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ABSTRACT
We present ARM2GC, a novel secure function evaluation frame-
work based on Yao’s Garbled Circuit (GC) protocol and the ARM
processor. It allows users to develop privacy-preserving applica-
tions using high-level programming languages (e.g., C) and compile
them using standard ARM compilers (e.g., gcc-arm). In our frame-
work, the underlying Boolean circuit is that of an ARM processor
to which the compiled binary of the function is input as a non-
private instruction code. The main enabler of this construction is
the introduction of SkipGate, an algorithm that omits the commu-
nication and encryption cost of a Boolean gate when its output is
independent of the private data. SkipGate greatly enhances the per-
formance of ARM2GC by omitting costs of the gates associated with
the instructions in the compiled binary, thus making it practical and
efficient. Our evaluation on benchmark functions demonstrates that
ARM2GC not only outperforms the current GC frameworks that
support high-level languages, it also achieves efficiency comparable
to the best prior results which were achieved using conventional
logic synthesis tools and hardware description language.
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1 INTRODUCTION
Secure Function Evaluation (SFE) allows two or more parties to
compute an arbitrary function on their respective inputs such that
they learn the function’s output without revealing their private
data. The first and one of the most promising methods for two-party
SFE is Yao’s Garbled Circuit (GC) protocol proposed by Andrew
Yao in 1986 [1]. Yao’s protocol immediately attracted a significant
attention from the cryptographic community but was believed to
be of limited practical usage for many years. The protocol requires
representing the underlying function as a Boolean circuit. The non-
trivial challenge of GC is to generate this Boolean circuit such that
its secure evaluation requires the minimum inter-party communi-
cation, thus, optimizing the overall performance.

The challenge of the GC circuit optimization was partially ad-
dressed by TinyGarble [2]. The work showed that the GC-optimized
circuit generation can be viewed as an atypical instance of the con-
ventional logic synthesis task. This approach outperforms previous
methods for generating Boolean circuit using custom compilers or
custom libraries [3–7]. A major disadvantage of TinyGarble, how-
ever, is that peak efficiency and scalability can only be achieved

when the function is described in a Hardware Description Lan-
guage (HDL), e.g., Verilog; while most users prefer to develop in
high-level programming languages, e.g., C. In this paper, our goal is
to combine the efficiency of hardware synthesis with the versatility
of high-level languages.

A rather recent development in this field is the introduction of
a garbled processor where the underlying Boolean circuit is that
of a general-purpose processor [8, 9]. Users of a garbled processor
develop the function in a high-level language and feed its com-
piled binary code to the processor along with their private inputs.
In the garbled processor’s case, the binary code which resembles
the functionality, unlike the parties’ inputs, is not private and is
publicly known to both parties. However, until now, this publicly
known input has been treated as a secret input, hence, significantly
increasing the communication cost of the secure evaluation. To
overcome this inefficiency, performing instruction-level optimiza-
tion has been suggested for garbled processors. That is, at each
cycle, a custom processor is generated such that it only supports
the instruction(s) to be executed at that cycle. However, due to the
coarse-grain nature of this optimization, the garbling costs were
unacceptably high even compared to GC frameworks supporting
high-level languages.

In this work, we introduce a methodology to perform a fine-
grain gate-level optimization on the garbled processor such that
only the gates associated with the private inputs incur garbling
cost. Our key observation is that in GC with publicly known inputs,
there are gates whose outputs are independent of the secret values
(and thus known to both parties). The outputs of these gates can
be computed locally by each party without communication or en-
cryption. The other major observation is that the gates that do not
contribute to the final output can be skipped. Our observations lead
to the development of a novel algorithm called SkipGate that wraps
around the GC protocol. Unlike the current GC frameworks, the
publicly known inputs and wires are not treated as secret values in
SkipGate. Using these public values, the algorithm computes the
gate outputs that can be calculated without communication and
marks the redundant gates for skipping. The primary objective of
SkipGate is to minimize the communication, the bottleneck of GC,
at the expense of a small increase in local computation. Please note
that SkipGate avoids unnecessary garbling and is different from
the cryptographic improvements of GC such as free-XOR [10] and
Half Gate [11] that reduce the garbling cost of individual gates.
SkipGate operates on top of these methods, and we suppose the
underlying GC protocol in SkipGate already benefits from these
cryptographic improvements. SkipGate also differs from the static
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circuit simplification method [12] that removes gates with constant
inputs (see Section 3).

SkipGate is most effective for reducing the garbling cost of se-
quential circuits [2] containing known control paths. An example
of such a circuit is the garbled processor where the control path
depends on the input binary code of the function that is known
to both parties. By utilizing this property, we develop a high-level
GC framework called ARM2GC built upon the ARM instruction
set and the SkipGate algorithm. Users can develop functions in
high-level languages, e.g., C/C++ and compile them using standard
ARM cross-compilers, e.g., gcc-arm. In contrast to the earlier cus-
tom high-level compilers which called for new ad-hoc verification
techniques [7, 13–15], ARM2GC inherits the ARM’s available fully
verified compilers. In fact, the most recent framework, Frigate [16]
performed extensive research on the efficiency and reliability of
the current compilers and found out that most of them suffer from
reliability issues. One major advantage of ARM2GC is that the ARM
compiler goes through rigorous verification and hence does not suf-
fer from the reliability issues reported by [16]. Thanks to SkipGate,
ARM2GC incurs a garbling cost comparable to the HDL synthesis
approach while allowing users to develop SFE applications in a
high-level language.

Our work leverages ARM as the general purpose processor, in-
stead of the earlier MIPS-based garble processors [2, 8, 9]. ARM’s
pervasiveness and, most importantly, conditional execution are the
two main advantages of ARM over MIPS. The latter simplifies the
framework by reducing conditional branches and making the pro-
gram flow predictable for both parties to take the full advantage of
the SkipGate algorithm. We adapt the standard ARM architecture
(without affecting the instruction set) such that it incurs less cost
in GC. ARM’s interrupts, co-processors, and performance-related
components including cache and pipeline are removed or modified
because they only increase the number of gates in the ARM circuit
without providing any performance advantages in GC.

The source-code of the SkipGate algorithm and the ARM2GC
framework is integrated into the TinyGarble repository1.
Contributions.

• We introduce the novel SkipGate algorithm that can be added
to the GC protocol to allow efficient secure evaluation of
functions with publicly known inputs. SkipGate locally com-
putes the output of the gates when it is independent of secret
values. The algorithm also skips any gate which does not
contribute to the final output.

• We develop the ARM2GC framework based on the SkipGate
algorithm and the ARM processor. In this framework, users
can efficiently develop SFE applications in a high-level lan-
guage like C/C++. It enables them to benefit from the avail-
able fully verified compilers of ARM. We adapt the ARM
architecture (without affecting the instruction set) to make
it most effective for the GC protocol with SkipGate.

• We perform extensive experiments to evaluate the Skip-
Gate algorithm and the ARM2GC framework. The ARM2GC
framework demonstrates comparable performance to HDL

1https://github.com/esonghori/TinyGarble

synthesis approach of TinyGarble [2]. Its overhead is neg-
ligible for most of the benchmark functions. ARM2GC out-
performs the state-of-the-art garbled processors [8, 9] and
high-level GC compilers [4, 16].

2 PRELIMINARIES
2.1 Security Model
Consistent with the earlier relevant literature [4–7, 16], we assume
an honest-but-curious adversary model where the participating par-
ties follow the agreed upon protocol but may attempt to learn about
the other parties’ input from the information at hand [17]. This
model can be generalized to more advanced adversary models that
are typically addressed by multiple runs of the basic honest-and-
curious model [18, 19].

2.2 Oblivious Transfer
Oblivious Transfer (OT) [20] is a cryptographic protocol based on
public key encryption executed between Alice (sender) and Bob
(receiver) where Bob selects one from a set of messages provided
by Alice without revealing his selection. In an important special
case of 1-out-of-2 OT protocol (OT21), Alice holds a pair of mes-
sages (m0, m1); Bob holds a selection bit b ∈ {0, 1} and obtainsmb
without revealing b to Alice and learns nothing aboutm1−b .

2.3 Garbled Circuit
Yao’s Garbled Circuit protocol [1] allows two parties Alice (garbler)
and Bob (evaluator) to jointly compute a function c = f (a,b) on
their private inputs (a from Alice and b from Bob) such that none
of them reveal their inputs to each other. In the end, one or both
of them learn the output c . The function f is represented as a
Boolean circuit consisting of 2-input gates. For each wire w in
the circuit, Alice assigns two k-bit random keys, called labels, X 0

w
and X 1

w corresponding to 0 and 1 Boolean values respectively. k
is the security parameter—typically k = 128 [17]. For each gate,
Alice encrypts the output label in each row of the truth table with
the corresponding input labels. The resulting table containing the
encrypted output labels is then randomly rearranged and called
garbled table. She sends the garbled tables of all gates along with
the labels corresponding to her input values to Bob. Bob obtains
the labels corresponding to his input values obliviously through
the OT protocol from Alice. He uses these input labels to decrypt
the garbled tables gate by gate. In the end, Bob learns the labels for
the final output wire and Alice has its mapping to 0 and 1 so that
the actual value of the output can be determined.

The cost of communicating the garbled tables in the GC protocol
is its performance bottleneck [21]. Throughout the years, Yao’s
GC protocol has gone through a number of optimizations that
reduce its communication cost. We describe the most important
optimizations here. A significant optimization of the GC protocol
is free-XOR [10] that removes the communication cost for XOR
gates. In this optimization, for any wirew , Alice only generates the
labelX 0

w and computes the label corresponding to 1 asX 0
w ⊕ (R ∥ 1)

where ∥ represents bit concatenation and R is a global random
(k − 1)-bit value known only to Alice. With this convention, the
label for the output of an XOR gate with inputs a, b and output c
can simply be computed as Xc = Xa ⊕ Xb . Thus it does not need
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any encryption or transfer of garbled tables, meaning the XOR gate
is free. As a result, the optimization goal for circuit generation is to
minimize the number of non-XOR gates.

The Row Reduction [22] lessens the communication cost of the
AND gates by 25% by generating the labels of the output wire as a
function of the labels of the input wires and thus making one row
of the garbled table all zeros. The Half Gate method [11] utilizes
both free-XOR and row reduction and reduces the cost of AND
gates by an additional 25%.
Sequential GC: Earlier GC protocols support only combinational
circuit description of the logic functions. Along with the use of
logic synthesis for circuit generation, TinyGarble introduced the
concept of the sequential circuit for the GC protocol [2]. Sequential
circuits run for multiple clock cycles and include memory elements
(flip-flops) in addition to logic gates. In sequential GC, in each clock
cycle, all the gates in the circuit are garbled/evaluated. At the end of
each cycle, the labels for the input wire of each flip-flop are simply
transferred to its output wire to be used in the next cycle. At the
first clock cycle, the output wires of flip-flops are treated as (either
Alice or Bob’s) inputs depending on the function.

3 SKIPGATE ALGORITHM
SkipGate is developed to work with the GC protocol for sequential
circuits. As explained in Section 2.3, GC allows secure computation
of a function in the form c = f (a,b). However, the previous GC
framework did not address the fact that some part of the inputs a
and b may be public, i.e., known to both parties. For example, if
the function is RSA, the encryption key is public. A more practical
scenario is garbling a general purpose processor as we explain in
detail later in Section 4. In general, the processor will have two
types of inputs: instruction and data, where the first one is known
to both parties unless they want to keep the program private. If
the GC framework does not distinguish between public and private
inputs, garbling a processor will incur a massive cost for redundant
garbling. Previous work [2, 8, 9] proposed generating customized
netlists for limited instruction sets. However, they fail to achieve
the maximum possible optimization due to the coarse grain nature
(instruction level as opposed to gate level) of their approach.

In SkipGate, we introduce a new variable p to incorporate the
public inputs from both parties. It allows secure evaluation of func-
tions in the form of c = f (a,b,p)where p is the public input known
to both parties and a and b are the private inputs. The goal of Skip-
Gate is to reduce the circuit of f (a,b,p) into a simpler circuit of
c = fp (a,b) with the same logic for a given public input p. Secure
evaluation of fp (a,b) costs less than that of f (a,b,p) using the
conventional GC protocol where p is treated as a private input.
SkipGate removes communication cost of garbling for a gate when
its output can either be computed independently by Alice and Bob
or has no effect on the final output. In other words, it reduces the
communication between the parties when it can be replaced by less
costly local computation. The cost reduction is especially signif-
icant in a sequential circuit where the control path is public and
independent of the private inputs. Before presenting SkipGate, let
us introduce the following notations and definitions.

In a classic Boolean circuit, each wire w carries a value (xw ∈

{0, 1}), whereas, in a garbled circuit, eachwire carries a pair of labels

(X 0
w and X 1

w ) on Alice’s side and one label (Xw ∈ {X 0
w ,X

1
w }) on

Bob’s. If Xw = X 0
w , the actual Boolean value is 0 and if Xw = X 1

w , it
is 1. This means that the information is shared between two parties.
In our scheme, we combine these notions of Boolean and garbled
circuits. Each wire either carries a Boolean value known to both
parties independently (public wire) or it carries a (pair of) label(s)
(secret wire).
Illustrative Example: Assume a sequential circuit that has a 2-to-1
MUX whose inputs come from two sub-circuits f0 and f1 connect-
ing to MUX input 0 and 1 respectively. At a certain clock cycle,
if the select wire of the MUX (x) is public, say equal to 1, both
parties know that the gates in the sub-circuit f0 do not need to be
garbled/evaluated since they have no effect on the final output. The
gates in the MUX itself act as wires and pass the output of f1 to the
MUX output, thus they do not need to be garbled/evaluated in that
clock cycle either. However, in the conventional GC protocol where
public wire x was treated as a secret value, the entire circuit had to
be garbled/evaluated. In the following subsection, we explain how
the SkipGate algorithm identifies such gates to reduce the garbling
cost in circuits with public wires.

It is worth noting that in a sequential garbled circuit [2], the
Boolean value of a wire can change at every clock cycle. A wire may
also alter between being secret and public. The SkipGate algorithm
is executed once for each sequential cycle. SkipGate’s decision
on each gate (locally computing, garbling/evaluating, or skipping)
depends on the status of the gate’s inputs (public or secret) on that
cycle. Thus, SkipGate is fundamentally different compared to offline
circuit simplification methods such as the one introduced in [12]
which remove gates with known constant inputs. The constant
gates are already removed in our circuits that are generated by the
conventional HDL synthesis tools.

3.1 Gate Categories
The SkipGate algorithm classifies the gates into four categories in
terms of the parties’ knowledge about their inputs:

i Gate with two public inputs. In this case, the output is public.
ii Gate with one public input. Depending on the gate type, the
output becomes either public or secret. For example, for an
AND gate with 0 at one input, the output becomes 0. This
means that if the secret input is not connected to any other
gate, the gate generating it can be skipped for garbling/eval-
uation. If the public input is 1, then the AND gate acts as a
wire and the output wire carries the label of the secret input.

iii Gate with secret inputs that have identical (or swapped) labels.
This indicates that the two secret inputs have identical (or
inverted) Boolean values. (We will explain shortly how Bob
identifies the swapped case.) Depending on the gate type,
the output becomes either public or secret. For example, the
output of an XOR gate with two inverted inputs (either secret
or public) is always 1 (public). Similar to Category ii, the gate
generating the inputs, if not connected to any other gates,
can be skipped for garbling/evaluation.

iv Gate with unrelated secret inputs. The output is always secret.
The gate has to be garbled/evaluated conventionally accord-
ing to the GC protocol. However, if its output does not have
any effect on the circuit output, the gate is skipped, i.e., the
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Algorithm 1 SkipGate, Alice’s side.
Inputs: Sequential circuit of f (a,b,p), Alice’s input a, public

input p, number of clock cycles cc .
Outputs: Pairs of output labels X 0

c and X 1
c .

1: SkipGate_alice (circuit, a, p, cc):
2: (X 0

a ,X
1
a ,X

0
b ,X

1
b ) = generate_random_labels()

3: send_alice_labels(a,X 0
a ,X

1
a )

4: send_bob_labels(X 0
b ,X

1
b ) // through OT

5: circuit.set_private_input(X 0
a ,X

1
a ,X

0
b ,X

1
a )

6: circuit.set_public_input(p)
7: for cid in [0...cc − 1] do
8: circuit.initial_label_fanout()
9: circuit.phase1()
10: garbled_tables = circuit.phase2_alice()
11: send_garbled_tables(garbled_tables)
12: circuit.transfer_flip_flops_labels()
13: end for
14: (X 0

c ,X
1
c ) = circuit.get_output_label()

15: Xc = receive_bob_output_label()
16: c=get_output_value(X 0

c ,X
1
c ,Xc )

Algorithm 2 SkipGate, Bob’s side.
Inputs: Sequential circuit of f (a,b,p), Bob’s input b, public

input p, number of clock cycles cc .
Outputs: Output label Xc .

1: SkipGate_bob(circuit, b, p, cc):
2: Xa = receive_alice_labels()
3: Xb = receive_bob_labels(b) //through OT
4: circuit.set_private_input(Xa ,Xb )
5: circuit.set_public_input(p)
6: for cid in [0...cc − 1] do
7: circuit.initial_label_fanout()
8: circuit.phase1()
9: garbled_tables = receive_garbled_tables()
10: circuit.phase2_bob(garbled_tables)
11: circuit.transfer_flip_flops_labels()
12: end for
13: Xc = circuit.get_output_label()
14: send_output_label(Xc )

corresponding garbled table is not transferred from Alice to
Bob.

3.2 Algorithm
Algorithm 1 and Algorithm 2 show the SkipGate algorithm for

Alice and Bob sides respectively. Lines 2-5 of Algorithm 1 and Lines
2-4 of Algorithm 2 are similar to the GC protocol label genera-
tion and transfer for both sides. The SkipGate algorithm has two
main phases: In Phase 1, the outputs of the gates with public input
(Categories i-ii) are computed. In Phase 2, the gates with private
inputs (Categories iii-iv) are garbled/evaluated. For each round of
sequential cycle, Alice executes Phase 1 and 2 of SkipGate and sends
the generated garbled tables to Bob. Bob receives the tables and
executes two phases in order to evaluate the gates. In Line 12 of

Algorithm 1 and Line 11 of Algorithm 2, the labels associated with
the input of flip-flops are transferred to their output for the next
cycles [2]. Similar to conventional GC, at the end, Alice learns pairs
of labels for each output wire and Bob has one of the pairs; they
share this information to learn the output c . For example, in the case
where Alice intends to learn the final output, she receives Bob’s
output label and together with her input labels finds the real output
value (Line 15-16 of Algorithm 1 and Line 14 of Algorithm 2).

In SkipGate, an integer called label_fanout is associated with
each gate and indicates the number of times the gate’s output la-
bel is used (either as a circuit’s output or an input to other gates).
At the beginning of each cycle (Line 8 of Algorithm 1 and Algo-
rithm 2), the label_fanout is set to the gate fanout in the cir-
cuit2. label_fanout of a gate may decrease if its output label is
not needed anymore, e.g., a gate whose output is connected to an
AND gate with 0 at the other input (Category ii). If label_fanout
reaches 0, it means that gate’s output label does not have any
effect on the final output. The gates with label_fanout=0 are
subsequently marked for skipping, which in turn decreases the
label_fanout of their input gates recursively. Finally, the gates in
Category iv that have not been marked for skipping are garbled/e-
valuated.

Algorithm 3 Phase 1 in SkipGate for both Alice and Bob sides.

1: circuit.phase1():
2: for g in circuit do
3: if g.i0 is public and g.i1 is public //Category i then
4: g.o = public_calculate(g.type, g.i0, g.i1)
5: g.label_fanout = 0
6: else if g.i0 is public or g.i1 is public //Category ii then
7: g.o = g.half_public_calculate(g.type, g.i0, g.i1)
8: if g.o is public then
9: g.label_fanout = 1 //will become zero in recur-

sive_reduction()
10: circuit.recursive_reduction(g)
11: end if
12: end if
13: end for

Algorithm 3 illustrates Phase 1 of SkipGate in which Alice and
Bob find and compute the gates that belong to Categories i-ii.
label_fanouts of the gates in Category i are set to zero. For gates
in Category ii, if the output becomes public, SkipGate decreases the
label_fanout of the secret input’s originating gates recursively
by invoking recursive_reduction (Algorithm 6). Figure 1 shows
four different examples in Phase 1.

Bob does not receive any information from Alice about the gates
in Category i-ii because he can locally evaluate Phase 1 just like
Alice. An alternative approach is that Alice sends the result of Phase
1 to Bob. This approach has two main disadvantageous: First, it
makes the protocol complicated if onewants to enhance the security
of the protocol to be secure against malicious adversaries. Second,
it increases the communication overhead which is the bottleneck
of the GC protocol.
2Fanout of a gate, borrowed from hardware design, is the number of subsequent gates
(and circuit outputs) dependent on the gate’s output.
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Algorithm 4 Phase 2 in SkipGate, Alice’s side.
Output: garbled_tables queue.

1: circuit.phase2_alice():
2: for g in circuit where g.label_fanout > 0 do
3: if (g.i0.label is equal g.i1.label or

g.i0.label is inverted g.i1.label) //Category iii then
4: g.o = related_secret_calculate(g.type, g.i0, g.i1)
5: if g.o is public then
6: g.label_fanout = 1 //will become zero in recur-

sive_reduction()
7: circuit.recursive_reduction(g)
8: end if
9: else
10: //Category iv
11: (g.o, g.table) = garble(g.type, g.i0, g.i1) //table=null for XOR

12: if g is non-XOR then
13: garbled_tables.enqueue(g.id, g.table)
14: end if
15: end if
16: end for
17: garbled_tables.filter(t : circuit[t.id].label_fanout > 0)

Algorithm 4 shows the Phase 2 of SkipGate for Alice’s side in
which she performs the same task for Category iii. She then gen-
erates garbled tables for gates with non-zero label_fanout in
Category iv. Figure 2 shows four different examples in this phase.
By the end of Phase 2, due to the recursive nature of the fanout
reduction, label_fanout of some gates that have already been
garbled may become 0. In Line 17 of Algorithm 4, Alice filters the
garbled tables that have non-zero label_fanout to be sent to Bob.

Algorithm 5 shows the Phase 2 for Bob’s side. Bob evaluates the
gates that belong to Category iii and iv. In Line 17 of Algorithm 5,
Bob generates and assigns new unique labels (next_unique_label)
for gates that were filtered byAlice. Bob knows that the label_fanout
of these gates will eventually become 0. Therefore, he produces
new labels for them only to keep track of these secret variables that
are used to compute the output of the gates in Category iii. He can
generate these labels randomly or use a monotonic counter that
increases by one for each newly generated label. To distinguish
valid GC labels from his generated labels, he keeps a single bit flag

0
1 0 S

f anout - -

1
S S

f anout =0

1

S S

1
1

Figure 1: Four examples of replacing gates in Phase 1 by zero,
one, wire, or inverter. label_fanout is decreased for the un-
necessary gate. The top-left example is in Category i and the
rest are in Category ii.

Algorithm 5 Phase 2 in SkipGate, Bob’s side.
Input: garbled_tables queue.

1: circuit.phase2_bob(garbled_tables):
2: for g in circuit where g.label_fanout > 0 do
3: if (g.i0.label is equal g.i1.label or

g.i0.label is inverted g.i1.label) //Category iii then
4: g.o = related_secret_calculate(g.type, g.i0, g.i1)
5: if g.o is public then
6: g.label_fanout = 1 //will become zero in recur-

sive_reduction()
7: circuit.recursive_reduction(g)
8: end if
9: else
10: //Category iv
11: if g is XOR then
12: g.o = g.eval_XOR(g.i0, g.i1)
13: else if g.id is garbled_tables.top().id then
14: gt = garbled_tables.dequeue().table
15: g.o = g.eval(g.type, g.type, g.i0, g.i1, gt)
16: else
17: g.o = next_unique_label() //generate a unique label.
18: end if
19: end if
20: end for

beside each label that indicates the label is generated by him and is
not valid for GC evaluation.

Algorithm 6 illustrates the pseudo-code for the recursive fanout
reduction. It receives the circuit and a gate inside the circuit. It first
decreases the label_fanout of the given gate. If the label_fanout
becomes 0, it recursively calls itself with the gates that generate
the secret input(s). This process is illustrated on an example circuit
in Figure 3.

3.3 Identification of Identical and Inverted
Labels

According to the GC protocol, Bob has only one label Xw for each
secret wirew . Due to free-XOR [10], he does not need to do anything
with the label when he evaluates a NOT gate because the labels
corresponding to 0 and 1 are switched by Alice during the garbling

S 0

S S

f anout =0

S
0

S

f anout =0

S

S
f anout - -

S2 

S1
S3

f anout - -

f anout - -

f anout - -

Figure 2: Four examples of replacing and computing gates
in Phase 2. label_fanout is decreased for the unnecessary
gates. The top-right example is in Category iv, and the rest
are in Category iii.
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Algorithm 6 Recursive Fanout Reduction of SkipGate.
Inputs: Gate g (where the reduction starts).

1: circuit.recursive_reduction(g):
2: if g.label_fanout is 0 then
3: return
4: end if
5: g.label_fanout = g.label_fanout - 1
6: if g.label_fanout is 0 then
7: if g.i0 is secret then
8: circuit.recursive_reduction(circuit[g.i0])
9: end if
10: if g.i1 is secret then
11: circuit.recursive_reduction(circuit[g.i1])
12: end if
13: end if

0

S1

0

f anout =0

Garbling 
this gate

fanout No 
change

f anout - -
S2 

S3

f anout - -

f anout - -

f anout - -

f anout - -

f anout - -

1

becomes 0

2

3

4
5

5

6

6

Figure 3: Recursive reduction of label_fanout to skip unnec-
essary gates in Phase 1.

of the gate. This collectively flips the secret value ofw . This means
that Bob cannot tell apart an identical and inverted secret value
just by looking at the label. However, it is still possible for Bob to
keep track of the flips by storing one bit along with the label. After
evaluating a NOT gate, he simply flips the bit. The extra bit helps
him to differentiate between identical and inverted secret values
which are crucial for Phase 2.

3.4 Computational Complexity
The SkipGate algorithm decreases the communication cost of GC,
at the expense of increasing the local computations. The conven-
tional GC protocol has a linear computational complexity in terms
of the number of gates in the circuit for each sequential cycle. We
show that, despite its recursive appearance, the SkipGate algorithm
does not increase the computation complexity of the GC protocol.
All parts of the SkipGate algorithm, except recursive_reduction pro-
cedure (Algorithm 6), is executed once per gate, thus they incur
a complexity similar to the classic GC protocol. The only possi-
ble source of complexity increase is recursive_reduction function
whose number of invocations depends on the underlying circuit
and whether input wires are secret or public. To find the complex-
ity of SkipGate, we compute an upper bound on the number of
invocations of recursive_reduction function.

The termination condition in recursive_reduction is the fanout
reaching zero (Lines 2 and 6 of Algorithm 6). Thus, the worst case
scenario is when the function reduces the fanout of all the gates to
zero. In this case, the number of execution of the fanout decrement
(Line 5) should be at most the sum of all the initialized fanouts.
label_fanout is initialized with the gate fanout in the circuit. The
upper bound on the sum of fanouts of all the gates in the circuit is

F =
n∑
i=1

д[i]. f anout ≤ 2n −m + q,

where n is the number of gates, q is the number of circuit output,
andm is the number of circuit inputs. Each gate has two inputs,
as required by the GC protocol, and each input creates a fanout in
previous gates unless it is a circuit input. Also, each output wire
incurs the fanout of one. Both q andm are typically less than or at
most in the order of n. Thus, F and subsequently the number of in-
vocation of recursive_reduction function are O

(
n
)
. This shows

that SkipGate does not increase the overall linear computational
complexity of the GC protocol.

3.5 Correctness and Security Proof
Correctness: Given the correctness of Yao’s GC protocol, we have
to show that GC protocol with SkipGate is also correct. In SkipGate,
the topology of the circuit is not changed, thus the dependencies
of the values remain the same. Therefore, if we can prove that
the operation of SkipGate on a single gate is correct, the entire
algorithm is proved to be logically correct.

The operations for gates in Category i are based on the Boolean
operation of the gates and are clearly correct. For gates in Categories
ii-iii, the secret input is considered as an unknown variable. Either
the label at the secret input of the gate is passed to its output or the
output is set to a public value. Since this operation is performed
based on the Boolean logic of the pertinent gate, the output remains
logically correct. Gates in Category iv with non-zero label_fanout
are garbled/evaluated according to the GC protocol. For the rest of
the gates in Category iv, label_fanout=0 indicates that their secret
output does not have any effect on the final output of the circuit.
Therefore, they can be safely skipped. As such, we conclude that
the algorithm with GC protocol results in a logically correct output.
Security: The GC protocol is proved to be secure under honest-but-
curious adversary model for any two-input Boolean function f (a,b)
wherea andb are private inputs fromAlice and Bob respectively [17,
23]. In this work, we extend the function to the form of f (a,b,p) to
include a public input p that is known to both parties. The SkipGate
algorithm reduces the Boolean circuit of f (a,b,p) to a two-input
circuit of fp (a,b) where, for a given p, fp (a,b) = f (a,b,p) for any
a and b. fp (a,b) consists of the gates in Category iv with non-zero
label_fanout evaluated by the GC protocol. The process of skipping
gates from f (a,b,p) only utilizes the public input p which is already
known to both parties. In the process, the private values are treated
as unknown Boolean variables. In other words, Alice and Bob do
not access their inputs in SkipGate algorithm for reducing f (a,b,p)
to fp (a,b). Thus, no information about the private inputs a and b
is revealed by SkipGate algorithm. The garbling/evaluation of the
two-input Boolean function of fp (a,b) is passed to the original GC
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protocol. Therefore, the security proof of the GC protocol still holds
for SkipGate.

4 ARM2GC
In this section, we present ARM2GC, a GC framework based on a
garbled ARMprocessor and the SkipGate algorithm. The framework
aims to simplify the development of privacy-preserving applications
while keeping the garbling cost as low as the best optimized garbled
circuits. We first describe the overview of ARM2GC and its API for
GC development. Then, we explain how ARM’s unique architecture
helps to decrease garbling overhead. Next, the effect of SkipGate in
reducing the garbling cost is discussed. Finally, we discuss why we
do not employ Oblivious RAM for ARM2GC.

4.1 Global Flow
The ARM2GC framework allows users to write two-party SFE pro-
gram in C/C++ (or any language that can be compiled to ARM
binary code). Figure 4 shows the overview of the framework. The
SFE program is compiled using an ARM cross-compiler, e.g., gcc-
arm-linux-gnueabi. The compiled binary code and the synthesized
ARM processor circuit are fed to the SkipGate algorithm as the
public input p and the Boolean circuit, respectively.

Function
(C/C++)

ARM
compiler

Function
(binary)

SkipGate
+Evaluting

Bob

Bob’s 
input

ARM 
circuit

SkipGate
+Garbling

Alice

Alice’s 
input

Figure 4: Overview of the ARM2GC framework.

The ARM2GC framework supports the following API:

void gc_main(

const int *a,// Alice 's input

const int *b,// Bob's input

int *c) {// output array

// The user's code goes here.

}

The entry function, gc_main, receives three arguments: pointers
to Alice’s input, Bob’s input, and the output. The framework has
five separate memory elements (consisting of flip-flops and MUXs)
to store: Alice’s inputs, Bob’s inputs, output, stack, and instructions.
The flip-flops in the instruction memory are initialized with the
compiled binary code that is known to both parties (the public input
p). The flip-flops in Alice’s and Bob’s memories are initialized with
labels corresponding to their private inputs a and b respectively.
The other flip-flops in the stack, output, pipeline registers, and the
register file are initialized to zero. The ARM circuit is garbled using
sequential garbling process [2] for a pre-specified number of clock
cycles cc .

1:  cmp $8, $9
2:  bne L0
3:  mov $1, #10
4:  b  L1
5: L0:
6:  mov $2, #20
7: L1:
    ...

(a) Without Conditional
Execution

1:  cmp $8, $9
2:  moveq $1, #10
3:  movne $2, #20
4: L1:
    ...

(b) With Conditional Exe-
cution

Figure 5: An example code showing how conditional execu-
tion in ARM can reduce the code size andmake the program
flow predictable.

4.2 ARM as a Garbled Processor
In this work, we choose ARM as our garbled processor which
is a more ubiquitous and sophisticated processor compared to
MIPS [2, 8, 9]. ARM has two main advantages: (1) Pervasiveness:
the compilers and toolsets of ARM are under constant scrutiny,
updating, and probably, more optimized as a result. (2) Conditional
Execution: Designed to improve performance and code density, con-
ditional execution in ARM allows each instruction to be executed
only if a specific condition is satisfied [24].

ARM compilers tend to replace conditional branches with condi-
tional instructions to make the flow of the program predictable, and
thus, lower the cost of branch misprediction. Similarly, in a garbled
processor, the main design effort is to make sure that the flow of the
program is predictable so that the next instruction remains public.
Replacing conditional branches with conditional instructions in gar-
bled ARM generates a code with a predictable flow. Figure 5 shows
an example function compiled into assembly with and without the
conditional execution. Moreover, we modify the ARM controller
such that conditional instructions always take the same number of
cycles regardless of their condition (taken or not taken). Otherwise,
the program flow will be dependent on the secret condition and
as a result, program flow itself will become secret which in turn
reduces the efficiency of the execution.

We modify and remove a few features from the ARM processor
like interrupts, co-processors, and performance-related components
including cache and pipeline. The last group does not bring any
performance advantages in the GC protocol, as the circuit is gar-
bled/evaluated gate by gate (serially). Note that unlike in hardware,
the performance of GC does not increase by parallelizing the gates
in the circuit. In the GC protocol, the total number of non-XOR
gates is the only factor affecting the performance.

Implementation of the ARM processor results in a complex and
large netlist (≈ 5 times larger than that of a MIPS processor). Thus,
using ARM instead of MIPS in the earlier garbled processor ap-
proaches [8, 9] would incur even a higher cost. However, the ma-
jority of the components of the ARM processor remain idle during
execution of an instruction. In the next section, we describe how
SkipGate utilizes this characteristic to minimize the cost of garbling
the ARM processor.
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4.3 How SkipGate Helps
As explained above, the instruction memory of the ARM processor
is initialized with public values. Therefore, if the program counter
(the address of the next instruction) is public, the next instruction
becomes public as well. As a result, the control path also becomes
public and SkipGate can easily detect the idle components to mark
them for skipping. Moreover, due to SkipGate, the gates of the
active components that are only transporting data between mem-
ory, register file, and ALU act as wires and do not incur any cost.
According to SkipGate’s notation, the ARM Boolean circuit is a
3-input function c = f (a,b,p) where p is the public binary code
and a and b are the parties’ private inputs. SkipGate reduces the
ARM circuit into a smaller circuit of c = fp (a,b) where fp is able
to perform the exact operation required in the public binary code
p, e.g., c = a + b. Therefore, the main garbling cost is paid only
for the actual computation of the secret values. As explained in
the previous section, SkipGate performs these optimizations at the
gate-level, in contrast to instruction-level of [8, 9].

4.4 Why not Sub-linear Oblivious RAM?
As mentioned in Section 4.1, we use an array of MUXs and flip-flops
to implement the register file in ARM circuit. This means that the
cost of accessing the register file, when performed obliviously, is
linear with respect to its size. One natural question would be why
we did not employ Oblivious RAM (ORAM) that enables oblivious
access to memories in the GC protocol with sub-linear cost [25, 26].
The reason is that, in most cases, the access to the register file is not
required to be oblivious. Since the instructions come from a publicly
known instruction memory, both parties know which register of
the register file is read or written. The SkipGate algorithm utilizes
this to skip garbling of the gates in the MUXs of the register file,
thus, no garbling cost is required for such accesses. With ORAM,
all the accesses to the register file would be the costly oblivious
access of ORAM.

In rare occasions where two or more instructions should be gar-
bled at a time, accessing a register would not be free using MUXs
and SkipGate. These cases only happen when ARM compiler fails
to replace a conditional branch on a secret value with conditional
instructions. The user can typically alter the program in a way that
the compiler avoids such branches and replaces it with conditional
instructions instead. However, in these cases, the SkipGate algo-
rithm removes most of the gates in the register file. Since the cost
of fetching instructions remains smaller than that of break-even
points of sub-linear ORAMs, using ORAM would not improve the
efficiency for this case either.

Figure 6 shows an example where after execution of a branch on
a secret value, the next instruction becomes secret and unknown to
parties. In this example, the program counter can either be 3 or 6
depending on the outcome of the comparison in Line 1. Thus, two
instructions add $1, $2, $3 ($3 = $1 + $2) and sub $5, $6,
$7 ($5 = $6 - $7) have to be garbled/evaluated at the same time.
For fetching the second instruction from the register file, we only
have two choices: $2 and $6. This means that, instead of having a
complete oblivious access to the register file with 16 choices, we
only have to obliviously select between 2 of the 16 registers. This
costs far less than 1-out-of-16 oblivious access. The cost of oblivious

1:  cmp $8, $9
2:  bne L0
3:  add $1,$2,$3
4:  b  L1
5: L0:
6:  sub $5,$6,$7
7: L1:
    ...

Program 
Counter

1

2

?

?

Figure 6: In case of compiler failure to replace a secret
branch with conditional instructions, the parties do not
know which instruction is executed after the branch. Thus,
the instruction becomes secret.

access using MUXs and SkipGate to a subset of a memory is equal
to an oblivious access to a memory with the size of the subset.

The rationale for using an array of MUXs in the register file also
applies to the code, data, and stack memories where the access is
almost always public and known to both parties. In the worst case,
only a subset of memory is accessed obliviously, thus making the
cost of memory access below the threshold of switching to ORAMs.

The mixture of the SkipGate algorithm and garbled processor in-
troduces an unusual use-case for oblivious memory where oblivious
access is performed only on a varying subset of the memory. The
subset can be different from one access to the other. The current
sub-linear ORAM protocols cannot address this scenario efficiently.
Thus, an interesting research question is raised:

Is it possible to obliviously access (read/write) a varying
subset of the memory with a sub-linear cost in terms of the
subset size?

5 EVALUATION
5.1 Evaluation Setup
We use Synopsis Design Compiler (DC) H-2013.03-SP4 [27] along
with TinyGarble [2] synthesis and technology libraries to generate
the netlists for the benchmark circuits and the ARM processor.

For the ARM2GC framework, we use the Amber ARM project,
an open-source implementation of ARM v2a ISA on opencores [28].
The ARM circuit is modified as explained in Section 4.2. Synthesiz-
ing the ARM processor with Synopsis DC takes few hours. However,
the process is done only once for a given memory size and it can be
used for any set of functions and inputs afterward. The benchmark
functions for ARM2GC are implemented in C and compiled using
GNU gcc-arm-linux-gnueabi (Ubuntu/Linaro 5.3.1-14ubuntu2). We
used -Os compiler optimization flag in order to reduce the number
of instructions. We modified the header assembly code to change
the addresses of stack, code, and data memories in the compiled
binary. We do not apply any optimization on the binary code. Thus,
similar to a normal software compilation, it takes less than a few
seconds to compile a function into an ARM binary code.
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Table 1: SkipGate algorithm improvement on sequential cir-
cuits generated by TinyGarble (TG) [2]. These functions do
not have public inputs. SkipGate benefits from the small
number of flip-flops initial values that are public to reduce
their garbling cost.

Function (bit) # of garbled non-XOR # of skipped
non-XOR Improv.TG [2] SkipGate

Sum 32 32 31 1 3.1%
Sum 1024 1,024 1,023 1 0.1%
Compare 32 32 32 0 0.0%
Compare 16,384 16,384 16,384 0 0.0%
Hamming 32 160 145 15 9.4%
Hamming 160 1,120 1,092 28 2.5%
Hamming 512 4,608 4,563 45 1.0%
Mult 32 2,048 2,016 32 1.6%
MatrixMult3x3 32 25,947 25,668 279 1.1%
MatrixMult5x5 32 120,125 119,350 775 0.6%
MatrixMult8x8 32 492,032 490,048 1,984 0.4%
SHA3 256 40,032 38,400 1,632 4.1%
AES 128† 15,807 6,400 9,407 59.5%

†We add the missing key expansion module to AES 128 of [2] here.

5.2 Benchmark Functions and Metrics
We use the benchmark functions that have been frequently used
for evaluation in the GC literature [2, 4, 8]. The benchmarks are as
follows:

• Sum adds two integers.
• Compare compares two integers.
• Hamming finds the Hamming distance between two integers.
• Mult calculates the product of two integers.
• MatrixMultN × N computes matrix multiplication of two
N × N matrices.

• SHA3 finds the SHA3-256 hash of a string.
• AES computes AES-128 encryption given two 128-bit num-
bers as the key and the message.

The most important metric to compare the cost of garbling is the
total number of garbled non-XOR gates. This metric encompasses
both the cost of computation (encrypting/decrypting garbled tables)
and the cost of communication (transferring garbled tables) in the
GC protocol due to the free-XOR optimization [10].

5.3 Effect of SkipGate on Sequential GC
As described in Section 3, the SkipGate algorithm avoids redundant
garbling/evaluation of gates in sequential circuits with public wires.
In the sequential benchmark circuits reported in TinyGarble [2], the
flip-flops were initialized with known values but their output wires
were treated as secret. We applied SkipGate to the same benchmark
functions to demonstrate the cost reduction even for a small number
of public values. In Table 1, we compare the cost of garbling for
circuits generated by TinyGarble [2] with and without applying
the SkipGate algorithm. The total number of non-XOR gates to be
garbled is cc×#non-XORs in the sequential circuit and is shown
in the second column. The table also reports the cost of garbling
of the same circuits by employing the SkipGate algorithm (third
column) and their percentage improvement (fifth column). As can

Table 2: The number of garbled non-XOR gates for the
benchmark functions. ComparingARM2GC toTinyGarble’s
hardware synthesis [2].

Function (bit) TinyGarble
(Verilog) [2]

ARM2GC
(C) Overhead

Sum 32 31 31 0.0%
Sum 1024 1,023 1,023 0.0%
Compare 32 32 32 0.0%
Compare 16,384 16,384 16,384 0.0%
Hamming 32 160 57 -64.4%
Hamming 160 1,120 247 -77.9%
Hamming 512 4,608 1,012 -78.0%
Mult 32 1,023 993 -2.9%
MatrixMult3x3 32 27,369 27,369 0.0%
MatrixMult5x5 32 120,125 127,225 5.9%
MatrixMult8x8 32 492,032 522,304 6.2%
SHA3 256 38,400 37,760 -1.7%
AES 128† 6,400 6,400 0.0%

†Here, we added the cost of missing key expansion in AES 128 to the reposted result
in [2].

be seen, cost reduction of SkipGate can be as high as 59.5% for AES
and as little as 0% in Compare function.

The degree of improvement depends on the structure of the
circuit and whether or not the registers are connected to non-XOR
gates. For example, in AES, garbling of the controller part of the
sequential circuit (including a counter keeping track of the AES
round and MUXs connecting to it) is avoided by SkipGate because
both parties know the AES control path in advance. Note that the
functions in Table 1 do not have any public known inputs that are
the main target of SkipGate. Nevertheless, SkipGate reduces the
cost of GC by leveraging the public initial value of the small number
of flip-flops in the functions.

5.4 ARM2GC vs HDL Synthesis
Table 2 compares the cost of garbling of functions devised in Ver-
ilog HDL and constructed by the hardware synthesis technique
of TinyGarble [2] with functions developed in C and constructed
by the ARM2GC framework. As expected, ARM2GC incurs only
a small overhead (at most 6.2% for MatrixMult8x8) compared to
hardware synthesis method. In the case of Hamming distance func-
tion, ARM2GC results in even less number of non-XOR gates (up to
78% improvement). Note that we use an efficient binary tree-based
method [29] for Hamming distance realization in C.

5.5 ARM2GC vs GC Frameworks Supporting
High-level Languages

Table 3 reports the cost of garbling for the benchmark functions
constructed by the prior-art GC frameworks [2, 4, 16] and garbled
processors [8, 9] along with the ARM2GC framework. The corre-
sponding programming language is shown in parentheses. Note
that this is not an exhaustive list and only includes the most re-
cent GC frameworks that report the best results on the benchmark
functions. The garbling cost of ARM2GC is compared with the best
previous work in the right most column. In all cases, ARM2GC
outperforms the earlier frameworks in terms of garbling cost. For
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Table 3: Number of garbled non-XOR gates for the benchmark functions. Comparing ARM2GC to previous work.

Function (bit) ANSI-C
(C) [4]

TinyGarble HLS
(C→ Verilog) [2]

TinyGarble MIPS
(C) [2]

SFE MIPS
(C) [8]

GarbledCPU
(C) [9]

Frigate
(C) [16]

ARM2Garble
(C) Improvement*

Sum 32 32 288 - - - - 31 3.2%
Sum 1024 - 9,216 - - - 1,025 1,023 0.2%
Compare 32 65 102 - - - 32 50.8%
Compare 16,384 - 52,224 - - - 16,386 16,384 0%
Hamming 32 601 253 3,762,725 481,000 2,860,590 - 57 77.5%
Hamming 160 3,003 1,264 18,456,485 - 14,302,950 719 247 65.6%
Hamming 512 9,610 4,045 58,864,325 49,600,000 45,769,440 - 1,012 75.0%
Mult 32 1,741 - - - - 995 993 0.2%
MatrixMult3x3 32 47,583 - - - - - 27,369 42.5%
MatrixMult5x5 32 220,825 - - - - 128,252 127,225 0.8%
MatrixMult8x8 32 905,728 - - - - - 522,304 42.3%
SHA3 256 - - - - - - 37,760 -
AES 128 - - - - 198,789,506 10,383 6,400 38.4%
*Compared to the best previous method

example, ARM2GC results in 12.2×, 5.1×, 74, 000×, 57, 000×, and
2.9× less number of non-XOR gates for 160-bit Hamming distance
compared to ANSI-C [4], TinyGarble high-level synthesis (HLS) [2],
PF-SFE MIPS [2], GarbledCPU [9], and Frigate [16] respectively.
ARM2GC also results in 38.3% less non-XOR gates compared to
Frigate [16] for AES function.

5.6 Effect of SkipGate on ARM

Table 4: SkipGate algorithm improvement on the ARM se-
quential circuit.

Function (bit) # of non-XOR gates Improvement
(1000X)Conventional GC+ARM ARM2GC

Sum 32 3,817,680 31 123
Sum 1024 76,483,260 1,023 75
Compare 32 4,072,192 130 31
Compare 16,384 1,047,095,280 16,384 64
Hamming 32 67,063,912 57 1,177
Hamming 160 242,931,704 247 984
Hamming 512 863,559,216 1,012 853
Mult 32 4,199,448 993 4
MatrixMult3x3 32 72,790,432 27,369 3
MatrixMult5x5 32 286,071,488 127,225 2
MatrixMult8x8 32 1,079,894,416 522,304 2
SHA3 256 29,354,783,052 37,760 777
AES 128 54,621,701,856 6,400 8,535

Table 4 shows the cost of garbling an ARM processor for the
benchmark functions using conventional GC compared to GC with
the SkipGate algorithm. Since the instruction memory is known to
both parties in ARM, SkipGate omits a significant number of non-
XOR gates in the circuits. The circuit of ARM has 126,755 non-XOR
gates and for computing a function, for example, Hamming 160, it
takes 1,909 clock cycles. It meanswith the conventional GC protocol,
garbling/evaluation of 1, 909 × 126, 755 = 241, 975, 295 non-XORs
is required. On the other hand, SkipGate reduces the circuit into
a smaller circuit with only 247 non-XORs (almost seven orders of
magnitude less). In the case of AES, we achieve more than six orders
of magnitude improvement over the conventional GC without the
SkipGate algorithm. The algorithm transforms the impracticable

cost of garbling an ARM processor into the near-optimal cost of the
reduced circuit. These dramatic improvements are due to a large
number of public inputs in the ARM processor that allows SkipGate
to skip garbling/evaluation most of the gates in the ARM circuit.

Comparing the result of Table 1 and Table 4 shows that the extent
of SkipGate’s impact highly depends on the structure of the circuit,
as well as the degree of presence of public values in the circuit.

5.7 Complex Functions

Table 5: SkipGate algorithm improvement on the ARM se-
quential circuit for the complex functions.

Function (bit) # of non-XOR gates Improvement
(1000X)Conventional GC+ARM ARM2GC

Bubble-Sort32 32 1,366,390,620 65,472 21
Merge-Sort32 32 981,712,458 540,645 2
Dijkstra64 32 1,493,339,886 59,282 25
CORDIC 32 228,847,596 4,601 50

We developed a number of complex functions, as described below,
with the ARM2GC framework. In each of these functions, the input
is XOR-shared between two parties. Table 5 shows the improvement
for these functions by SkipGate over state-of-the-art GC.
Bubble-Sort32: This function receives a list of 32 32-bit integers,
sorts the list using Bubble Sort algorithm, and then writes the sorted
list in the output memory.
Merge-Sort32: This function receives a list of 32 32-bit integers,
sorts the list using Merge Sort algorithm, and then writes the sorted
list in the output memory.
Dijkstra: This function receives the adjacency matrix of a directed
graph with 64 weighted edges (described as a 32-bit integer), finds
the shortest path between a source and other nodes using Dijk-
stra algorithm, and then writes the corresponding distances in the
output memory.
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CORDIC (COordinate Rotation DIgital Computer): This func-
tion receives a degree and a 2D vector described as 32-bit fixed-
points (2-bit decimal and 30-bit fraction), computes trigonomet-
ric, hyperbolic or exponential functions according to Universal
CORDIC algorithm [30], and then writes the final 2D vector in the
output memory. The output vector in CORDIC algorithm converges
one bit per iteration thus, it requires 32 iterations in our case. The
addition, shift, and non-oblivious table lookup operations are only
required. Universal CORDIC has two modes for updating vector:
rotational and vectoring and three modes for lookup table: circular,
linear, and hyperbolic. Combining these two modes allows the user
to compute trigonometric, hyperbolic, exponential, square root,
multiplication, or division functions in each combination. Among
these functions, square root and division have previously been
reported in [31] and required 12, 733 and 12, 546 non-XOR gates
respectively, almost three times more than ARM2GC.

6 RELATEDWORK
The idea of designing a custom programming language to describe
and efficiently compile functions for secure evaluation dates back to
Fairplay, the first GC compiler [3]. Fairplay introduces a custom lan-
guage created specifically to describe functions, namely the Secure
Function Definition Language (SFDL). SFDLwas compiled to Secure
Hardware Description language (SHDL). More powerful languages
and compilers were later presented [5, 32, 33]. The introduction of
a custom programming language is neither user-friendly nor ver-
satile when compared with conventional programming languages
like C.

Another approach adopted in FastGC [29, 34], VMCRYPT [35],
and ABY [6] for GC circuit generation is to design a library con-
taining implementations of GC optimized sub-circuits in a general-
purpose high-level language like Java. This method requires the
user to have a thorough understanding of the circuit description
of the secure function as the circuits and their decomposition into
sub-circuits has to be specified manually.

The first GC implementation supporting a general purpose lan-
guage is presented in [4], which supports ANSI-C. However, it
supports only a subset of ANSI-C that is not compatible with many
important primitives and therefore, not compatible with legacy
codes. The main drawback of [4] is compile-time loop unrolling
that makes it unscalable with input size. To cope with this problem,
the compiler presented in [13] introduces loops that are specified
manually within the code and not rolled out until the GC evaluation.
This compiler supports a more general version of C language. How-
ever, in [4] and [13], the code had to be compiled with their custom
compiler. As a result, users cannot benefit from the optimizations
provided by general purpose compilers. Moreover, these compilers
are less scrutinized and therefore more prone to bugs. In contrast,
the ARM2GC framework supports any general purpose ARM com-
piler and thus benefit from all the state-of-the-art optimizations,
supports legacy codes, and is fully verified.

The TinyGarle framework [2] allows a user to describe the func-
tion with a Hardware Description Language (HDL) like Verilog or
VHDL. It presents customized GC optimized libraries which en-
able synthesis of the HDL code with standard logic synthesis tools,

thus, benefiting from the standard hardware optimizations. Tiny-
Garble also suggests using sequential circuits for GC to solve the
scalability issue. Unlike [13], it allows to infer loops automatically
and to optimize across multiple sub-circuits. TinyGarble also limits
the programmer to a hardware level language which is less user-
friendly than a high-level compiler. Our work utilizes TinyGarble’s
methodology to generate the most optimized Boolean circuit for
the ARM processor. The big advantage of ARM2GC is that the func-
tion to be evaluated securely can be written in any programming
language and compiled with any ARM compiler of choice.

The work in [8] accepts a function as a MIPS machine code,
which allows the programmer to describe the function in a lan-
guage of her choice and compile with a standard compiler. They
design a MIPS emulator to securely execute the code. To avoid
emulating a large number of instructions supported by the MIPS
machine, they perform a data independent static analysis before
execution of the program to build a small instruction bank and
ALU circuit tailored for each processor cycle. In contrast, our ap-
proach performs this optimization with bit-precision instead of
instruction-precision. Moreover, this is done in the runtime while
the circuit remains the same for each cycle. To solve the problem of
secure conditional branches, they propose to pad nop instruction
to parallel branches so that their lengths become equal. This way
when the code exits either of the branches, it ends up in the same in-
struction and the process can continue with less cost. However, this
approach increases the cost for conditional branches. To mitigate
this problem, we propose to use the ARM processor which supports
conditional execution and can replace these branches with condi-
tional instructions (see Section 4.2). In rare cases where the ARM
compiler fails to replace the conditional branch, we adopted their
approach in padding the parallel branches with nop instruction.
Overall, our evaluation shows that ARM2GC outperforms their
MIPS framework, for example by 4 orders of magnitudes for Ham-
ming distance function, mostly thanks to the SkipGate algorithm
and its bit-precision optimization.

The most recent framework, Frigate [16] performed extensive
research on the efficiency and reliability of the current frameworks
and found out that most of them suffer from reliability issues. For
example, they reported that PAL, KSS, CMBC, Obliv-C, ObliVM,
and PCF crashed on programs that should have been compiled
correctly. Moreover, KSS, ObliVM, and PCF generated incorrect
netlists. As they discuss in the paper, there are serious limitations
for formal verification and due to its impracticality, they limit their
analysis to validation by testing. This type of testing does not detect
all possible flaws in the compilation process. While many of the
issues were later taken care of by the respective developers, this
research exposed a serious reliability issue regarding the usage of
these compilers.

Frigate [16] introduces a new C-style language for SFE and the
corresponding compiler. Whereas in our work, we utilize C lan-
guage with standard ARM cross compiler. Our work also supports
any programming language and corresponding compiler. As of
now, Frigate only supports three different types (uint_t, int_t,
and struct_t). The user can add her own types but it requires a
good understanding of the internal structure of the compiler. Since
these three types have a specific bit length, the final computation is
not bit-level efficient. For example for a 9-bit comparison, Frigate
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needs to do the comparison for a given bit length of int_t. On the
contrary, the ARM2GC framework eliminates unnecessary gates
and evaluates the circuit only up to the number of bits needed.
Frigate divides the program into different functions and creates
the circuit by calling the corresponding functions and as a result
prohibits the overall circuit optimization. In contrast, our ARM
circuit is optimized globally using state-of-the-art hardware syn-
thesis techniques. Therefore, our overall platform is based on very
well-developed and debugged tools that have been used in industry
for many years. Also, if any new update becomes available for these
tools, they can effortlessly be incorporated into our framework.

7 CONCLUSION AND FUTUREWORK
This paper introduces the novel SkipGate algorithm for Yao’s Gar-
bled Circuit protocol. The algorithm omits the communication cost
for gates with outputs independent of private data and also the
gates not affecting the final output. Based on the SkipGate algo-
rithm and the ARM processor architecture, we create ARM2GC a
simple-to-use and efficient garbled circuit framework. Users can
develop secure functions in high-level languages and compile them
using standard ARM cross-compilers. As a result of SkipGate, only
the gates associated with private data in the massive ARM circuit
incur communication and encryption cost. Evaluations on a host of
benchmark functions show that the ARM2GC framework achieves
efficiency close to that of HDL-level synthesis methods.

As future work, we plan to investigate the integration of already
implemented and optimized circuits as co-processors in ARM. The
SkipGate algorithm will remove the overhead of co-processors
when they are not used. Optimized co-processors may reduce the
garbling cost for functions that cannot be implemented efficiently
or easily using high-level languages, e.g., functions involving bit-
manipulation and AES S-Boxes.
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