
SWiM: Secure Wildcard Pattern Matching From OT Extension∗

Vladimir Kolesnikov† Mike Rosulek‡ Ni Trieu‡

November 27, 2017

Abstract

Suppose a server holds a long text string and a receiver holds a short pattern string. Secure
pattern matching allows the receiver to learn the locations in the long text where the pattern
appears, while leaking nothing else to either party besides the length of their inputs. In this work
we consider secure wildcard pattern matching (WPM), where the receiver’s pattern is allowed
to contain wildcards that match to any character.

We present SWiM, a simple and fast protocol for WPM that is heavily based on oblivious
transfer (OT) extension. As such, the protocol requires only a small constant number of public-
key operations and otherwise uses only very fast symmetric-key primitives. SWiM is secure
against semi-honest adversaries. We implemented a prototype of our protocol to demonstrate
its practicality. We can perform WPM on a DNA text (4-character alphabet) of length 105 and
pattern of length 103 in just over 2 seconds, which is over two orders of magnitude faster than
the state-of-the-art scheme of Baron et al. (SCN 2012).

1 Introduction

Secure two-party computation allows mutually untrusted parties to perform a computation on their
private inputs without revealing any additional information except for the result itself. Over the last
few years, secure two-party computation has been extensively studied and has become practical for
a variety of applications [MNPS04, KS08, ZRE15, GLMY16, KNR+17, WRK17] . Two adversarial
models are usually considered. In the semi-honest model, the adversary is assumed to follow the
protocol, while trying to learn information from the protocol transcript. In the malicious model,
the adversary can follow an arbitrary polynomial-time strategy. We consider the semi-honest model
in this work.

Pattern matching is a basic problem in secure computation. It has been extensively studied
in the past decade, e.g., [HL08, BEDM+12, DF13, DCFT13, FHV13, YSK+13, HT14, CS15,
YSK+14, WJW+15, WZX17]. Pattern matching is frequently used in text processing, database
search [GHS10, CS15], network security [NN10], DNA analysis [OPJM10], and other practical
algorithms. The most commonly considered variant of secure pattern matching, which we will call
exact PM, is the setting where a server with input a text x ∈ Σn (over some alphabet Σ) interacts
with a receiver with input a pattern p ∈ Σm (for m < n). The receiver learns where the pattern
occurs as a substring of the server’s text without revealing any additional information. There

∗Full version of a paper published in Financial Cryptography and Data Security 2018. The first author was
supported by Office of Naval Research (ONR) contract number N00014-14-C-0113. The second and third authors
were supported by NSF awards #1149647 and #1617197.
†Nokia Bell Labs, vladimir.kolesnikov@nokia-bell-labs.com
‡Oregon State University, {rosulekm,trieun}@eecs.oregonstate.edu

1

are several important variants of pattern matching, including approximate pattern matching and
outsourced pattern matching, which we discuss in Section 1.2.

In this work, we focus on secure pattern matching with wildcards, which we will call WPM. In
this variant, the receiver’s pattern can include wildcard characters that can match any character
in the data, hence p ∈ (Σ∪{?})m. With wildcards, the security requirements are more demanding:
the server should not learn which positions of p contain wildcards, and in the case of a match
the receiver should not learn the text character that matches a wildcard character in the pattern
(unless this could be inferred from the presence or absence of an overlapping match).

Allowing wildcards in a pattern matching functionality has been well studied in the absence of a
security requirement [CH02, CWZ+06, CC07, CEPR09, CEPR10, Tha11, BGVV14, BI14, SSSS15,
AWY15], and is motivated by the goal of providing the facility of searching with errors/unknowns.
Privacy issues arise in searching on sensitive data and secure pattern matching with wildcards has
applications, e.g., in computational genetics and DNA analysis. Indeed, consider the case of a
hospital or biomedical research center holding patient genomic data, and a researcher holding a
specific cancer marker sequence with some errors. The researcher wishes to know the frequency
and positions of the gene occurrences in the database. Due to the genome’s highly sensitive nature,
the hospital is required keep genomic data private, while the researcher needs to protect specific
genome sequence he is working on. The abundance of WPM applications, such as privacy-preserving
DNA matching described above, is our main motivation for improving the state-of-the-art in secure
wildcard pattern matching.

1.1 Pattern Matching with Wildcards

In this section, we discuss directions and related work that achieves, or can be naturally used to
achieve, the WPM functionality in the semi-honest setting.

Circuit based. Generic secure computation protocols [Yao86, GMW87], allowing evaluation of
arbitrary functions, have seen tremendous performance improvements in the last decade. Modern
garbled circuit (GC) protocols evaluate two million AND gates per second on a 1Gbps LAN. Several
garbled circuits for Pattern Matching and its variants were studied in [JKS08, KM10]. The best
protocol using this technique were proposed by Katz and Malka [KM10]. The authors showed how
to modify Yao’s garbled circuit to solve Pattern Matching where the size of circuit is linear in the
(a priori upper bound on the) number of occurrences of the pattern in text. While it is possible
to extend circuit-based protocol [KM10] to allow wildcards, it would still require a bound on the
number of matches to be provided a priori for the circuit construction. When such bound is high
or simply unknown, their protocol suffers corresponding performance penalty. The work [KM10]
does not provide implementation or experimental results.

Homomorphic encryption based. To our knowledge, Hazay and Toft [HT10] were the first
to explicitly consider wildcard secure pattern matching. The core idea of their protocol is that
the receiver provides the wildcard positions to the server in an encrypted form, and the substrings
of the server’s text are obliviously modified so as to match the pattern at those positions. Later,
Vergnaud [Ver11] improved the work of [HT10] by employing Fast Fourier Transform. Both works
rely on the fact that if a pattern bit pi is equal to a text bit ti, then (ti − pi)

2 equals 0, and
otherwise it is equal to 1. The work of Vergnaud [Ver11] requires O((n+m)κ2) communication and
O(n logm) computational cost in both semi-honest and malicious settings, where κ is computational
security parameters. As [HT10, Ver11] do not provide the experimental results, we do not compare
execution times with their work.

2

In 2012, Baron et al. [BEDM+12] proposed an efficient pattern matching protocol called 5PM,
for 5ecure Pattern Matching. 5PM works with character (non-binary) wildcards, and was the first to
provide and accompanying implementation. The protocol is based on an insecure pattern matching
algorithm proposed by Hoffmann [HHD11]. To obtain a secure pattern matching, 5PM modifies the
algorithm [HHD11] to work with basic linear operations, which allowed instantiation with additive
homomorphic encryption. 5PM requires O(nκ) communication and O(n+m) computational costs
in semi-honest setting. In Section 5 we compare our performance to that of 5PM and report
2− 499× performance improvement even on medium-size instances.

Yasuda et al. [YSK+14] extend the exact pattern matching protocol of [YSK+13] to support
wildcards. The security of [YSK+14] is based on the polynomial LWE assumption. Their scheme
operates by blocks, limited by the lattice dimension; for larger inputs x, inefficiency is introduced
either by using a larger lattice, or by the difficulty and cost of handling boundaries of blocks.
In [YSK+14], the authors do not present the performance comparison with 5PM protocol, but
indirectly this can be calculated. Yasuda et al. [YSK+14] mention that their protocol only 4 −
5× slower than the protocol [YSK+13], which does not allow wildcards. In addition, [YSK+13]
estimated that their work is about 10× faster than 5PM when using much stronger hardware than
5PM ([YSK+13] experiments were performed on Intel Xeon X3480 3.07 GHz machine with 16
GB RAM, while 5PM [BEDM+12] used Intel dual quad-core 2.93GHz machine with 8GB RAM).
Putting all together, we conclude that [YSK+14] is approximately 2 − 2.5× faster than 5PM. In
contrast, our protocol is 2 − 499× times faster than 5PM, while running on weak commodity
hardware (same at 5PM, cf. Section 5.1); this translates into the corresponding improvement
over [YSK+14] as well. Further, our approach is simpler and easier to implement.

We mention recent work of Saha and Koshiba [SK17], which improves on the work of [YSK+14]
by proposing a new packing method that efficiently addresses continuous wildcards occurring in
the pattern (e.g., pattern 10????01???110 has k = 3 sub-patterns: 10, 01, and 110). The main
idea of their packing method is to let the receiver break down the pattern into k sub-patterns and
have the parties perform the traditional pattern matching on these patterns. This solution is about
k× faster than previous work [YSK+14]. However, it reveals significant information about the
pattern, especially for larger k.

1.2 Variants of Pattern Matching

For completeness, we briefly discuss work on several additional variants of secure pattern matching.

Exact pattern patching. To our knowledge, Troncoso-Pastoriza et al. [TPKC07] were the first
to consider secure pattern matching. Their protocol is based on oblivious automaton evaluation.
The protocol [TPKC07] requires O(nm) communication and computational cost. Several follow-
up works [Fri09, MNSS12] improved the computational cost and reduced the round complexity.
Another line of work [HL08, GHS10] is based on oblivious pseudorandom functions (OPRF), and
obtains security in the malicious setting using O(nm) communication and computational cost with
O(m) rounds. De Cristofaro et al. [DCFT13] consider a secure and efficient pattern matching
protocol which hides the length of the pattern.

Approximate/fuzzy pattern matching. The functionality of this problem is to find the text
positions matches approximately (rather than exactly). This problem can be solved by determining
whether the Hamming distance between each text substring and the pattern is less than a threshold
t. Hazay and Toft [HT10, HT14] proposed a malicious-secure solution with O(nt) communication
and O(nm) computation costs.

3

Protocol
Computation Communication Rounds Security

Online Offline Online Offline Online Offline Model

[Ver11] O(n logm) O((m+ n)κ2) O(1) semi-honest & malicious

[BEDM+12] O(m+ n) O(nκ) 2 semi-honest

Ours 0 O(κ) O(m+ (λ+ κ)n) O(nm) 2 2 semi-honest

Table 1: Communication (bits) and computation (number of exponentiations) complexities of WPM
protocols in the semi-honest setting, where n is length of text,m is length of pattern; and λ and κ
are the statistical and computational security parameters, respectively. λ = 40 and κ = 128 in our
protocols, while κ is in the range 1024-2048 in [Ver11, BEDM+12] protocols (due to their use of
public-key primitives).

Outsourcing pattern matching. In this setting, parties outsource their encrypted data and
computation to an untrusted server, while maintaining data privacy. The main goal here is to
minimize the communication and computational overhead of the parties by relying on the powerful
resources of the untrusted server. The first work that considered secure pattern matching in the
cloud setting can be traced back to Faust et al. [FHV13]. Other follow-up works are [WJW+15,
SOF17]. Recently, Wei et al. [WZX17] proposed an efficient solution by combining a secret sharing
scheme and oblivious transfer which requires O(κ) computation and O(mn) communication costs.
Outsourcing pattern matching can be viewed as substring searchable encryption which are studied
in [CS15, FJK+15, ÇCL+17]

2 Overview of Our Results & Techniques

In this work we present SWiM (Secure Wildcard Pattern Matching), a protocol for WPM based
on two fast cryptographic tools: oblivious transfer and secure string equality test (given two strings
of equal lengths, without wildcards, determine whether they are equal). Thanks to recent opti-
mizations in oblivious transfer protocols [Bea96, IKNP03, KK13, ALSZ13], it is possible to realize
a large number of OT instances with amortized cost of only a few µs. Kolesnikov et al. [KKRT16]
give a protocol for secure string equality test based on techniques for efficient OT. With their
protocol, one can perform many private equality tests with amortized cost of 5 µs.

Overview of techniques. Suppose the sender holds a string x ∈ {0, 1}∗ and the receiver holds
a pattern p ∈ {0, 1, ?}∗.

As a very simple warm up, consider the case that |x| = |p| = 1. The receiver will first encode

its pattern p ∈ {0, 1, ?} as a pair of bits (
?
p,p) (“p-star & p-bar”), using the following encoding:

p
?
p p

? 1 0
1 0 1
0 0 0

(1)

The significance of this encoding is the following:

x matches pattern p ⇐⇒ x =
?
p · x⊕ p (2)

Indeed, if p = ?, then (
?
p,p) = (1, 0), so the RHS of (2) simplifies to x and the two sides equal

(regardless of x). On the other hand, if p 6= ?, then (
?
p,p) = (0,p), so the RHS simplifies to p and

the two sides equal if and only if p = x.

4

OT

x 0 0 1 1 1 0

k 1 0 0 1 0 1

k ⊕ x 1 0 1 0 1 1

} p ? ? ? 1 1 0

?
p 1 1 1 0 0 0
p 0 0 0 1 1 0

k⊕ ?
p ·x 1 0 1 1 0 1

1 0 1 0 1 1

⊕

strings equal ⇔ x matches p

Figure 1: Illustration of the main idea behind our protocol: using oblivious transfer and private
string equality test to perform private string equality with wildcards.

Our next trick is to blindly evaluate equation (2) using a single OT evaluation. The parties
invoke an instance of 1-out-of-2 bit-OT, where the sender gives inputs (k,k ⊕ x), and the receiver

gives input
?
p. Here k is a random bit chosen by the sender. Note that the receiver’s output from

this OT is k ⊕ ?
p · x.

Now, adding k to both sides of the equation in (2), we have that x matches pattern p, if and

only if k⊕x = (k⊕ ?
p ·x)⊕p. Importantly, the LHS of this equation is known to the sender, while

the RHS is known to the receiver. At the same time, the random mask k hides all information
about x from the receiver. We can summarize the above gadget as follows: using a single OT of
bits, the sender and receiver each compute a bit which is the same bit if and only if x matches
pattern (possibly wildcard) p.

This technique can be easily extended to the case of WPM with |x| = |p| = n by simply doing
the above gadget n times, bit-by-bit. After doing so, each party will hold an n-bit string (without
wildcards); these two strings will be equal if and only if x matches the pattern p. An example is
given in Figure 1 (we simply extend the notation ⊕ and · to bit-vectors). In short, we have reduced
the problem of WPM with |x| = |p| to the problem of secure (exact, no wildcards) equality test
of strings. We complete the wildcard pattern matching by actually testing the equality of these
strings, using the efficient protocol of Kolesnikov et al. [KKRT16].

The security of this protocol (in the semi-honest model) is easy to understand: the only new

information is that the receiver obtains output k ⊕ ?
p · x, which leaks no information about the

sender’s input x since k is uniform.
Now consider extending this approach to the general case of WPM with |x| > |p|. The idea is

the natural one: for each i ∈ {1, |x| − |p|+ 1} simply perform the above approach on the substring
x[i . . . i+|p|−1] and p. Unpacking the abstractions reveals room for optimizations, as follows. While
the previous constructions were presented in terms of OT of bits, the OT of strings is significantly
more efficient in practice. We observe that in each subprotocol, the receiver’s OT choice bits are

always the same
?
p, allowing corresponding OT instances to be combined easily. Hence instead of

|p|(|x| − |p|+ 1) instances of bit-OT, we can use |p| instances of string-OT, with strings of length
|x| − |p| + 1. This optimization actually reduces costs by a multiplicative factor of the security
parameter. The details are given in Section 4.

In Section 4.1 we present additional optimizations and extensions, such as moving almost all of
the cost to the offline, amortization and efficient handling of non-binary alphabets.

5

Efficiency. SWiM requires only O(κ) public-key operations (all in the offline phase). In terms of
communication, our protocol requires O(mn) in the offline phase, but only O(m+(λ+κ)n) in online
phase. Here, κ, λ are the computational and statistical security parameters, respectively. As noted
previously, all constants under the big-O are small, as we use fast optimized building blocks. We
describe the performance of representative Secure Wildcard Pattern Matching protocols in Table
1.

We note that SWiM is efficient concretely. This is because we carefully optimize both computa-
tion and communication. Further, we use algorithmically- and implementation-optimized building
blocks, namely the OT extension of [ALSZ13] and private equality test of [KKRT16]. In particular,
the [KKRT16] equality test is independent of the length of the players’ inputs.

This significantly improves over the state-of-the-art secure wildcard pattern matching protocol
of [BEDM+12]. In Section 5, we report in detail on implementation and evaluation, and find that
SWiM is a 2−499× faster than 5PM, and continues to scale well on larger instances. 5PM considers
WPM instances on DNA text of length up to 105 and pattern of length up to 103. These larger
instances require only 1.96 seconds in our protocol, in comparison with 304.53 seconds with 1024-bit
key and 978.94 seconds with 2048-bit key using [BEDM+12].

3 Preliminaries

3.1 Notation

Throughout the paper we use the following notation: The length of the text is n, while the length of
the pattern is m. Wildcard is denoted by ?. The computational and statistical security parameters
are denoted by κ, λ, respectively. [m] to denote a set {1, . . . ,m}.

The notation OTm denotes a 1-out-of-2 OT where the string is m bits long. We denote vectors
in bold a, and matrices in capitals A. For the vector, we let a[i,j] denote the sub-vector of a from
i-th bit to j-th bit, and ai denote the i-th bit of vector a. Given vectors a = a1‖ · · · ‖an and
b = b1‖ · · · ‖bn, we define ⊕ and · operations as follows. We use the notation a ⊕ b to denote the
vector (a1⊕b1)‖ · · · ‖(an⊕bn). Similarly, the notation a ·b denotes the vector (a1 ·b1)‖ · · · ‖(an ·bn).
Let c ∈ {0, 1}, then c · a denotes the vector (c · a1)‖ · · · ‖(c · an). For a matrix A, we let ai denote
the i-th row of A, aj denote the j-th column of A; Aji denote the entry of A at the i-th row and
the j-th column.

Consider an alphabet Σ. We define a pattern matching relation � via the following rules:
(1) a � a for a ∈ Σ; (2) ? � a for a ∈ Σ. We extend the notation to vectors as x � y ⇔ (∀i)xi � yi.
If p � x we say that x matches the pattern p.

3.2 Oblivious Transfer

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive, and necessary for secure compu-
tation, which was introduced by Rabin [Rab05]. In OT, a sender with two input strings (x0, x1)
interacts with a receiver who has a input choice bit b. In a privacy-preserving way, the receiver
learns xb without learning anything about x1−b, while the sender learns nothing about b. Rabin’s
protocol requires expensive public key cryptography. Ishai et al. [IKNP03] proposed OT extension,
an efficient protocol that evaluates a small number of expensive OTs, from which a large number
of OTs can be performed using only cheap symmetric-key operations. OT extension, to which
we sometimes refer as IKNP, has become a core building block in many aspects of secure com-
putation such as Garble Circuit, Private Set Intersection [PSZ14, KKRT16, KMP+17], Hamming
Distance [BCP13]. We describe the ideal functionality for OT in Figure 2.

6

Parameters: A bit length m, and two parties: sender S and receiver R

Functionality:

• Wait for pair-input (x0,x1) ⊆ {0, 1}m from the sender S

• Wait for bit-input b ∈ {0, 1} from the receiver R

• Give output xb to the receiver R.

Figure 2: Oblivious Transfer functionality OTm.

Parameters: Two parties: sender S and receiver R

Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender S.

• Wait for input x1 ∈ {0, 1}∗ from the receiver R.

• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Figure 3: The Private Equality ideal functionality Fpeqt

Parameters: A text length n, a pattern length m, and two parties: sender S and receiver R

Functionality:

• Wait for text x ∈ {0, 1}n from the sender S

• Wait for pattern p ∈ {0, 1, ?}m from the receiver R

• Give the receiverR output {i ∈ [n−m+1] | p � x[i,i+m−1]} (see Section 3.1 for notation)

Figure 4: Wildcard Pattern Matching functionality Fn,mwpm.

Despite the wide use of OT, there are very few improvement of IKNP OT protocol in semi-
honest setting. In 2013, Kolesnikov and Kumaresan [KK13] proposed an generalization of IKNP OT
extension for short secrets, which brought O(log(κ)) factor performance improvement in communi-
cation and computation, where κ is security parameter. They also proposed an IKNP optimization,
saving on the auxiliary matrix transfer. Later same year, Asharov et al. [ALSZ13] proposed sev-
eral IKNP optimizations (one of which was the optimization independently discovered by [KK13]).
Importantly, [ALSZ13] also provided optimized implementation of (improved) IKNP OT protocol.

[ALSZ13] also presented optimizations for a useful variant of OT. In Correlated OT (COT),
the sender’s OT inputs x0, x1 are chosen randomly subject to x0 ⊕ x1 = ∆, where ∆ is chosen
by the sender (possibly a different ∆ for each OT instance). In this case, it is possible to let the
protocol itself “choose” the value x0 randomly. Doing so reduces the bandwidth requirement by
approximately half. It is easy to see that we require only this weaker variant of OT for pattern
matching, hence our implementation takes advantage of this optimization.

3.3 Private Equality Test

Definition. A Private Equality Test (PEQT) is a 2-party protocol in which the sender with
input string x0 interacts with a receiver with input string x1 in the following way. The receiver

7

learns a bit indicating whether x0 = x1 and nothing else, while the sender learns nothing about
x1. We describe the ideal functionality for an PEQT in Figure 3.

To our knowledge, PEQT was first introduced in 1996 by Fagin, Naor, and Winkler [FNW96].
Follow-up works[NP99, BST01, Lip03] improved the efficiency of PEQT, while still relying on
expensive public-key operations. PEQT is heavily used in two-party private set intersection (PSI)
protocols [FNP04]. Recently, Kolesnikov et al. [KKRT16], in the context of PSI proposed an efficient
PEQT, which was constructed by applying novel encodings inside the OT extension matrix. Their
protocol, cast as a variant of Oblivious PRF, executes many PEQT instances by using only cheap
symmetric cryptographic operations, apart from base OTs. Concretely, the amortized cost of each
PEQT instance with unbounded input domain {0, 1}∗ is only a few symmetric-key operations and
488 bits in communication. We heavily rely on the high-performing PEQT protocol of [KKRT16]
in this work.

4 SWiM: the Main Construction

We present SWiM, our main construction for the WPM functionality in Figure 4. It closely follows
and formalizes the high-level overview presented in Section 2. For readability, we present SWiM for
binary alphabet Σ = {0, 1}. In Section 4.1 we show how to easily extend it to an arbitrary Σ. We
first run OT extension with the chosen inputs defined in Figure 2, which will allow the receiver to

compute α = k⊕ ?
p ·x⊕p. Recall, as discussed in Section 2, x matches p, iff α equals to k⊕x held

by the sender. This equality is efficiently checked in bulk by calling instances of Private Equality
Test defined in Figure 3, with the result delivered to the receiver and output. The SWiM protocol
is presented in Figure 5 and is proven secure against semi-honest adversaries.

Correctness. The main observation of OT-extension is that the receiver obtains output qi such
that:

qi = ki ⊕
?
pi · x[i,i+n′−1] =

{
ki, if

?
pi = 0

ki ⊕ x[i,i+n′−1], if
?
pi = 1

Therefore, the i-th row of U is equal to ui = ki ⊕
?
pi · x[i,i+n′−1] ⊕ C(p̄i). Let K denote the

m × n′ matrix such that the i-th row of K is the vector ki. When viewing the matrices U and

T column-wise, we see that the receiver holds ui = ki ⊕ ?
p · x[i,i+m−1] ⊕ p while the sender holds

ti = ki ⊕ x[i,i+m−1]. Following the high-level idea described Section 2, and specifically the pattern
match test of Equation 2, it is clear that the pattern matches the text x at the i-th position if and
only if ui = ti.

Theorem 1. The SWiM protocol in Figure 5 securely computes the WPM functionality (Figure 4)
in semi-honest setting, given the ideal OT and Fpeqt primitives defined Figure 2 and Figure 3,
respectively.

Proof. The proof of security of our construction is based on the fact that the OT and Fpeqt are
secure.

Simulating S. It is easy to argue that the view of the sender S can be perfectly simulated since
the semi-honest S receives nothing from the protocol.

Simulating R. The view of the receiver R consists of two kinds of messages: (1) output of

the form qi from the OT primitive in Step 2c, which is equal to ki ⊕
?
pi · x[i,i+n′−1] and hence

8

Parameters:

1. Two parties: sender S and receiver R

2. A length n of text, a length m of pattern. Define n′ = n−m+ 1

3. A repetition encoding C : {0, 1} → {0, 1}n′ defined by C(a) = an
′

for a ∈ {0, 1}.

4. Ideal OT and Fpeqt primitives defined in Figure 2 and Figure 3, respectively.

Input of S: a text x ∈ {0, 1}n

Input of R: a pattern p ∈ {0, 1, ?}m encoded into p,
?
p ∈ {0, 1}m, as described in Section 2.

Protocol:

1. [Random Keys] S chooses {ki}i∈[m] ← {0, 1}n
′

at random

2. [OT] For each i ∈ [m], S and R invoke OTn′-functionality

(a) R acts as receiver with a input-bit
?
pi.

(b) S acts as sender with a ordered pair input (ki,ki ⊕ x[i,i+n′−1])

(c) R receives output qi

3. [Matrix Form]

(a) S forms m×n′ matrix T such that the i-th row of T is the vector ti = ki⊕x[i,i+n′−1]

(b) R forms m× n′ matrix U such that the i-th row of U is the vector ui = qi ⊕C(p̄i)

4. [PEQ]

(a) For each i ∈ [n′], S and R invoke the Fpeqt-functionality:

• S acts as sender with input ti as the i-th column of T

• R acts as receiver with input ui as the i-th column of U

(b) R outputs {i ∈ [n′] | ith instance of Fpeqt outputs 1}

Figure 5: SWiM: Secure Wildcard Pattern Matching Protocol for Σ = {0, 1}.

information-theoretically hides x; (2) outputs of Fpeqt in step 4b, which correspond exactly to the
WPM protocol output itself. Hence both can be perfectly simulated.

Cost. Using OT extension, some initial “base OT” instances are required. These base OTs
consist of O(κ2) communication and O(κ) exponentiations. Thereafter, any number of OTs can be
obtained with communication and computation proportional only to total size of parties’ inputs.
The computation consists of only symmetric-key operations. In our case, there are m OT instances,
each on strings of length n′, so O(n′m) total communication and symmetric-key operations.

The Fpeqt protocol of [KKRT16] has a statistical security parameter which we denote λ. Specif-
ically, the protocol allows for a false positive (output 1 for input strings which are different) with
probability 2−λ. The protocol also uses OT extension, but the base OTs can be shared/reused
from the base OTs mentioned above. The amortized cost of an equality test is 448 + λ bits of

9

communication (using typical parameters) and a constant number of symmetric-key operations.

4.1 Additions, optimizations

Online/offline phase. We briefly describe how the protocol can be modified so that most of
the cost can be incurred in an offline phase, before the parties’ inputs are known.

First, we can run all OTs in Step 2 of the protocol before the receiver’s input p is known, by
taking advantage of a well-known technique of Beaver [Bea95]. The following modifications are

required: First, the receiver uses a random π ∈ {0, 1}m (rather than
?
p) as its OT choice bits in

Step 2 (note that p is not used until Step 3). Later, upon learning p, the receiver sends δ = p⊕π
to the sender. The sender sets k′i = ki ⊕ δi · x[i,i+n′−1]. It is easy to see that the receiver holds

qi = ki ⊕ πi · x[i,i+n′−1] = ki ⊕ (δi ⊕
?
pi) · x[i,i+n′−1] = k′i ⊕

?
pi · x[i,i+n′−1].

In other words, k′i and qi satisfy the appropriate condition, now with respect to the receiver’s true
input p. The rest of the protocol continues as usual, with k′i instead of ki.

There is also a standard Beaver technique for preprocessing OTs before the sender’s OT input
is known. Applying here naively would require the sender to send online correction strings of total
length O(|p||x|) since that is the combined length of all the sender’s OT inputs.

Instead, we propose the following technique that is similar in spirit but takes advantage of the
fact that the sender’s OT inputs are derived from a single x value. The parties run step 1, but
with the sender using a random χ ∈ {0, 1}n instead of the true input x (which is not yet known).
After the online phase described above, the sender will have k′i strings and the receiver will have

qi = k′i ⊕
?
pi · χ[i,i+n′−1]. As the sender learns its input x, it sends γ = x⊕ χ to the receiver. The

receiver can compute

q′i
def
= qi ⊕

?
pi · γ[i,i+n′−1] = (k′i ⊕

?
pi · χ[i,i+n′−1])⊕

?
pi · γ[i,i+n′−1]

= k′i ⊕
?
pi · (χ[i,i+n′−1] ⊕ γ[i,i+n′−1])

= k′i ⊕
?
pi · x[i,i+n′−1]

In other words, k′i and q′i satisfy the appropriate condition, now with respect to the sender’s true
input x. The protocol can proceed, using q′i instead of qi.

By having precomputation, we are able to shift the bulk of the O(nm) communication to the
offline phase. In the online phase, each party only sends a “correction string” whose length is
proportional to its input size, followed by the equality tests. Similarly to the standard Beaver’s
technique, it is easy to see that the resulting protocol is secure, namely that the separation of the
offline and online phases can be simulated.

Amortization. In certain multiple-execution scenarios, the cost of our protocol can be further
significantly reduced by reusing the OT/PEQT outputs.

First, notice that in SWiM (Figure 5), the OT step is independent of the non-wildcard char-
acters of the pattern string (i.e., independent of p). Therefore, if the positions of wildcards in the

receiver’s pattern (i.e.,
?
p) are the same across several executions, OT in subsequent executions can

be implemented as length extension of the OT in the first execution. Further, if additionally the
sender’s text is the same across the executions (and the only variation is the non-? pattern), then
only the equality tests need to be run in the subsequent executions.

Further, in the PEQT protocol of [KKRT16], the receiver can check his input for equality
against a polynomial number sender’s inputs at the cost λ per check (vs 4κ + λ for full KKRT

10

PEQT). Indeed, on the KKRT BaRK-OPRF output (R,S)← (Fk(x), k), KKRT sender S can send
to receiver R a set of {Fk(yi)}, and R will determine x = yi ⇐⇒ Fk(x) = Fk(yi).

To use this in the amortization, we let the WPM sender play the role of PEQT’s receiver. We
note that this amortization will reveal whether the WPM receiver has used the same pattern in
different instances. Additionally, PEQT receiver learns the comparison output, and so will the
WPM sender. Both restrictions may be acceptable in certain scenarios.

Non-binary alphabets. The protocol extends naturally to alphabets Σ beyond Σ = {0, 1}.
Without loss of generality let Σ = Zb for some b. The receiver holds a pattern p ∈ (Σ ∪ {?})m and

will encode the pattern into
?
p ∈ {0, 1}m and p ∈ Σm, as follows:

pi
?
pi pi

? 1 0
a 6= ? 0 a

Consider the corresponding amendment to SWiM (Figure 5), where the parties hold strings of

length m and n, both over the alphabet Σ. The parties still perform m 1-out-of-2 OT, using
?
p as

the receiver’s choice bits. All other vectors (k, q, etc) become vectors over Σ, and the ⊕ operation
is replaced by component-wise addition mod |Σ|. Note that the “·” operation in the protocol is only

used between a binary vector
?
p and a Σ-vector, so its meaning can still be taken as component-wise

multiplication. Finally, the KKRT PEQT can be naturally amended to support equality tests of
non-binary strings, e.g. by translating the strings into binary.

5 SWiM Implementation and Performance

Our SWiM implementation uses code from [KKRT16, Rin, WMK16]. All running times are
reported as the average over 10 trials. Our complete implementation is available on https:

//github.com/osu-crypto/PatternMatching.

5.1 Experimental Performance: Comparison with Prior Work

We compare our prototype to the state-of-art WPM protocols [BEDM+12, YSK+14]. While the im-
plementations [BEDM+12, YSK+14] are not publicly available, [BEDM+12] reports experimental
numbers. Further, as we discussed in Section 1.1, [YSK+14] numbers can be indirectly estimated to
be around 2− 2.5× faster than 5PM. We give detailed comparisons to 5PM protocol [BEDM+12];
comparison to other works can be appropriately derived.

Runtime Comparison. For the most direct comparison, we matched the test system’s compu-
tational performance to that of [BEDM+12], as reported in their Table 13. Since 5PM [BEDM+12]
experiments were performed on Intel dual quad-core 2.93GHz Linux machine with 8GB RAM, we
evaluate our protocol on a virtual Linux machine with 8GB RAM and 2 cores (the host machine
is Intel Core i7 2.60GHz with 12GB RAM). Table 2 presents the running time of our protocol
compared with 5PM [BEDM+12]. For our protocol, we report both the total running time and the
online time. We use dlog(Σ)e bits to encode the text and pattern alphabet into binary alphabet.

When comparing the two protocols, we find that the total running time of SWiM is significantly
less than that of the prior works, requiring 1.96 seconds to perform a wildcard pattern matching
with 4-symbol alphabet for text size n = 105 and pattern size m = 103. This is a 155× improvement

11

https://github.com/osu-crypto/PatternMatching
https://github.com/osu-crypto/PatternMatching

in running time compared to 5PM [BEDM+12] which used 1024-bit key length. When considering
5PM [BEDM+12] with 2048-bit key length (which better corresponds to our security level), our
improvement is 499×.

SWiM is optimized for the typical use case, where the length of the text is greater than that of the
pattern. If this doesn’t hold (indeed, an unusual setting for the motivating examples we consider),
our performance improvement is moderate. For instance when m = n = 103, our protocol requires
0.61 seconds. Using the same parameters, the protocol of [BEDM+12] results in an execution
time of 1.39 seconds. The moderate 2× improvement is due to the constant-cost overheads of OT
extension and PEQT, which do not pay off without amortization in a larger execution. Even in
these cases, our protocol achieves great improvement in the online phase (e.g., running in just 3ms
for m = n = 103).

Bandwidth Comparison. We calculate the bandwidth requirements of our protocol on the
range of the length text n ∈ {216, 218, 220, 222} and the length pattern m ∈ {28, 210, 212, 214}, for
the binary alphabet. For comparison, we calculate the communication cost of 5PM [BEDM+12],
for the same parameters. 5PM bandwidth requirements is independent on the length of pattern,
and is roughly (n+2)κ bits. 5PM protocol relies on public-key operations, and needs 1024-2048-bit
key lengths.

Table 4 reports the communication overhead of the protocols. Our protocol requires less com-
munication for smaller pattern sizes. Concretely, for n = 222 and m = 28, our protocol requires
392.1 MB of communication, a 1.37 to 2.7× improvement compared to 5PM [BEDM+12]. Increas-
ing the pattern length to m = 212 the communication cost of 5PM protocol (at a great performance
penalty!) becomes preferable to ours, since their bandwidth is independent of the length of pattern.
Note, the bulk of the communication cost in our protocol is OT extension in the offline phase.

We note that Table 4 does not show off SWiM algorithmic improvement for non-binary alpha-
bet, which reduces the number of OT calls. For larger Σ, we (but not other approaches, to our
knowledge) get factor ≈ log |Σ| bandwidth reduction in the offline phase over the simple mapping
of Σ to a binary alphabet.

5.2 SWiM performance at scale: experiments and discussion

To understand the scalability of SWiM, we evaluate it on the range of the text/pattern lengths
n ∈ {216, 218, 220, 222, 224}, m ∈ {28, 210, 212, 214}, for the binary alphabet. We report SWiM
detailed performance results in Table 3, showing total running time and online time in both LAN
and WAN settings.

This set of experiments was ran on a larger machine (a single server with 2x 36-core Intel Xeon
2.30GHz CPU and 256GB of RAM), whose resources were carefully limited by us to provide a
good understanding of the performance. Specifically, we ran each party single threaded, both on
the same machine, communicating via localhost network. We simulated a network connection
using the Linux tc command. We configured LAN setting with 0.02ms round-trip latency, 10 Gbps
network bandwidth, and WAN setting with a simulated 40ms round-trip latency, 400 Mbps network
bandwidth.

The step of forming the matrices in SWiM is relatively costly. We push it into the preprocessing
phase, which will include creating OT matrices and performing the matrix transposition. Our
experiments show that the offline phase takes 60 − 90% of the total running time. For instance,
with text size n = 222 and pattern size m = 214 our overall running time is 60.10 seconds with an
offline phase of 53.64 seconds, a 89% of the overall cost.

12

Protocol
Bit key Pattern Text length n
length length m 103 104 105

5PM

1024
10 0.42 4.08 40.43
102 0.67 6.81 64.76
103 0.39 29.15 304.53

2048
10 1.50 14.18 140.52
102 2.27 22.37 216.27
103 1.39 92.29 978.94

SWiM 128
10 0.29 (0.006) 0.36 (0.03) 0.76 (0.32)
102 0.37 (0.005) 0.62 (0.09) 1.82 (0.49)
103 0.61 (0.003) 0.73 (0.04) 1.96 (0.39)

Table 2: 5PM vs SWiM. Comparison of 5PM and SWiM of the total runtime (in seconds) for
wildcard pattern matching of length n, the pattern of length m, and the alphabets of sizes 4
(DNA). In SWiM, the online time is presented in parenthesis. Best results marked in bold. SWiM
experiment ran on Intel Core i7 2.60GHz with 8GB RAM. 5PM timings reported on comparable
hardware.

Setting
Pattern Text length n

length m 216 218 220 222 224

LAN

28 0.21 (0.04) 0.40 (0.15) 0.94 (0.48) 4.07 (2.78) 16.11 (11.38)
210 0.24 (0.03) 0.48 (0.12) 1.41 (0.57) 5.21 (2.38) 20.61 (10.00)
212 0.37 (0.03) 0.97 (0.17) 3.40 (0.78) 12.92 (3.34) 51.88 (14.44)
214 1.02 (0.07) 3.91 (0.37) 15.14 (1.66) 60.10 (6.46) 246.24(43.51)

WAN

28 1.04 (0.40) 1.90 (1.02) 5.10 (3.10) 17.84 (12.04) 70.45 (48.43)
210 1.28 (0.40) 2.81 (0.95) 8.62 (3.04) 31.29 (12.00) 127.92 (48.08)
212 2.28 (0.36) 6.46 (0.96) 21.61 (3.17) 84.52 (12.48) 363.06 (50.15)
214 6.16 (0.34) 22.24 (1.07) 85.98 (3.87) 318.23 (15.45) 1,382.03 (65.86)

Table 3: SWiM scaling. Total running time and online time (in parenthesis) in second of SWiM
for the text of length n, the pattern of length m, binary alphabet. The results mentioned in the
discussion is marked in bold. Experiment ran sender and receiver single-threaded on 2x 36-core
Intel Xeon 2.30GHz CPU and 256GB of RAM.

Protocol
Bit key Pattern Text length n
length length m 216 218 220 222

5PM
1024 {28, 210, 212, 214} 8.4 33.5 134.2 536.9
2048 {28, 210, 212, 214} 16.8 67.1 268.4 1073.7

SWiM 128

28 7.6(3.9) 25.9(16.1) 99.2(64.1) 392.1(256.4)
210 13.7(3.9) 50.9(15.9) 199.7(64.1) 794.6(256.3)
212 36.7(3.7) 149.5(15.8) 600.2(63.8) 2403.1(256.1)
214 105.2(2.9) 519.9(15.1) 2178.6(63.1) 8813.3(255.4)

Table 4: Bandwidth. calculation of communication (in MB) for wildcard pattern matching of text
length n, pattern length m, binary alphabet. In SWiM, the online communication cost is presented
in parenthesis. Compared to 5PM, best results marked in bold.

We find that SWiM scales well in the experiments. For text size n = 216 and pattern size m = 28,
our protocol takes only 0.21 seconds in which 0.04 seconds is for online time. When increasing the
lengths to n = 224 and m = 212, we see that our protocol requires roughly 52 seconds in total.

When evaluating our implementation in the WAN setting, we still have a fast online phase due
to the fact that OTs can be precomputed in the offline phase. For n = 224 and m = 212, we obtain

13

an overall running time of 363.06 seconds and an online time of 50.15 seconds which contains only
13% of the total cost. For the small text and pattern, the protocol requires only a few seconds.
With n = 216 and m = 28, our protocol takes an overall running time of 1.04 seconds with the
online phase requiring 0.4 seconds.

References

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 535–548.
ACM Press, November 2013.

[AWY15] Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the
polynomial method to algorithm design. In Piotr Indyk, editor, 26th SODA, pages
218–230. ACM-SIAM, January 2015.

[BCP13] Julien Bringer, Hervé Chabanne, and Alain Patey. SHADE: Secure HAmming Dis-
tancE Computation from Oblivious Transfer, pages 164–176. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In 28th ACM STOC, pages 479–488. ACM Press, May 1996.

[BEDM+12] Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric
Tressler. 5pm: Secure pattern matching. In Proceedings of the 8th International Con-
ference on Security and Cryptography for Networks, SCN’12, pages 222–240, Berlin,
Heidelberg, 2012. Springer-Verlag.

[BGVV14] Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing
for patterns with wildcards. Theory of Computing Systems, 55(1):41–60, Jul 2014.

[BI14] Carl Barton and Costas S. Iliopoulos. On the average-case complexity of pattern
matching with wildcards. CoRR, abs/1407.0950, 2014.

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traor. A fair and efficient solution
to the socialist millionaires’ problem. Discrete Applied Mathematics, 111:2001, 2001.

[CC07] Peter Clifford and Raphal Clifford. Simple deterministic wildcard matching. Infor-
mation Processing Letters, 101(2):53 – 54, 2007.

[ÇCL+17] Gizem S. Çetin, Hao Chen, Kim Laine, Kristin Lauter, Peter Rindal, and Yuhou Xia.
Private queries on encrypted genomic data. BMC Medical Genomics, 10(2):45, Jul
2017.

[CEPR09] Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding
theory to efficient pattern matching. In Claire Mathieu, editor, 20th SODA, pages
778–784. ACM-SIAM, January 2009.

14

[CEPR10] Raphal Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. Pattern matching
with don’t cares and few errors. Journal of Computer and System Sciences, 76(2):115
– 124, 2010.

[CH02] Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and
wildcard matching. In 34th ACM STOC, pages 592–601. ACM Press, May 2002.

[CS15] Melissa Chase and Emily Shen. Substring-searchable symmetric encryption. PoPETs,
2015(2):263–281, 2015.

[CWZ+06] Gong Chen, Xindong Wu, Xingquan Zhu, Abdullah N. Arslan, and Yu He. Efficient
string matching with wildcards and length constraints. Knowledge and Information
Systems, 10(4):399–419, Nov 2006.

[DCFT13] Emiliano De Cristofaro, Sky Faber, and Gene Tsudik. Secure genomic testing with
size- and position-hiding private substring matching. In Proceedings of the 12th ACM
Workshop on Workshop on Privacy in the Electronic Society, WPES ’13, pages 107–
118, New York, NY, USA, 2013. ACM.

[DF13] K. El Defrawy and S. Faber. Blindfolded data search via secure pattern matching.
Computer, 46(12):68–75, Dec 2013.

[FHV13] Sebastian Faust, Carmit Hazay, and Daniele Venturi. Outsourced pattern matching. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
ICALP 2013, Part II, volume 7966 of LNCS, pages 545–556. Springer, Heidelberg,
July 2013.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin Rosu,
and Michael Steiner. Rich queries on encrypted data: Beyond exact matches. In
Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, ESORICS 2015,
Part II, volume 9327 of LNCS, pages 123–145. Springer, Heidelberg, September 2015.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[FNW96] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking
it. Commun. ACM, 39(5):77–85, May 1996.

[Fri09] Keith B. Frikken. Practical Private DNA String Searching and Matching through
Efficient Oblivious Automata Evaluation, pages 81–94. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[GHS10] Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. Text search protocols
with simulation based security. In Phong Q. Nguyen and David Pointcheval, edi-
tors, PKC 2010, volume 6056 of LNCS, pages 332–350. Springer, Heidelberg, May
2010.

[GLMY16] Adam Groce, Alex Ledger, Alex J. Malozemoff, and Arkady Yerukhimovich.
CompGC: Efficient offline/online semi-honest two-party computation. Cryptology
ePrint Archive, Report 2016/458, 2016. http://eprint.iacr.org/2016/458.

15

http://eprint.iacr.org/2016/458

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[HHD11] H. Hoffmann, M. D. Howard, and M. J. Daily. Fast pattern matching with time-delay
neural networks. In The 2011 International Joint Conference on Neural Networks,
pages 2424–2429, July 2011.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 155–175. Springer, Heidelberg, March
2008.

[HT10] Carmit Hazay and Tomas Toft. Computationally secure pattern matching in the pres-
ence of malicious adversaries. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 195–212. Springer, Heidelberg, December 2010.

[HT14] Carmit Hazay and Tomas Toft. Computationally secure pattern matching in the
presence of malicious adversaries. Journal of Cryptology, 27(2):358–395, April 2014.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Heidelberg, August 2003.

[JKS08] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for
genomic computation. In 2008 IEEE Symposium on Security and Privacy, pages
216–230. IEEE Computer Society Press, May 2008.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 54–70. Springer, Heidelberg, August 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 16, pages 818–829. ACM Press, October 2016.

[KM10] Jonathan Katz and Lior Malka. Secure text processing with applications to private
DNA matching. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 10, pages 485–492. ACM Press, October 2010.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 17, pages 1257–1272. ACM Press, October / November 2017.

[KNR+17] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto Tri-
filetti. DUPLO: Unifying cut-and-choose for garbled circuits. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
3–20. ACM Press, October / November 2017.

16

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damgαrd, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[Lip03] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 416–433.
Springer, Heidelberg, November / December 2003.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure
two-party computation system. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 20–20, Berkeley, CA, USA, 2004.
USENIX Association.

[MNSS12] Payman Mohassel, Salman Niksefat, Seyed Saeed Sadeghian, and Babak Sadeghiyan.
An efficient protocol for oblivious DFA evaluation and applications. In Orr Dunkel-
man, editor, CT-RSA 2012, volume 7178 of LNCS, pages 398–415. Springer, Heidel-
berg, February / March 2012.

[NN10] Kedar Namjoshi and Girija Narlikar. Robust and fast pattern matching for intrusion
detection. In Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, pages 740–748, Piscataway, NJ, USA, 2010. IEEE Press.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
STOC ’99, pages 245–254, New York, NY, USA, 1999. ACM.

[OPJM10] Margarita Osadchy, Benny Pinkas, Ayman Jarrous, and Boaz Moskovich. SCiFI -
a system for secure face identification. In 2010 IEEE Symposium on Security and
Privacy, pages 239–254. IEEE Computer Society Press, May 2010.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 797–812, San Diego, CA, 2014. USENIX Association.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

[SK17] Tushar Kanti Saha and Takeshi Koshiba. An Enhancement of Privacy-Preserving
Wildcards Pattern Matching, pages 145–160. Springer International Publishing,
Cham, 2017.

[SOF17] Olivier Sanders, Cristina Onete, and Pierre-Alain Fouque. Pattern matching on en-
crypted streams: Applications to dpi and searches on genomic data. Cryptology ePrint
Archive, Report 2017/148, 2017. http://eprint.iacr.org/2017/148.

[SSSS15] Riku Saikkonen, Seppo Sippu, and Eljas Soisalon-Soininen. Experimental Analysis of
an Online Dictionary Matching Algorithm for Regular Expressions with Gaps, pages
327–338. Springer International Publishing, Cham, 2015.

17

http://eprint.iacr.org/2005/187
https://github.com/osu-crypto/libOTe
http://eprint.iacr.org/2017/148

[Tha11] Chris Thachuk. Succincter Text Indexing with Wildcards, pages 27–40. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[TPKC07] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy
preserving error resilient dna searching through oblivious automata. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 07, pages
519–528. ACM Press, October 2007.

[Ver11] Damien Vergnaud. Efficient and secure generalized pattern matching via fast fourier
transform. In Abderrahmane Nitaj and David Pointcheval, editors, AFRICACRYPT
11, volume 6737 of LNCS, pages 41–58. Springer, Heidelberg, July 2011.

[WJW+15] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu, and M. Xu. Generalized pattern match-
ing string search on encrypted data in cloud systems. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 2101–2109, April 2015.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and
efficient maliciously secure two-party computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 21–37.
ACM Press, October / November 2017.

[WZX17] Xiaochao Wei, Minghao Zhao, and Qiuliang Xu. Efficient and secure outsourced
approximate pattern matching protocol. Soft Computing, Mar 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YSK+13] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi
Koshiba. Secure pattern matching using somewhat homomorphic encryption. In
Proceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop,
CCSW ’13, pages 65–76, New York, NY, USA, 2013. ACM.

[YSK+14] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi
Koshiba. Privacy-Preserving Wildcards Pattern Matching Using Symmetric Somewhat
Homomorphic Encryption, pages 338–353. Springer International Publishing, Cham,
2014.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

18

https://github.com/emp-toolkit

	Introduction
	Pattern Matching with Wildcards
	Variants of Pattern Matching

	Overview of Our Results & Techniques
	Preliminaries
	Notation
	Oblivious Transfer
	Private Equality Test

	SWiM: the Main Construction
	Additions, optimizations

	SWiM Implementation and Performance
	Experimental Performance: Comparison with Prior Work
	SWiM performance at scale: experiments and discussion

