
Improvements to the Linear Layer of LowMC: A
Faster Picnic

Léo Perrin1, Angela Promitzer2, Sebastian Ramacher3, and Christian
Rechberger3

1 INRIA, France, firstname.lastname@inria.fr
2 angela.promitzer@gmail.com

3 IAIK, Graz University of Technology, Austria, firstname.lastname@tugraz.at

Abstract. Picnic is a practical approach to digital signatures where
the security is largely based on the existence of a one-way function, and
the signature size strongly depends on the number of multiplications in
the description of that one-way function. The highly parameterizable
block cipher family LowMC has the most competitive properties with
respect to this metric, and is hence a standard choice. In this paper we
study various options for efficient implementations of LowMC in-depth.
First, we investigate optimizations of the linear layer of LowMC in-
dependently of any implementation optimizations. By decomposing the
round key computations based on the keys’ effect on the S-box layer
and general optimizations, we reduce runtime costs by up to 40 % and
furthermore reduce the size of the LowMC matrices by around 55 %
compared to the original Picnic implementation (CCS’17).
Second, we propose a Feistel structure using smaller matrices completely
replacing the remaining large matrix multiplication in LowMC’s linear
layer. With this approach we achieve an operation count logarithmic
in the blocksize, but more importantly improve over Picnic’s constant-
time matrix multiplication by 60 % while retaining a constant-time algo-
rithm. Furthermore, this technique also enables us to reduce the memory
requirements for the LowMC matrices by 50 %.

Keywords: LowMC, efficient implementation, Picnic, post-quantum dig-
ital signatures

1 Introduction

Light weight cryptographic primitives that only require a low number of multipli-
cations have many applications ranging from reducing costs for countermeasures
against side-channel attacks [DPVR00, GLSV14], over improving homomorphic
encryption schemes [ARS+15, MJSC16, CCF+16, DSES14, NLV11] and multi-
party computation [GRR+16, RSS17], to SNARKS [AGR+16]. But they also
turned out to be useful to reduce signature sizes of post-quantum signature
schemes based on Σ-protocols [CDG+17a] without further structured hardness
assumptions. The latter in particular builds upon LowMC [ARS+15, ARS+16],
a highly parameterizable block cipher, and profits not only from the low number



of multiplications, but also from the small product of multiplications and the
field size. Using LowMC in this context allows further reductions to the signa-
ture size, since the LowMC parameters can be chosen suiting scenarios where
an adversary can only observe one plaintext-ciphertext pair.

We focus on the use of LowMC in the post-quantum digital signature
scheme Picnic [CDG+17a, CDG+17b] which is based on zero-knowledge proofs
of knowledge for pre-images of one way functions instantiated using LowMC. As
proof system ZKB++ is used, which is based on the “MPC-in-the-head” [IKOS07]
paradigm. To compute proofs, the circuit of the one way function is decomposed
into three branches where XORs can be computed locally, but ANDs require
information from other branches. Signature sizes depend on the total number of
AND gates used in the one way function.

From the use of LowMC in Picnic, diametral constraints merge: First, the
total number of AND gates, which is a multiple of number of rounds and number
of S-boxes, directly relates to the signature size and is thus desired to be kept
small. Second, as one decreases the number of S-boxes, the number of rounds
increases leading to a three-fold increase in the number of linear layer operations.
While applications using plain LowMC could save half of the linear layer by
simply pre-computing round keys for multiple encryptions and description, in
Picnic the key is shared into fresh shares before each invocation of LowMC.
Thus simple round key pre-computation cannot be applied to this use case.

1.1 Contribution

The contributions of this work can be summarized as follows. The first one is
an alternative description of LowMC, while the second one is a proposal for a
change of LowMC.

– We propose an alternative description of LowMC with a new structure to
compute round keys. The idea here is to split the computation into linear and
non-linear parts. This change allows us to replace all round key computations
only affecting the linear part with exactly one matrix multiplication. The
remaining non-linear parts can then be computed by much smaller round
key matrices. This new description of LowMC allows us to greatly reduce
the size of the LowMC matrices. In the signature use-case this optimization
leads to performance improvements from 10 % for smaller block sizes to 40
% for larger block sizes. Additionally, this optimization is independent of
implementation optimizations of the matrix multiplication.

– We present Fibonacci Feistel Networks (FFNs), a variant of Generalized Feis-
tel Networks, which provide very fast diffusion. Instantiating the network
with regular matrices as permutation we obtain a compact representation of
a larger matrix multiplication. The obtained equivalent of a matrix multi-
plication algorithm with logarithmic complexity can then be used to replace
the linear layer of LowMC. This technique reduces the size of the LowMC
matrices again by up to 50 %.



Albeit in the practical part of the work we focus on the Picnic use-case,
both contributions will also positively affect other use-cases of LowMC. The
alternative description is likely to be useful for cryptanalysis purposes as well.

1.2 Related Work

Efficient Implementation. Besides the security analysis, good performance
figures are an important characteristic of a useful block cipher. As such, asking
for an alternative description or finding other implementation tricks which allow
to improve the overall performance or make the use of the cipher viable under
certain constraints in the first place, is a natural question to ask. As an example,
during and after the AES competition many authors worked on fast software
implementations [AL00, BS08], fast hardware implementations [SME16], but also
on alternative and more efficient descriptions of the algorithm [BBF+02, BB02].

Fast Matrix-Vector Multiplication. Even besides cryptographic applica-
tions, fast matrix-vector multiplication over binary fields is of interest in dif-
ferent research areas and has seen various improvements and applications over
the last decades [ADKF70, Bar06, Ber09]. Despite the improvements over the
näıve matrix-vector multiplication algorithm, a runtime of O (nm/logm) for n×m
matrices is currently the asymptotically best achievable option. We note how-
ever, that with the advent of SIMD instruction sets, the constant factors can
be significantly decreased due the fact that 128, 256 or even 512 bits can be
processed simultaneously.

Feistel Networks. The exploration of Feistel Networks is as old as block ci-
phers itself. Design and analysis sof various generalizations have been explored,
see e.g. [NPV17] for a recent survey. In the second part of our work be present and
use a new Feistel generalization for an arbitrary number of branches with fast dif-
fusion. The closest related work to this is due to Suzaki and Minematsu [SM10].

1.3 Outline

We recall LowMC and the (2, 3)-decomposition as used by Picnic in Section 2.
In Section 3 we discuss the optimizations to LowMC’s linear layer and finish
with their experimental verification in Section 4. Section 5 discusses the results
of the preceding section.

2 Preliminaries

In this section we briefly recall LowMC and the (2, 3)-decomposition as used
by Picnic.

2.1 LowMC

LowMC [ARS+15, ARS+16] is a very parameterizable symmetric encryption
scheme design enabling instantiation with low AND depth and low multiplica-
tive complexity. Given any blocksize, a choice for the number of S-boxes per



round, and security expectations in terms of time and data complexity, instan-
tiations can be found minimizing the AND depth, the number of ANDs, or
the number of ANDs per encrypted bit. We recall LowMC’s definition using
a partial S-box and F2 vector space arithmetic: Let n be the blocksize, m be
the number of S-boxes, k the key size, and r the number of rounds, we choose
round constants Ci←R Fn2 for i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regu-
lar matrices Li←R Fn×n2 independently during the instance generation and keep
them fixed. Keys for LowMC are generated by sampling from Fk2 uniformly
at random. LowMC consists of key whitening in the beginning and multiple
rounds composed of an S-box layer, a linear layer, addition with constants and
addition of the round key. Algorithm 1 gives a full description of the encryption
algorithm.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2

s← K0 · y + p
for i ∈ [1, r] do

s← SBOX(s)
s← Li · s
s← Ci + s
s← Ki · y + s

end for
return s

To reduce the multiplicative complexity, the number of S-boxes applied in
parallel can be reduced, leaving part of the substitution layer as the identity
mapping. We also note that, that this choice has little to no influence on the
efficiency of the S-box layer, since a bit-sliced implementation can process all at
once4. The number of rounds r needed to achieve the goals is then determined
as a function of all these parameters.

2.2 (2, 3)-Decomposition of Circuits in Picnic

Circuit decomposition is a protocol for jointly computing a circuit, similar to an
MPC protocol, but with greater efficiency. In a (2, 3)-decomposition there are
three players and the protocol has 2-privacy, i.e., it remains secure even if two
of the three players are corrupted. We discuss some definitions from [GMO16]
and the instantiation in Picnic [CDG+17a].

4 Given m S-boxes, the bit-sliced implementation can be implemented using 3m bit
ANDs, ORs and shifts. Thus, as long as 3m bit fit into a platform’s registers, the
m-fold S-box can be implemented without overhead compared to a single S-box.



Definition 1 ((2,3)-decomposition). Let f be a function that is computed by
an n-gate circuit φ such that f(x) = φ(x) = y. Let k1, k2, and k3 be tapes of
length κ chosen uniformly at random from {0, 1}κ corresponding to players P1, P2

and P3, respectively. The tuple of algorithms (Share,Update,Output,Reconstruct)
are defined as follows:

Share(x, k1, k2, k3) : : On input of the secret value x, outputs the initial views for
each player containing the secret share xi of x.

Update(view
(j)
i , view

(j)
i+1, ki, ki+1) : On input of the views view

(j)
i , view

(j)
i+1 and ran-

dom tapes ki, ki+1, compute the wire values for the next gate and returns the

updated view view
(j+1)
i .

Output(viewi) : On input of the final view viewi ≡ view
(n)
i , returns the output

share yi of player Pi.

Reconstruct(y1, y2, y3) : On input of all output shares yi, reconstructs and returns
y.

Correctness requires that reconstructing a (2, 3)-decomposed evaluation of a cir-
cuit φ yields the same value as directly evaluating φ on the input value. The
2-privacy property requires that revealing the values from two shares reveals
nothing about the input value.

ZKB++, a Σ-protocol for proving statements about general circuits, con-
structs the (2, 3)-decomposition of a circuit as follows: Let R be an arbitrary
finite ring and φ a function such that φ : Rm → R` can be expressed by an n-
gate arithmetic circuit over the ring using addition respectively multiplications
by constants, and binary addition and binary multiplication gates. A (2, 3)-
decomposition of φ is then given by:

Share(x, k1, k2, k3) : Samples random x1, x2 ∈ Rm from k1 and k2 and computes
x3 such that x1 + x2 + x3 = x. Returns views containing x1, x2, x3.

Outputi(view
(n)
i ) : Selects the ` output wires of the circuit as stored in the view

view
(n)
i .

Reconstruct(y1, y2, y3) : Computes y = y1 + y2 + y3 and returns y.

Update
(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) : Computes Pi’s view of the output wire of

gate gj and appends it to the view. For the k-th wire wk where w
(i)
k denotes

Pi’s view, the update operation is defined as follows for the specific gate
types:

Addition by Constant (wb = wa + k): w
(i)
b = w

(i)
a +k if i = 1 and w

(i)
b =

w
(i)
a otherwise.

Multiplication by Constant (wb = k · wa): w(i)
b = k · w(i)

a

Binary Addition (wc = wa + wb): w
(i)
c = w

(i)
a + w

(i)
b

Binary Multiplication (wc = wa · wb): w(i)
c = w

(i)
a · w(i)

b + w
(i+1)
a · w(i)

b +

w
(i)
a · w(i+1)

b +Ri(c)−Ri+1(c) where Ri(c) is the c-th output of a pseu-
dorandom generator seeded with ki.



Note that Pi can compute all gate types locally with the exception of binary
multiplication gates as this requires inputs from Pi+1. In other words, only out-
puts of binary multiplication gates need to be serialized, and thus the view size
and consequentially the signature size of Picnic depend on the size of the ring
R and the number of multiplication gates.

3 Optimizing the Linear Layer

From the use of LowMC in Picnic, we obtain some constraints on the optimiza-
tions we are allowed to perform. The S-box serves as a synchronization point on
the first 3m bits, i.e. the bits that are actually touched by the S-box. On the
other n − 3m bits the S-box is simply the identity map and their actual values
do not matter for S-box evaluations. Thus we have to ensure that the evaluation
of all AND gates stays invariant under all our optimizations. Secondly, we have
to assume that the secret key – or more precisely the shares representing it –
changes on every encryption.

3.1 Splitting the Round Key Computation

We start with the round key computation. Since the secret key is freshly shared
for each LowMC evaluation in Picnic, the round keys cannot be pre-computed
once during initialization. However, we can observe that due to the structure of
the S-box layer for n − 3m bits of the round key, which coincide with the part
of the state where the S-box acts as identity map, it does not matter whether
those bits are added to the state before or after the application of the S-box.
Due to the linear nature of all operations involved in the computation after the
S-box, we can simply change the order of adding the round key and multiplying
the state with Li. We modify each round as follows:

– Modify s← Li · s+Ki · y + Ci to s← Li · (L−1
i ·Ki · y + s) + Ci.

– Now split L−1
i ·Ki · y into the lower 3m bits (the “non-linear part”) and the

upper n − 3m bits (the “linear part”) and move the addition of the upper
n− 3m bits before the S-box layer.

In the following we denote by ρji : Fn2 → Fj−i2 the map sending n-dimensional vec-

tors to a vector only consisting of the i-th to j-th coordinate, i.e. ρji (v1, . . . , vn) 7→
(vi, . . . , vj), to simplify some notation when refering to the linear and non-linear
part. In particular, we use ρL = ρn3m+1 to identitfy the linear part and ρN = ρ3m1
for the non-linear part, respectively.

Figure 1 now demonstrates one round of LowMC with the above modi-
fications. Observe this modification does not change the output of LowMC.
Additionally, we can continue in moving the addition of the linear part to the
previous round until all those additions have been moved at the start of the
LowMC encryption algorithm.

After iterating this procedure to move all linear parts of the round key before
the round, we end up with all additions of the linear parts of the round key before



si

SBOX

· Li

Ci

Ki · y

si+1

si

ρL(L−1
i ·Ki · y)

SBOX

ρN (L−1
i ·Ki · y)

· Li

Ci

si+1

Fig. 1: One round of LowMC before (left) and after (right) the splitting of the
round key

the first round and are left with a reduced round key of 3m bits per round. We
now discuss the invovled matrices. For the computation of the linear and non-

linear part, the matrix L−1
i has to be computed for each LowMC round i. By

L−1
i we denote inverse of the linear layer matrix Li with the first 3m columns

of this inverse set to 0.
The linear part can be computed by calculating the matrix PL, which is

defined as

PL = L−1
1 ·K1 +

r∑
j=2

(
j∏

k=1

L−1
k

)
·Kj

and then multiplying it with the master key y and adding the result to the
initial state s0. The matrix PL can be precomputed from the LowMC matrices
before any encryption and thus only the matrix multiplication with the master
key y and the addition to the initial state s0 is required at the beginning of the
encryption.

For the non-linear part we can define a similar matrix PNi for round i, which
is

PNi = L−1
i ·Ki +

r∑
j=i+1

(
j∏
k=i

L−1
k

)
·Kj .

This matrix PNi of the dimension (n×k) is then multiplied with the master key
y and the first 3m bits of this result are added to the state in the corresponding



LowMC round after applying the S-box function to the state. However, this still
implies that this multiplication PNi ·y is done in every LowMC round, which can
be avoided by using the following structure. As only 3m bits of PNi · y are used,

we can combine the first 3m rows of the matrix PNi, denoted as PNi
3m

, of all
rounds i to one matrix CN of dimension (3m ·r×k). The combined precomputed
non-linear values CN can then be multiplied with the master key y before the
encryption, which results in a vector v of dimension (3m · r × 1).

CN =


PN 1

3m

...

PNr
3m︸ ︷︷ ︸

k cols


}

3m rows}
3m rows

Now, the 3m bits starting from bit i · 3m of the vector v can be added to the
non-linear part of the state in round i. So, although the non-linear part remains
in each LowMC round the computation effort is reduced from a (n×k) matrix-
vector multplication and a n-bit XOR to a 3m-bit XOR in each round. The
pre-comuptation of PL and PNi can be done independently of the master key
y and before any encryption takes place. The multiplications PL · y and CN · y
have to be done once at the start of the encryption algorithm with the specific
shares of y for this encryption. Algorithm 2 shows the full LowMC encryption
with the reduced linear layer.

Algorithm 2 LowMC encryption with a reduced linear layer for key matrices
Ki ∈ Fn×k2 for i ∈ [0, r], linear layer matrices Li ∈ Fn×n2 and round constants
Ci ∈ Fn2 for i ∈ [1, r] and the precomputed matrices PL and CN .

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2

v ← CN · y
s← (K0 + PL) · y + p
for i ∈ [1, r] do

s← SBOX(s)

s← ρ
3·(i+1)
3·i (v) + s

s← Li · s
s← Ci + s

end for
return s

The necessary matrices for the unmodifided LowMC algorithm and LowMC
with the reduced linear layer (RLL) are presented in Table 1. From the memory
it can be seen, that LowMC with RLL reduces the memory consumption for
the round keys from r+1 (n×k) matrices to 1 (n×k) and 1 (3m ·r×k) matrix.
However, LowMC with RLL introduces an additional vector v of dimension
(3m · r × 1) to store the non-linear part for each specific encryption.



LowMC LowMC with RLL

Linear layer r (n× n) r (n× n)
Round key matrices (r + 1) (n× k) 1 (n× k) (linear part)

1 (3m · r × k) (non linear part)
Round constants r (1× n) r (1× n)
Additional memory 1 (3m · r × 1) (vector v)

Table 1: Necessary matrices for general LowMC and LowMC with RLL.

We note that the same modification can be done to the round constants Ci
(for i ∈ [1, r]). They can be moved to the beginning of the encryption in the
same manner as the round key. Also, for LowMC’s decryption algorithm the
same modification applies.

3.2 Fibonacci Feistel Network

Given that the cost of storing a binary matrix operating on n bits is proportional
to n2, it is possible to decrease the cost of a n × n matrix when it can be
implemented using several m × m matrices with m < n. In this section, we
describe a method for building large binary matrices using several smaller ones
while still ensuring that every output bit may depend on every input bit.

Our main idea is to borrow techniques from block cipher design, in particular
from Generalized Feistel Networks (GFN). In fact, we propose a new variant
of this structure, called Fibonacci Feistel Network (FFN), which provides very
fast diffusion. As its name indicates, this structure uses the Fibonaci sequence
{φi}i≥0 defined by the well-known induction formula:

φ0 = 0

φ1 = 1

φi+1 = φi + φi−1 ,

so that φ0, φ1, φ2, φ3, φ4, φ5 = 0, 1, 1, 2, 3, 5. The smallest integer i such that
φi > b is denoted i = Λφ(b). For example, φ8 = 21 and φ9 = 34, so Λφ(32) = 9.

The Fibonacci-Feistel Structure. A FFN operates on 2bw bits, where w ≥ 4
and b ≥ 2, using R rounds. The round functions are different in each round
although they always use the same overall structure: each round is a classical
2-branched Feistel round where the Feistel functions maps bw bits to bw. The
Feistel function used in round i is denoted Fi for all 0 ≤ i and works as follows:

1. the state is divided into b branches of w bits,
2. each branch goes through a w-bit L-Box, that is, a linear function mapping
w bits to w bits, and

3. the branches are rotated by φi, so that Bj ← Bj+φi
, where φi is the i-th

Fibonacci number and the sum is taken modulo b.



Alternatively, let us denote the 2bw-bit internal state at round i as Xi and
its w-bit branch with index j as Xi

j . The full round function works as follows,
for j < b:

Xi+1
j+b = Xi

j , X
i+1
j = Xi

j+b ⊕ Lij−φi

(
Xi
j−φi

)
,

where j − φi is taken modulo b and where Lij is a w-bit L-Box. An example is
given in Figure 3 in Appendix A.

Diffusion in a FFN. Diffusion is very fast in such a structure. The idea of
using something more sophisticated than a constant rotation for mixing the
branches is not new. In [SM10], Minematsu and Suzaki proposed using complex
permutations which significantly improve diffusion: for a structure operating on
k branches, only 2 log2(k) rounds are needed to achieve full diffusion while a
näıve constant rotation would need k rounds. Furthermore, the gain increases
as the number of rounds increases, making such methods even more appealing
on larger blocks. It was for example used to design the lightweight block cipher
Twine [SMMK12].

Unlike such GFN, the FFN needs a different permutation in each round.
However, it works for any even number of branches, we are not restricted to
powers of two. The permutations used are also much simpler and, as we explain
later, they can lend themselves well to constant-time software implementations
using only ANDs, XORs and rotations.

In what follows, we present two lemmas which quantify diffusion inside a FFN
more formally. Lemma 1 describes how a single word diffuses through several
rounds of FFN. While Lemma 2 highlights some invariant properties of such a
network. These two are put together in Corollary 1 to quantify how many rounds
are needed to have some form of full diffusion. The notations in Definition 2 are
used throughout the remainder of this section.

Definition 2 (Notations). We denote with Xi
j the word with index j at the

input of round i and we say that x influences y if the expression of y involves
the variable x.

Lemma 1. Let i be such that φi+1 ≤ b. Then the word X0
0 influences all words

Xi
j with indices 0 ≤ j < φi+1 and b ≤ j < b+ φi.

The process behind this lemma is illustrated in Figure 2 and formally proved
further below. The propagation of a word accross several rounds is illustrated in
Figure 3 in Appendix A.

Proof. We proceed by induction.

Before round 0, i.e. at the beginning of the application of the FFN, only X0
0

depends on X0
0 . After round 0 (where the Feistel function contains a rotation by

φ0 = 0), only X1
0 and X1

b depend on X0
0 , so that X1

j depends on X0
0 if and only

if 0 ≤ j < φ2 or b ≤ j < b+ φ1.



φi+1 φi

φi φi + φi+1

φi+2 φi+1

Fi ⊕

Fig. 2: How X0
0 influences Xi

j for increasing i. The parts of the internal state

which depend on X0
0 are colored; those that do not are in white. The Feistel

function Fi involves a layer of L-Boxes and a rotation by φi.

Suppose now that Xi
j depends on X0

0 if and only if 0 ≤ b < φi or b ≤ j <

b+ φi−1. The round function with index i maps Xi to Xi+1 such that{
Xi+1
j = Xi

j+b ⊕ Lij−φi

(
Xi
j−φi

)
if j < b

Xi+1
j = Xi

j−b if j ≥ b .

If j ≥ b, then Xi+1
j = Xi

j−b which, by the induction hypothesis, depends on X0
0

if and only if 0 ≤ j − b < φi, which is equivalent to b ≤ j < φi. Thus, the
lemma holds in this case.

If j < b, then Xi+1
j depends on both Xi

b+j and Xi
j−φi

. By the induction hy-

pothesis, the first depends on X0
0 if and only if b ≤ b + j < b + φi, which

is equivalent to 0 ≤ j < φi. The second depends on X0
0 if and only if

0 ≤ j − φi < φi+1 or, equivalently, φi ≤ j < φi + φi+1 = φi+2. Thus, for
any j such that 0 ≤ j < φi+2, Xi+1

j depends on X0
0 . This dependence occurs

via Xi
b+j for j < φi and via Xi

j−φi
for φi ≤ j < φi+2. We deduce that the

lemma holds in this case as well.
ut

If we leave the details of the L-Boxes aside, a FFN is invariant under rotation
of the halves of the state. This is formalized by the following lemma.

Lemma 2. Let Rk be a permutation of {0, ..., 2b− 1} such that

Rk(j) =

{
(j + k) mod b if j < b,

b+ ((j − b+ k) mod b) if j ≥ b ,

meaning that applying Rk to the index of the branches of FFN rotates separately
the left and right branches by k.

Let P be one round of FFN where all L-Boxes are the same and let (y0, ..., y2b−1) =
P (x0, ..., x2b−1). Then the following always holds:

P (yRk(0), ...yRk(2b−1)) = (yRk(0), ...yRk(2b−1)) .



Proof. If the L-boxes are identical then all operations in a FFN are invariant
under a word rotations applied to both halves of the internal state. ut

We deduce the following Corollary which quantifies the speed of diffusion in
a FFN.

Corollary 1. Let i be such that b < φi. Then all output words Xi+2
j (for all

j ∈ {0, ..., 2b− 1}) of the i+ 1-round FFN depend on all the left input words X0
k

where k < b.

Proof. Let k ≤ i − 1 be such that φk ≤ b < φk+1. By Lemma 1, we know
that after k rounds, X0

0 influences all words with indices j if 0 ≤ j < φk or
b ≤ j < b+φk−1. After round k+ 1, the words on the left all depend on X0

0 and
thus, after round k + 2 ≤ i+ 1, all output words depend on X0

0 .
Because of Lemma 2, we can generalize this dependency to all input words

from the left side. We conclude that, after round k all output words depend on
X0
j for all j < b.

Corollary 2. Let i be such that φi+1 ≤ b. Then each X0
j for j < b influences

φi+2 words Xi
k after i− 1 rounds.

Proof. By Lemma 1, X0
0 influences words Xi

j where 0 ≤ j < φi+1 and b ≤ j <
b+ φi, i.e. a total of φi+1 + φi = φi+2 words. By Lemma 2, this property holds
for any word on the left side of the input, i.e. for all X0

j with j < b.

Efficient Implementation. In this section, we describe how we can build a
linear layer which can be evaluated using O (Λφ(b)× w) operations on a modern
processor, where 2×b×w = n. This linear layer provides full diffusion. Of course,
it uses a FFN with 2b branches of w bits each. The core trick is in the definition
and implementation of the L-Box layer composed with the rotation by φi.

Instead of using table lookups to implement the linear layer, we can use some
sort of in-place bit-sliced strategy for small branch sizes5, as follows. Let x be the
bw-bit input of Fi where Fi consists in a layer of w-bit L-Boxes and a rotation
by φi. Then we can write

Fi = M−1 ◦ ROTφi
◦ Li ◦M ,

where:

– M maps the w-bit word with index j to the bits with indices congruent to
j modulo b. More formally, M is a bit permutation which maps x0, ...xbw−1

to x0, xb, x2b, ...x(w−1)b, x1, xb+1..., xbw−1, i.e. each bit of the first w-bit word
end up at positions k ≡ 0 (mod b), the bits of the second w-bit word at
positions k ≡ 1 (mod b), etc.

5 For larger branch sizes, e.g. w ≥ 32 we can fall back on optimized matrix-vector
multiplication algorithms and the branch rotation can simply be performed by index
arithmetic in arrays storing the state.



– Li is parametrized by w words of size bw denoted `ij . It maps a bw-bit word
y to a value equal to

Li(y) =

w−1⊕
j=0

`ij ∧ (y ≪ (j × b)) .

Thus, the output bit of Li with index k is a linear combination of w vari-
ables yk, yb+k, y2b+k, ..., y(w−1)b+k. The w output variables with indices k ≡ a
(mod b) depend only on the w input variables with indices k ≡ a (mod b):
Li is effectively an L-Box layer except that it operates on slices of the state
defined by k (mod b) rather than bk/bc.

Basically, M changes the representation of the words and Li evaluates the L-
Box layer on this alternative representation. In fact, we can simplify the functions
M in each round by applying M to each half of the input of the whole FFN and
M−1 to each half of its output. If the only aim is full diffusion we can simply
remove them.

In the end, evaluating a linear FFN with full diffusion on 2b branches with
w-bit words requires Λφ(b) + 1 rounds, each of which requires

– w rotations applied word-wide on a bw-bit word by φi + b × k for all k ∈
{0, ..., w − 1},

– w ANDs applied word-wide on a bw-bit word,
– w XORs applied word-wide on a bw-bit word to combine the `ij ∧ (x ≪
bk + φi) with the other branch.

Let us consider a practical, namely a 256-bit linear layer to be used by a
smaller-block variant of LowMC. For n = 256 = 2× 32× 4, we can implement
a bijective linear layer with full diffusion using 1 + Λφ(32) = 10 rounds by
composing a 9-round FFN with another round before it. The role of this first
round is to ensure that the left input of the FFN depends on both the left and
right words of the input of the structure. In this way, at the end of the FFN, all
output words depend on all input words. The rotation used in this first round
can be chosen freely; we suggest using b/2 = 16.

Evaluating such a linear layer requires 10 rounds during which we perform:

– 4 copies of the left 128-bit half into 4 different 128-bit words;
– a rotation of each of these four 128-bit words by the following number of

bits: φi−1, 32 + φi−1, 64 + φi−1, 96 + φi−1; where we set φ−1 = 16 and where
φi for i ≥ 0 is the usual Fibonacci sequence;

– a AND of each of these four 128-bit words by 128-bit values derived from
the expression of Lij ;

– a XOR of each of these four 128-bit words into the right half of the internal
state; and

– a swap of the left and right words.

In total, we need 40 copies, 40 rotations, 40 XORs, 40 ANDs, and 10 swaps where
all operations are on 128-bit words. An example of 256×256 binary matrix which
can be implemented in this fashion is provided in Appendix B.



4 Experimental Verification

This section covers the experimental verifications of both suggested optimiza-
tions.

4.1 Reduced Linear Layer

We start with the evaluation of reduced linear layer introduced in Section 3.1. We
implemented the proposed optimizations on top of the Picnic implementations
available on GitHub6 and based the matrix pre-computations on the LowMC
reference implementation7.

We performed the benchmarks on an Intel Core i7-4790 running Ubuntu
17.04 and Raspberry Pi 3 Model B running openSUSE Leap 42.2. All measure-
ments were repeated 1000 times and averaged and are presented both as millisec-
onds and number of cycles. We only benchmarked the Fiat-Shamir transformed
variant of Picnic, since the Unruh transformed variant does not perform any
additional rounds of the proof system. Hence improvements to LowMC encryp-
tion apply to Picnic-FS and Picnic-UR in the same way. For the benchmarks
we use the instances listed in Table 2 and denote as Picnic-n the instance for
blocksize n benchmarked for Picnic-FS.

Blocksize S-boxes Keysize Rounds
n m k r

128 10 128 20
192 10 192 30
256 10 256 38

Table 2: Parameters for LowMC targeting various security levels (n/2) as used
by Picnic [CDG+17b]. All parameters are computed for data complexity d = 1.

with RLL without RLL Perf. gain
Parameters Sign Verify Sign Verify Sign Verify

Picnic-128 1.95 1.37 2.16 1.49 10% 8%
(cycles) 7021464.80 4914566.23 7791425.37 5357557.45
Picnic-192 6.84 4.78 10.51 7.45 35% 36%
(cycles) 24609965.13 17224381.00 37846564.92 26821911.32
Picnic-256 14.13 9.71 25.23 17.47 44% 44%
(cycles) 50872097.81 34969117.91 90827770.05 62885085.88

Table 3: Benchmarks without and with RLL on Intel Core i7.

6 https://github.com/IAIK/Picnic
7 https://github.com/LowMC/lowmc

https://github.com/IAIK/Picnic
https://github.com/LowMC/lowmc


From Table 3 we can observe a small 10 % improvement for the 128 bit
case and up to 40 % for signing with the larger instances. The results on the
Raspberry Pi 3 are presented in Table 4 and show an even larger improvement
of 40 to 50 % for signing and verifying with all instances. We also note that the
numbers without reduced linear layers also show improvements over the numbers
published in [CDG+17a]. Those improvements are obtained via general memory
usage optimizations based on better data locality and better cache usage.

with RLL without RLL Perf. gain
Parameters Sign Verify Sign Verify Sign Verify

Picnic-128 10.36 7.12 17.08 11.61 39% 39%
(cycles) 37295940.40 25615307.22 61497049.90 41804895.48
Picnic-192 39.94 26.89 72.05 48.06 45% 44%
(cycles) 143772804.12 96819499.16 259362245.44 172999619.37
Picnic-256 84.27 56.45 172.86 115.42 51% 51%
(cycles) 303377247.02 203205361.38 622302669.39 415507521.20

Table 4: Benchmarks without and with RLL on Raspberry Pi 3.

To give one concrete example for the memory savings discussed in Section 3.1,
we calculate the memory requirements for parameter set Picnic-256. For the
round key calculations the general LowMC algorithm requires 38 + 1 matrices
of dimension 256 × 256, which correspond to 312 KB. LowMC with reduced
linear layer only uses one 256 × 256, and one 1140 × 256 matrix as well as one
1140-bit vector, which yields a memory consumption of 43, 625 KB. Hence, in
the parameter set Picnic-256 we achieve a reduction of the memory cost for the
round key by more than 85%. Taking the linear layer and the round constants
into account we still save more than 43% of the memory. However, in the practical
Picnic implementation the memory saving is even higher and reaches around
55%. This effect occurs because every matrix stores additional meta information
about the matrix itself and padding and as the number of matrices is greatly
reduced in LowMC with RLL, also a lot of meta information and padding can
be ommited.

Therefore, we can conclude that our alternative description provides both a
significant performance boost and also saves a large amount of memory required
to represent LowMC.

4.2 Fibonacci Feistel Network

We also implemented the proposed Feistel network from Section 3.2 and bench-
marked it against an implementation of a constant-time matrix multiplication
available in the Picnic project on GitHub. All measurements were repeated
1000000 times and averaged and are presented as number of cycles.

Performance and memory consumption of a 256-bit blocksize Feistel network
and different branch sizes are shown in Table 5. The constant-time implementa-



tion has a performance of 2302 cycles for a 256×256 matrix-vector multiplication.
As Table 5 shows, the Feistel network performs 20% better than the constant-
time implementation if 16 bit branches are used. However, using 64-bit branches
increases the performance gain to around 60 %.
The constant-time algorithm has a memory consumption of 8192 bytes because
the whole 256 × 256 matrix has to be stored. The Feistel network for 64 bit
branches only uses 1

4 of this memory because the 256 × 256 matrix is instead
represented by smaller 64× 64 matrices.

Branch size Rounds Cycles Memory (Bytes)

4 10 4745 640
8 8 2965 1024
16 6 1897 1536
32 4 2203 2048
64 2 837 2048

Table 5: Benchmarking of Feistel network with different branch sizes on Intel
Core i7.

5 Discussion

The results we presented in Section 4 let us presume that both optimizations
yield even better results for larger blocksizes, e.g. larger instances as used by
LowMCHash-256 [AGR+16]. Note that for the reduced linear layer the number
of S-boxes is essential for the performance gain from using a reduced linear layer.
If the number of S-boxes stays the same but the blocksize is increased, removing
the multiplication of the round key matrix with the master key has a higher
impact the larger the blocksize is. If 3m is almost as large as n, then we expect
no performance gain because the matrix CN is almost as big as all round key
matrices and the multiplication with the master key is then not much faster than
multiplying each round key separately.

Also the proposed Feistel network will result in even better performance
gains if the blocksize is increased. Table 6 shows that the performance gain
for blocksizes. While the cost for the constant-time multiplication quadruples
if the blocksize doubles, the Feisel network less than triples the cost for large
blocksizes. Also, the larger the blocksize the slower the cost grows with the
Fibonacci structure.

From an implementation point of view the branch size for very large block-
sizes, e.g. 1024 bit or morge, can be extended to 128-bit, 256-bit or even 512
bit using the SSE2 and AVX2 and AVX512 instruction sets. This can be an
interesting approach for very large blocksizes, because the number of branches
and rounds can be reduced making the algorithm faster.



Blocksize Rounds Branches XOR operations XOR operations with
in Feistel network constant-time multiplication

256 2 2 256 1024
512 4 4 1024 4096
1024 6 8 3072 16384
2048 8 16 8192 65536

Table 6: Development of the FFN performance for larger blocksizes.

Besides the runtime improvements, reducing the linear layer might also have
consequences on the cryptoanalysis of LowMC. As this optimization leads to
an equivalent description of LowMC, only smaller round keys are added in
each round while keeping the number of rounds the same. The cryptoanalysis of
LowMC based on Fibanocci Feistel networks might also need to be adapted, as
the Feistel network is only able to represent some regular matrices, but not all
as sampled by LowMC in the instance generation.

Acknowledgments. We thank Tyge Tiessen for interesting ideas and discus-
sions on optimizing LowMC’s linear layer. S. Ramacher, and C. Rechberger have
been supported by H2020 project Prismacloud, grant agreement n◦644962. C.
Rechberger has additionally been supported by EU H2020 project PQCRYPTO,
grant agreement n◦645622.

References

ADKF70. V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical
construction of the transitive closure of a directed graph. Soviet Math
Dokl., 1970.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,
and Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing
with minimal multiplicative complexity. In ASIACRYPT, pages 191–219,
2016.

AL00. Kazumaro Aoki and Helger Lipmaa. Fast implementations of AES candi-
dates. In AES Candidate Conference, pages 106–120, 2000.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, 2015.

ARS+16. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. IACR Cryptol-
ogy ePrint Archive, 2016:687, 2016.

Bar06. Gregory V. Bard. Accelerating cryptanalysis with the method of four
russians. IACR Cryptology ePrint Archive, 2006:251, 2006.

BB02. Elad Barkan and Eli Biham. In How Many Ways Can You Write Rijndael?,
pages 160–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

BBF+02. Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti,
and Stefano Marchesin. Efficient software implementation of AES on 32-bit
platforms. In CHES, volume 2523, pages 159–171, 2002.



Ber09. Daniel J. Bernstein. Optimizing linear maps modulo 2. 2009. https:

//binary.cr.yp.to/linearmod2.html.
BS08. Daniel J. Bernstein and Peter Schwabe. New AES software speed records.

In INDOCRYPT, volume 5365 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2008.

CCF+16. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint,
Maŕıa Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ci-
phers: A practical solution for efficient homomorphic-ciphertext compres-
sion. In Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers,
pages 313–333, 2016.

CDG+17a. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In CCS, pages 1825–1842. ACM, 2017.

CDG+17b. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
The Picnic Signature Algorithm Specification, 2017. https://github.com/
Microsoft/Picnic/blob/master/spec.pdf.

DPVR00. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rij-
men. Nessie Proposal: NOEKEON, 2000. http://gro.noekeon.org/

Noekeon-spec.pdf.
DSES14. Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. To-

ward practical homomorphic evaluation of block ciphers using prince. In
FC Workshops BITCOIN and WAHC, pages 208–220, 2014.

GLSV14. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem
Varici. Ls-designs: Bitslice encryption for efficient masked software imple-
mentations. In FSE, pages 18–37, 2014.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In USENIX, pages 1069–1083, 2016.

GRR+16. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. Mpc-friendly symmetric key primitives. In CCS, pages
430–443, 2016.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21–30,
2007.

MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and
Claude Carlet. Towards stream ciphers for efficient FHE with low-noise
ciphertexts. In EUROCRYPT, pages 311–343, 2016.

NLV11. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? In CCSW, pages 113–124, 2011.

NPV17. Valérie Nachef, Jacques Patarin, and Emmanuel Volte. Feistel Ciphers -
Security Proofs and Cryptanalysis. Springer, 2017.

RSS17. Dragos Rotaru, Nigel P. Smart, and Martijn Stam. Modes of operation
suitable for computing on encrypted data. IACR Trans. Symmetric Cryp-
tol., 2017(3):294–324, 2017.

SM10. Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized
feistel. In FSE, volume 6147, 2010.

SME16. Shady Mohamed Soliman, Baher Magdy, and Mohamed A. Abd El-Ghany.
Efficient implementation of the AES algorithm for security applications.
In SoCC, pages 206–210. IEEE, 2016.

https://binary.cr.yp.to/linearmod2.html
https://binary.cr.yp.to/linearmod2.html
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf


SMMK12. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita
Kobayashi. TWINE: A lightweight block cipher for multiple platforms.
In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptog-
raphy, volume 7707 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2012.



A An Example of Fibonacci-Feistel Network

φ0 = 0

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

φ1 = 1

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕

φ2 = 1

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕

φ3 = 2
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕

φ4 = 3⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕

φ5 = 5
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕

Fig. 3: 6 rounds of the FFN structure for b = 8. The rectangles correspond to
distinct L-Box calls. A branch is red if its value depends on the left-most word
of the input.



B Example of Binary Matrices Corresponding to a FFN

The matrix presented in Figure 4 has the following properties:

– It has full rank.
– h = 33585 ≈ 0.51× 216 ofs its coefficients are equal to 1.
– It can be evaluated using a 10-round FFN with 32 independent and random

4-bit linear permutations used as L-boxes in each round. A new L-box layer
is used for each round.

Its inverse has similar properties and is also depicted in Figure 4.

(a) The matrix M . (b) The inverse matrix M−1.

Fig. 4: A matrix M and its inverse M−1 corresponding to a 10-round 256-bit
FFN with b = 32, w = 4. Black means 1, white means 0.


	Improvements to the Linear Layer of LowMC: A Faster Picnic

