2, M̄3) starting from the same state (with nonce-misuse), with M̄i = Mi ⊕∆ for
i = 0, 1, 2, 3. The first encryption defines

1. T ′[3] = R(T [3],M0)

2. T ′[4] = R(T [4],M1)

3. T ′[6] = R(T [6],M0 ⊕M1)

4. C0 = T ′[3]0 ⊕ T ′[3]2 ⊕ T ′[4]1 ⊕ (T ′[6]3&T ′[4]3)

5. C1 = T ′[6]0 ⊕ T ′[4]2 ⊕ T ′[3]1 ⊕ (T ′[6]5&T ′[3]2)

6. T ′′[3] = R(T ′[3],M2)

7. T ′′[4] = R(T ′[4],M3)

8. T ′′[6] = R(T ′[6],M2 ⊕M3)

9. C2 = T ′′[3]0 ⊕ T ′′[3]2 ⊕ T ′′[4]1 ⊕ (T ′′[6]3&T ′′[4]3)

10. C3 = T ′′[6]0 ⊕ T ′′[4]2 ⊕ T ′′[3]1 ⊕ (T ′′[6]5&T ′′[3]2)

The second encryption defines
1. T̄ ′[3] = R(T [3],M0 ⊕∆)

2. T̄ ′[4] = R(T [4],M1 ⊕∆)

3. T ′[6] = R(T [6],M0 ⊕M1)

4. C̄0 = T̄ ′[3]0 ⊕ T̄ ′[3]2 ⊕ T̄ ′[4]1 ⊕ (T ′[6]3&T̄ ′[4]3)

5. C̄1 = T ′[6]0 ⊕ T̄ ′[4]2 ⊕ T̄ ′[3]1 ⊕ (T ′[6]5&T̄ ′[3]2)

6. T̄ ′′[3] = R(T̄ ′[3],M2 ⊕∆)

7. T̄ ′′[4] = R(T̄ ′[4],M3 ⊕∆)

8. T ′′[6] = R(T ′[6],M2 ⊕M3)

9. C̄2 = T̄ ′′[3]0 ⊕ T̄ ′′[3]2 ⊕ T̄ ′′[4]1 ⊕ (T ′′[6]3&T̄ ′′[4]3)

10. C̄3 = T ′′[6]0 ⊕ T̄ ′′[4]2 ⊕ T̄ ′′[3]1 ⊕ (T ′′[6]5&T̄ ′′[3]2)

We can easily see that

T̄ ′[3]⊕ T ′[3] = (∆, 0, 0)
T̄ ′′[3]⊕ T ′′[3] = (0, A(T ′[3]0)⊕A(T ′[3]0 ⊕∆), 0)
T̄ ′[4]⊕ T ′[4] = (∆, 0, 0, 0)
T̄ ′′[4]⊕ T ′′[4] = (0, A(T ′[4]0)⊕A(T ′[4]0 ⊕∆), 0, 0)

Hence

C̄2 ⊕ C2 = A(T ′[4]0)⊕A(T ′[4]0 ⊕∆)
C̄3 ⊕ C3 = A(T ′[3]0)⊕A(T ′[3]0 ⊕∆)

We can deduce from this one possible value of T ′[4]0 and T ′[3]0 on average. We can do this attack
several times to obtain T [3] and T [4]. The state T [6] follows in a similar method. Once the state
(T [3], T [4], T [6]) is recovered, we can invert the initialization and obtain K. We estimate that we
need less than 16 chosen plaintexts and nonce misuse.

14

14 Morus
Morus 640 v2 [WHa] (further just Morus) loads the key K and the nonce IV in a state and does
some non-invertible initialization. The state consists of five 128-bit blocks S0, . . . , S4 (for Morus,
we start indexing blocks at 0). Then, the plaintext blocks Mi are processed iteratively in two steps:

1. Ci = Mi⊕S0⊕(S1 <<< 96)⊕(S2&S3)

2. (S0, . . . , S4)← StateUpdate(S0, . . . , S4,Mi)

Nonce-misuse universal forgery and CPA decryption. If we encrypt several messages M i using
the same N,A (in nonce-misuse mode), we can easily see that Ci1 is a function of M i

0 with algebraic
degree two. More precisely,when encrypting two messages M1,M j with M j

0 = M1
0 ⊕ δ, we can see

that

(C1
1 ⊕M1

1)⊕(Cj
1 ⊕M

j
1) =(Rotl(δ, b1)<<<(w3 + 96))⊕S2&Rotl(δ⊕Rotl(δ, b1), b3)⊕S3&(Rotl(δ, b2)<<<w4)

⊕(Rotl(δ, b2)<<<w4)&Rotl(δ⊕Rotl(δ, b1), b3)

where Rotl is a linear function, <<< denotes a circular rotation, and all br-s and wt-s are constants.
So, with about two different δ values (so four encryption queries), we recover the values of S2 and
S3 by solving the given linear equation.

Then, once S2 and S3 are known for N,A,M1, C1
1 ⊕M1

1 can be expressed as a linear function of
S0 and S1 and we learn their xor-difference. Now we need to recover S0, S1, S4 (also for N,A,M1),
i.e. 384 bits and have 128 linear equations (so 256 unknown bits). To obtain more equations,
we make further queries N,A, M̄ j with M̄ j = M1

0 ‖M̄
j
1‖0128. For each query, the value C̄j2 will

supply 128 equations in S0, S1, S4. These will have degree at most 3, however by examining the
StateUpdate and the keystream generation functions of Morus, we verify that there will be no
more than 19 · 128 unique monomials of degree higher than 1 present in all equations in the worst
case and only 9.25 · 128 on average. Thus by making 16 queries in this phase, we should be able
to linearise the system and recover S0, S1 and S4 with high probability. Then, the StateUpdate
function can be inverted until we obtain the state after initialization.

Using the state after initialization with IV, we can forge ciphertexts with this IV and decrypt any
ciphertext using this IV. So, we have a universal forgery and decryption attack with nonce-misuse
and only 20 encryption queries.

15 NORX v3.0
NORX [AJN] is an online cipher which computes a “state” (R,S) from the secret key, the nonce
N , and the parameters, then follows the sponge structure to absorb the associated data A, the
message (at the same time it produces the ciphertext), the trailer data, then finally uses the key
again to produce the tag. When processing one block of message Mi, NORX replaces (R,S) by a
new state (C, S) with C = Mi ⊕ R. We focus on an instance of NORX with a state size of 512
bits, with |R| = 384 and |S| = 128.

CPA decryption attack (tiny complexity, nonce misuse.) To decrypt a ciphertext (N,A,C, T),
we make |C|384 nonce misusing queries. We set M = ε. Then for i = 1, . . . , |C|384 we make an
encryption query (N,A,M‖0384), obtaining Ci and the tag, and we set M = M‖(Ci⊕Cii). At the
end, M will be the plaintext of C. This is because sponge-based schemes XOR each message block
with a key stream block computed as a function of N ,A, and the previous message blocks.

Semi-universal forgery attack (reusable, nonce-misuse). We can do a nonce-misuse semi-
universal forgery attack as follows. It is semi-universal in the sense that we have no control
of the nonce in the forgery but we can freely set the rest. Assume we want to forge the encryption
of (A,M,Z) with any nonce. For many (about 264) arbitrary nonces N i, make an encryption

15

Figure 2: The encryption algorithm of Ascon [DEMS]. Here P is the plaintext.

query on (N i, A, 0384)and get Ci1 and the tag. Then make encryption queries (N i, A,Ci1‖0384)
(hence a nonce-misuse) so that the state after processing the first block Ci1 will always be (0, S)
and get (0‖Ci2, T i). Eventually, we will get a collision on S which will induce a collision on
(C2, T) which will thus be visible. With the inputs (N i, A,Ci1) and (N j , A,Cj1) producing the
collision, we can make a forgery on (N j , A,M,Z) by making an encryption query on the message
(N i, A, (M1 ⊕ Ci1 ⊕ C

j
1)‖M2‖ · · · ‖M`, Z), where M1, . . . ,M` is the sequence of blocks of M . The

obtained ciphertext C will yield a valid forgery (N j , A,C, Z).
This is a semi-universal (there is no choice on N j , but the choice of (A,M,Z) is free) forgery

attack which can be reused with the same (N j , A). The complexity is the one of finding a collision
on the inner state S which is of 128 bits for the instance NORX32-4-1 (32-bit words, 4 rounds, no
parallelization, 128-bit tags, 128-bit keys, 128-bit nonces) with a 128-bit security goal [AJN]. So, it
is a birthday bound attack.

16 Ascon
Ascon-128 v1.2 [DEMS] is a sponge-based mode for an iterated cryptographic permutation p :
{0, 1}320 → {0, 1}320 with tunable number of rounds (denoted as pa for initialization and tag
generation and pb for the rest of the processing). Ascon works over a state S of 320 bits. We
denote the outer (or the rate) part of the state Sr and the inner (or the capacity part) as Sc with
|Sr| = r, |Sc| = c and S = Sr‖Sc (so r+ c = 320). The keys, tags and nonces of Ascon are 128 bits
long. We focus on Ascon128, with r = 64, c = 256, a = 12 and b = 6

When processing an encryption query (K,N,A,M), the associated data and message are both
padded with 10∗ padding so that |M‖10∗| and |A‖10∗| are both a multiple of r. The encryption
algorithm is illustrated in Figure 16.

CPA decryption attack (tiny complexity, nonce misuse.) As Ascon is a sponge based construc-
tion, the same decryption attack as described for NORX can be applied here: to decrypt a ciphertext
of ` blocks, we need ` encryption queries.

Semi-universal forgery (beyond birthday bound, nonce-misusing). We can mount a similar
semi-universal forgery attack as for NORX. I.e. to forge a ciphertext for A,M , we do 2128 queries
with distinct nonces N i4, A as AD and 064 as message, then redo the queries with the same nonces
but use Ci1 as messages to detect a collision on the inner c bits of the state. The collision is then
used to create forgeries with A for any M . (N j , A). Because of Ascon’s capacity of 256 bits, the
encryption query complexity of finding such a collision is well beyond the birthday bound, and
there are simpler generic attacks with the same time complexity.

Universal forgery (nonce-respecting, beyond birthday bound computational complexity). We
can a single query (N, ε,M) with arbitrary N and M such that |M |64 = 2 and with the obtained
ciphertext and tag C, T as a witness, we perform an exhaustive search for the secret key. The

4We note that this exhausts all possible nonces

16

fInit(K,N) f f

M1‖A1‖0
∗‖F1

tr[Rs]

C1

Ma‖Aa‖0
∗‖Fa

Ca

b b b f

Ma+1‖0
∗‖Fa+1

Ca+1

tr[Rs] tr[Rs]

b b b f

Mm‖0∗‖Fm

Cm

tr[|Mm|]

T

tr[|T |]

Figure 3: The encryption algorithm of Keyak [BDP+b] when A is processed before M is. We let
tr[x] denote truncation to x leftmost (outer) bits.

computational complexity of this attacks is 3 ·2128 evaluations of the permutation p, which is similar
order of magnitude as for the collision-based forgery attack (as every query must be prepared and
the result read and stored). However the data and memory complexity of this attack are tiny,
compared to the forgery.

17 Keyak
Keyak v2.2 [BDP+b] is a sponge-based mode for an iterated cryptographic permutation f :
{0, 1}b → {0, 1}b. Keyak allows to tune many parameterssuch as degree of parallelism, a result
of which the general description of Keyak is rather complicated and layered. We therefore focus
on the main recommendation Lake Keyak with 1600-bit permutation and no parallelism (further
simply Keyak).

Keyak operates over byte strings It works with a state of b = 1600 bits, with capacity c = 256
bits, and tags of 128 bits. Keyak uses the whole state (including the inner part) to absorb data,
working with absorption rate Ra = 1536 bits and squeezing rate Rs = 1344 bits, which say how
many bits can be absorbed and used (for encryption or tag) per call to f , respectively. We assume
the use of nonces of 1200 bits and a secret key of 128 bits.

In an encryption query (K,N,A,M), Keyak first sets the state to the value Init(K,N) =
enc8(40)‖K‖10183‖N‖enc8(1)‖enc8(0)‖F0 and applies the permutation f , where F0 is a 32-bit flag
for domain separation. The message M is partitioned into blocks M = M1‖ . . . ‖Mm of Rs bits (the
last block possibly being shorter) and the AD is partitioned into blocks A = A1‖ . . . ‖Aa‖Â1‖ . . . ‖Ââ
such that |Ai| = (Ra − Rs) for i = 0, . . . , a − 1, |Aa| ≤ (Rs − Ra), and the Â part can only be
non-empty if a = m and |Aa| = (Ra −Rs). Depending of the length of M and A, three cases can
occur; we illustrate the case when all bits of A are processed before the entire M is processed in
Figure 17. The flags Fi are 32 bit strings that encode (a) if the next evaluation of f produces a
tag and the length of the tag, (b) the offset at which plaintext bytes end, (c) the offset at which
AD bytes start and (d) the offset at which the AD bytes end. These flags ensure proper domain
separation for all possible inputs.

Semi-universal forgery (reusable, beyond birthday bound, nonce-misusing). We mount a semi-
universal forgery (we cannot pick N). We make encryption queries (N i, ε, 0Rs) obtaining Ci1 and
the tag for i = 0, . . . , θ · 2128. We then make (nonce-misusing) encryption queries (N i, ε, Ci1‖0Rs)
obtaining 0Rs‖Ci2, T i for each i. If for some i 6= i′ we have Ci2, T i = Ci

′

2 , T
i′ , we deduce that

f(Init(K,N i))⊕Ci‖0b−Rs = f(Init(K,N i′))⊕Ci′‖0b−Rs , i.e. that the two nonces yield an inner
state collision. To make a forgery for A,M = M1‖ . . . ‖Mm with N i′ , we obtain the ciphertext and
the tag by querying (N i, A, (M1⊕Ci1⊕Ci

′

1)‖ . . . ‖Mm).
This is a semi-universal forgery that is reusable for any pair (A,M). Because Keyak uses a

capacity of 256 bits, however, the encryption query complexity is well beyond the birthday bound.

CPA decryption attack (tiny complexity, nonce misuse.) We can mount an attack similar to
those on Ascon is NORX. As before, to decrypt a ciphertext (N,A,C, T) of |C|1344 = ` blocks,
we make ` encryption queries (N,A,M i‖01344) obtaining Ci where M i = M1‖ . . . ‖Mi−1 and
Mi = Ci⊕Cii .

17

Universal forgery (nonce-respecting, beyond birthday bound computational complexity). As
for Ascon, we can perform the exhaustive key search with similar computational complexity as
that of the collision-based forgery, using a single encryption query (N, ε,M) with arbitrary N and
M such that |M |1344 = 1. With the obtained ciphertext and tag C, T as a witness, we perform an
the exhaustive search with a computational complexity of ·2128 evaluations of the permutation f .

18 COLM v1
COLM [ABD+] first derives a secret L from the secret key L by L = EK(0), where E is AES-
128 [DR02]. Again, we use the (bad) notation in which the integer-by-block product is the GF(2128)
multiplication. The COLM encryption takes a 64-bit nonce N , encodes some parameters param
into 64 bits (these include the tag length), some associated data A and a plaintext M to produce
a ciphertext C. Here, we restrict to A’s and M ’s being sequences of full-length blocks, although
COLM allows more flexibility in lengths. There is normally a padding scheme to transform a
message M1, . . . ,M`−1,M

∗
` into the sequence M1, . . . ,M`+1, but it will play no role in the attack.

We only have to keep in mind that it appends an additional block M`+1 which is equal to the last
one M`. We just consider that the adversary can choose a sequence M respecting this condition.
We let a = |A|128 and `+ 1 = |M |128 (M already contains the redundant final block).

First, COLM computes sequences AA and MM by

AA0=(N‖param)⊕ 3 · L MMi=Mi ⊕ 2i · L (i = 1, . . . , `− 1)
AAi=Ai ⊕ 3 · 2i · L (i = 1, . . . , a) MM`=M` ⊕ 7 · 2`−1 · L

MM`+1=M`+1 ⊕ 7 · 2` · L

Then we compute Zi = EK(AAi) for i = 0, . . . , a and Xi = EK(MMi) for i = 1, . . . , `+ 1. Then,
IV = Z0⊕ · · · ⊕Za. There is a function ρ mapping a chaining value st and an input x to a chaining
value st′ and an output y defined by st′ = x ⊕ 2 · st and y = x ⊕ 3 · st. We use IV as an initial
chaining value and transform the sequence X iteratively with ρ to produce the sequence Y . Then,
CCi = EK(Yi) for i = 1, . . . , `+ 1, and finally,

Ci=CCi ⊕ 32 · 2i · L (i = 1, . . . , `− 1) C`=CC` ⊕ 32 · 7 · 2`−1 · L
C`+1=CC`+1 ⊕ 32 · 7 · 2` · L

Below, we first observe that an L-recovery attack would allow to easily make universal forgeries
and CCA decryption attacks. Next, we will see two methods to extract L. One is nonce-respecting
with complexity beyond the birthday bound. The other has nonce-misuse, at the birthday bound
complexity. We conclude with an easy nonce-respecting existential forgery attack as the birthday
bound complexity.

CCA decryption attack (tiny complexity, using L). Assume we want to decrypt (N,A,C) where
A has at least two blocks. We can form A′ making a collision on IV with A′1 = A1 + 3 · 6 · L and
A′2 = A2 + 3 · 6 · L and same other blocks. We obtain

AA′1 = A′1 + 3 · 2 · L = A1 + 3 · 4 · L = AA2

and
AA′2 = A′2 + 3 · 4 · L = A2 + 3 · 2 · L = AA1

So, this choice only permutes AA1 and AA2. Hence, it produces the same IV. We can then make
decryption query on (N,A′, C), and deduce the decryption of (N,A,C).

The total query complexity is of a single decryption query. This is negligible compared to the
complexity of getting L.

18

Universal forgery (tiny complexity, using L). Given (N,A,M), we want to forge the encryption
C. First, it is obvious that with access to an EK oracle, knowing L is enough to simulate the
encryption and forge C. So, we will just show how to implement an EK oracle by having access to
a (nonce-respecting) COLM encryption oracle.

We first run a precomputation which will give a set of 128 (xi, yi) pairs satisfying yi = EK(xi)
and with linearly independent yi values. For this, we pick a random N , and set A = A1 such that
AA1 = AA0. We compute an M for which MM consists of 135 = 128 + log2(128) zero blocks. Hence,
Xi = L for i = 1, . . . , 135. The sequence of chaining values computed for this query, starting with
IV, is

0, L, 3 · L, 7 · L, 15 · L, . . .
So, Yi = L + 3 · (2i−1 − 1) · L = 2i−1 · L, and since the representation of GF(2128) is chosen
such that 2 is a primitive root, each Yi for i = 1, . . . , 135 will be distinct. The encryption query
(N,A,M) gives C from which we compute CC. With probability close to 1, we will find 128 linearly
independent values y1, ldots, y128 among CC1, . . . ,CC135. For each yi, we find j such that yi = CCj
and set xi = Yj , obtaining 128 pairs (xi, yi) satisfying yi = EK(xi) and with linearly independent
yi values.

Given the obtained list, whenever we want to compute EK(x) for an arbitrary x, we first find a
set S ⊆ {1, . . . , 128} such that x+ L = 3

∑
i∈S yi (by Gaussian elimination). Then, we compute

Aj+1 so that AAj+1 = xsj for j = 1, . . . , |S|, and we pick a random N and A1 so that AA1 = AA0.
With this choice of N,A, we will force IV =

∑
i∈S yi. Then, we set M1 = 2 ·L so that MM1 = 0

and pick other Mi at random. Thus, we have X1 = L, and Y1 = X1 + 3 · IV = x. By querying
(N,A,M), we obtain C. We compute CC and deduce CC1 = EK(x).

The total query complexity is really small. There is one encryption query for precomputation.
Then, to forge an encryption, we need one query per EK evaluation, so 1 + a+ 2(`+ 1) encryption
queries. This is negligible compared to the complexity of getting L.

L-recovery attack (low success probability). This attack must guess the last 64 bits of 32 · L
because param is a constant for every instance of COLM. We take a constant message M of one
block (so C will have two blocks). We take a random block B with last 64 bits matching the guess.
We prepare 2 128−64

2 random inputs (N, param, A1,M) with unique nonces and A1 = (N‖param)+B,
and we encrypt them using the encryption oracle. Clearly, AA0 + AA1 = B + 32 · L. If the guess is
correct, this means that AA0, AA1, and 3 ·L always end with the same 64 bits. Due to the birthday
attack (on the remaining bits), we must have two entries such that AA′0 = AA1. So,

(N ′, param′) + 3 · L = AA′0 = AA1 = (N‖param) +B + 3 · 2 · L

Hence,
AA0 = (N‖param) + 3 · L = (N ′, param′) +B + 3 · 2 · L = AA′1

This means that the two entries swap AA0 and AA1, so produce the same IV. But this collision on
IV induce a collision on C, so it is visible. Once we isolate this collision, we deduce the relation
AA′0 = AA1 which gives

32 · L = (N‖param) + (N ′, param′) +B

The total complexity is 232 encryptions (with messages of one block and A of 1 block).
We note that the attack is nonce-respecting, although the probability of success is only 2−64.

This can be improved if we assume parameter misuse, i.e. existence of several instances using the
same key with different parameters.

L-recovery attack (nonce-misuse, beyond birthday bound). We mount a similar attack, assum-
ing that every nonce can be repeated 2m times. We make 2128−2m batches of 2m queries. In the ith

batch, we query (N i, Ai,j ,M) for j = 1 . . . , 2m with N i fixed in the batch, M fixed globally, and
random Ai,j of 2 blocks. We then find i and j 6= j′ such that Ci,j , T i,j = Ci,j

′
, T i,j

′ , and recover
L from Ai,j1 and Ai,j

′

1 similarly as before. We note that when m = 64, this attack has birthday
complexity.

19

Semi-universal forgery (nonce misuse, birthday bound). In this attack, we mount a semi-
universal forgery (we can only choose M) at the birthday bound complexity. We pick a constant
M and for i = 1, . . . , 264 query (N i, Ai,M) until we obtain a collision on Ci, T i. We get (N i, Ai)
and (N j , Aj) for which we deduce, from the construction, we deduce that there is an inner collision
on IV. As IV only depends on the nonce and AD, we can forge a ciphertext for any M̄ by querying
(N i, Ai, M̄) to get C̄, T̄ and forging with (N j , Aj , C̄, T̄). Note that every such forgery must misuse
nonce, as the collision search exhausts all nonces.

Existential forgery. We conclude with a nonce-respecting existential forgery attack at the birthday
bound complexity. We pick a constant M1 and encrypt many (N,A1,M1,M2) until we obtain
a collision on C1. We get (N,A1,M1,M2) and (N ′, A′1,M1,M

′
2) producing (C1, C2, C3) and

(C1, C
′
2, C

′
3), respectively. From the construction, we deduce that there is an inner collision on

IV. As IV only depends on the nonce and A, we deduce that C ′ is a forgery for the encryption of
(N,A1,M1,M

′
2).

19 Jambu
Jambu v2.1 [WHb] instantiated with the blockcipher AES works over ν = 64-bit blocks. It works
with a state of 3ν bits, that is iteratively updated with a function F : {0, 1}k×({0, 1}ν)5 → ({0, 1}ν)3

which maps a secret key K, a state R‖U‖V , a domain separation constant γ and a message block
M to an updated state R′‖U ′‖V ′ = FK(R‖U‖V, γ,M), and which internally uses AES. The nonces
in Jambu are 64 bits long.

Jambu first uses the nonce to initialize the state R0‖U0‖V0 ← FK(0ν‖0ν‖N, 5, 0ν). Then
the always padded (with 10∗ padding) AD is processed in ν-bit blocks, computing Ri‖Ui‖Vi ←
FK(Ri−1‖Ui−1‖Vi−1, 1, Ai) for i = 1, . . . , a with |A‖10∗| = aν.

The plaintext is partitioned in ν-bit blocks and encrypted by computing Ra+i‖Ua+i‖Va+i ←
FK(Ra+i−1‖Ua+i−1‖Va+i−1, 0,Mi) and Ci ← (Mi⊕Va+i) for i = 1, . . . ,m−1 withm = b|M |/νc+1.
Then the last fractional block of plaintext Mm is processed (if |M | mod ν = 0, we set Mm =
ε) by computing Ra+m‖Ua+m‖Va+m ← FK(Ra+m−1‖Ua+m−1‖Va+m−1, 0,Mm‖10∗) and Cm ←
trunc|Mm|(Mm‖10∗⊕Va+m).

Finally we compute Ra+m+1‖Ua+m+1‖Va+m+1 ← FK(Ra+m‖Ua+m‖Va+m, 3, 0ν), and the tag
as T ← Ra+m+1⊕T1⊕T2 with T1‖T2 ← EK(Ua+m+1‖Va+m+1).

Universal forgery (number of decryption queries at birthday-bound, nonce-respecting). Be-
cause the tags of Jambu are only 64-bit long, the trivial tag guessing attack only requires 2642

decryption queries. We can make a forgery for any target triplet (N,A,M) with a single encryption
query, but requiring many decryption queries.

To forge a ciphertext for (N,A,M) with |M |64 = m (and with 1 ≤ |Mm| < ν), pick an arbitrary
message M ′ = M1‖ . . . ‖Mm−1‖M ′m with ∆ = Mm‖10∗⊕M ′m‖10∗ 6= 0ν and |M ′m| ≥ |Mm|. We
make an encryption query with (N,A,M ′) to obtain C ′, T ′ and set C = C ′1‖ . . . ‖C ′m−1‖Cm with
Cm = trunc|Mm|(C ′m)⊕ trunc|Mm|(∆). Then, we try to forge with (N,A,C, T) for all possible
values T ∈ {0, 1}ν until we succeed. .

Semi-universal forgery (beyond birthday-bound, nonce-misusing). As Jambu uses a state of
192 bits, collision-based attacks always require a data complexity of about 296 queries. We can
forge a ciphertext for a target plaintext M with O(296) encryption queries, however we cannot
choose the AD and the attack is nonce-misusing

We first pick a nonce N and a messageM ′ of 128u bits and make encryption queries (N,Aj ,M ′)
obtaining Cj , T j for j = 1, . . . , θ · 23n/4 such that for every j the AD Aj is a random (2ν − 1)-bit
string different from A1, . . . , Aj−1. We then find 1 ≤ j < j′ ≤ 296 for which Cj , T j = Cj

′
, T j

′ . We
deduce that in these queries, the internal states just after AD processing must collide.We then
make an encryption query with (N,Aj ,M), obtaining C, T and forge with (N,Aj′ , C, T).

20

Existential forgery (beyond birthday-bound, nonce-respecting). The too-few-nonces problem
of the previous attack can be circumvented if we fold many subqueries into every encryption query.

We pick a ν-bit constant string P . We then make encryption queries (N j , Aj ,M j) obtaining
Cj , T j for j = 1, . . . , θ · 248 such that for every j, the nonce is fresh, the AD Aj is a random
(ν − 1)-bit string, and the message M j =

∥∥θ·248

k=1 Q
j
k‖P‖P where every Qjk is a random ν bit string.

We then find (j, i) 6= (j′, i′) such that i ≡ i′ ≡ 2 (mod 3) and Cji ‖C
j
i+1 = Cj

′

i′ ‖C
j′

i′ . We deduce that
the j-th and j′-th queries had an internal state-collision Rji‖U

j
i ‖V

j
i = Rj

′

i′ ‖U
j′

i′ ‖V
j′

i′ . We can then
forge with (N j , Aj , Cj1‖ . . . ‖C

j
i−1‖C

j′

i′ ‖ . . . ‖C
j′

θ·23n/8 , T
j′).

We managed to forge with only 248 encryption queries, but we still have to process about 296

blocks of data in those queries. Also, this strategy cannot be used for a universal forgery.

References
[ABD+] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Men-

nink, Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. https:
//competitions.cr.yp.to/round3/colmv1.pdf.

[AJN] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0. https:
//competitions.cr.yp.to/round3/norxv30.pdf.

[BDP+a] Guido Bertoni, Joan Daemen, MichaÃńl Peeters, Gilles Van Assche, and Ronny Van
Keer. CAESAR submisssion: Ketje v2. https://competitions.cr.yp.to/round3/
ketjev2.pdf.

[BDP+b] Guido Bertoni, Joan Daemen, MichaÃńl Peeters, Gilles Van Assche, and Ronny Van
Keer. CAESAR submisssion: Keyak v2. https://competitions.cr.yp.to/round3/
keyakv22.pdf.

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge
function family main document. Submission to NIST (Round 2), 3:30, 2009.

[BEK16] Asli Bay, Oguzhan Ersoy, and Ferhat Karakoç. Universal forgery and key recovery
attacks on elmd authenticated encryption algorithm. In Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages 354–368,
2016.

[Bera] D. J. Bernstein. Cryptographic competitions: CAESAR. "https://competitions.
cr.yp.to/caesar-call.html".

[Berb] D. J. Bernstein. Cryptographic competitions: Disasters. https://competitions.cr.
yp.to/disasters.html.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In Advances in Cryptology
- ASIACRYPT 2000, 6th International Conference on the Theory and Application of
Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,
volume 1976 of Lecture Notes in Computer Science, pages 317–330. Springer, 2000.

[BS16] Raphael Bost and Olivier Sanders. Trick or tweak: On the (in)security of otr’s tweaks.
In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on
the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer
Science, pages 333–353, 2016.

21

https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/disasters.html
https://competitions.cr.yp.to/disasters.html

[CAE] Cryptographic competitions: CAESAR submissions. "http://competitions.cr.yp.
to/caesar-submissions.html".

[CG16] Colin Chaigneau and Henri Gilbert. Is AEZ v4.1 sufficiently resilient against key-
recovery attacks? IACR Trans. Symmetric Cryptol., 2016(1):114–133, 2016.

[DEMS] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schl affer. Ascon
v1.2. https://competitions.cr.yp.to/round3/asconv12.pdf.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex with
built-in multi-user support. IACR Cryptology ePrint Archive, 2017:498, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[Fer02] N Ferguson. Collision attacks on ocb. NIST CSRC website, 2002.

[Fer05] Niels Ferguson. Authentication weaknesses in gcm. 2005.

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost
foolproof on-line authenticated encryption schemes. In Fast Software Encryption -
19th International Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012.
Revised Selected Papers, volume 7549 of Lecture Notes in Computer Science, pages
196–215. Springer, 2012.

[FLLW17] Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. Reforgeability of authen-
ticated encryption schemes. In Information Security and Privacy - 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part
II, volume 10343, pages 19–37. Springer, 2017.

[FLS15] Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. Collision attacks against CAESAR
candidates - forgery and key-recovery against AEZ and marble. In Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 510–532. Springer, 2015.

[HKR] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ v5: Authenticated
encryption by enciphering. https://competitions.cr.yp.to/round3/aezv5.pdf.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption
AEZ and the problem that it solves. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 15–44. Springer, 2015.

[HP08] Helena Handschuh and Bart Preneel. Key-recovery attacks on universal hash function
based MAC algorithms. In Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 144–161.
Springer, 2008.

[HW] Tao Huang and Hongjun Wu. Attack on AES-OTR. https://groups.google.com/
forum/#!topic/crypto-competitions/upaRX2jdVCQ.

[IMG+] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
CLOC and SILC. https://competitions.cr.yp.to/round3/clocsilcv3.pdf.

22

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/aezv5.pdf
https://groups.google.com/forum/#!topic/crypto-competitions/upaRX2jdVCQ
https://groups.google.com/forum/#!topic/crypto-competitions/upaRX2jdVCQ
https://competitions.cr.yp.to/round3/clocsilcv3.pdf

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing GCM
security proofs. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417
of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.

[JNP] JÃľrÃľmy Jean, Ivica NikoliÄĞ, and Thomas Peyrin. Deoxys v1.41. https://
competitions.cr.yp.to/round3/deoxysv141.pdf.

[Jon03] Jakob Jonsson. On the security of CTR + CBC-MAC. In Selected Areas in Cryp-
tography, 9th Annual International Workshop, SAC 2002, St. John’s, Newfoundland,
Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Com-
puter Science, pages 76–93. Springer, 2003.

[Jou06] Antoine Joux. Authentication failures in nist version of gcm. 2006.

[KR] Ted Krovetz and Phillip Rogaway. OCB (v1.1). https://competitions.cr.yp.to/
round3/ocbv11.pdf.

[KY01] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure
modes of operation. In Fast Software Encryption, 7th International Workshop, FSE
2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture
Notes in Computer Science, pages 284–299. Springer, 2001.

[Lu17] Jiqiang Lu. Almost universal forgery attacks on the copa and marble authenticated
encryption algorithms. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 789–799. ACM, 2017.

[MDV16] Aleksandra Mileva, Vesna Dimitrova, and Vesselin Velichkov. Analysis of the authenti-
cated cipher MORUS (v1). In Cryptography and Information Security in the Balkans
- Second International Conference, BalkanCryptSec 2015, Koper, Slovenia, September
3-4, 2015, Revised Selected Papers, volume 9540 of Lecture Notes in Computer Science,
pages 45–59. Springer, 2016.

[Min] Kazuhiko Minematsu. AES-OTR v3.1. https://competitions.cr.yp.to/round3/
aesotrv31.pdf.

[MV04] David A. McGrew and John Viega. The security and performance of the galois/counter
mode (GCM) of operation. In Progress in Cryptology - INDOCRYPT 2004, 5th
International Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages 343–355.
Springer, 2004.

[Nik] Ivica NikoliÄĞ. Tiaoxin - 346. https://competitions.cr.yp.to/round3/
tiaoxinv21.pdf.

[PC15] Gordon Procter and Carlos Cid. On weak keys and forgery attacks against polynomial-
based MAC schemes. J. Cryptology, 28(4):769–795, 2015.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, November 18-22, 2002, pages 98–107, 2002.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science, pages 373–390. Springer, 2006.

23

https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf

[RW03] Phillip Rogaway and David A. Wagner. A critique of CCM. IACR Cryptology ePrint
Archive, 2003:70, 2003.

[Saa12] Markku-Juhani Olavi Saarinen. Cycling attacks on gcm, GHASH and other polynomial
macs and hashes. In Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 216–225. Springer, 2012.

[SWZ13] Zhelei Sun, Peng Wang, and Liting Zhang. Collision attacks on variant of OCB mode
and its series. In Information Security and Cryptology - 8th International Conference,
Inscrypt 2012, Beijing, China, November 28-30, 2012, Revised Selected Papers, volume
7763 of Lecture Notes in Computer Science, pages 216–224. Springer, 2013.

[WFH03] Doug Whiting, Niels Ferguson, and Russell Housley. Counter with cbc-mac (ccm).
2003.

[WHa] Hongjun Wu and Tao Huang. The authenticated cipher MORUS (v2). https:
//competitions.cr.yp.to/round3/morusv2.pdf.

[WHb] Hongjun Wu and Tao Huang. The JAMBU lightweight authentication encryption
mode (v2.1). https://competitions.cr.yp.to/round3/jambuv21.pdf.

[WP] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm
(v1.1). https://competitions.cr.yp.to/round3/aegisv11.pdf.

[Wu] Hongjun Wu. ACORN: A lightweight authenticated cipher (v3). https://
competitions.cr.yp.to/round2/acornv2.pdf.

24

https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round2/acornv2.pdf
https://competitions.cr.yp.to/round2/acornv2.pdf

	Introduction
	Preliminaries
	AES-CCM
	AES-GCM
	AEZ v5
	OCB3 (OCB v1.1)
	AES-OTR v3.1
	CLOC and SILC
	Deoxys v1.41
	AEGIS v1.1
	ACORN v3
	Ketje
	Tiaoxin-346
	Morus
	NORX v3.0
	Ascon
	Keyak
	COLM v1
	Jambu

