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Abstract. In this paper we address the construction of privacy-friendly
cryptographic primitives for the post-quantum era and in particular ac-
cumulators with zero-knowledge membership proofs and ring signatures.
This is an important topic as it helps to protect the privacy of users in
online authentication or emerging technologies such as cryptocurrencies.
Recently, we have seen first such constructions, mostly based on assump-
tions related to codes and lattices. We, however, ask whether it is possible
to construct such primitives without relying on structured hardness as-
sumptions, but solely based on symmetric-key primitives such as hash
functions or block ciphers. This is interesting because the resistance of
latter primitives to quantum attacks is quite well understood.

In doing so, we choose a modular approach and firstly construct
an accumulator (with one-way domain) that allows to efficiently prove
knowledge of (a pre-image of) an accumulated value in zero-knowledge.
We, thereby, take care that our construction can be instantiated solely
from symmetric-key primitives and that our proofs are of sublinear size.
Latter is non trivial to achieve in the symmetric setting due to the absence
of algebraic structures which are typically used in other settings to make
these efficiency gains. Regarding efficient instantiations of our proof
system, we rely on recent results for constructing efficient non-interactive
zero-knowledge proofs for general circuits. Based on this building block,
we then show how to construct logarithmic size ring signatures solely
from symmetric-key primitives. As constructing more advanced primitives
only from symmetric-key primitives is a very recent field, we discuss some
interesting open problems and future research directions. Finally, we want
to stress that our work also indirectly impacts other fields: for the first
time it raises the requirement for collision resistant hash functions with
particularly low AND count.

Keywords: post-quantum cryptography, privacy-preserving cryptogra-
phy, provable security, accumulator, zero-knowledge for circuits

1 Introduction

The design of cryptographic schemes that remain secure in the advent of powerful
quantum computers has become an important topic in recent years. Although it
is hard to predict when quantum computers will be powerful enough to break
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factoring and discrete logarithm based cryptosystems, it is important to start
the transition to post-quantum cryptography early enough to eventually not
end up in a rush. This is underpinned by the NIST post-quantum cryptography
standardization project3, which aims at identifying the next generation of public
key encryption, key exchange and digital signature schemes basing their security
on conjectured quantum hard problems. Apart from these fundamental schemes,
there are many other valuable schemes which would nicely complement a post-
quantum cryptographic toolbox. In this paper we are interested in privacy-friendly
cryptographic primitives for the post-quantum era and in particular accumulators
with zero-knowledge membership proofs and ring signatures. Such schemes help
to protect the privacy of users, and significantly gained importance due to recent
computing trends such as Cloud computing or the Internet of Things (IoT).
Examples where privacy-enhancing protocols are already widely deployed today
are remote attestation via direct anonymous attestation (DAA) [BCC04] as used
by the Trusted Platform Module (TPM)4, privacy-friendly online authentication
within Intel’s Enhanced Privacy ID (EPID) [BL07], or usage within emerging
technologies such as cryptocurrencies to provide privacy of transactions.5

Let us now briefly discuss the primitives we construct in this paper. An
accumulator scheme [Bd93] allows to represent a finite set as a succinct value called
the accumulator. For every element in the accumulated set, one can efficiently
compute a so called witness to certify its membership in the accumulator. However,
it should be computationally infeasible to find a witness for non-accumulated
values. We are interested in accumulators supporting efficient zero-knowledge
membership proofs. Ring signature schemes [RST01] allow a member of an ad-hoc
group R (the so called ring), defined by the member’s public keys, to anonymously
sign a message on behalf of R. Such a signature attests that some member of R
produced the signature, but the actual signer remains anonymous.

For ring signatures there is a known approach to construct them from ac-
cumulators and non-interactive zero-knowledge proof systems in the random
oracle model. The main technical hurdle in the post-quantum setting is to find
accumulators, and, more importantly, compatible proof systems under suitable
assumptions. Only recently, Libert et al. in [LLNW16] showed that it is pos-
sible to instantiate this approach in the post-quantum setting and provided
the first post-quantum accumulator from lattices. This combined with suitable
non-interactive variants of Σ-protocols yields post-quantum ring signatures in
the random oracle model (ROM). However, this does not give rise to a construc-
tion of ring signatures from symmetric-key primitives such as hash functions
or block ciphers, as we pursue in this paper. The main technical tools we use
in our construction are recent results from zero-knowledge proof systems for
general circuits [GMO16, CDG+17], and our techniques are inspired by recent
approaches to construct post-quantum signature schemes based on these proof
systems [CDG+17]. We note that there are also post-quantum ring signature
candidates from problems related to codes [MCG08] and multivariate cryptogra-

3 https://csrc.nist.gov/groups/ST/post-quantum-crypto/
4 https://trustedcomputinggroup.org/tpm-library-specification/
5 https://getmonero.org/resources/moneropedia/ringsignatures.html
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phy [MP17]. However, they all have size linear in the number of ring members,
whereas we are only interested in sublinear ones. Additionally, former schemes
are proven secure in weaker security models.

Contribution. Our contributions are as follows:

– We present the first post-quantum accumulator (with one-way domain) to-
gether with efficient zero-knowledge proofs of (a pre-image of) an accumulated
value, which solely relies on assumptions related to symmetric-key primitives.
That is, we do not require any structured hardness assumptions. Our proofs
are of sublinear size in the number of accumulated elements and can be instan-
tiated in both, the ROM as well as the quantum accessible ROM (QROM).
Besides being used as an important building block in this paper, such accumu-
lators are of broader interest. In particular, such accumulators with efficient
zero-knowledge membership proofs have many other applications beyond this
work, e.g., membership revocation [BCD+17] or anonymous cash such as
Zerocoin [MGGR13]. We also note that the only previous construction of
post-quantum accumulators with efficient zero-knowledge membership proofs
in [LLNW16] relies on hardness assumptions on lattices.

– We use our proposed accumulator to construct ring signatures of sublinear size.
Therefore, we prove an additional property—simulation-sound extractability—
of the proof system (ZKB++ [CDG+17]) we are using. This then allows
us to rigorously prove the security of our ring signature construction in the
strongest model of security for ring signatures due to Bender et al. [BKM09].
Consequently, we propose a construction of sublinear size ring signatures
solely from symmetric-key primitives.

– We present a selection of symmetric-key primitives that can be used to
instantiate our ring signature construction and evaluate the practicality of
our approach. In particular, we present signature sizes for rings of vari-
ous sizes when instantiating the one-way function and hash function using
LowMC [ARS+15, ARS+16]. Finally, we present some interesting directions
for future research within this very recent domain.

2 Preliminaries

Notation. Let x←R X denote the operation that picks an element uniformly at
random from a finite set X and assigns it to x. We assume that all algorithms
run in polynomial time and use y ← A(x) to denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins.
For algorithms representing adversaries we use calligraphic letters, e.g., A. We
assume that every algorithm outputs a special symbol ⊥ on error. We write
Pr[Ω : E ] to denote the probability of an event E over the probability space Ω. A
function ε : N → R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function. Finally, we define [n] := {1, . . . , n}.

2.1 Zero-Knowledge Proofs and Σ-Protocols

Σ-Protocols. Let L ⊆ X be an NP-language with witness relation R so that
L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined as follows.
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Definition 1 (Σ-Protocol). A Σ-protocol for language L is an interactive
three-move protocol between a PPT prover P = (Commit,Prove) and a PPT
verifier V = (Challenge,Verify), where P makes the first move and transcripts are
of the form (a, e, z) ∈ A × E × Z, where a is output by Commit, e is output by
Challenge and z is output by Prove. Additionally, Σ protocols satisfy the following
properties

Completeness. For all security parameters κ, and for all (x,w) ∈ R, it holds
that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. There exists a PPT extractor E so that for all x, and
for all sets of accepting transcripts {(a, ei, zi)}i∈[s] with respect to x where
∀i, j ∈ [s], i 6= j : ei 6= ej , generated by any algorithm with polynomial runtime
in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) : (x,w) ∈ R

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator S
so that for every x ∈ L and every challenge e ∈ E, it holds that a transcript
(a, e, z), where (a, z)← S(1κ, x, e) is computationally indistinguishable from a
transcript resulting from an honest execution of the protocol.

The s-special soundness property gives an immediate bound for soundness: if
no witness exists then (ignoring a negligible error) the prover can successfully
answer at most to (s− 1)/t challenges, where t = |E| is the size of the challenge
space. In case this value is too large, it is possible to reduce the soundness error
using `-fold parallel repetition of the Σ-protocol. Furthermore, it is also well
known that one can easily express conjunctions and disjunctions of languages
proven using Σ-protocols. For the formal details refer to [Dam10, CDS94].

Non-Interactive ZK Proof Systems. Now, we recall a standard definition
of non-interactive zero-knowledge proof systems. Therefore, let L be an NP-
language with witness relation R so that L = {x | ∃ w : R(x,w) = 1}.

Definition 2 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (Setup, Proof, Verify), defined
as:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We require the properties completeness, adaptive zero-knowledge, and simulation-
sound extractability as defined below.
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Definition 3 (Completeness). A non-interactive proof system Π is complete,
if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x,w)← A(crs),
π ← Proof(crs, x, w)

:
Verify(crs, x, π) = 1

∨ (x,w) 6∈ R

]
≈ 1.

Definition 4 (Adaptive Zero-Knowledge). A non-interactive proof system
Π is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every PPT adversary A there is a negligible function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

Definition 5 (Simulation-Sound Extractability). An adaptively zero-kn-
owledge non-interactive proof system Π is simulation-sound extractable, if there
exists a PPT extractor E = (E1, E2) such that for every adversary A it holds that∣∣∣∣∣Pr

[
(crs, τ)← S1(1κ) : A(crs, τ) = 1

]
−

Pr
[
(crs, τ, ξ)← E1(1κ) : A(crs, τ) = 1

] ∣∣∣∣∣ = 0,

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

 (crs, τ, ξ)← E1(1κ),
(x?, π?)← AS(crs,τ,·)(crs),
w ← E2(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, π?) /∈ QS ∧ (x?, w) /∈ R

 ≤ ε2(κ),

where S(crs, τ, x) := S2(crs, τ, x) and QS keeps track of the queries to and answers
of S.

The Fiat-Shamir Transform. The Fiat-Shamir transform [FS86] is a frequently
used tool to convert Σ-protocols 〈P,V〉 to their non-interactive counterparts.
Essentially, the transform removes the interaction between P and V by using a
RO H : A×X→ E to obtain the challenge e.6 That is, one uses a PPT algorithm
Challenge′(1κ, a, x) which obtains e ← H(a, x) and returns e. Then, the prover
can locally obtain the challenge e after computing the initial message a. Starting
a verifier V′ = (Challenge′,Verify) on the same initial message a will then yield the
same challenge e. More formally, we obtain the non-interactive PPT algorithms
(PH ,VH) indexed by the used RO:

PH(1κ, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
e← H(a, x), and finally obtain z. Returns π ← (a, z).

6 This is a stronger variant of FS (cf. [FKMV12, BPW12]). The original weaker variant
of the FS transform does not include the statement x in the challenge computation.
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VH(1κ, x, π) : Parse π as (a, z). Start V′ on (1κ, x), send a as first message to V′.
When V′ outputs e, reply with z and output 1 if V′ accepts and 0 otherwise.

One can obtain a non-interactive proof system satisfying the properties above by
applying the Fiat-Shamir transform to any Σ-protocol where the min-entropy
α of the commitment a sent in the first phase is so that 2−α is negligible in
the security parameter κ and the challenge space E is exponentially large in
the security parameter. Formally, Setup(1κ) fixes a RO H : A × X → E, sets
crs ← (1κ, H) and returns crs. The algorithms Proof and Verify are defined as
follows: Proof(crs, x, w) := PH(1κ, x, w), Verify(crs, x, π) := VH(1κ, x, π).

Signatures via Fiat-Shamir. The Fiat-Shamir (FS) transform can elegantly be
used to convert (canonical) identification schemes into adaptively secure signature
schemes. The basic idea is similar to above, but slightly differs regarding the
challenge generation, i.e., one additionally includes the message upon generating
the challenge. Note that in the context of the stronger variant of the FS transform
we rely on, one can simply modify the language so that the statements additionally
include the message to be signed. This is because our variant of the FS transform
includes the statement upon challenge generation, which is why extending the
statement by the message also implicitly means including the message in the
challenge generation. We will not make this language change explicit in the
following, but implicitly assume that the language is changed if a message is
included as the last parameter of the statement to be proven.

The Unruh Transform. Similar to FS, Unruh’s transform [Unr12, Unr15,
Unr16] allows one to construct NIZK proofs and signature schemes from Σ-
protocols. In contrast to the FS transform, Unruh’s transform can be proven
secure in the QROM (quantum random oracle model), strengthening the security
guarantee against quantum adversaries. At a high level, Unruh’s transform works
as follows: given Σ-protocol, the prover repeats the first phase of the Σ-protocol
t times and for each of those runs produces responses for M randomly selected
challenges. All those responses are permuted using a random permutation G.
Querying the random oracle on all first rounds all permuted responses then
determines the responses to publish for each round.

2.2 Efficient NIZK Proof Systems for General Circuits

ZKB++ [CDG+17], an optimized version of ZKBoo [GMO16], is a proof system
for zero-knowledge proofs over arbitrary circuits. ZKBoo and ZKB++ build
on the MPC-in-the-head paradigm by Ishai et al. [IKOS09], which roughly
works as follows. The prover simulates all parties of a multiparty computation
protocol (MPC) implementing the joint evaluation of some function, say y =
SHA-256(x), and computes commitments to the states of all players. The verifier
then randomly corrupts a subset of the players and checks whether those players
did the computation correctly.

ZKBoo generalizes the idea of [IKOS09] by replacing MPC with circuit
decompositions. There the idea is to decompose the circuit into three shares,
where revealing the wire values of two shares does not leak any information
about the wire values on the input of the circuit. The explicit formulas for
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circuit decomposition can be found in [GMO16] for ZKBoo and in [CDG+17] for
ZKB++. Multiplication gates induce some dependency between the individual
shares which is why the wire values on the output of the multiplication gates
needs to be stored in the transcripts. Hence, the transcripts grow linearly in
the number of multiplication gates. Due to space limitations we do not include
further details on ZKB++ and refer the reader to [CDG+17] for the details.

3 PQ Accumulators & ZK Membership Proofs

Our goal is to come up with an accumulator and associated efficient zero-
knowledge membership proof system, which remains secure in the face of attacks
by a quantum attacker. The first building block we, thus, require for our construc-
tions are accumulators which can be proven secure under an assumption which
is believed to resist attacks by a quantum computer. In this work our goal is to
solely rely on unstructured assumptions, and thus resort to using Merkle-trees
as accumulators. Merkle-trees were first used in the context of accumulators by
Buldas, Laud, and Lipmaa in [BLL00], who called their primitive undeniable
attesters. In the fashion of [DKNS04], we then extend the accumulator model to
accumulators with one-way domain, i.e., accumulators where the accumulation
domain coincides with the range of a one-way function so that one can accumulate
images of the one-way function. For the associated zero-knowledge membership
proof system, we build up on recent progress in proving statements over general
circuits as discussed in Section 2.2.

The main technical hurdle we face in this context is designing the statement
to be proven with the proof system so that we can actually obtain proofs which
are sublinear (in particular logarithmic) in the number of accumulated elements.
Obtaining sublinear proofs is complicated mainly due to the absence of any
underlying algebraic structure on the accumulator.

3.1 Formal Model

We rely on the formalization of accumulators by [DHS15], which we slightly
adapt to fit our requirement for a deterministic Eval algorithm. Based on this
formalization we then restate the Merkle-tree accumulator (having a deterministic
Eval algorithm) within this framework.

Definition 6 (Accumulator). A static accumulator is a tuple of efficient al-
gorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6=∞, then t is an upper bound on the number of elements to be accumulated.
It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists. We assume
that the accumulator public key pkΛ implicitly defines the accumulation domain
DΛ.

Eval((sk∼Λ , pkΛ),X ) : This deterministic algorithm takes a key pair (sk∼Λ , pkΛ) and
a set X to be accumulated and returns an accumulator ΛX together with some
auxiliary information aux.

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼Λ , pkΛ), an
accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi for xi otherwise.
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Verify(pkΛ,ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witxi and a value xi. It returns 1 if witxi is a witness for
xi ∈ X and 0 otherwise.

We require accumulators to be correct and collision free. While we omit the
straight forward correctness notion, we recall the collision freeness notion below,
which requires that finding a witness for a non-accumulated value is hard.

Definition 7 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

[
(skΛ, pkΛ)← Gen(1κ, t),
(wit?xi , x

?
i ,X?)← A(pkΛ)

:
Verify(pkΛ,Λ

?,wit?xi , x
?
i) = 1 ∧
x?i /∈ X?

]
≤ ε(κ),

where Λ? ← Evalr?((skΛ, pkΛ),X?).

3.2 The Accumulator

In Scheme 1, we cast the Merkle-tree accumulator in the framework of [DHS15].

Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k←R Kκ and return (skΛ, pkΛ)← (∅, Hk).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as Hk and X as (x0, . . . , xn−1).a If @ k ∈ N so that

n = 2k return ⊥. Otherwise, let `u,v refer to the u-th leaf (the leftmost leaf is
indexed by 0) in the v-th layer (the root is indexed by 0) of a perfect binary tree.
Return ΛX ← `0,0 and aux← ((`u,v)u∈[n/2k−v ])v∈[k], where

`u,v ←
{
Hk(`2u,v+1||`2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : Parse aux as ((`u,v)u∈[n/2k−v ])v∈[k] and return witxi
where

witxi ← (`bi/2vc+η,k−v)0≤v≤k, where η =

{
1 if bi/2vc (mod 2) = 0
−1 otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : Parse pkΛ as Hk, ΛX as `0,0, set `i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

`bi/2v+1c,k−(v+1) =

{
Hk(`bi/2vc,k−v||`bi/2vc+1,k−v) if bi/2vc (mod 2) = 0
Hk(`bi/2vc−1,k−v||`bi/2vc,k−v) otherwise.

a We assume without loss of generality that X is an ordered sequence instead of a set.

Scheme 1: Merkle-tree accumulator.

Then, we restate some well-known lemmas and sketch the respective proofs.

Lemma 1. Scheme 1 is correct.

The lemma above is easily verified by inspection. The proof is omitted.
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Lemma 2. If {Hk}k∈Kκ is a family of collision resistant hash functions, the
accumulator in Scheme 1 is collision free.

Proof (Sketch). Upon setup, the reduction engages with a collision resistance
challenger for the family of hash functions, obtains Hk, and completes the setup
as in the original protocol. Now, one may observe that every collision in the
accumulator output by the adversary implies that the reduction knows at least
two colliding inputs for Hk, which upper bounds the probability of a collision in
the accumulator by the collision probability of the hash function.

3.3 Accumulators with One-Way Domain

We now extend the definition of accumulators to ones with one-way domain
following the definition of [DKNS04], but we adapt it to our notation.

Definition 8 (Accumulator with One-Way Domain). A collision-free ac-
cumulator with accumulation domain DΛ and associated function family {fΛ :
IΛ → DΛ} where Gen(1κ, t) also selects fΛ is called an accumulator with one-way
domain if

Efficient verification. There exists an efficient algorithm D that on input
(x, z) ∈ DΛ × IΛ returns 1 if and only if fΛ(z) = x.

Efficient sampling. There exists a (probabilistic) algorithm W that on input
1κ returns a pair (x, z) ∈ DΛ × IΛ with D(x, z) = 1.

One-wayness. For all PPT adversaries A there is a negligible function ε(·)
such that:

Pr
[

(x, z)←W (1κ), z? ← A(1κ, x) : D(x, z) = 1
]
≤ ε(κ).

Note that when we set fΛ to be the identity function, then we have a conventional
accumulator.

3.4 Membership Proofs of Logarithmic Size

The main technical tool used by [DKNS04] to obtain zero-knowledge membership
proofs of constant size is to exploit a property of the accumulator which is
called quasi-commutativity. Clearly, such a property requires some underlying
algebraic structure which we explicitly want to sacrifice in favor of being able to
solely rely on assumptions related to symmetric-key primitives with relatively
well understood post-quantum security. To this end we have to use a different
technique. First observe that when näıvely proving that a non-revealed value is a
member of our accumulator would amount to a disjunctive proof of knowledge
over all members, which is at least of linear size. Therefore, this is not an option
and we have to develop an alternative technique.

The Relation. Essentially our idea is to “emulate” some kind of commutativity
within the order of the inputs to the hash function in each level by a disjunctive
proof statement, i.e., we exploit the disjunction to hide where the path through the
tree continues. The single statements in every level of the tree are then included
in one big conjunction. The length of this statement is O(k) = O(log n). More
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formally we define a relation R on {0, 1}κ×{fΛ}×{Hk}× IΛ×({0, 1}κ)2k which—
for a given non-revealed pre-image z—attests membership of the corresponding
image fΛ(z) in the accumulator ΛX :

((ΛX , fΛ, Hk), (z, (ai)i∈[k], (bi)i∈[k])) ∈ R ⇐⇒ (ak = fΛ(z) ∨ bk = fΛ(z))

∧
k−1∧
i=0

(ai = Hk(ai+1||bi+1) ∨ ai = Hk(bi+1||ai+1),

where ΛX = a0. In Figure 1 we illustrate that the relation indeed works for arbi-
trary members of the accumulator without influencing the form of the statement
or the witness. This illustrates that proving the statement in this way does not
reveal any information on which path in the tree was taken. To see this, observe
that at each level of the tree the relation covers both cases where ai is either a left
or right child. Given that, it is easy to verify that having a witness for relation R
implies having a witness for the accumulator together with some (non-revealed)
member.

((`0,0, fΛ, Hk), (z, (`1,1, `2,2), (`0,1, `3,2)))

`0,0

`0,1

`0,2 `1,2

`1,1

`2,2

z

`3,2

((`0,0, fΛ, Hk), (z, (`0,1, `1,2), (`1,1, `0,2)))

`0,0

`0,1

`0,2 `1,2

z

`1,1

`2,2 `3,2

Fig. 1: Visualization of different paths in the Merkle-tree and the corresponding witness.
The nodes on the path corresponding to a0, a1 and a2 are underlined.

Remark 1. In order to use relation R with the conventional accumulator in
Scheme 1, we just have to set fΛ to be the identity function (which yields x = z)
and then set ak = Hk(z) and bk = Hk(z).

3.5 Converting Accumulator Witnesses

Now, the remaining piece to finally be able to plug in a witness witfΛ(z) for
some accumulated value fΛ(z) with pre-image z into the relation R above is
some efficient helper algorithm which rearranges the values z and witfΛ(z) so that
they are compatible with the format required by R. Such an algorithm is easily
implemented, which is why we only define the interface below.

Trans(z,witfΛ(z)) : Takes as input a value z as well as a witness witfΛ(z)
and

returns a witness of the form (z, (ai)i∈[k], (bi)i∈[k]) for R.

Since Trans can be viewed as a permutation on the indexes it is easy to see that
the function implemented by Trans is bijective and its inverse is easy to compute.
We denote the computation of the inverse of the function implemented by Trans
as (z,witfΛ(z))← Trans−1(z, (ai)i∈[n], (bi)i∈[n]).
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4 Logarithmic Size Ring Signatures

The two main lines of more recent work in the design of ring signatures target
reducing the signature size or removing the requirement for random oracles (e.g.,
[DKNS04, CGS07, GK15, BCC+15, DS16, Gon17, MS17]). We, however, note
that all these approaches require assumptions that do not withstand a quantum
computer. To the best of our knowledge, the first non-trivial post-quantum scheme
(i.e., one that does not have linear size signatures) in the random oracle model
is the lattice-based scheme recently proposed by Libert et al. [LLNW16]. We
provide an alternative construction in the random oracle model with logarithmic
sized signatures, but avoid lattice assumptions and only rely on symmetric-key
primitives.

4.1 Formal Model

Below, we formally define ring signature schemes (adopting [BKM09]).

Definition 9 (Ring Signature). A ring signature scheme RS is a tuple RS =
(Setup,Gen,Sign,Verify) of PPT algorithms, which are defined as follows.

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters PP.

Gen(PP) : This algorithm takes as input parameters PP and outputs a keypair
(sk, pk).

Sign(ski,m,R) : This algorithm takes as input a secret key ski, a message m ∈M
and a ring R = (pkj)j∈[n] of n public keys such that pki ∈ R. It outputs a
signature σ.

Verify(m,σ,R) : This algorithm takes as input a message m ∈M, a signature σ
and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we subsequently provide formal
definitions for the remaining properties following [BKM09]. We note that Bender
et al. in [BKM09] have formalized multiple variants of these properties, where
we always use the strongest one.

Unforgeability requires that without any secret key ski that corresponds to a
public key pki ∈ R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R. Our unforgeability notion is the strongest notion defined
in [BKM09] and is there called unforgeability w.r.t. insider corruption.

Definition 10 (Unforgeability). A ring signature scheme provides unforge-
ability, if for all PPT adversaries A, there exists a negligible function ε(·) such
that it holds that

Pr


PP← Setup(1κ),
{(sk, pk)← Gen(PP)}i∈[poly(κ)],
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?,R?)← AO({pki}i∈[poly(κ)])

:
Verify(m?, σ?,R?) = 1 ∧

(·,m?,R?) /∈ QSign ∧
R? ⊆ {pki}i∈[poly(κ)]\QKey

 ≤ ε(κ),

where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)],
and QSig records the queries to Sig. Furthermore, Key(i) returns ski and QKey

records the queries to Key.
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Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.
Our anonymity notion is the strongest notion defined in [BKM09] and is there
called anonymity against full key exposure.

Definition 11 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A and for all polynomials poly(·), there exists a negligible
function ε(·) such that it holds that

Pr


PP← Setup(1κ),
{(ski, pki)← Gen(PP)}i∈[poly(κ)],
b←R {0, 1}, O ← {Sig(·, ·, ·)},
(m, j0, j1,R, st)← AO({pki}i∈[poly(κ)]),
σ ← Sign(skjb ,m,R),
b? ← AO(st, σ, {ski}i∈[poly(κ)])

:
b = b? ∧

{pkji}i∈{0,1} ⊆ R

 ≤ 1/2+ε(κ),

where Sig(i,m,R) := Sign(ski,m,R).

4.2 Generic Approaches to Design Ring Signatures

A folklore approach to design ring signatures in the random oracle model is to
use the NP relation RRS together with a one-way function µ, which defines the
relation between secret and public keys:

(R, sk) ∈ RRS ⇐⇒ ∃ pki ∈ RRS : pki = µ(sk),

and allows to demonstrate knowledge of a witness (a secret key) of one of the
public keys in the ring R. Usually, one then designs a Σ-protocol for relation
RRS and converts it into a signature scheme using the Fiat-Shamir heuristic.

Linear-size signatures. A frequently used instantiation of the above approach
is instantiating the relation above by means of a disjunctive proof of knowl-
edge [CDS94]. Using this approach, one obtains ring signatures of linear size.
It might be tempting to think that there is a lot of optimization potential for
signature sizes in ring signatures. However, without additional assumptions about
how the keys are provided to the verifier, signatures of linear size are already the
best one can hope for: the verifier needs to get every public key in the ring to
verify the signature.

Reducing signature size. However, to further reduce the signature size there
is a nice trick which is based on the observation that in many practical scenarios
the prospective ring members are already clear prior to the signature generation.
Consequently, one can compactly encode all public keys in this ring within some
suitable structure and compute the signatures with respect to this compact
structure. This trick was first used by Dodis et al. [DKNS04]. Loosely their
approach can be described as follows. They use a cryptographic accumulator
with a one-way domain to accumulate the ring R, a set of public keys being the
output of applying the one-way function µ to the respective secret key. This way
they obtain a succinct representation of R. Then, they use a proof system that
allows to prove knowledge of a witness of one accumulated value (i.e., the public
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key) and knowledge of the pre-image thereof (i.e., the corresponding secret key).
This proof can be turned into a signature using the Fiat-Shamir heuristic.

Depending on the size of the zero-knowledge membership proof this can yield
sublinear (logarithmic or even constant size) signatures. Dodis et al. presented
an instantiation of an accumulator together with the respective zero-knowledge
proofs that yield constant size ring signatures based on the strong RSA assump-
tion. Logarithmic size ring signatures under lattice assumptions are presented
in [LLNW16].

4.3 Our Construction of Logarithmic Size Ring Signatures

Our construction basically follows the approach discussed above to reduce signa-
ture size. However, in contrast to Dodis et al., besides targeting the post-quantum
setting, we (1) do not require a trusted setup7, and (2) cannot rely on accumu-
lators with one-way domain which provide quasi-commutativity. Latter is too
restricting and not compatible with the setting in which we work. In particular,
it excludes Merkle-tree accumulators, which is why we chose to rely on a more
generic formalization of accumulators (cf. Section 3). Like Dodis et al., we assume
that in practical situations rings often stay the same for a long period of time (e.g.,
some popular rings are used very often by various members of the ring), or have
an implicit short description. Consequently, we measure the signature size as that
of the actual signature, i.e., the information one requires in addition to the group
description. We want to stress once again that when counting the description of
the ring as part of the signature, every secure ring signature schemes needs to
have signature sizes which are at least linear in the size of the ring.

For the ease of presentation let us fix one such popular ring R identified by
the corresponding accumulator ΛR and we assume that |R| = 2t for some t ∈ N.8

We present our construction as Scheme 2.

Remark 2. Note that in Scheme 2 crs is not a common reference string (CRS)
that needs to be honestly computed by a trusted third party. We simply stick
with the notion including a CRS for formal reasons, i.e,. to allow the abstract
notion of NIZKs, but as we exclusively use NIZK from Σ-protocols, we do not
require a trusted setup and crs is just a description of the hash function which
can be globally fixed, e.g., to SHA-256 or SHA-3. Recall, within Fiat-Shamir
Π.Setup(1κ) fixes a RO H : A× X→ E, sets crs← (1κ, H) and returns crs.

Remark 3. A trusted setup in context of ring signatures is actually problematic,
as it assumes that some mutually trusted party honestly executes the setup.
For instance, in case of the strong RSA accumulator [BP97, CL02] as used
within [DKNS04], the party running the Gen algorithm of the accumulator can
arbitrarily cheat. This can easily be done by keeping the accumulator secret
(a trapdoor) instead of discarding it. Using this information, a dishonest setup
allows to insert and delete arbitrary elements into and from the accumulator

7 A trusted setup somehow undermines the idea behind ring signatures.
8 If this is not the case, one can always add dummy keys to the ring to satisfy this

condition.
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Setup(1κ) : Let Λ be the accumulator with one-way domain based on Scheme 1, run

(skΛ, pkΛ) ← Λ.Gen(1κ, t) (note that skΛ = ∅). Run crs ← Π.Setup(1κ) and return
PP← (pkΛ, crs) = ((Hk, fΛ), (1κ, H)).

KeyGen(PP) : Parse PP as ((Hk, fΛ), crs), run (x, z) ← fΛ.W (1κ), and set pk ← (PP, x),

sk← (pk, z). Return (sk, pk).

Sign(ski,m,R) : Parse ski as ((((Hk, fΛ), crs), xi), zi) and R as (pk1, . . . , pkt) = ((·,
x1), . . . , (·, xt)). Let X = (x1, . . . , xt), run (ΛX , aux) ← Λ.Eval((·, pkΛ),X ) and
witfΛ(zi) ← Λ.WitCreate((·, pkΛ),ΛX , aux, fΛ(zi)). Obtain (zi, (aj)j∈[t], (bj)j∈[t]) ←
Trans(zi,witfΛ(zi)), and return the signature σ ← (π,ΛX ), where

π ← Π.Proof(crs, (ΛX , fΛ, Hk), (zi, (aj)j∈[t], (bj)j∈[t])).

Verify(m,σ,R) : Parse σ as (π,ΛX ) and R as (pk1, . . . , pkt) = ((((Hk, fΛ), crs), x1),

. . . , (·, xt)). Let X = (x1, . . . , xt), and compute

(Λ′X , aux′)← Λ.Eval((·, pkΛ),X ).

If Λ′X 6= ΛX return 0. Otherwise return Π.Verify(crs, (ΛX , fΛ, Hk), π).

Scheme 2: Construction of logarithmic size RS.

without changing the accumulator value. In context of ring signatures one thus
can arbitrarily modify existing rings used within signatures, which could lead to
modification of rings to just include public keys into the ring so that for every
member of the ring the sole fact to know that one of these persons produced a
signature already leads to severe consequences. We stress that in our case there
is no trusted setup. In particular, there is no accumulator secret and the public
parameters are just descriptions of hash functions and a OWF.

Now, we argue that our ring signature presented in Scheme 2 represents a
secure ring signature scheme, where we omit correctness which is straightforward
to verify.

Theorem 1. If Λ is a collision free accumulator with one-way domain with
respect to fΛ and Π is a simulation-sound extractable non-interactive proof system,
then the ring signature scheme in Scheme 2 is unforgeable.

Proof. We prove unforgeability using a sequence of games.

Game 0: The original unforgeability game.
Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and henceforth

simulate all proofs in Sign without a witness using τ .
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher for Π, i.e., |Pr[S0]− Pr[S1]| ≤ εzk(κ).
Game 2: As Game 1, but we further modify Gen to setup (crs, τ, ξ) using E1

and store ξ.
Transition - Game 1 → Game 2: By simulation-sound extractability, this change

is only conceptual, i.e., Pr[S1] = Pr[S2].
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Game 3: As Game 2, but for the forgery (m?, σ?,R?) output by the adversary
we parse σ? as (π,ΛX ) and obtain (zi, (ai)i∈[k], (bi)i∈[k])← E2(crs, ξ, (ΛX , fΛ,
Hk), π). If the extractor fails, we abort.

Transition - Game 2 → Game 3: Game 2 and Game 3 proceed identically, unless
we abort. The probability for the abort event to happen is upper bounded
by εext(κ) which is why we can conclude that |Pr[S3]− Pr[S2]| ≤ εext(κ).

Game 4: As Game 3, but we abort if we have extracted (zi, (ai)i∈[n], (bi)i∈[n])

so that (·,witfΛ(zi)) ← Trans−1(zi, (ai)i∈[n], (bi)i∈[n]) is a valid witness for
some fΛ(zi) which was never accumulated.

Transition - Game 3 → Game 4: If we abort in Game 4, we have a collision for
the accumulator. That is |Pr[S3]− Pr[S4]| ≤ εcf(κ).

Game 5: As Game 4, but we guess the index i? the adversary will attack
beforehand, and abort if our guess is wrong.

Transition - Game 4 → Game 5: The success probability in Game 4 is the same
as in Game 5, unless our guess is wrong, i.e., Pr[S5] = 1/poly(κ) · Pr[S4].

Game 6: As Game 5, but instead of honestly generating the keypair for user i?,
we engage with a challenger of a OWF to obtain xi? and include it in pki?
accordingly. We set ski? ← ∅.

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

In the last game, we have an adversary against the OWF, i.e., Pr[S6] ≤ εowf(κ).
All in all, we have that Pr[S0] ≤ poly(κ) · εowf(κ) + εzk(κ) + εext(κ) + εcf(κ)

Theorem 2. If Π is a zero-knowledge non-interactive proof system, then the
ring signature scheme in Scheme 2 is anonymous.

Proof. We prove anonymity using a sequence of games.

Game 0: The original anonymity game.

Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and henceforth
simulate all proofs in Sign without a witness using τ .

Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1
is a zero-knowledge distinguisher for Π, i.e., |Pr[S0]− Pr[S1]| ≤ εzk(κ).

In Game 1 the simulation is independent of b, meaning that Pr[S1] = 1/2. Thus,
we have Pr[S0] ≤ 1/2 + εzk(κ), which concludes the proof. ut

5 Implementation Aspects and Evaluation

In this section we discuss some implementation aspects regarding instantiating
our ring signature scheme. Moreover, we evaluate the efficiency of a concrete
instantiation. Since we require simulation-sound extractable NIZK proof systems,
we confirm that the Fiat-Shamir (resp. Unruh) transformed version of ZKB++
represents a suitable proof system in the ROM (resp. QROM). We again want to
note that we were not able to include the ZKB++ construction due to space
limitations, but refer the reader to [CDG+17] for the details.
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5.1 Simulation-Sound Extractability of ZKB++

To instantiate our ring signature scheme using ZKB++, we first need to con-
firm that the NIZK proof system obtained by applying the Fiat-Shamir/Unruh
transform to ZKB++ is in fact simulation-sound extractable. For the Unruh-
transformed proof system, this was already shown in [CDG+17, Theorem 2] in
the QROM, which is why we only focus on the Fiat-Shamir version. We base
our argumentation upon the argumentation in [FKMV12]. What we have to do
is to show that the FS transformed ZKB++ is zero-knowledge and provides
quasi-unique responses in the ROM. We do so by proving two lemmas. Com-
bining those lemmas with [FKMV12, Theorem 2 and Theorem 3] then yields
simulation-sound extractability as a corollary.

Lemma 3. Let QH be the number of queries to the random oracle H, QS be
the overall queries to the simulator, and let the commitments be instantiated
via a RO H ′ with output space {0, 1}ρ and the committed values having min
entropy ν. Then the probability ε(κ) for all PPT adversaries A to break zero-
knowledge of κ parallel executions of the FS transformed ZKB++ is bounded by
ε(κ) ≤ s/2ν + (QS ·QH)/23·ρ.

The lemma above was already proven for ZKBoo in [DOR+16]. For ZKB++
the argumentation is the same. We restate the proof below for completeness.

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is statistically
close to the real proof oracle. For our proof let the environment maintain a list H
where all entries are initially set to ⊥.

Game 0: The zero-knowledge game where the proofs are honestly computed,
and the ROs are simulated honestly.

Game 1: As Game 0, but whenever the adversary requests a proof for some tuple
(x,w) we choose e←R {0, 1, 2}κ before computing a and z. If H[(a, x)] 6= ⊥ we
abort and call that event E. Otherwise, we set H[(a, x)]← e.

Transition - Game 0 → Game 1: Both games proceed identically unless E hap-
pens. The message a includes 3 RO commitments with respect to H ′, i.e., the
min-entropy is lower bounded by 3·ρ. We have |Pr[S0]−Pr[S1]| ≤ (QS ·QH)/23·ρ.

Game 2: As Game 1, but we compute the commitments in a so that the ones
which will never be opened according to e contain random values.

Transition - Game 1 → Game 2: The statistical difference between Game 1 and
Game 2 can be upper bounded by |Pr[S1]−Pr[S2]| ≤ κ ·1/2ν (for compactness
we collapsed the s game changes into a single game).

Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof. ut

Lemma 4. Let the commitments be instantiated via a RO H ′ with output space
{0, 1}ρ and let QH′ be the number of queries to H ′, then the probability to break
quasi-unique responses is bounded by Q2

H′/2ρ.
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Proof. To break quasi-unique responses, the adversary would need to come up
with two valid proofs (a, e, z) and (a, e, z′). The last message z (resp z′) only
contains openings to commitments, meaning that breaking quasi unique responses
implies finding a collision for at least one of the commitments. The probability
for this to happen is upper bounded by Q2

H′/2ρ which concludes the proof. ut

Combining Lemma 3 and Lemma 4 with [FKMV12, Theorem 2 and Theorem 3]
yields the following corollary.

Corollary 1. The FS transformed ZKB++ is simulation-sound extractable.

5.2 Selection of Symmetric-Key Primitives

When instantiating our ring signature scheme using ZKB++, the selection of
the underlying primitives is of importance for the actual signature sizes as well
as the overall performance. As ZKB++’s proof size depends on the number
of multiplication gates and the size of the operands, we require a OWF and
a collision-resistant hash function with a representation as circuit, where the
product of the multiplicative complexity and the number of bits required to store
field elements is minimal. Note that for the OWF we can observe that, when
instantiating it with a block cipher, only one plaintext-ciphertext pair per key is
visible to an adversary. Hence, we have the same requirements as in [CDG+17],
which is why we also choose LowMC [ARS+15, ARS+16] with a reduced data
complexity to build the OWF. For the selection of the collision-resistant hash
function we are presented with different options:

Standardized Hash Functions. SHA-256 or SHA-3 are the obvious choices
for collision resistant hash functions. SHA-256’s compression function requires
around 25000 multiplication gates [BCG+14] and SHA-3’s permutation even
more with around 38400 gates [NIS15].

Sponge Construction with Low Multiplicative Complexity Ciphers.
Using a block cipher with small multiplicative complexity as permutation in
a sponge construction, e.g., using LowMC or MiMC [AGR+16], enables the
construction of hash functions with similar security guarantees as SHA-256 and
SHA-3, but with a significantly reduced multiplicative complexity. Using the
numbers from [AGR+16], MiMCHash-256 requires 1293 multiplications with a
field size of 1025 bits. LowMCHash-256 only requires a 1 bit binary field and
3540 AND gates9. Thus, a hash based on LowMC is a better candidate for our
use case.

Finally we present signature sizes when instantiating our ring signature scheme
with LowMC for both OWF and the hash function. Table 1 presents the maximal
signature sizes for some choices of ring sizes and aiming at a 128 bit post-quantum
security level and we compute them using the formulas from [CDG+17]. For the
Fiat-Shamir-transformed proof system the involved proofs have a maximal size
of t · (c+ 2s+ log2(3) + ` ·m+ 2i)) bits and t · (c+ 3s+ log2(3) + 2` ·m+ 2i) bits
for the Unruh-transformed proofs, where t is the number of repetitions, c the
size of the commitments, i the size of the input to the circuit, ` the size of the

9 Numbers updated according to a personal discussion with Christian Rechberger.
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underlying field, m the number of AND gates, and s the size of the seeds used to
generate the random tapes. We use ZKB++ as instantiated in [CDG+17] and
give the numbers for both the Fiat-Shamir and Unruh transformed proof system.

Ring size |σ| (FS/ROM) |σ| (Unruh/QROM)

2k 1335900 + 3213168 · k bits 2059476 + 4763688 · k bits
25 2125 KB 3159 KB
210 4086 KB 6067 KB
220 8008 KB 11882 KB

Table 1: Signature sizes at the 128 bit post-quantum security level.

We note that Ligero [AHIV17], a recent NIZK proof system for general circuits,
offers proofs logarithmic in the number of multiplication gates in the prime field
case respectively in the number of AND and XOR gates in the case of binary
fields, which would allow us to reduce the signature size significantly. However, to
the best of our knowledge, it is unclear whether Ligero provides simulation-sound
extractability.

6 Conclusions

In this this work we made some important steps towards establishing privacy-
enhancing primitives which are solely built from symmetric-key primitives and
therefore do not require any structured hardness assumptions. In our work, we
followed a modular concept and first introduced a post-quantum accumulator
with efficient zero-knowledge membership proofs of sublinear size. Besides the
applications to logarithmic size ring signatures as we presented in this paper, we
believe that our post-quantum accumulator construction with zero-knowledge
proofs may well have broader impact in the construction of other (privacy-
enhancing) protocols in the post-quantum setting.

Open Questions. In addition, we believe that our work also opens up quite
some possibilities for further research.

First, in the context of privacy-enhancing protocols, it would be interesting
to investigate how to extend our methods to obtain group signatures [CvH91],
i.e., anonymous signatures that provide the possibility to re-identify anonymous
signers by a dedicated party. We note that Dodis et al. [DKNS04] informally
discuss that when adding ID escrow functionality to their ring signature scheme
yields group signatures. Basically, the lattice-based construction of Libert et
al. [LLNW16] can be considered as an instantiation of the former paradigm. The
problem is that this paradigm requires IND-CCA2 secure public-key encryption,
which does not exist given our constraints. In addition, it is well known [AW04,
CG04] that group signatures in the static model by Bellare et al. in [BMW03]
imply public-key encryption. This means that the best one could hope for would
be a construction being secure in a weakened version of the Bellare et al. model.
Work in this direction was earlier pursued by Camenisch and Groth [CG04],
who showed how to construct group signature schemes in a weaker model from
one-way functions and non-interactive zero-knowledge arguments. The question
which remains open in our context is whether one can find instantiations without
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the requirement for structured hardness assumptions and providing the practical
efficiency one would hope for, i.e., ideally instantiations which just require to
prove statements with respect to a few evaluations of a block cipher.

Second, in the context of symmetric-key primitives, one may observe that—
despite the recent trend to construct symmetric-key primitives with particularly
low AND count—there is no practical application so far which would require
collision resistant hash functions with particularly low AND count. Since our
accumulator construction relies on collision resistant hash functions, our work
may well also open up new fields of research in the symmetric-key community.
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