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Abstract. An attribute-based credential scheme allows a user, given a
set of attributes, to prove ownership of these attributes to a verifier,
voluntarily disclosing some of them while keeping the others secret. A
number of such schemes exist, of which some additionally provide un-
linkability: that is, when the same attributes were disclosed in two trans-
actions, it is not possible to tell if one and the same or two different
credentials were involved. Recently full-fledged implementations of such
schemes on smart cards have emerged; however, these need to compro-
mise the security level to achieve reasonable transaction speeds. In this
paper we present a new unlinkable attribute-based credential scheme
with a full security proof, using a known hardness assumption in the
standard model. Defined on elliptic curves, the scheme involves bilinear
pairings but only on the verifier’s side, making it very efficient both in
terms of speed and size on the user’s side.

Keywords: attribute-based credentials, unlinkable, self-blindable, elliptic curves,
bilinear pairings

1 Introduction

An attribute-based credential (ABC) scheme allows a user, given a set of at-
tributes k1, . . . , kn, to prove ownership of these attributes to a verifier, volun-
tarily disclosing some of them while keeping the others secret. A number of
such credential schemes exist, of which some additionally provide unlinkability :
that is, when reusing a credential the verifier cannot tell whether two transac-
tions did or did not originate from the same user (assuming the same attributes
with the same values were disclosed in both transactions). This allows for very
flexible identity management schemes, that are simultaneously very secure and
privacy-friendly.

Two well-known ABC schemes are Idemix [15,31] and U-Prove [13,37]. How-
ever, to date there is no provably secure scheme that is sufficiently efficient to
allow truly secure implementations on smart cards, while also providing unlink-
ability of transactions. For example, since Idemix is based on the strong RSA-
problem, one would want the keysize to be at least 2048 bits and preferably



even 4096 bits; the IRMA project1 has implemented Idemix on smart cards us-
ing 1024 bits. On the other hand, U-Prove is more efficient but does not provide
unlinkability; in addition, its security is not fully proven.

In this paper, we provide a new provably secure, efficient and unlinkable
attribute-based credential scheme, that is based on the concept of self-blindability
[41]: before showing the credential, it is randomly modified into a new one (con-
taining the same attributes) that is still valid. This results in a showing protocol
in which the verifier learns nothing at all about the credential besides the at-
tributes that are disclosed (and the fact that the credential is valid). In fact, the
showing protocol is a zero-knowledge proof of knowledge. The scheme does not
rely on the random oracle model (although usage of this model can lead to a
performance increase through the Fiat-Shamir heuristic [21]), and it uses elliptic
curves and bilinear pairings, allowing the same security level as RSA-type groups
at much smaller key sizes. Although computing a pairing is a much more expen-
sive operation than performing exponentiations on an elliptic curve, all pairings
occur on the verifier’s side. In addition, the kinds of pairing that we use (Type
3; see Definition 14) involves two distinct groups of which one is more expensive
to do computations on. However, the user only needs to perform computations
on the cheaper of the two. These two facts ensure that the amount of work that
the user has to perform is minimal.

The unforgeability of our credential scheme will be implied by the LRSW
assumption [16,34,33] introduced by Lysyanskaya et al., and used in many sub-
sequent works (for example, [16,44,43,14,1]). Actually, for our purposes a weaker
(in particular, non-interactive and thus falsifiable [36]) version of this assumption
called the whLRSW assumption [44] will suffice. After having defined attribute-
based credential schemes as well as unforgeability and unlinkability in the next
section, we will discuss these assumptions in Section 3. In the same section we
will introduce a signature scheme on the space of attributes, that will serve as the
basis for our credential scheme. In Section 4 we turn to our credential scheme,
defining issuing and showing protocols, and proving that these provide unlinka-
bility and unforgeability for our scheme. This in turn implies the unforgeability of
the signature scheme. In Section 5 we will discuss the performance of our scheme,
by counting the amount of exponentiations that the user has to perform and by
showing average runtimes of an implementation of our scheme. First, we briefly
review and compare a number of other attribute-based credential schemes, in
terms of features, efficiency and speed, and security.

1.1 Related work

The Idemix credential scheme [15,31] by Camenisch and Lysyanskaya is prob-
ably the most well-known unlinkable attribute-based credential scheme, relying
on the difficulty of the strong RSA problem in the group of integers modulo an
RSA modulus n = pq, of recommended size at least 2048 bits. Although this
credential scheme has a lot of desirable properties (it is provably unlinkable and

1 https://www.irmacard.org
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unforgeable, and the length of the signatures does not depend on the amount of
attributes), the large size of the modulus means that, when implementing the
user on smart cards, it is difficult to get acceptable running times for the pro-
tocols. For example, in [42] the Idemix showing protocol has been implemented
with 4 attributes and n around 1024 bits (while n should really be at least 2048
bits); there the running time for the ShowCredential protocol ranged from 1 to
1.3 seconds, depending on the amount of disclosed attributes.

Another well-known credential scheme is U-Prove [13,37] by Brands. Based
on the difficulty of the discrete logarithm problem in a cyclic group, it can
be implemented using elliptic curves, and additionally the showing protocol is
much less complicated than that of Idemix, also resulting in more efficiency.
However, in U-Prove two transactions executed with the same credential are
always linkable, and the showing protocol is only honest-verifier zero-knowledge
(i.e., there is no proof that dishonest verifiers cannot extract or learn information
about the undisclosed attributes). Moreover, there is no unforgeability proof for
U-Prove credentials, and it even seems that no such proof exists under standard
intractability assumptions [4].

We also mention the “Anonymous Credentials Light” construction from [3],
which can also be implemented on elliptic curves, but the credentials are not
unlinkable; and [28], which runs in RSA groups like Idemix.

The credential scheme from [16], also by Camenisch and Lysyanskaya, is much
closer to the scheme presented here: it is unlinkable, uses the (interactive) LRSW
assumption, as well as elliptic curves and bilinear pairings (of the less efficient
Type 1). In addition, how the signature scheme is used to obtain a credential
scheme with a zero-knowledge disclosure protocol is similar to this work. The
signature scheme that is used in [16] is, however, rather more complicated than
ours: for example, when showing a credential the user has to compute an amount
of pairings that is linear in the amount of disclosed attributes.

In [2] the BBS signature scheme [12] is modified into an unlinkable attribute-
based credential scheme that, like the scheme from [16], requires the user to
compute a number of (Type 2) pairings. However, the signatures in this scheme
are short, and (like in Idemix but unlike our own scheme) its length does not
depend on the amount of attributes.

More recently Fuchsbauer et al. [22] proposed a novel attribute-based cre-
dential scheme using structure-preserving signatures and a new commitment
scheme, in which the undisclosed attributes are not hidden by knowledge proofs
but rather by a partial opening to a commitment. As a result, like in Idemix
the signature length does not depend on the amount of attributes. The scheme
does, however, rely on a new variant of the strong Diffie-Hellman assumption
that was newly introduced in the same paper.

In [30] a number of broken self-blindable credential schemes were examined,
and a criterion was posed which can indicate if a self-blindable credential scheme
is linkable or forgeable. The scheme that we introduce in this paper is however not
susceptible to this criterion, as it only holds for deterministic signature schemes
while ours is non-deterministic.
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Finally, a blindable version of U-Prove was recently proposed in [29]. Al-
though an unlinkable credential scheme is aimed at, the paper contains no un-
linkability proof. Moreover, it turns out that the scheme is forgeable: if suffi-
ciently many users collide then they can create new credentials containing any
set of attributes of their choice, without any involvement of the issuer [40].

2 Attribute-based credential schemes

First we fix some notation. We denote algorithms with calligraphic letters such
as A and B. By y ← A(x) we denote that y was obtained by running A on input
x. If A is a deterministic algorithm then y is unique; if A is probabilistic then
y is a random variable. We write AO when algorithm A can make queries to
oracle O. That is, A has an additional tape (read/write-once) on which it writes
its queries; once it writes a special delimiter oracle O is invoked, and its answer
appears on the query tape adjacent to the delimiter.

If A and B are interactive algorithms, we write a← A(·)↔ B(·)→ b when A
and B interact and afterwards output a and b, respectively. By A→B we denote
that algorithm A has black-box access to an interactive algorithm B – that is,
A has oracle access to the next-message function function Bx,y,r(m) which, on
input x that is common to A and B, auxiliary input y and random tape r,
specifies the message that B would send after receiving messages m. Finally, |x|
denotes the length of x in bits. For example, if x is an integer then |x| = dlog2 xe.

For zero-knowledge proofs we will use the Camenisch-Stadler notation [17].
For example, if K,P1, P2 are elements of some (multiplicatively written) group
then

PK
{

(k1, k2) : K = P k11 P k22

}
denotes a zero-knowledge proof of knowledge of the numbers k1, k2 that satisfy
the relation K = P k11 P k22 . (Unlike Camenisch and Stadler, we do not use Greek
letters for the unknowns; instead we will consistently write them on the right-
hand side of the equation.) Such proofs are based on standard techniques and
occur in many areas of cryptography. In our case the protocol from [19] could
for example be used.

Definition 1. An attribute-based credential scheme consists of the following
protocols. (We assume a single issuer, but this can easily be generalized to mul-
tiple issuers.)

KeyGen(1`, n) This algorithm takes as input a security parameter ` and the
number of attributes n that the credentials will contain, and outputs the
issuer’s private key s and public key σ, which must contain the number n,
and a description of the attribute space M .

Issue An interactive protocol between an issuer I and user P that results in a
credential c:

I(σ, s, (k1, . . . , kn))↔ P(σ, k0, (k1, . . . , kn))→ c.
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Here k0 is the user’s private key, that is to be chosen from the attribute space
M by the user; the Issue protocol should prevent the issuer from learning it.
We assume that before execution of this protocol, the issuer and user have
reached agreement on the values of the attributes k1, . . . , kn. The secret key
and attributes k0, k1, . . . , kn are contained in the credential c.

ShowCredential An interactive protocol between a user P and verifier V which
is such that, if c is a credential2 issued using the Issue protocol over attributes
(k1, . . . , kn) using private signing key s corresponding to public key σ, then
for any disclosure set D ⊂ {1, . . . , n} the user can make the verifier accept:

P(σ, c,D)↔ V(σ,D, (ki)i∈D)→ 1.

Thus, the user will have to notify the verifier in advance of the disclosure set
D and disclosed attributes (ki)i∈D.

We expect our attribute-based credential scheme to satisfy the following prop-
erties.

– Unforgeability (see Definition 21): no user can prove possession of attributes
that were not issued to it by the issuer.

– Multi-show unlinkability (see Definition 22): If a verifier V participates in the
ShowCredential protocol twice, in which the same credential was involved, it
should be impossible for it to tell whether both executions originated from
the same credential or from two different ones.

– Issuer unlinkability : If in a run of the ShowCredential protocol certain at-
tributes were disclosed, then of all credentials that the issuer issued with
those attributes, the issuer cannot tell which one was used.

– Offline issuer : The issuer is not involved in the verification of credentials.
– Selective disclosure: Any subset of attributes contained in a credential can

be disclosed.

The unforgeability and both kinds of unlinkability of an attribute-based creden-
tial scheme are defined in terms of two games. We have included these games in
Appendix B.

The notion of unlinkability captures the idea that it is impossible for the
verifier to distinguish two credentials from each other in two executions of the
ShowCredential protocol, as long as they disclosed the same attributes with the
same values. We will achieve this for our scheme by proving that our ShowCre-
dential protocol is black-box zero-knowledge (see Definition 19), which essentially
means that the verifier learns nothing at all besides the statement that the user
proves. Since the verifier learns nothing that it can use to link transactions,
unlinkability follows from this (see Theorem 12).

2 As in Idemix and U-Prove, our ShowCredential protocol can easily be extended to si-
multaneously show multiple credentials that have the same secret key, and to proving
that the hidden attributes satisfy arbitrary linear combinations [13].
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3 Preliminaries

If e : G1 × G2 → GT is a bilinear pairing (see Appendix A), we will always use
uppercase letters for elements of G1 or G2, while lowercase letters (including
Greek letters) will be numbers, i.e., elements of Zp. We will always use the index
i for attributes, and in the unforgeability proofs below we will use the index j
for multiple users or multiple credentials. For example, the number ki,j will refer
to the i-th attribute of the credential of user j. If a, b are two natural numbers
with a < b, then we will sometimes for brevity write [a, b] for the set {a, . . . , b}.

We write ν(`) < negl(`) when the function ν : N→ R≥0 is negligible; that is,
for any polynomial p there exists an `′ such that ν(`) < 1/p(`) for all ` > `′.

3.1 Intractability assumptions

The unforgeability of the credential and signature schemes defined in the pa-
per will depend on the whLRSW assumption [44], which as we will show be-
low, is implied by the LRSW assumption [33,34] introduced by Lysyanskaya,
Rivest, Sahai, and Wolf. The latter assumption has been proven to hold in the
generic group model [39], and has been used in a variety of schemes (for exam-
ple, [16,44,43,14,1]). Although this assumption suffices to prove unforgeability
of our scheme, it is stronger than we need. In particular, the LRSW assumption
is an interactive assumption, in the sense that the adversary is given access to
an oracle which it can use as it sees fit. We prefer to use the weaker whLRSW
assumption, which is implied by the LRSW assumption but does not use such or-
acles. Consequentially, unlike the LRSW assumption itself, and like conventional
hardness assumptions such as factoring and DDH, this assumption is falsifiable
[36]. We describe both assumptions below; then we prove that the LRSW as-
sumption implies the whLRSW assumption. After this we will exclusively use
the latter assumption.

Let e : G1×G2 → GT be a Type 3 pairing (see Appendix A), where the order
p of the three groups is ` bits, and let a, z ∈R Z∗p. If (κ,K, S, T ) ∈ Z∗p×G3

1 is such
that S = Ka and T = Kz+κaz, then we call (κ,K, S, T ) an LRSW-instance.

Definition 2 (LRSW assumption). Let e be as above, and let Oa,z be an
oracle that, when it gets κj ∈ Z∗p as input on the j-th query, chooses a random

Kj ∈R G1 and outputs the LRSW-instance (κj ,Kj ,K
a
j ,K

z+κjaz
j ). The LRSW

problem is, when given (p, e,G1, G2, GT , Q,Q
a, Qz) where Q ∈R G2 \ {1}, along

with oracle access to Oa,z, to output a new LRSW-instance (κ,K,Ka,Kz+κaz)
where κ has never been queried to Oa,z. The LRSW assumption is that no
probabilistic polynomial-time algorithm can solve the LRSW problem with non-
negligible probability in `. That is, for every probabilistic polynomial-time algo-
rithm A we have

Pr
[
a, z ∈R Z∗p; Q ∈R G2 \ {1};

σ ← (p, e,G1, G2, GT , Q,Q
a, Qz); (κ,K, S, T )← AOa,z (σ) :

K ∈ G1 ∧ κ ∈ Z∗p ∧ κ /∈ L ∧ S = Ka ∧ T = Kz+κaz
]
< negl(`),
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where L is the list of oracle queries sent to Oa,z, and where the probability is
over the choice of a, z,Q, and the randomness used by A and the oracle Oa,z.

Definition 3 (q-whLRSW assumption [44]). Let e be as above, and let

{(κj ,Kj , K
a
j ,K

z+κjaz
j )}j=1,...,q be a list of q LRSW-instances, where the κj and

Kj are randomly distributed in Z∗p and G1, respectively. The q-whLRSW problem
(for q-wholesale LRSW [44]) is, when given this list along with (p, e,G1, G2, GT ,
Q,Qa, Qz), to output a new LRSW-instance (κ,K,Ka,Kz+κaz) where κ /∈
{κ1, . . . , κq}. The q-whLRSW assumption is that no probabilistic polynomial-
time algorithm can solve the q-whLRSW problem with non-negligible probability
in `. That is, for every probabilistic polynomial-time algorithm A we have

Pr
[
a, z, κ1, . . . , κq ∈R Z∗p; K1, . . . ,Kq ∈R G1 \ {1};

Q ∈R G2 \ {1}; σ ← (p, e,G1, G2, GT , Q,Q
a, Qz);

(κ,K, S, T )← A(σ, {κj ,Kj ,K
a
j ,K

z+κjaz
j }j∈[1,q]) :

K ∈ G1 ∧ κ ∈ Z∗p ∧ κ /∈ {κ1, . . . , κq}

∧ S = Ka ∧ T = Kz+κaz
]
< negl(`), (1)

where the probability is over the choice of a, z, κ1, . . . , κq, K1, . . . ,Kq, Q, and
the randomness used by A.

Finally we define an unparameterized version of the assumption above by allow-
ing q to be polynomial in `, in the following standard way (e.g., [11]). Intuitively,
the reason that this unparameterized assumption is implied by the LRSW as-
sumption is simple: if there is no adversary that can create LRSW-instances
when it can (using the oracle) control the κ’s of the LRSW-instances that it gets
as input, then an adversary that can create them without having control over
the κ’s also cannot exist.

Definition 4. Let e, p and ` = |p| be as above. The whLRSW assumption states
that for all polynomials q : N→ N, the q(`)-whLRSW assumption holds.

Proposition 5. The LRSW assumption implies the whLRSW assumption.

(For a proof, see Appendix C.) Thus if we prove that our scheme is safe under
the whLRSW asssumption, then it is also safe under the LRSW assumption. Ad-
ditionally, we have found that the whLRSW assumption can be proven by taking
an extension [9] of the Known Exponent Assumption [20], so that unforgeability
of our scheme can also be proven by using this assumption. However, because of
space restrictions this proof could not be included here.

3.2 A signature scheme on the space of attributes

In this section we introduce a signature scheme on the space of attributes. This
signature scheme will be the basis for our credential scheme, in the following
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sense: the Issue protocol that we present in Section 4 will enable issuing such
signatures over a set of attributes to users, while the ShowCredential protocol
allows the user to prove that it has a signature over any subset of its signed
attributes.

Definition 6 (Signature scheme on attribute space). The signature scheme
is as follows.

KeyGen(1`, n) The issuer generates a Type 3 pairing e : G1 × G2 → GT , such
that |p| = ` where p is the prime order of the three groups. Next it takes
a generator Q ∈R G2, and numbers a, a0, . . . , an, z ∈R Z∗p and sets A =
Qa, A0 = Qa0 , . . . , An = Qan , and Z = Qz. The public key is the tuple σ =
(p, e,Q,A,A0, . . . , An, Z) and the private key is the tuple (a, a0, . . . , an, z).

Sign(k0, . . . , kn) The issuer chooses κ ∈R Z∗p and K ∈R G1, and sets S =

Ka, S0 = Ka0 , . . . , Sn = Kan , and T = (KSκ
∏n
i=0 S

ki
i )z. The signature is

(κ,K, S, S0, . . . , Sn, T ).
Verify((k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T ), σ) The signature is checked by set-

ting C = KSκ
∏n
i=0 S

ki
i and verifying that K,C 6= 1, as well as

e(T,Q)
?
= e(C,Z), e(S,Q)

?
= e(K,A),

e(Si, Q)
?
= e(K,Ai) for each i = 0, . . . , n.

(2)

The numbers kn ∈ Zp are the attributes. Although p may vary each time the
KeyGen(1`, n) algorithm is invoked on a fixed security parameter `, the attribute
space Zp will always contain {0, . . . , 2`−1}. In our credential scheme in section 4,
the zeroth attribute k0 will serve as the user’s secret key, but at this point it
does not yet have a special role.

Notice that contrary to Idemix and the BBS+ scheme from [2], but like the
scheme from [16], the length of a signature is not constant in the amount n of
attributes, but O(n).

Although the element C = KSκ
∏n
i=0 S

ki
i is, strictly speaking, not part of the

signature and therefore also not part of the credential (since it may be calculated
from κ, the attributes (k0, . . . , kn) and the elements (K,S, S0, . . . , Sn)), we will
often think of it as if it is. Finally, we call a message-signature pair, i.e., a tuple
of the form ((k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T )) where (κ,K, S, S0, . . . , Sn, T )
is a valid signature over (k0, . . . , kn), a credential.

Notice that if (k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T ) is a valid credential, then
for any α ∈ Z∗p,

(k0, . . . , kn), (κ,Kα, Sα, Sα0 , . . . , S
α
n , T

α) (3)

is another valid credential having the same attributes. That is, in the terminology
of Verheul [41] our credentials are self-blindable. This self-blindability is what
makes this signature scheme suitable for the purpose of creating an unlinkable
ShowCredential protocol.
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Common information: Attributes k1, . . . , kn, issuer’s public key σ = (p, e,Q,
A,A0, . . . , An, Z)

User Issuer
knows secret key k0 knows a, a0, . . . , an, z

choose K̄ ∈R G1

←− send S̄ = K̄a, S̄0 = K̄a0

choose α, κ′ ∈R Z∗p
set S = S̄α, S0 = S̄α0

send S, S0, R = Sκ
′
Sk00 −→

PK{(κ′, k0) : R = Sκ
′
Sk00 } ←→

set K = S1/a

verify S 6= S̄,K = S
1/a0
0

choose κ′′ ∈R Zp
set Si = Kai ∀i ∈ [1, n]

set T =
(
KSκ

′′
R
∏n
i=1 S

ki
i

)z
←− send κ′′,K, S1, . . . , Sn, T

set κ = κ′ + κ′′

return (k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T )

Fig. 1. The Issue protocol. In the protocol, the issuers sends two elements S̄, S̄0 (hav-
ing the appropriate relative discrete log) to the user, who blinds them using a ran-
dom number, and sends the blinded versions to the issuer. With respect to these
blinded elements, the user then proves that it knows its secret key k0 and its con-
tribution κ′ to the number κ. If the verifier is convinced, it chooses its own contri-
bution κ′′ to κ, and it computes the remaining elements K,S1, . . . , Sn, T such that
(κ′ + κ′′,K, S, S0, . . . , Sn, T ) is a valid signature over the attributes. These elements
are sent to the user who finally constructs the credential.

The number κ will play a critical role in the unforgeability proof of our
signature and credential schemes (Theorem 10).3

Theorem 7. Our credentials are existentially unforgeable under adaptively cho-
sen message attacks, under the whLRSW assumption.

This is proven in Appendix C.

4 The credential scheme

In this section we present our credential scheme. The strategy is as follows: hav-
ing defined an unforgeable signature scheme on the set of attributes Znp (Defini-
tion 6), we provide an issuing protocol, in which the issuer grants a credential

3 We could have eased the notation somewhat by denoting the number κ as an extra
attribute kn+1, but because it plays a rather different role than the other attributes
(it is part of the signature), we believe this would create more confusion than ease.
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Common information: Issuer’s public key σ = (p, e,Q,A,A0, . . . , An, Z); disclosure set
D, undisclosed set C = {1, . . . , n} \ D; disclosed attributes (ki)i∈D

User Verifier
knows K,S, S0, . . . , Sn, κ, (ki)i∈C , C, T

choose α, β ∈R Z∗p
set K̄ = Kα, S̄ = Sα, S̄i = Sαi ∀i ∈ [0, n]

set C̃ = C−α/β , T̃ = T−α/β

send K̄, S̄, (S̄i)i=0,...,n, C̃, T̃ −→
set D = K̄−1∏

i∈D S̄
−ki
i set D = K̄−1∏

i∈D S̄
−ki
i

PK{(β, κ, k0, ki)i∈C : D = C̃βS̄κS̄k00

∏
i∈C S̄

ki
i } ←→

verify e(K̄, A)
?
= e(S̄, Q)

and e(K̄, Ai)
?
= e(S̄i, Q) ∀i ∈ [0, n]

and e(C̃, Z)
?
= e(T̃ , Q)

Fig. 2. The ShowCredential protocol. We assume that the user has the element C =
KSκSk00 · · ·Sknn stored so that it does not need to compute it every time the protocol
is run (see Section 5 for more such optimizations). In the protocol, he user first blinds
K,S and each Si with a random number, and C and T with a different random number,
resulting in new elements K̄, S̄, S̄i and C̃, T̃ . These are sent to the verifier. Then, the
user proves that he knows the hidden attributes and the number κ, as well as a number
β which is such that C̃β is of the required form C̃β = K̄S̄κS̄k00

∏n
i=1 S̄

ki
i . If the proof

of knowledge is valid and the elements K̄, S̄ and S̄i on the one hand and C̃, T̃ on the
other hand have the appropriate relative discrete logarithms (which the verifier checks
by calculating a number of pairings), then the verifier accepts.

to a user, and a showing protocol, which allows a user to give a zero-knowledge
proof to a verifier that he possesses a credential, revealing some of the attributes
contained in the credential while keeping the others secret. The Issue protocol is
shown in Figure 1, and the ShowCredential protocol is shown in Figure 2. Here
and in the remainder of the paper, we will write D ⊂ {1, . . . , n} for the index
set of the disclosed attributes, and

C = {1, . . . , n} \ D

for the index set of the undisclosed attributes. We do not consider the index 0
of the secret key k0 to be part of this set, as it is always kept secret.

The Issue protocol is such that both parties contribute to κ and K with
neither party being able to choose the outcome in advance (unlike the signing
algorithm of the signature scheme from the previous section, where the signer
chooses κ and K on its own). This ensures that these elements are randomly
distributed even if one of the parties is dishonest. Additionally, the issuer is
prevented from learning the values of κ and the secret key k0.

As noted earlier, we assume that the user and issuer have agreed on the
attributes k1, . . . , kn to be contained in the credential before executing this pro-
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tocol. Similarly, we assume that the user sends the dislosure set D and disclosed
attributes (ki)i∈D to the verifier prior to executing the ShowCredential protocol.

If the user wants to be sure at the end of the Issue protocol that the new
credential is valid, he will need to compute the pairings from equation (2). Even if
the user is implemented on resource-constrained devices such as smart cards this
is not necessarily a problem; generally in ABC’s the issue protocol is performed
much less often than the disclosure protocol so that longer running times may
be more acceptable. Alternatively, the user could perform the ShowCredential
protocol in which it discloses none of its attributes with the issuer, or perhaps
another party; if the credential was invalid then this will fail.

The ShowCredential credential can be seen to consist of two separate phases:
first, the user blinds the elements K, S, Si, C and T with the number α as
in equation (3), resulting in a new signature over his attributes. Second, the
user uses the blinded elements to prove posession of this fresh signature over his
attributes. The elements S̄ and S̄i can be used for this proof of knowledge only if
they have all been correctly blinded using the same number α, which the verifier
checks using the pairings at the end of the protocol. Thus, since α is only used to
create a new blinded signature in advance of the proof of knowledge of this new
signature, the value of α need not be known to the verifier, which is why the user
does not need to prove knowledge of it. The same holds for the number α that
is used during issuance; as long as it is correctly applied (which the issuer here
checks by directly using his secret key instead of having to compute pairings),
the user can prove knowledge of κ′ and his secret key k0 without the issuer
needing to know α.

Mathematically, we can formalize what the ShowCredential protocol should
do as follows. The common knowledge of the user and verifier when running the
ShowCredential protocol consists of elements of the following formal language:

L =
{(
σ,D, (ki)i∈D

)
| D ⊂ {1, . . . , n}, ki ∈ Zp ∀ i ∈ D

}
(4)

where σ ranges over the set of public keys of the credential scheme, and where
n is the amount of attributes of σ. In addition, let the relation R be such that
R(x,w) = 1 only if x = (σ,D, (ki)i∈D) ∈ L, and w = ((k′0, . . . , k

′
n), s) is a valid

credential with respect to σ, with k′i = ki for i ∈ D (i.e., the disclosed attributes
(ki)i∈D are contained in the credential w.) Thus the equation R(x,w) = 1 holds
only if w is a valid credential having attributes (ki)i∈D.

Theorem 8. The showing protocol is complete with respect to the language L:
if a user has a valid credential then it can make the verifier accept.

Proof. If the user follows the ShowCredential protocol, then e(K̄, A) = e(Kα, Qa) =
e(Kαa, Q) = e(Sα, Q) = e(S̄, Q), so the first verification that the verifier does
will pass. An almost identical calculation shows that the second and third veri-
fications pass as well. As to the proof of knowledge, setting C̄ = Cα we have

C̃βS̄κS̄k00

∏
i∈C

S̄kii = C̄−1S̄κS̄k00

∏
i∈C

S̄kii = K̄−1
∏
i∈D

S̄−kii = D, (5)

so the user can perform this proof without problem. ut
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4.1 Unforgeability and unlinkability

The proofs of the following theorems may be found in Appendix C.

Lemma 9. With respect to the language L defined in (4), the ShowCredential
protocol is black-box extractable in the sense of Definition 19.

In the proofs of the unforgeability and unlinkability theorems, we will need a
tuple (K̂, Ŝ, Ŝ0, . . . , Ŝn, Ĉ, T̂ ) ∈ Gn+5

1 such that Ŝ = K̂a and Ŝi = K̂ai for all i,

as well as T̂ = Ĉz. For that reason we will henceforth assume that such a tuple is
included in the issuer’s public key. Note that one can view these elements as an
extra credential of which the numbers (κ, k0, . . . , kn) are not known. Therefore
the credential scheme remains unforgeable (the adversary can in fact already
easily obtain such a tuple by performing an Issue query in the unforgeability
game).4

Theorem 10. Our credential scheme is unforgeable under the whLRSW as-
sumption.

Theorem 11. The ShowCredential protocol is a black-box zero-knowledge proof
of knowledge with respect to the language L.

Theorem 12. Let (KeyGen, Issue,ShowCredential) be an attribute-based creden-
tial scheme whose ShowCredential protocol is black-box zero-knowledge. Then the
scheme is unlinkable.

Theorem 13. Our credential scheme is unlinkable.

5 Performance

5.1 The Fiat-Shamir heuristic

Although our scheme is thus far defined and proven secure in the standard model,
if one is willing to assume the random oracle model, then we can apply the Fiat-
Shamir heuristic [6,7,21] to the Schnorr Σ-protocol [38] for DL-representations
as follows: the user receives a nonce η ∈R Z∗p from the verifier, and uses the
Schnorr Σ-protocol with c = H(W,D, η) as the challenge in the second move
(for a suitable hash function H). It is easy to see that in the random oracle model,
this 2-move protocol is a zero-knowledge proof of knowledge. This would not only
lower the amount of exponentiations for the user in the ShowCredential protocol,
but also reduce the amount of moves to just two: after receiving the nonce η
from the verifier, the user can combine the elements K̄, S̄, S̄0, . . . , S̄n, C̃, C̃ and

4 Credential owners already have such a tuple; verifiers can obtain one simply by
executing the ShowCredential protocol; and issuers can of course create such tuples
by themselves. Therefore in practice, each party participating in the scheme will
probably already have such a tuple, so that including it in the public key may not
be necessary in implementations.
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the proof of knowledge over η in a single message to the verifier (such a message
is called a disclosure proof ).

Concerns have been raised about the security of the Random Oracle Model,
however. For example, there exist protocols that are secure in the random oracle
model, but do not have any secure standard model instantiation no matter which
hash-function is used [18,25].

5.2 Exponentiation count

Although exponentiations (or scalar multiples, if we had written our groups
additively) in elliptic curves are cheap compared to exponentiations in RSA
groups, they are still the most expensive action that the user has to perform. In
this section we will therefore count the number of exponentiations the user has
to perform. First note that

D = K̄−1
∏
i∈D

S̄−kii = C−αS̄κS̄k00

∏
i∈C

S̄kii .

These expressions for D contain |D| and |C| + 3 exponentiations, respectively,
so if |C| + 3 < |D|, the user should use the right hand side to determine D.
Moreover, if the user stores the elements R := Sκ and Ri := Skii for i = 0, . . . , n,
then it can calculate D by

D =
(
K
∏
i∈D

Ri

)−α
=
(
C−1RR0

∏
i∈C

Ri

)α
(6)

both of which take just one exponentiation.
Denote with pk(i) the amount of exponentiations the user has to compute in

the zero-knowledge proof of knowledge when it presents a DL-representation of
length i. Then the number of exponentiations in G1 that the user has to do is

– n+ |D|+ pk(|C|+ 3) + 5 exponentiations if |D| ≤ |C|+ 3,
– n+ |C|+ pk(|C|+ 3) + 8 exponentiations if |D| ≥ |C|+ 3,
– n+ pk(|C|+ 3) + 6 if the user stores and uses R and Ri for i = 0, . . . , n.

The user performs no exponentiations in G2 and GT and computes no pairings.
This is optimal, since elements from G2 are bigger and more expensive to deal
with than those from G1 (because generally G1 ⊂ E(Fq) while G2 ⊂ E(Fqk)[p],
where k is the embedding degree of the curve).

Table 1 compares the amount of exponentiations in our scheme to those
of [16], U-Prove and Idemix. However, note that exponentiations in RSA-like
groups, on which Idemix depends, are significantly more expensive than expo-
nentiations in elliptic curves. The scheme from [22] is slightly cheaper than ours
for the prover, but relies on a newly introduced hardness assumption. Also, the
U-Prove showing protocol offers no unlinkability. As to the scheme from [16],
Camenisch and Lysyanskaya did not include a showing protocol that allows at-
tributes to be disclosed (that is, it is assumed that all attributes are kept secret),
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but it is not very difficult to keep track of how much less the user has to do if he
voluntarily discloses some attributes. We see that the amount of exponentiations
that the user has to perform in the ShowCredential protocol of [16] is roughly 1.5
times as large as in our scheme. Since, additionally, computing pairings is sig-
nificantly more expensive than exponentiating, we expect our credential scheme
to be at least twice as efficient.

5.3 Implementation

In order to further examine the efficiency of our credential scheme we have
written a preliminary implementation, using the high-speed 254-bit BN-curve
and pairing implementation from [8]. The latter is written in C++ and assem-
bly but also offers a Java API, and it uses the GMP library from the GNU
project5 for large integer arithmetic. Table 2 shows the running times of our im-
plementation along with those from the Idemix implementation from the IRMA
project.6 We have tried to make the comparison as honest as possible by writ-
ing our implementation in Java, like the IRMA Idemix implementation, which
we have modified to also use the GMP library for its large integer arithmetic.
In addition, like IRMA we have used the Fiat-Shamir heuristic. However, the
comparison can still only go so far, because the elliptic curve group that [8] of-
fers is heavily optimized for fast computations, from which our scheme profits
because it allows multiple issuers to use the same group. Such optimizations
are not possible in Idemix because each Idemix public key necessarily involves
its own group. Moreover, the IRMA Idemix implementation is 1024-bits, which
according to [32] corresponds to a 144 bit curve (see also www.keylength.com),
so that the two implementations do not offer the same level of security.

For these reasons we will go no further than draw qualitative conclusions
from the data. Nevertheless, both remarks actually demonstrate the efficiency
of our scheme: the first means that our scheme can be optimized further than
Idemix could, and Table 2 shows that even though our implementation offers a
much higher level of security, it is still significantly faster than the IRMA Idemix
implementation. We believe therefore that the conclusion that our scheme is or
can be more efficient than Idemix – at least for the user in the ShowCredential
protocol – is justified. Apart from this, the table also highlights the following
differences between the two:

– In our scheme, verifying the validity of a disclosure proof tends to be two or
three times as expensive as creating one, as it involves calculating a number
of pairings. By contrast, in Idemix, verifying a disclosure proof is about as
expensive as creating one.

– Verifying the validity of a credential in Idemix is significantly cheaper than
computing or verifying disclosure proofs; while in our scheme verifying cre-
dential validity is only slightly cheaper than verifying disclosure proofs (again,
because of having to compute pairings).

5 See gmplib.org.
6 See irmacard.org and github.com/credentials.
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Table 1. Exponentiation and pairing count for the user of the ShowCredential protocol
of several attribute-based credential schemes. The columns GEC, GT and GRSA show
the amount of exponentiations in elliptic curves, the target group of a bilinear pairing,
and RSA groups respectively, while the column labeled e counts the amount of pairings
the user has to compute. The number n denotes the amount of attributes, excluding
the secret key, and the function pk(n) denotes the amount of exponentiations necessary
in order to perform a zero-knowledge proof of knowledge of n numbers (in the case of
the Fiat-Shamir heuristic applied to the Schnorr Σ-protocol, which Idemix also uses,
we have pk(n) = n). In the case of our own scheme, we assume that the user calculates
D in the ShowCredential protocol using the elements Ri as in equation (6).

GEC GT e GRSA unlinkable

Our scheme n+ pk(|C|+ 3) + 6 0 0 0 yes
[16] 2n+ 3 pk(|C|+ 2) n+ 3 0 yes
[22] |C|+ pk(2) + 5 0 0 0 yes

Idemix 0 0 0 |C|+ 3 yes
U-Prove |C|+ 1 0 0 0 no

Table 2. A comparison of the running times of various actions in the implementation
of our credential scheme and the IRMA Idemix implementation, both of them using the
Fiat-Shamir heuristic. The columns labeled “computing proof” and “verifying proof”
show how long it takes to compute and to verify a disclosure proof, respectively, while
the column labeled “verifying credential” shows how long it takes to verify the sig-
nature of a credential. The left column shows the total number of attributes and, if
applicable, the amount of disclosed attributes (this does not apply to the “verifying
credential” column). In the case of our own scheme, we let the user calculate D in the
ShowCredential protocol using the elements Ri as in equation (6). The attributes were
randomly chosen 253-bit integers, the same across all tests, and the computations were
performed on a dual-core 2.7 GHz Intel Core i5. All running times are in milliseconds,
and were obtained by computing the average running time of 1000 iterations.

# attributes computing proof verifying proof verifying credential
total (discl.) This work Idemix This work Idemix This work Idemix

6 (1) 2.9 11.7 5.7 11.2 5.1 6.5
7 (1) 2.9 12.6 6.5 12.2 5.8 6.9
8 (1) 3.2 13.4 7.1 13.2 6.6 7.4
9 (1) 3.4 14.3 8.0 14.0 7.2 7.7

10 (1) 3.7 15.2 8.7 14.9 7.8 8.3
11 (1) 3.9 16.5 9.4 15.8 8.6 8.7
12 (1) 4.2 17.1 10.2 16.9 9.0 8.9

6 (5) 2.1 7.6 5.9 9.2
7 (6) 2.1 7.5 6.5 9.7
8 (7) 2.3 7.5 7.2 10.1
9 (8) 2.4 7.4 7.9 10.7

10 (9) 2.6 7.4 8.5 10.9
11 (10) 2.7 7.5 9.1 11.4
12 (11) 2.8 7.5 9.9 12.0
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– When all but one attributes are disclosed (so that |C| = 1 is constant), the
ShowCredential protocol of our scheme becomes noticeably cheaper for the
user. In Idemix, however, the user cost stops growing at all as the total
amount of attributes increases. Referring to Table 1, this is because the
amount of exponentiations in our scheme depends on n, while it does not in
the case of Idemix. Verifying disclosure proofs becomes slightly cheaper in
our scheme, but not by much because the amount of pairing stays the same;
here too the differences are more pronounced in Idemix.

6 Conclusion

In this paper we have defined a new self-blindable attribute-based credential
scheme, and given a full security proof by showing that it is unforgeable and
unlinkable. Our scheme is based on a standard hardness assumption and does
not need the random oracle model. Based on the fact that it uses elliptic curves
and bilinear pairings (but the latter only on the verifier’s side), on a comparison
of exponentiation counts, and on a comparison of run times with the IRMA
Idemix implementation, we have shown it to be more efficient than comparable
schemes such as Idemix and the scheme from [16], achieving the same security
goals at less cost.
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A Definitions

Definition 14. A bilinear group pair (G1, G2) consists of two cyclic groups
(that we will write multiplicatively), both of prime order p, such that there
exists a bilinear map or pairing ; that is, a map e : G1 × G2 → GT (with GT a
multiplicative group of order p) satisfying the following properties:

– Bilinearity : For all A,A′ ∈ G1 and B,B′ ∈ G2 we have e(AA′, B) =
e(A,B)e(A′, B) and e(A,BB′) = e(A,B)e(A,B′).

– Non-degeneracy : If P ∈ G1, Q ∈ G2 are two generators, then the element
e(P,Q) is a generator of GT (that is, it is unequal to 1 ∈ GT ).

– Computability : There exists an efficient algorithm for computing e(A,B) for
any A ∈ G1, B ∈ G2.

We only consider Type 3 pairings, that is, bilinear group pairs such that there is
no efficiently computable isomorphism either from G1 to G2 or vice versa. Such
pairings exist for particular types of elliptic curves; we mention for example
[5,35]. Generally elements from G1 are smaller and more efficient to do com-
putations with in such group pairs. For more information about bilinear group
pairs and pairings we refer to [23]; see also, for example, Chapters I and X from
[10].

Definition 15 (DL assumption). Let G be a cyclic group of order p, and let
` = |p|. The Discrete Logarithm (DL) assumption holds in G if no probabilistic
polynomial-time algorithm can, given a generator X and an element K = Xk,
output k with probability that is non-negligible in `.

Definition 16 (DL-representations). Let G be a cyclic group of prime order
p and let K1, . . . ,Km ∈ G all be distinct. If for some K ∈ G the numbers

(k1, . . . , km) ∈ Zmp are such thatK =
∏m
j=1K

kj
j , then (k1, . . . , km) is called a DL-

representation of K with respect to (K1, . . . ,Km). When k1 = · · · = km = 0 we
say that the DL-representation is trivial.
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The following shows that the problem of creating such DL-representations is
equivalent with the discrete-logarithm problem. A proof of this statement may
be found in, for example, [13, p. 60].

Proposition 17. Let (K1, . . . ,Km) be randomly distributed. No probabilistic
polynomial-time algorithm can, on input (K1, . . . ,Km), generate a non-trivial
DL-representation of 1 ∈ G with respect to (K1, . . . ,Km) with non-negligible
probability, assuming that the discrete logarithm-problem holds in G.

This proposition implies that if a polynomial-time algorithm finds such a DL-
representation of 1, then the representation is trivial. The following extension of
this result to bilinear groups can be proven using an almost identical proof.

Proposition 18. Let e : G1 × G2 → GT be a Type 3 pairing in which the fol-
lowing problem is intractable: given P, P a ∈ G1, Q,Q

a ∈ G2 for generators P,Q,
compute a. Let the tuple X1, . . . , Xm ∈ G1 and the tuple Y1, . . . , Ym be such that
logP Xj = logQ Yj, i.e., e(P, Yj) = e(Xj , Q). Then no probabilistic polynomial-
time algorithm can, on input X1, . . . , Xm, Y1, . . . , Ym generate a non-trivial DL-
representation of 1 ∈ G1 with respect to (X1, . . . , Xm).

Note that the problem mentioned above (given P, P a, Q,Qa, compute a) is im-
plied by the LRSW and whLRSW assumptions (as well as, for example, the
q-SDH and the SDH assumptions [11], various variants of the co-CDH assump-
tions, and a number of other pairing-specific variants of the Diffie-Hellman prob-
lem). The only difference with Proposition 17 is that the adversary now also has
Y1, . . . , Ym to work with.

LetA and B be two interactive algorithms. Then we denote with viewA(A(x, a)↔
B(x,w)) a random variable containing x, a, the random tape of A, and the mes-
sages that A receives during a joint conversation with B(x,w).

Definition 19 (Black-box zero-knowledge proof of knowledge). Let L
be a language and let R be a polynomially computable relation for L. Let (P,V)
be an interactive proof system for L. We say that (P,V) is a black-box zero-
knowledge proof of knowledge for R ([26], see also [19,24]) if there exists an
expected polynomial-time simulator S and a polynomial-time extractor χ, that
satisfy the following conditions:

Completeness For all x,w such that R(x,w) = 1,

Pr[P(x,w)↔ V(x)→ 1] = 1.

Black-box zero-knowledge For any probabilistic polynomial-time Turing ma-
chine V∗, and for any auxiliary input a ∈ {0, 1}∗ of polynomial length in |x|,
we have

{viewV∗(P(x,w)↔ V∗(x, a))}x∈L, a∈{0,1}∗
c
≈ {viewV∗(S(x)→V∗(x, a))}x∈L, a∈{0,1}∗

(7)

for any w such that (x,w) ∈ R (the symbol
c
≈ denotes computational indis-

tinguishability.)
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Black-box extraction Let x ∈ L. For any probabilistic polynomial-time Tur-
ing machine P∗, and for any auxiliary input a ∈ {0, 1}∗ of polynomial length
in |x|, if

Pr[P∗(x, a)↔ V(x)→ b : b = 1] ≥ ε(|x|)

for some function ε : N→ [0, 1], then there exists a negligible function ν such
that

Pr[P∗(x, a)←χ(x)→ w : R(x,w) = 1] ≥ ε(|x|)− ν(|x|).

In other words, if the prover convinces the verifier often that it knows some
witness for x ∈ L, then the extractor computes a witness for x almost as
often.

We will sometimes use that the second property, black-box zero-knowledge, im-
plies (and is in fact equivalent with) the following: for any x ∈ L, any w such
that (x,w) ∈ R, and any auxiliary input a:∣∣∣Pr[P(x,w)↔ V∗(x, a)→ 1]− Pr[S(x)→V∗(x, a)→ 1]

∣∣∣ < negl(|x|). (8)

That is, if using a witness w the prover can get verifier V∗ to accept, then
the simulator S can, given black-box access to the verifier, make him accept
without knowing the witness w. Indeed, suppose some machine V∗ violates the
formula above, i.e., there exist x,w, a such that with non-negligible probability
V∗(x, a) outputs 0 when it interacts with S(x) and 1 when interacting with
P (x,w). Note that the output of V∗ can be calculated in polynomial time from
its view. Consider then the distinguisher that, given such a view, returns the
output of V∗ corresponding to this view. This distinguisher would then, for
these particular x,w, a, be able to distinguish viewV∗(P(x,w)↔ V∗(x, a)) from

viewV∗(S(x)→V∗(x, a)), violating equation (7).

Definition 20. We define existential unforgeability of a signature scheme (KeyGen,
Sign,Verify) under adaptive chosen message attacks in terms of the following
game [27]. It is a game between an adversarial user A and a signer S, controlled
by the challenger. The game proceeds as follows.

Setup The challenger generates a private-public key pair (SK,PK) = KeyGen(1k).
It sends PK to the adversary A.

Queries The adversary requests signatures on messages m1, . . . ,mq that it may
choose adaptively. The challenger responds to each query with a signature
σi ← Sign(SK,mi).

Output The adversary A outputs a pair (m,σ) and wins the game if σ is a
valid signature over m, and m 6= mi for all 1 ≤ i ≤ q.

When no probabilistic polynomial-time algorithm can win this game with non-
negligible probability we say that the signature scheme is existentially unforge-
able under adaptive chosen-message attacks.
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B Unforgeability and unlinkability games

Unforgeability of a credential scheme is defined using the following game (re-
sembling the signature scheme unforgeability game).

Definition 21 (unforgeability game). The unforgeability game of an attribute-
based credential scheme between a challenger and an adversary A is defined as
follows.

Setup For a given security parameter `, the adversary decides on the number of
attributes n ≥ 1 that each credential will have, and sends n to the challenger.
The challenger then runs the KeyGen(1`, n) algorithm from the credential
scheme and sends the resulting public key to the adversary.

Queries The adversary A can make the following queries to the challenger.
Issue(k1,j , . . . , kn,j) The challenger and adversary engage in the Issue pro-

tocol, with the adversary acting as the user and the challenger acting
as the issuer, over the attributes (k1,j , . . . , kn,j). It may choose these
adaptively.

ShowCredential(D, k1, . . . , kn) The challenger creates a credential with the
specified attributes k1, . . . , kn, and engages in the ShowCredential proto-
col with the adversary, acting as the user and taking D as disclosure set,
while the adversary acts as the verifier.

Challenge The challenger, now acting as the verifier, and the adversary, acting
as the user, engage in the ShowCredential protocol. If the adversary manages
to make the verifier accept a credential with disclosed attributes (ki)i∈D
(where D 6= ∅), and there is no j such that ki = ki,j for all i ∈ D (i.e.,
there is no single credential from one of the Issue queries containing all of
the disclosed attributes (ki)i∈D), then the adversary wins.

We say that the credential scheme is unforgeable if no probabilistic polynomial-
time algorithm can win this game with non-negligible probability in the security
parameter `.

Next we turn to the unlinkability game.

Definition 22 (unlinkability game). The unlinkability game of an attribute-
based credential scheme between a challenger and an adversary A is defined as
follows.

Setup For a given security parameter `, the adversary decides on the number of
attributes n ≥ 1 that each credential will have, and sends n to the challenger.
The adversary then runs the KeyGen(1`, n) algorithm from the credential
scheme and sends the resulting public key to the challenger.

Queries The adversary A can make the following queries to the challenger.
Issue(k1,j , . . . , kn,j) The adversary chooses a set of attributes (k1,j , . . . , kn,j),

and sends these to the challenger. Then, acting as the issuer, the adver-
sary engages in the Issue protocol with the challenger, issuing a credential
j to the challenger having attributes (k1,j , . . . , kn,j).
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ShowCredential(j,D) The adversary and challenger engage in the showing
protocol on credential j, the challenger acting as the user and the adver-
sary as the verifier. Each time the adversary may choose the disclosure
set D.

Corrupt(j) The challenger sends the entire internal state, including the se-
cret key k0, of credential j to the adversary.

Challenge The adversary chooses two uncorrupted credentials j0, j1 and a
disclosure set D ⊂ {1, . . . , n}. These have to be such that the disclosed
attributes from credential j0 coincide with the ones from credential j1, i.e.,
ki,j0 = ki,j1 for each i ∈ D. It sends the indices j0, j1 and D to the challenger,
who checks that this holds; if it does not then the adversary loses.
Next, the challenger flips a bit b ∈R {0, 1}, and acting as the user, it engages
in the ShowCredential with the adversary on credential jb. All attributes
whose index is in D are disclosed.

Output The adversary outputs a bit b′ and wins if b = b′.

We define the advantage of the adversary A as AdvA := |Pr[b = b′]− 1/2|.
When no probabilistic polynomial-time algorithm can win this game with non-
negligible advantage in the security parameter `, then we say that the credential
scheme is unlinkable.

In this unlinkability game, the adversary plays the role of the issuer in the
Setup phase and the role of the verifier in the Challenge phase. This definition
of unlinkability implies both multi-show unlinkability and issuer unlinkability,
as follows.

Multi-show unlinkability Suppose there exists a malicious verifier that can
link two transactions as in the Challenge phase of our unlinkability game,
without itself having issued the credentials from those transactions. Then
there certainly also exists an adversary that, by using this verifier, breaks
blindness in the sense of Definition 22. Thus unlinkability as in Definition 22
implies multi-show unlinkability.

Issuer unlinkability Consider the following game for issuer unlinkability. The
Setup and Queries phases are as in Definition 22, but the Challenge and
Output phases are as follows:
Challenge The adversary chooses a credential j and a disclosure set D ⊂
{1, . . . , n}, and informs the challenger of its choice. The challenger flips a
bit b ∈R {0, 1}, takes j0 ∈R {1, . . . ,m}, and sets j1 = j. Next it engages
in the ShowCredential protocol with the adversary on credential jb, acting
as the user. All attributes whose index is in j are disclosed.

Output The adversary outputs a bit b′ and wins if b = b′.
If there exists an adversary that can win this game, then there also exists
an algorithm that breaks blindness in the sense of Definition 22: if an al-
gorithm can win this game with non-negligible probability, it means that it
can distinguish credential j = j1 from any other credential j ∈R {1, . . . ,m},
so that it could certainly also distinguish j1 from a fixed j0.

Essentially, the reason why these variations of the unlinkability game imply un-
linkability in the sense of Definition 22, is because in both of them the adversary
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is endowed with less power. Indeed, in the first case it does not know the issuer’s
secret key, and since it did not issue the credentials it does not have access to
the issuer’s view of the executions of the Issue protocol; and in the second case
it does not get to choose the credential j1.

C Unforgeability and unlinkability proofs

Proposition 5. The LRSW assumption implies the whLRSW assumption.

Proof. Suppose that the whLRSW assumption does not hold, i.e., there is a poly-
nomial q and a probabilistic polynomial-time algorithm A such that if A is given
a list of q(`) LRSW-instances, then it can produce a new valid LRSW-instance
with non-negligible probability in `. Now we create an algorithm B that violates
the LRSW assumption. Algorithm B is given σ = (p, e,G1, G2, GT , Q,Q

a, Qz)
and oracle access to Qa,z, and it operates as follows.

– It randomly chooses q(`) values κj ∈R Z∗p;
– For each j, B calls Oa,z(κj), obtaining q(`) valid LRSW-instances Lj =

(κj ,Kj ,K
a
j ,K

z+κjaz
j );

– Algorithm B runs and returns the output of

A(σ, L1, . . . , Lq(`)).

Then B is a probabilistic polynomial-time algorithm whose success probability
is the same as that of A, which is non-negligible by assumption. This contradicts
the LRSW assumption. ut

Lemma 9. With respect to the language L defined in (4), the ShowCredential
protocol is black-box extractable in the sense of Definition 19.

Proof. By Definition 19, we must show the existence of an extractor χ satisfying
the following: for all x ∈ L, if a probabilistic polynomial-time algorithm P∗,
acting as the user, can successfully run the showing protocol with a verifier with
probability ε(|x|), then there is an algorithm χ that, when given black-box access
to P∗, extracts with probability ε(|x|)− ν(|x|) a valid credential from P∗, where
ν(|x|) is some negligible function.

The extractor χ acts as follows:

– it stores the group elements K̄, S̄, (S̄i)i=0,...,n, T̃ that the user sends to it;
– it extracts the numbers β, κ, k0 and (ki)i∈D from the proof of knowledge;
– it sets T̄ = T̃−β ; note that if T was valid then we have T̄ = Tα = Cαz =

(K̄S̄κS̄k00

∏n
i=0 S̄

ki
i )z,

– it returns (k0, . . . , kn), (κ, K̄, S̄, S̄0, . . . , S̄n, T̄ ).

The only action that χ performs that normal verifiers cannot perform is the
extraction of the numbers β, κ, k0, (ki)i∈C from the proof of knowledge. There-
fore, if the user P∗ convinces normal verifiers with probability ε(|x|), then χ will
succeed with probability ε(|x|)− νD(|x|), where νD(|x|) is the decrease in prob-
ability associated to the extractor for the proof of knowledge of β, κ, k0, (ki)i∈C .
Since νD is negligible by Definition 19, this proves the claim. ut
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Theorem 10. Our credential scheme is unforgeable under the whLRSW as-
sumption.

Proof. Suppose that there exists an adversary A that can break unforgeability of
our scheme, using qI Issue queries and qS ShowCredential queries. Then we build
an algorithm B that contradicts the q-whLRSW assumption with q = qI+qS . As
q must be polynomial in ` (otherwise adversary A could not be polynomial-time),
this in turn contradicts the whLRSW assumption.

The first thing to notice is that if we take a setup of n = 0 attributes, then
credentials in this setup are LRSW instances. The public key of such a setup
would be Q, Ā = Qā, Z = Qz (where the reason for the bar on top of the
second group element will become clear shortly), and a valid credential would
be κ̄,K, S̄ = K ā, T = (KS̄κ̄)z = Kz+κ̄āz, which is indeed an LRSW instance.
Suppose that algorithm B is given a list of q = qI + qS such LRSW-instances

κ̄j ,Kj , S̄j , Tj = (KjS̄
κ̄j

j )z = K
z+κ̄j āz
j ,

along with Q, Ā, Z. Algorithm B, acting as the challenger, engages in the un-
forgeability game with A, acting as follows.

Setup It letsA decide on the number of attributes n. Next it generates a, a0, . . . , an ∈R
Z∗p and then sets A = Āa and Ai = Āai for i = 0, . . . , n. Then it sends the
public key

Q,A,A0, . . . , An, Z

to A.
Queries Challenger B answers queries as follows. We use the index j here for

both kinds of queries; i.e., if either one of the queries is performed then j is
raised by 1.
Issue(k1,j , . . . , kn,j): Challenger B engages in the issuing protocol with A on
the specified attributes. Using the LRSW-instance κ̄j ,Kj , S̄j , Tj , note that
the challenger can compute elements Si,j which are valid with respect to its
public key by

Sj = S̄aj and Si,j = S̄aij

for all j = 0, . . . ,m. Using these elements it performs the issuing protocol
normally, but when the adversary proves knowledge of its private key k0,j

and the number κ′, B extracts these numbers from the proof of knowledge.
Next, it solves the equation

κja+

n∑
i=0

ki,jai = κ̄j (9)

to κj (i.e., it sets κj = (κ̄j −
∑n
i=0 ki,jai)/a), and uses the number κj − κ′

as the value for κ′′ in the remainder of the protocol.
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Notice that we then have

KjS̄
κ̄j

j = KjS̄
κja+

∑n
i=0 ki,jai

j = KjS
κj

j

n∏
i=0

S
ki,j
i,j ,

and

e(Si,j , Q) = e(S̄aij , Q) = e(K āai
j , Q) = e(Kj , Ā

ai) = e(Kj , Ai),

and similarly e(Sj , Q) = e(Kj , A). This means that (k0,j , . . . , kn,j), (κj ,Kj ,
Sj , S0,j , . . . , Sn,j , Tj) is a valid credential.
ShowCredential(D, k1,j , . . . , kn,j): The challenger B embeds the attributes
k1,j , . . . , kn,j in one of its LRSW-instances as it does in Issue queries, ran-
domly choosing a κj and k0,j itself. Next it performs the ShowCredential
protocol with the adversary over (ki,j)i∈D as requested.

Output When A and B engage in the ShowCredential protocol, B uses the
extractor guaranteed to exist by Lemma 9 above, obtaining a credential

(k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T ).

Then B calculates κ̄ = κa+
∑n
i=0 kiai and outputs κ̄,K, S̄ = S1/a, T .

If the output of A is a valid credential, then S = K āa = S̄a and Si = K āai = S̄ai .
Also, setting κ̄ = κa+

∑n
i=0 kiai, T equals

T =
(
KSκ

n∏
i=0

Skii

)z
=
(
KS̄κa+

∑n
i=0 kiai

)z
=
(
KS̄κ̄

)z
= Kz+κ̄āz.

This implies that the tuple κ̄, K, S̄, T is a valid LRSW-instance. In order to
derive a contradiction with the q-whLRSW assumption, it remains to show that
with non-negligible probability κ̄ 6= κ̄j for all j.

Suppose that there is a non-negligible chance that adversary A wins such
that κ̄ = κ̄j for some j. Then we have for this j

Sκ
n∏
i=0

Skii = S̄κ̄ = S̄κ̄j = Sκj

n∏
i=0

S
ki,j
i ,

or equivalently,

1 = Sκ−κj

n∏
i=0

S
ki−ki,j
i . (10)

Now there are two possibilities: either j corresponds to an Issue query or to
a ShowCredential query. If j was an Issue query, then it follows from the fact
that A won that the DL-representation (10) of 1 above is nontrivial, otherwise
the output of A would not have been a new credential. On the other hand,
if j was a ShowCredential query, then the value of κ and k0 that challenger B
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chose and used are information-theoretically hidden from A. This means that the
probability that A chose the values of κ, ki exactly such that κ = κj and ki = ki,j
is negligible, so that the DL-representation above will still be nontrivial with
overwhelming probability. In both cases the DL-representation is thus nontrivial
with overwhelming probability. Now, since the elements Ŝ, Ŝ0, . . . , Ŝn have the
same relative discrete logarithms as the elements S, S0, . . . , Sn, this results in
the following non-trivial DL-representation:

1 = Ŝκ−κj

n∏
i=0

Ŝ
ki−ki,j
i . (11)

Notice that it is easy to check if this holds for some j even without knowl-
edge of the secret key a, a0, . . . , an, z. We can therefore exploit this ability of
the adversary without knowledge of these numbers to contradict Proposition 18
as follows. Let P,X0, . . . , Xn+1 ∈ G1, Q,Y0, . . . , Yn+1 ∈ G2 be given, with
e(P, Yi) = e(Xi, Q). We construct a non-trivial DL-representation of 1 with
respect to X1, . . . , Xn as follows.

– Set K̂ = P, Ŝ = X0, Ŝi = Xi+1, and A = Y0, Ai = Yi+1. Take z ∈R Z∗p and
set Z = Qz.

– Play the unforgeability game with the adversary with respect to this public
key. In each query, generate a new valid tuple (K,S, S0, . . . , Sn) by taking a
random number r ∈ Z∗p and setting K = K̂r, S = Ŝr, and Si = Ŝri for i =
0, . . . , n. At the end of the game, return the resulting DL-representation (11)
of 1.

As this would contradict Proposition 18, we conclude that we must have κ̄ 6= κ̄j
with overwhelming probability. But then the output (κ̄,K, S̄, T ) of algorithm B
would be a new LRSW-instance, contradicting the q-whLRSW assumption. ut

The unforgeability of the credential scheme implies that of the underlying sig-
nature scheme, as follows.

Theorem 7. Our credentials are existentially unforgeable under adaptively cho-
sen message attacks, under the whLRSW assumption.

Proof. Suppose that there exists an adversary A that can forge the signature
scheme from Section 3. Then we create a forger B for our credential scheme
as follows. Forger B is the challenger of adversary A in the signature scheme
unforgeability game, and the adversary in the credential scheme unforgeability
game. It operates as follows.

Setup Forger B receives a public key from its challenger and forwards it to the
adversary A.

Queries Whenever adversary A requests a signature on a set of attributes
(k0, . . . , kn), B performs an Issue query on these attributes with its chal-
lenger. It sends the resulting signature to A.
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Output If A outputs a valid new credential then B uses this in the ShowCre-
dential protocol with its challenger.

Then the success probability of B will be the same as that of A. ut

Theorem 11. The ShowCredential protocol is a black-box zero-knowledge proof
of knowledge with respect to the language L.

Proof. The ShowCredential protocol is complete (Theorem 8), and extractable
(Theorem 9), so by Definition 19 it remains to show here that there exists a sim-
ulator whose behavior is indistinguishable from an honest user. This simulator
S is given the issuer’s public key, a disclosure set D, and a list of attributes ki
for i ∈ D. We have it proceed as follows.

– It chooses random α, β ∈R Z∗p;
– It sets K̄ = K̂α, S̄ = Ŝα, S̄i = Ŝαi for i = 0, . . . , n, and C̃ = Ĉβ , T̃ = T̂ β ;
– It sends these values to the verifier, and then uses the simulator from the

proof of knowledge of the numbers β, κ, k0, (ki)i∈C .

It remains to show that this behavior is indistinguishable from that of honest
users, to any verifier that is given any auxiliary information. First notice that
for honest users and the simulator alike, the elements K̄ and C̃ are always
randomly distributed in G1. Also, again for both honest users and the simulator,
the elements S̄, S̄i and T̃ are determined by K̄ and C̃ respectively.

Notice that for any β ∈ Z∗p and any set C of undisclosed attributes, there exist
numbers κ, k0, (ki)i∈C such that equation (5) holds. Thus the only difference
between honest users and the simulator is that an honest user knows these
numbers and uses them to honestly prove knowledge of them, while the simulator
simulates this proof. However, by the black-box zero-knowledge properties of the
proof of knowledge over these numbers, this cannot be detected by the verifier.
Thus the verifier can behave no different than it would have done if it had
interacted with an honest user P. ut

Theorem 12. Let (KeyGen, Issue,ShowCredential) be an attribute-based creden-
tial scheme whose ShowCredential protocol is black-box zero-knowledge. Then the
scheme is unlinkable.

Proof. Let the auxiliary input to the verifier be whatever it learns in the Queries
phase of the unlinkability game. In the Challenge phase, instead of performing
the showing protocol normally using credential jb, the challenger uses the simu-
lator S whose existence is guaranteed by the black-box zero-knowledge property
of the ShowCredential protocol. It is clear that in this case the adversary cannot
have a non-negligible advantage. By equation (8), then, it also cannot have a
non-negligible advantage if the challenger uses credential jb normally (i.e., with-
out the help of the simulator S). ut
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