
Oblivious Dynamic Searchable Encryption via

Distributed PIR and ORAM

Thang Hoang∗ Attila A. Yavuz∗ Betul F. Durak† Jorge Guajardo‡

Abstract

Dynamic Searchable Symmetric Encryption (DSSE) allows to delegate search/update opera-
tions over encrypted data via an encrypted index. However, DSSE is known to be vulnerable
against statistical inference attacks, which exploits information leakages from access patterns
on encrypted index and files. Although generic Oblivious Random Access Machine (ORAM)
can hide access patterns, it has been shown to be extremely costly to be directly used in
DSSE setting.

We developed a series of Oblivious Distributed DSSE schemes that we refer to as ODSE,
which achieve oblivious access on the encrypted index with a high security and improved
efficiency over the use of generic ORAM. Specifically, ODSE schemes are 3 - 57× faster than
applying the state-of-the-art generic ORAMs on encrypted dictionary index in real network
settings. One of the proposed ODSE schemes offers desirable security guarantees such as
information-theoretic security with robustness against malicious servers. These properties
are achieved by exploiting some of the unique characteristics of searchable encryption and
encrypted index, which permits us to harness the computation and communication efficiency
of multi-server PIR and Write-Only ORAM simultaneously. We fully implemented ODSE
and conducted extensive experiments to assess the performance of our proposed schemes in
a real cloud environment.

1 Introduction

Data outsourcing allows a client to store her data on the cloud to reduce data management
and maintenance costs. Despite its merits, cloud services come with severe privacy issues. The
client may encrypt the data with standard encryption to protect its privacy. However, standard
encryption prevents the client from performing basic operations (e.g., search/update) over the
outsourced encrypted data. This significantly degrades the benefits of cloud services.

1.1 State-of-the-art and Limitations

DSSE. The concept of searchable encryption was first proposed by Song et al. [27], which
allows to perform search-only operations over encrypted data. Dynamic Searchable Symmetric
Encryption (DSSE) was later introduced by Kamara et al. [19], which offers both search and

∗Oregon State University, {hoangmin,attila.yavuz}@oregonstate.edu
†Rutgers University, fbdurak@cs.rutgers.edu
‡Robert Bosch Research and Technology Center, Jorge.GuajardoMerchan@us.bosch.com
This work was partially done while the first and third authors were visiting Robert Bosch RTC—LLC.

1

Table 1: Comparison of ODSE schemes and their ORAM-based counterparts when accessing
the encrypted index I.

Scheme
Security Delay (s) Distributed Setting†

Forward
privacy

Backward
privacy

Hidden access
pattern‡

Encrypted
index∗

Search Update
Privacy

level
Robustness

Standard DSSE [8] 7 7 7 Computational 0.036 0.62 - -

Path-ORAM[29] 3 3 Computational Computational 160.6 - -

Ring-ORAM [25] 3 3 Computational Computational 137.4 - -

ODSEwo
xor 3 3 Computational Computational 2.8 `− 1 7

ODSEwo
ro 3 3 Computational Computational 6.3 t 3

ODSEwo
it 3 3

Information
theoretic

Information
theoretic

7.1 t 3

This table compares the performance of ODSE schemes with standard DSSE and ORAM-based counterparts under real network setting with the encrypted
index of 9× 1010 keyword-file pairs. The index was stored on Amazon EC2 clouds (see Section 6 for detailed analysis). The delay of all schemes were measured
in the average-case cost.
We simulated the use of generic ORAM on the DSSE encrypted index with the round-trip optimization in [12] for comparison. We selected Path-ORAM [29]
and Ring-ORAM [25] since they are the most efficient ORAM schemes.
∗ The encrypted index in ODSEwo

it is “encrypted” by SSS to be information-theoretically secure. In other schemes, it is IND-CPA encrypted and therefore, it
is computationally secure.
‡ All ODSE schemes perform both search and update protocols to hide the actual operation type. ODSEwo

xor and ODSEwo
ro achieve information-theoretic security

for keyword search, and computational security for update, and therefore, their overall security is computational.
† ` is the total number of servers, t < ` is the number of colluding servers (privacy parameter).

update capabilities over encrypted data via an encrypted index I representing keyword-file rela-
tionships in encrypted data F . Many DSSE schemes have been proposed, each offering various
performance, functionality and security trade-offs (e.g., [18, 19, 8, 6, 22, 30, 23]).

Information leakage in DSSE. It is known that all DSSE schemes leak significant information
through search and access patterns, which are vulnerable to statistical inference attacks [17,
20, 7, 31, 24]. These attacks can reveal sensitive information about encrypted queries and
files [20, 7, 24]. There are two sources of information leakages in DSSE: (i) leakages through
search and update on encrypted index I, (ii) leakages due to access on encrypted files F . A
notable attack by Zhang et al. [31] has indicated that, future research on DSSE should focus
on sealing access pattern leakages rather than accepting them by default. Unless these leakages
are prevented, a trustworthy deployment of DSSE for privacy-critical applications may not be
possible.

Existing Approaches to Reduce Information Leakages in DSSE. Several attempts rely-
ing on trivial strategies [10, 16] are either impractical or unable to completely seal all leakages
in DSSE access patterns. Generic Oblivious Random Access Machine (ORAM) [14]1 can hide
access patterns, and therefore, it can prevent most of the information leakages in DSSE. Garg
et al. [12] proposed TWORAM scheme, which optimizes the round-trip communication under
O(1) client storage when using ORAM to hide file access patterns2 in DSSE. Despite its merits,
prior studies (e.g., [28, 8, 21]) showed that generic ORAM (e.g., [29]) is still costly to be used
in DSSE due to its O(logN) communication overhead. Although several ORAMs with O(1)
bandwidth complexity have been introduced recently, they are still extremely costly due to the
use of fully/partially Homomorphic Encryption (HE). The performance of such schemes has
been shown to be worse than that of ORAM with O(logN) bandwidth overhead [2].

1By generic ORAM, we mean oblivious access techniques that can hide the operation type (i.e., whether it is
read or write), as opposed to PIR or Write-Only ORAM.

2It differs from the objective of this paper, where we focus on hiding access patterns on the encrypted index
in DSSE (see Section 6 for clarification).

2

1.2 Research Objective

As mentioned previously, it is imperative to seal information leakages from accessing encrypted
files F and encrypted index I to achieve a secure DSSE. Since F is unstructured and the size
of individual files in F might be arbitrarily large, to the best of our knowledge, generic ORAM
seems to be the only option for oblivious access on F .

The objective of this paper is to design oblivious access techniques on encrypted index I,
which are more efficient than the generic ORAM, by exploiting special properties of searchable
encryption and I.

1.3 Our Contributions

We propose a series of Oblivious Distributed Encrypted Index I with the direct application on
DSSE, which we refer to as ODSE. Our intuition is as follows.

Main idea. We first observe that, in DSSE, keyword search and file update on I are read-
only and write-only operations, respectively. This observation permits us to leverage specific
bandwidth-efficient oblivious access techniques for each operation such as multi-server Private
Information Retrieval (PIR) (for search) and Write-Only ORAM (for update) rather than using
generic ORAM.

The second observation is that, identifying an appropriate data structure for I is critical for
the adaptation of the bandwidth-efficient cryptographic primitives mentioned above. We found
that forward index and inverted index are the ideal choices for the file update and keyword
search operations, respectively as proposed in [15]. However, doing search and update on two
isolated indexes can cause an inconsistency, which requires the server to perform synchronization.
The synchronization operation leaks significant information [15]. To avoid this problem, it is
necessary to integrate both search index and update index in an efficient manner. Fortunately,
this can be achieved by leveraging a two-dimensional index, which allows keyword search and
file update to be performed in two separate dimensions without creating any inconsistency at
their intersection. This strategy permits us to perform computation-efficient (multi-server) PIR
on one dimension, and communication-efficient (Write-Only) ORAM on the other dimension to
achieve oblivious search and update, respectively with a high efficiency. Note that this index
has an extra security benefit by offering hidden size pattern via padding with a minimal storage
overhead.

We introduce three ODSE schemes called ODSEwo
xor, ODSEwo

ro and ODSEwo
it , each offering

various desirable performance and security properties (see Table 1) as follows.

Desirable Properties.

• Low end-to-end delay and bandwidth overhead: The proposed ODSE schemes incur low-cost
computation at the server side (e.g., XOR, basic modular arithmetic operations in finite
fields). The experiments showed that ODSE schemes are 3 - 57× faster than the use of
efficient generic ORAM schemes (e.g.,[29, 25]) on encrypted index with the round-trip opti-
mization proposed in [12] under real network setting (see Table 1 and Section 6 for details).

• Complete obliviousness and Information-theoretic security: ODSE achieves the full oblivious-
ness by sealing all information leakages including query types (search/update), access patterns
and size patterns from accessing the encrypted index I. More specifically, access patterns on
the encrypted index I are computationally secure in ODSEwo

xor and ODSEwo
ro schemes, in which

3

the search query is information-theoretically secure. The encrypted index I is computation-
ally secure in ODSEwo

xor and ODSEwo
ro schemes. ODSEwo

it offers information-theoretic security
for encrypted index I and the access patterns on I.

• Robustness against malicious servers: ODSEwo
ro and ODSEwo

it can tolerate a certain number of
malicious servers in the distributed system.

• Full-fledged implementation and open-sourced framework: We fully implemented all the pro-
posed ODSE schemes and strictly evaluated their performance in the real-cloud setting. Our
implementation accelerated server-side PIR computation by using multi-threading and highly
optimized libraries (e.g., NTL). We will release ODSE for public use and wide adaptation.

It is clear that the standard DSSE constructions (e.g., [8]) are much faster, but also less
secure than our proposed methods in the sense of leaking more information beyond the access
patterns (e.g., forward-privacy, backward-privacy) over the encrypted index. ODSE schemes
offer higher security by sealing all these leakages at the cost of performance, but are still more
efficient than applying generic ORAM techniques, as shown in Table 1 and further analyzed in
Section 6.

2 Preliminaries and Building Blocks

Notation. Operators || and (·)> denote the concatenation and the transpose, respectively. x
$←

S denotes that x is randomly and uniformly selected from S. |S| denotes the cardinality of set S.
〈x〉bin denotes the binary representation of x. Given a security parameter θ, E = (Enc,Dec,Gen)
denotes an IND-CPA symmetric encryption comprised of three algorithms: key generation κ←
E .Gen(1θ); encryption of message M with key κ and counter c as C ← E .Encκ(M, c); decryption
as M ← E .Decκ(C, c). KDF is a keyed derivation function. ⊕ denotes the XOR operation. We
denote u · v as the inner product of two vectors of the same length. We denote a finite field as
Fp, where p is a prime. I[i] denotes accessing i-th component of I. Given a matrix I, I[∗, j . . . j′]
denotes accessing columns j to j′ of I.

Shamir Secret Sharing. (t, `)-threshold Shamir Secret Sharing (SSS) scheme [26] is presented
in Algorithm 1. Given a secret α ∈ Fp to be shared, the dealer generates a random t-degree
polynomial f and evaluates f(xi) for party Pi ∈ {P1, . . . ,P`}, where xi is a deterministic
non-zero element of Fp to identify party Pi and this information is public (SSS.CreateShare
Algorithm). We denote the share for Pi as JαKi. The secret can be reconstructed by combining
at least t + 1 correct shares with Lagrange interpolation (SSS.Recover Algorithm). It is also
possible to recover the secret from a number of incorrect SSS-shares via Reed-Solomon decode
or list decoding algorithms [4, 13]. We use this property to extend our schemes into the malicious
setting (see Appendix A.2).

SSS is a t-private secret sharing scheme, so any combinations of t shares leak no information
about the value. SSS offers homomorphic properties including addition, scalar multiplication,
and partial multiplication. We extend the notion of Shamir share of value to indicate the share
of vector. Given a vector v = (v1, . . . , vn), JvKi = (Jv1Ki, . . . , JvnKi) indicates the share of v for
party Pi, in which components in JvK are shares of components in v.

Private Information Retrieval (PIR). PIR enables retrieval of a data item from a (un-
encrypted) public database server without revealing which item is retrieved. We present the

4

Algorithm 1 Shamir Secret Sharing (SSS) scheme

(JαK1, . . . , JαK`)← SSS.CreateShare(α, t): Create t-private shares of α

1: (a1, . . . , at)
$← Fp

2: for k = 1, . . . , ` do
3: JαKk ← α+

∑t
u=1 au · xuk

4: return (JαK1, . . . , JαK`)

α← SSS.Recover({A}, t): Recover the value

1: Randomly select t+ 1 shares {JαKxi}t+1
i=1 among A

2: g(x)← LagrangeInterpolation
(
{(xi, JαKxi)}t+1

i=1

)
3: return α, where α← g(0)

definition of PIR in the distributed setting as follows.

Definition 1 (multi-server PIR [13, 4]). Let b = (b1, . . . , bn) be a database consisting of n items
being stored in ` servers. A multi-server PIR protocol consists of three algorithms as follows.
Given an item b in b to be retrieved, the client creates queries (ρ1, . . . , ρ`)← PIR.CreateQuery(i)
and distributes ρj to server Sj. Each server Sj responds with an answer rj ← PIR.Retrieve(ρj ,b).
Upon receiving ` answers, the client computes the value of item b by invoking the reconstruction
algorithm b← PIR.Reconstruct(r1, . . . , r`).
Correctness: A multi-server PIR is correct if the client can obtain the correct value of b from `
answers via PIR.Reconstruct algorithm with the probability 1.
t-privacy: A multi-server PIR is t-private if ∀j, j′ ∈ {1, . . . , n}, ∀L ⊆ {1, . . . , `} s.t. |L| ≤ t, the
probability distributions of

{
ρi∈L : (ρ1, . . . , ρ`)← PIR.CreateQuery(j)

}
and

{
ρ′i∈L : (ρ′1, . . . , ρ

′
`)←

PIR.CreateQuery(j′)
}

are identical.

We recall two efficient multi-server PIR protocols as follows.

• XOR-based PIR: [9] (Algorithm 2). It relies on XOR to perform the private retrieval, in
which the database b contains n items bi, each being interpreted as a m-bit string.

• SSS-based PIR:[13, 4] (Algorithm 3). It relies on SSS to improve the robustness of multi-
server PIR, in which the database b contains n items bi, each being interpreted as an element
of Fp.

Algorithm 2 XOR-based PIR [9]

(ρ1, . . . , ρ`)← PIRxor.CreateQuery(j): Create select query

1: Initialize binary string e← 0m and set e[j]← 1; ρi
$← {0, 1}m for 1 ≤ i < `

2: ρ` ← ρ1 ⊕ . . . ρ`−1 ⊕ e
3: return (ρ1, . . . , ρ`)

ri ← PIRxor.Retrieve(ρi,b): Retrieve an item in the DB b
1: ri ←

⊕
j∈J bj where J = {j : ρi[j] = 1}

2: return ri

b← PIRxor.Reconstruct(r1, . . . , r`): Reconstruct the item

1: return b, where b =
⊕`

k=1 rk

5

Algorithm 3 SSS-based PIR [13, 4]

(JeK1, . . . , JeK`)← PIRsss.CreateQuery(j): Create select queries
1: Let e := (e1, . . . , en), where ej ← 1, ei ← 0 for 1 ≤ i 6= j ≤ n
2: for i = 1, . . . , n do (JeiK1, . . . , JeiK`)← SSS.CreateShare(ei, t)

3: JeKi ← (Je1Ki, . . . , JenKi), for 1 ≤ i ≤ `
4: return (JeK1, . . . , JeK`)

JbKi ← PIRsss.Retrieve(JeKi,b): Retrieve the item
1: return JbKi, where JbKi ← JeKi · b

b← PIRsss.Reconstruct(JbK1, . . . , JbK`, t): Recover the item
1: return b, where b← SSS.Recover(JbK1, . . . , JbK`, t)

ORAM. ORAM allows users to access their own data stored on the cloud without leaking to
the storage provider which data blocks have been accessed. We give the security definition of
ORAM as follows.

Definition 2 (ORAM security [29]). Let ~o = (opi, ui, datai)
q
i=1 be a data request sequence, where

opi ∈ {read(ui, datai),write(ui, datai)}, ui is the logical address to be read/written and datai is
the data at ui to be read/written. Let AP(~o) be an access pattern observed by the server S given
a data request sequence σ. An ORAM scheme is secure if for any two data request sequences
~o and ~o′ of the same length, their access patterns APj(~o) and APj(~o

′) are computationally
indistinguishable.

Write-Only ORAM: Blass et al. [5] proposed a Write-Only ORAM scheme in the context of
hidden volume encryption. This scheme aims to only hide the write patterns, instead of both
read/write operations as in the generic ORAM model. Intuitively, there are 2n memory slots
that are used to store n blocks. For each block to be written, the client puts it into a stash
and then reads λ slots chosen uniformly at random among 2n slots. The client decrypts λ slots,
flushes data from the stash to empty slots, re-encrypts and write them back. By selecting λ
sufficiently large (e.g., λ = 80), one can achieve negligible write failure probability without using
the stash. In case the stash is used to achieve small λ (e.g., λ = 4), its size is proven to have an
upper bound.

3 Definition and Models

System Model. Our system model comprises a client and ` servers S = (S1, . . . ,S`), each
storing a version of the encrypted index. In our system, the encrypted files are stored on a
separate server different from S (as in [16]). While encrypted files can be securely accessed
via a generic ORAM (e.g., [29, 25]), this paper only focuses on oblivious access on distributed
encrypted index I on S.

We give the definition of ODSE as follows.

Definition 3. An Oblivious Distributed Dynamic Searchable Symmetric Encryption (ODSE)
scheme is a tuple of one algorithm and two protocols ODSE = (Setup,Search,Update) such that:

1. (I, σ)← Setup(F): Given a set of files F as input, the algorithm outputs a distributed en-
crypted index I and a client state σ.

6

2. R ← Search(w, I, σ): The client inputs a keyword w to be searched and the state σ; the servers
input the distributed encrypted index I. The protocol outputs to the client a set R containing
identifier of files in which w appears.

3. (I ′, σ′)← Update(fid, I, σ): The client inputs the updated file fid and a state σ; the servers
input the distributed encrypted index I. The protocol outputs a new state σ′ and the updated
index I ′ to the client and servers, respectively.

Security Model. We define the security of ODSE in the semi-honest setting as follows.

Definition 4 (ODSE security). Let ~o = (op1, . . . , opq) be an operation sequence, where opi ∈{
Search(w, I, σ),Update(fid, I, σ)

}
, w is a keyword to be searched and fid is a file with iden-

tifier id whose relationship with unique keywords in the distributed encrypted index I need to
be updated, and σ denotes with a client state information. Let ODSEj(~o) represent the ODSE
client’s sequence of interactions with server Sj, given an operation sequence ~o.
Correctness: An ODSE is correct if, for any operation sequence ~o,

{
ODSE1, . . . ,

ODSE`} returns data consistent with ~o, except with a negligible probability.
t-security: An ODSE is t-secure if ∀L ⊆ {1, . . . , `} s.t. |L| ≤ t, for any two operation sequences
~o and ~o′ where |~o| = |~o′|, the views {ODSEi∈L(~o)} and {ODSEi∈L(~o′)} observed by a coalition
of up to t servers are (perfectly, statistically or computationally) indistinguishable.

ODSE operation obliviousness. As defined in Definition 3, keyword search and file update are
the two main operations in searchable encryption. Given that these operations might incur
different procedures, we can invoke both search and update protocols for any actual action to
achieve the operation obliviousness according to Definition 4.

4 The Proposed ODSE Schemes

In this section, we present data structures of ODSE and two ODSE instantiations, each offering
different performance and security levels.

4.1 ODSE Data Structures
Let fid and w denote a file with unique identifier id and a (key)word in a file, respectively. Given
an incidence matrix I, the keyword-file relationships are represented via cell values I[i, j] ∈ {0, 1}.
Each keyword and file is assigned to a unique row and column index, respectively. Therefore,
each row of I contains the search result of a keyword while each column contains the data (unique
keywords) of a file. Since Write-Only ORAM is used for file update, the number of columns are
doubled. Hence, given that there are M keywords and N files, the size of I will be M × 2N .

We leverage two static hash tables Tw, Tf as in [30] to keep track of the location of keywords
and files in I, respectively. They are of structure: T := 〈key, value〉, where key is a keyword or
file ID and value is the (row/column) index of key in I, which can be retrieved as value← T [key].
We denote D as the set of empty columns that are not assigned to any particular files.

4.2 ODSEwo
xor : Fast ODSE

We introduce ODSEwo
xor, an ODSE scheme that offers a low search delay by using XOR trick. We

present ODSEwo
xor in Scheme 1 with the following highlights.

7

Scheme 1 ODSEwo
xor scheme

(I, σ)← ODSEwo
xor.Setup(F): Generate distributed encrypted index I

1: Let Π and Π′ be a random permutation on {1, . . . , 2N} and {1, . . . ,M} resp.
2: κ← Gen(1θ); I′[∗, ∗]← 0; c← (c1, . . . , c2N) where ci ← 1 for 1 ≤ i ≤ 2N
3: Extract keywords (w1, . . . , wm) from files F = {fid1 , . . . , fidn}
4: Tf [idj]← Π(j) for 1 ≤ j ≤ n; Tw[wi]← Π′(i) for 1 ≤ i ≤ m
5: D ← Π(j) for n ≤ j ≤ 2N
6: I′[xi, yj]← 1 if wi ∈ fidj where xi ← Tw[wi], yj ← Tf [idj] for 1 ≤ i ≤ m, 1 ≤ j ≤ n
7: for i = 1, . . . ,M do τi ← KDFκ(i); I[i, j]← E .Encτi(I′[i, j], j||cj) for 1 ≤ j ≤ 2N

8: Let I contain ` copies of I and σ ← (κ, Tw, Tf , c,D)
9: return (I, σ) # The client sends each copy of I to each server

R ← ODSEwo
xor.Search(w, I, σ): Search keyword w

Client:
1: j ← Tw[w]; (ρ1, . . . , ρ`)← PIRxor.CreateQuery(j)
2: Send ρi to Si, for 1 ≤ j ≤ n
Server: each Si ∈ {S1, . . . ,S`} receiving ρi do
3: Îi ← PIRxor.Retrieve(ρi, Ii); Send Îi to the client
Client: On receive (Î1, . . . , Î`) from ` servers
4: I ← PIRxor.Reconstruct(Î1, . . . , Î`)
5: τj ← KDFκ(j); I

′[j′]← E .Decτi(I[j′], j′||cj′) for 1 ≤ j′ ≤ 2N
6: return R , where R =

{
Tf .getKey(j′) : (I ′[j′] = 1) ∧

(
(j′ /∈ D) ∨ (I ′[j] ∈ S)

)}
(I ′, σ′)← ODSEwo

xor.Update(fid, I, σ): Update file fid

Client: Initialize Î[i]← 0 for 1 ≤ i ≤ 2N
1: for each keyword wi ∈ fid do Î[xi]← 1, where xi ← Tw[wi]

2: S ← S ∪ {(id, Î)}; D ← D ∪ Tf [id]
3: Let J contain λ random-selected column indexes, send J to a random server Sl
Server: Sl receiving J do
4: Send Il[∗, j], for each j ∈ J to the client
Client:
5: for each j ∈ J do τi ← KDFκ(i); I′[i, j]← E .Decτi(Il[i, j], j||cj) for 1 ≤ i ≤M
6: for each ĵ ∈ J ∩ D do Pick a (id, Î) from S; I′[∗, ĵ]← Î>; D ← D \ {ĵ}; Tf [id]← ĵ

7: for each j ∈ J do Î[i, j]← E .Encτi(I′[i, j], j||++cj) for 1 ≤ i ≤M
8: Send {Î[∗, j]}j∈J to ` servers
Server: each Si ∈ {S1, . . . ,S`} do

9: Ii[∗, j]← Î[∗, j], for each j ∈ J
10: return (I ′, σ′) where I ′, σ′ are Ii and σ have been updated

Setup: ODSEwo
xor.Setup algorithm presents the construction of an encrypted index I. We encrypt

I bit-by-bit, meaning that each cell is encrypted by a unique row key and a column counter pair
(step 7). Each file and keyword is randomly assigned to a unique column and row, respectively.
The client state consists of a master key κ, two hash tables (Tw, Tf), a counter vector c and the
set of empty columns D. The client sends a replica of the encrypted index I to each server.

Search: We leverage Chor’s PIR on the row dimension of I for private retrieval of search data
(ODSEwo

xor.Search protocol), where the keyword index is obtained from Tw. Since the data is
IND-CPA encrypted rather than being public as in the traditional PIR model, the client needs
to decrypt the retrieved data to obtain the final search result (step 5).

8

Update: Recall that the content (i.e., keywords) of a file is represented by a column in I. Given
a file fid to be updated, we leverage Write-Only ORAM on the column dimension of I to update
keyword-file pairs in fid into an empty column (ODSEwo

xor.Update protocol). Since each server
stores a replica of the encrypted index I, the client only reads λ random columns from a single
server first (step 3). After updating columns with are updated (step 6), the client re-encrypts
and writes them back to all servers (steps 7– 8).

Security properties: ODSEwo
xor requires all ` servers to be semi-honest and to answer the client.

If there exists a malicious server, meaning that it is either down or returns an incorrect value,
the correctness of ODSEwo

xor will be compromised. Therefore, we propose a more robust ODSE
scheme in the following section.

4.3 ODSEwo
ro : Robust ODSE

We introduce ODSEwo
ro scheme which is robust against malicious servers by harnessing SSS-based

PIR. The robustness is due to the ability to recover the secret shared by SSS in the presence of
incorrect shares, as presented in Section 2. We present ODSEwo

ro in Scheme 2 with the following
highlights:

Setup: In ODSEwo
ro , we construct I with IND-CPA encryption. Thus, the setup algorithm of

ODSEwo
ro is identical to that of ODSEwo

xor.

Scheme 2 ODSEwo
ro scheme

(I, σ)← ODSEwo
ro .Setup(F): Generate encrypted index

1: (I, σ)← ODSEwo
xor.Setup(F , I′)

2: return (I, σ)

R ← ODSEwo
ro .Search(w, I, σ): Search keyword w

Client:
1: j ← Tw[w], R ← ∅
2: (JeK1, . . . , JeK`)← PIRsss.CreateQuery(j)
3: Send JeKi, to Si, for 1 ≤ j ≤ n
Server: each Si ∈ {S1, . . . ,S`} receiving JeKi do:
4: for k = 1 . . . , 2N ′ do
5: for j = 1, . . . ,M do
6: 〈ckj〉bin ← I′[j, (k − 1) · blog2 pc+ 1, . . . , k · blog2 pc]
7: ck ← (ck1, . . . , ckM)
8: JbkKi ← PIRsss.Retrieve(JeKi, ck)
9: Send JbkKi to the client

Client: On receive (JbkK1, . . . , JbkK`)Mk=1 from ` servers
10: for k = 1 . . . , 2N ′ do
11: bk ← PIRsss.Reconstruct(JbkK1, . . . , JbkK`, t)
12: I ← 〈b1〉bin|| . . . ||〈b2N ′〉bin
13: τj ← KDFκ(j); I

′[j′]← E .Decτi(I[j′], j′||cj′) for 1 ≤ j′ ≤ 2N
14: return R , where R =

{
Tf .getKey(j′) : (I ′[j′] = 1) ∧

(
(j′ /∈ D) ∨ (I ′[j] ∈ S)

)}
(I ′, σ′)← ODSEwo

ro .Update(fid, I, σ): Update a file

1: (I ′, σ′)← ODSEwo
xor.Update(fid, I, σ)

2: return (I ′, σ′)

9

Search: We leverage the SSS-based PIR protocol on the row dimension of I to conduct keyword
search. Each server performs the inner product between the search query and the encrypted
index I via scalar multiplication and additive homomorphic properties of SSS. This operation
requires row data in I to be represented as elements in Fp. This condition is not satisfied by
default since each row in I is a uniformly random binary string of length 2N due to IND-CPA
encryption, which cannot be represented in Fp when log2 p < 2N . Therefore, we split the binary
representation of each row of I into equally-sized substrings si s.t. |si| < log2 p. The inner
product is performed iteratively between the search query and divided chunks from all rows in
I (steps 4–8, ODSEwo

ro .Search Algorithm).

Update: ODSEwo
ro leverages Write-Only ORAM on the column of I to perform file update.

Since I in ODSEwo
ro is constructed similarly to ODSEwo

xor (their Setup algorithms are identical),
the update protocol of ODSEwo

ro is identical to that of ODSEwo
xor.

Security properties: ODSEwo
ro requires at least t+ 1 servers among ` to be available and give

the answers correctly, instead of all servers. The SSS-based PIR protocol allows ODSEwo
ro to

tolerate a certain number of malicious servers in the system, as discussed in Appendix A.2.
Since ODSEwo

ro relies on IND-CPA encryption, the encrypted index and update operation
are therefore only computationally secure. In next section, we introduce another robust ODSE
scheme which achieves a complete information theoretical (IT)-security.

4.4 ODSEwo
it : Robust and IT-Secure ODSE

We introduce a ODSEwo
it scheme that offers robustness against malicious servers and information-

theoretic security for not only I but also any operations (search and update) on it. The main
idea is to create I via SSS, and harness SSS-based PIR to conduct private search. The robustness
comes from the ability to recover the secret shared by SSS in the presence of incorrect shares
(see Section 5). We describe ODSEwo

it in Scheme 2 with the following highlights.

Setup: We first generate an unencrypted index I′ as in ODSEwo
xor.Setup algorithm (steps 1–

6). Instead of using IND-CPA encryption to encrypt I′, we create shares of I′ by SSS and
distribute them to corresponding servers. Since SSS operates on elements in Fp, we split the
binary representation of each row of I′ into blog2 pc-bit chunks, and compute SSS share for each.
So, the encrypted index Ii is the SSS share of I′ for server Si, which is a matrix of size M ×N ′,
where Ii[i, j] ∈ Fp and N ′ = N/blog2 pc.

Search: We leverage the SSS-based PIR protocol on the row dimension of I to conduct the
keyword search. As each Ii stored on Si is a share matrix, the inner product of two shares (i.e.,
Ii and search query) results in a share represented by a 2t-degree polynomial. Therefore, the

Scheme 2 ODSEwo
it scheme

(I, σ)← ODSEwo
it .Setup(F): Generate distributed encrypted index I

1: Execute steps 1–6, ODSEwo
xor.Setup algorithm to construct I′

2: for i = 1, . . . ,M do
3: for j = 1, . . . , 2N ′ do
4: 〈bij〉bin ← I′[i, (j − 1) · blog2 pc+ 1, . . . , j · blog2 pc]
5: (I1[i, j], . . . , I`[i, j])← SSS.CreateShare(bij , t)

6: return (I, σ) , where I ← {I1, . . . , I`} and σ ← (Tw, Tf ,D)

10

Scheme 2 ODSEwo
it scheme (continued)

R ← ODSEwo
it .Search(w, I, σ): Search keyword w

Client:
1: j ← Tw[w]; (JeK1, . . . , JeK`)← PIRsss.CreateQuery(j)
2: Send JeKi, to Si, for 1 ≤ j ≤ n
Server: each Si ∈ {S1, . . . ,S`} receiving JeKi do
3: for k = 1 . . . , 2N ′ do JbkKi ← PIRsss.Retrieve(JeKi, Ii[∗, k])

4: Send (Jb1Ki, . . . , Jb2N ′Ki) to the client
Client: Receive (JbkK1, . . . , JbkK`)2N

′

k=1 from ` servers
5: for k = 1 . . . , 2N ′ do bk ← PIRsss.Reconstruct(JbkK1, . . . , JbkK`, 2t)
6: I ′ ← 〈b1〉bin|| . . . ||〈b2N ′〉bin
7: return R, where R =

{
Tf .getKey(j′) : (I ′[j′] = 1) ∧

(
(j′ /∈ D) ∨ (I ′[j] ∈ S)

)}
(I, σ′)← ODSEwo

it .Update(fid, I, σ): Update file fid
Client: Initialize I ′[i]← 0 for 1 ≤ i ≤ 2N
1: Execute steps 1–2 in ODSEwo

xor.Update algorithm
2: Let J contain λ′ random block indexes, send J to random t+ 1 servers
Server: each Si ∈ {Sx1 , . . . ,Sxt+1} receiving J do
3: Send (Ii[∗, j], . . . , Ii[∗, j]) for each j ∈ J to the client
Client:
4: for i = 1 . . . ,M do
5: bij ← SSS.Recover(〈I1[i, j], . . . , I`[i, j]〉, t) for each j ∈ J
6: I′[i, j · blog2 pc+ 1, ...(j + 1) · blog2 pc]← 〈bij〉bin
7: J ′ ←

⋃
j∈J

{
j · blog2 pc+ 1, . . . , (j + 1) · blog2 pc

}
∩ D

8: for each ĵ ∈ J ′ do Pick a (id, Î) from S; I′[∗, ĵ]← Î>; D ← D \ {ĵ}; Tf [id]← ĵ

9: for each j ∈ J do
10: for i = 1 . . . ,M do
11: 〈bij〉bin ← I′[i, j · blog2 pc+ 1, . . . , (j + 1) · blog2 pc]
12: (Î1[i, j], . . . , Î`[i, j])← SSS.CreateShare(bij , t)

13: Send (Îi[∗, j]) to Si for 1 ≤ i ≤ `
Server: each Si ∈ {S1, . . . ,S`} receiving (Îi[∗, j]), j ∈ J do

14: Ii[∗, j]← Îi[∗, j], for each j ∈ J
15: return (I ′, σ′) where I ′, σ′ are Ii and σ have been updated

client needs to call PIRsss.Reconstruct algorithm with the privacy parameter of 2t (instead of t
in ODSEwo

ro) to obtain the correct search result.

Update: Similar to ODSEwo
xor, we leverage Write-Only ORAM on the column dimension of

the encrypted index for the file update. Recall that Write-Only ORAM will access λ random
columns of the unencrypted index I′. In ODSEwo

it , each column of the encrypted index Ii on
Si contains the share of blog2 pc successive columns of I′. Therefore, the client needs to read
λ′ = d λ

blog2 pc
e random columns of Ii from t + 1 servers to reconstruct λ columns of I′. After

the update, the client creates new shares for the retrieved columns and writes them back to `
servers. We present this strategy in the ODSEwo

it .Update protocol.

Security properties: ODSEwo
it requires at least 2t + 1 servers to be available and to answer

honestly. The encrypted index and all search/update operations on it are unconditionally secure
due to SSS. This property allows ODSEwo

it to be robust against a number of malicious servers
as discussed in Section 5.

11

5 Security

In this section, We present the security of proposed ODSE schemes. We provide the proofs in
Appendix A.1.

Theorem 1. ODSEwo
xor scheme is correct and computationally (`− 1)-secure by Definition 4.

Proof. See Appendix.

Theorem 2. ODSEwo
ro scheme is correct and computationally t-secure by Definition 4.

Proof. See Appendix.

Theorem 3. ODSEwo
it scheme is correct and unconditionally (statistically) t-secure according to

Definition 4.

Proof. See Appendix.

Robustness against malicious servers. Since ODSEwo
it relies on SSS as the building

block, it can be robust against malicious servers. The extension is straightforward by using
special techniques such as Reed Solomon [4] or list decoding [13] algorithms to handle incorrect
shares returned by the server, given that the Lagrange interpolation in SSS.Recover algorithm
does not return a consistent value. We give a more detailed description on the malicious setting
extension in Appendix A.2.

6 Experimental Evaluation

Implementation details. We implemented all ODSE schemes in C++. Specifically, we used
Google Sparsehash to implement Tf and Tw hash tables. We utilized Intel AES-NI library to
implement AES-CTR encryption/decryption in ODSEwo

xor and ODSEwo
ro . We leveraged Shoup’s

NTL library for pseudo-random number generator and arithmetic operations over finite field.
We used ZeroMQ library for client-server communication. We used multi-threading technique to
accelerate PIR computation at the server. Our implementation is available on github at

https://github.com/osu-crypto/ODSE/

Hardware and network settings. We used Amazon EC2 with r4.4xlarge instance type to
deploy servers. Each server was equipped with 16 vCPUs Intel Xeon E5-2686 v4 @ 2.3 GHz and
122 GB RAM. For client, we used a laptop equipped with Intel Core i5-5287U CPU @ 2.90 GHz
and 16 GB RAM. All machines ran Ubuntu 16.04. The client established a network connection
with the server via WiFi. We used a home network data plan, which offers the download/upload
throughput of 27/5 Mbps.

Dataset. We used subsets of the Enron database to build the encrypted index with different
sizes from millions to billions of keyword-file pairs.

Instantiations of compared techniques. We compared ODSE with a standard DSSE scheme
[8], and the use of generic ORAM on top of the DSSE encrypted index. The performance
of all schemes was measured in average-case cost. We instantiated ODSE schemes and their
counterparts with the following settings:

12

https://github.com/osu-crypto/ODSE

108 109 1010 1011
0

40

80

120

160

keyword-file pairs (log scale)

D
el

ay
(s

ec
)

Path-ORAM [29]
Ring-ORAM [25]
ODSEwo

xor
ODSEwo

ro
ODSEwo

it

Πdyn
2lev [8] (search)

Πdyn
2lev [8] (update)

108 109 1010 1011

0

2

4

6

8

Figure 1: Latency of ODSE schemes and their counterparts.

• ODSE: We performed our experiments in the semi-honest setting, in which servers do not
collude with each other. Therefore, we used two servers for ODSEwo

xor and ODSEwo
ro schemes, and

three servers for ODSEwo
it scheme. We selected λ = 4 for ODSEwo

xor and ODSEwo
ro , and λ′ = 4 with

Fp where p is a 16-bit prime for ODSEwo
it . We note that selecting larger p (up to 64 bits) can

reduce the PIR computation time, but also increase the bandwidth overhead as a trade-off. We
chose 16-bit prime field to achieve a balance between computation and communication overhead
according to the network constraints used in this study.
• Standard DSSE : We selected one of the most efficient DSSE schemes by Cash et al. in
[8] (i.e., Πdyn

2lev variant) to showcase the performance gap between ODSE and standard DSSE.

We simulated the performance of Πdyn
2lev using the same software/hardware environments and

optimizations with ODSE (e.g., parallelization, AES-NI acceleration). Note that we did not
use the Java implementation of this scheme available in Clusion library [1] for comparison due
to its lack of hardware acceleration support (no AES-NI) and the difference between running

environments (Java VM vs. native C). So for the simulation of Πdyn
2lev, we used numbers that

would be better than the Clusion Java implementation.
• Simulation of using generic ORAM on DSSE data structure: We selected Path-ORAM [29]
and Ring-ORAM [25] as ODSE counterparts since they are the most efficient generic ORAM
schemes being proposed to date. Note that we did not use other recent ORAMs (e.g.,[3, 11])
for comparison since their cost is higher than that of the selected ORAMs due to fully/partially
homomorphic encryption. Moreover, there is a very limited numbers of studies focusing on
hiding access patterns in DSSE except the TWORAM scheme in [12] which provides an oblivious
access strategy to the encrypted files. This context is different from ours, where we only focus on
oblivious access on the encrypted index. Therefore, we did not explicitly compare TWORAM
with ODSE but instead, used one of their techniques to improve the performance of using generic
ORAM on DSSE data structure. Specifically, we applied the selected ORAMs on the dictionary
index containing (wi, idj) pairs suggested in [21] along with the round-trip optimization proposed
in [12], to make the comparison as fair as possible.

Overall Results. Figure 1 presents the end-to-end delays of ODSE schemes and their counter-

13

S S S S S S S SU U U U U U U U
0

1

2

3

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Client computation

0.04 0.1 2.5 10 22 40 62 90

(a) ODSEwo
xor

S S S S S S S SU U U U U U U U
0

1

2

3

4

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Communication

0.04 0.1 2.5 10 22 40 62 90

(b) ODSEwo
ro

S S S S S S S SU U U U U U U U
0

1

2

3

4

5

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Server processing

0.04 0.1 2.5 10 22 40 62 90

(c) ODSEwo
it

Figure 2: Detailed search (S) and update (U) costs of ODSE schemes.

parts, where both search and update are performed in ODSE schemes to hide the actual type of
operation as discussed in Section 3. Clearly, ODSE offers a higher security than standard DSSE
at the cost of a longer delay. However, ODSE schemes are still 3 - 57× faster if using generic
ORAMs to hide the access patterns under different encrypted index sizes being experimented.
Specifically, with an encrypted index containing ten billions of keyword-file pairs, Πdyn

2lev cost 36
ms and 600 ms to finish a search and update operation, respectively. ODSEwo

xor and ODSEwo
it took

2.8 seconds and 7.1 seconds respectively, to accomplish both keyword search and file update
operations, compared with 160 seconds by using Path-ORAM with the round-trip optimization
trick. ODSEwo

xor is the most efficient in terms of search, whose delay was less than 1 second.
This is due to the fact that ODSEwo

xor only computes XOR operations and the size of the search
query is minimal (i.e., a binary string). ODSEwo

ro and ODSEwo
it are more robust (e.g., malicious

tolerant) and more secure (e.g., unconditional security) than ODSEwo
xor with the cost of higher

search delay. ODSEwo
it is slowest among the three ODSE schemes since it requires three servers

and, therefore, the client needs to transmit more data. For file updates, ODSEwo
xor and ODSEwo

ro

achieved a similar delay since they have the same number of servers and incurred the same
amount of data to be transmitted. ODSEwo

it is slightly slower than ODSEwo
xor and ODSEwo

ro since
the client transmitted data to three servers, instead of two. We can see that in many cases
where it is not necessary to hide the operation types (search/update), using ODSE to conduct
individual operations, especially the keyword search, is much more efficient than generic ORAM
schemes. In the following, we dissect the total cost to investigate which factors contributed the
most to the latency of ODSE schemes.

Detailed cost analysis. Figure 2 presents the total delays of separate keyword search and file
update operations, as well as their detailed costs in ODSE schemes. Note that ODSE performs
both search and update (one of them is dummy) to hide the actual type of operation performed
by the client.
• Client processing: As shown in Figure 2, client computation contributed the least amount to
the overall search delay (i.e., < 10%) in all ODSE schemes. The client computation comprises the
following operations: (1) Generate select queries (with SSS in ODSEwo

it and ODSEwo
ro , and PRG

in ODSEwo
xor); (2) SSS recovery (in ODSEwo

ro and ODSEwo
it) and IND-CPA decryption (in ODSEwo

xor

and ODSEwo
ro); (3) Filter dummy positions in the decrypted data. Note that it is possible to

reduce the client-side delay in the online phase (by at least 50%-60%) via pre-computation of

14

some values such as row keys, select queries (only contain shares of 0 or 1). For the file update,
the client performs decryption and re-encryption on λ columns (in ODSEwo

xor and ODSEwo
ro), or SSS

over λ′ blocks (in ODSEwo
it). Since we used cryptographic acceleration (i.e., Intel AES-NI) and

highly optimized number theory libraries (i.e., NTL), all these computations only contributed a
small fraction of the overall delay as shown in Figure 2.
• Client-server communication: Data transmission is the dominating factor in the delay of ODSE
schemes. The communication cost of ODSEwo

xor is smaller than that of other ODSE schemes, since
the size of search query and the data transmitted from servers are binary vectors. In ODSEwo

ro and
ODSEwo

it , these vectors are of 16-bit components ∈ Fp. The communication overhead of ODSEwo
ro

and ODSEwo
it can be reduced by using a smaller finite field, but with the cost of increased PIR

computation at the server side.
• Server processing: The cost of PIR operations in ODSEwo

xor is negligible as it only relies on XOR
operations. The PIR computation of ODSEwo

ro and ODSEwo
it is reasonable, as it operates on a

bunch of 16-bit values. For update operations, the server-side cost is mainly due to memory
accesses for column update. ODSEwo

ro and ODSEwo
it are highly memory access-efficient since we

organized the memory layout for column-friendly access. This layout minimizes the memory
access delay not only in update but also in search, since the inner product in PIR also accesses
contiguous memory blocks by this organization. In ODSEwo

xor, we stored the matrix for row-
friendly access to permit efficient XOR operations during search. However, this requires file
update to access non-contiguous memory blocks. Therefore, the file update in ODSEwo

xor incurs a
higher memory access delay than that of ODSEwo

ro and ODSEwo
it as shown in Figure 2.

Discussion and Limitations. In this paper, we focused on sealing information leakages from
the access pattern on the DSSE encrypted index beyond using generic ORAMs. By leverag-
ing bandwidth-efficient oblivious access techniques including multi-server PIR and Write-Only
ORAM, ODSE achieves a high security with the following asymptotic costs. The communica-
tion of ODSE is O(M + N), where M and N are the (maximum) number of unique keywords
and files in the database, respectively. Although the cost is linear, we have shown that, the
actual communication overhead of ODSE is much lower than using generic ORAM to access the
DSSE encrypted index, whose asymptotic bandwidth cost is poly-logarithmic but is hidden by
large constant factors in reality. In practice, this results in up to a 57× improvement in perfor-
mance. For instance, the transmission cost of using Path-ORAM on the DSSE encrypted index
is O(r log2(N ·M)), where r is the size of search/update results, which ,in many cases, might
be worse than downloading the entire database [21]. The client and server computation costs
are O(M) and O(N ·M), respectively. Despite the PIR computation over the entire encrypted
index, we showed experimentally that, its delay was reasonable in practice, assuming that all
possible optimizations (e.g., parallelization, multi-threading, assembly optimization) have been
taken into account.

The main limitation of ODSE is the encrypted index size, which is O(N ·M). Given the
database containing 300,000 files and 300,000 keywords used in this experiment, the size of
encrypted index is 21 GB.

7 Conclusions

We proposed a new set of Oblivious Distributed DSSE schemes called ODSE, which achieve a
full obliviousness, hidden size pattern, and low end-to-end delay simultaneously. Specifically,

15

ODSEwo
xor achieves the lowest end-to-end delay with the smallest communication overhead among

all of its counterparts with the highest resiliency against colluding servers. ODSEwo
it achieves the

highest level of privacy with information-theoretic security for access patterns and the encrypted
index, along with the robustness against malicious servers. Our experiments demonstrated that
ODSE schemes are one order of magnitude faster than the most efficient ORAM techniques
over DSSE encrypted index. We fully implemented ODSE schemes and their counterparts
on an actual cloud environment, and will open-source our software for a public use and wide
adaptation.

References

[1] The clusion library. Available at https://github.com/encryptedsystems/Clusion/, 2017.

[2] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren. Asymptotically tight bounds for
composing oram with pir. In IACR International Workshop on Public Key Cryptography, pages
91–120. Springer, 2017.

[3] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In International
Workshop on Public Key Cryptography, pages 131–148. Springer, 2014.

[4] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval. In International
Conference on Security in Communication Networks, pages 326–341. Springer, 2002.

[5] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu. Toward robust hidden volumes using
write-only oblivious ram. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 203–214. ACM, 2014.

[6] R. Bost. Sophos forward secure searchable encryption. In Proceedings of the 2016 ACM Conference
on Computer and Communications Security. ACM, 2016.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable en-
cryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 668–679. ACM, 2015.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data structures and implementation. IACR Cryptol-
ogy ePrint Archive, 2014:853, 2014.

[9] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal of the
ACM (JACM), 45(6):965–981, 1998.

[10] S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello. Obliviousdb: Practical and efficient
searchable encryption with controllable leakage.

[11] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion oram: A constant
bandwidth blowup oblivious ram. In Theory of Cryptography Conference, pages 145–174. Springer,
2016.

[12] S. Garg, P. Mohassel, and C. Papamanthou. Tworam: Round-optimal oblivious ram with applica-
tions to searchable encryption. IACR Cryptology ePrint Archive, 2015:1010, 2015.

[13] I. Goldberg. Improving the robustness of private information retrieval. In 2007 IEEE Symposium
on Security and Privacy (SP’07), pages 131–148. IEEE, 2007.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams. Journal of
the ACM (JACM), 43(3):431–473, 1996.

16

https://github.com/encryptedsystems/Clusion/

[15] F. Hahn and F. Kerschbaum. Searchable encryption with secure and efficient updates. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages 310–320.
ACM, 2014.

[16] T. Hoang, A. Yavuz, and J. Guajardo. Practical and secure dynamic searchable encryption via
oblivious access on distributed data structure. In Proceedings of the 32nd Annual Computer Security
Applications Conference (ACSAC). ACM, 2016.

[17] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Annual Network and Distributed System Security Symposium
– NDSS, volume 20, page 12, 2012.

[18] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In Finan-
cial Cryptography and Data Security, pages 258–274. Springer, 2013.

[19] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security, pages 965–976.
ACM, 2012.

[20] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern leakage in searchable encryption: Attacks
and new construction. Information Sciences, 265:176–188, 2014.

[21] M. Naveed. The fallacy of composition of oblivious ram and searchable encryption. Technical report,
Cryptology ePrint Archive, Report 2015/668, 2015.

[22] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic searchable encryption via blind storage.
In Security and Privacy (S&P), 2014 IEEE Symposium on, pages 639–654. IEEE, 2014.

[23] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad. Searchable symmetric
encryption: Designs and challenges. ACM Computing Surveys (CSUR), 50(3):40, 2017.

[24] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In Proceedings of the 2016 ACM Conference on Computer and
Communications Security. ACM, 2016.

[25] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas. Ring oram:
Closing the gap between small and large client storage oblivious ram. IACR Cryptology ePrint
Archive, 2014:997, 2014.

[26] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[27] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, SP ’00, pages 44–55, Washington,
DC, USA, 2000. IEEE Computer Society.

[28] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small
leakage. In Annual Network and Distributed System Security Symposium – NDSS, volume 14, pages
23–26, 2014.

[29] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path oram: an
extremely simple oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications security, pages 299–310. ACM, 2013.

[30] A. A. Yavuz and J. Guajardo. Dynamic searchable symmetric encryption with minimal leakage and
efficient updates on commodity hardware. In Selected Areas in Cryptography – SAC 2015, Lecture
Notes in Computer Science. Springer International Publishing, August 2015.

[31] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of file-
injection attacks on searchable encryption. In 25th USENIX Security Symposium (USENIX Security
16), pages 707–720, Austin, TX, 2016. USENIX Association.

17

A Appendix

A.1 Proofs

Proof of Theorem 1. We argue the correctness and security of ODSEwo
xor in the semi-honest setting as

follows:
Correctness: ODSEwo

xor is correct iff the keyword search operation returns correct result and the file
update operation is consistent. ODSEwo

xor leverages Chor’s PIR protocol for keyword search, which was
proven to be correct in [9]. ODSEwo

xor leverages Write-Only ORAM for file update, which was proven to
achieve negligible inconsistent probability in [5].
Security: ODSEwo

xor leverages Chor’s PIR and therefore, achieves (` − 1)-privacy for keyword search as
proven in [9]. ODSEwo

xor leverages Write-Only ORAM for the file update, which incurs random access
patterns over the encrypted index [5]. Since the index in ODSEwo

xor is IND-CPA encrypted, such file update
operations achieve the computational security. Notice that Write-Only ORAM is originally proposed in
the single-server setting. ODSEwo

xor performs Write-Only ORAM on ` server with an identical procedure
(e.g., memory accesses are the same in ` servers), and therefore, the server coalition does not affect the
security of Write-Only ORAM. For each actual search/update operation, ODSEwo

xor performs both search
and update protocol. Therefore, given the security of each search and update operations as discussed
above, for any actual access operations, the views of `−1 colluding servers in ODSEwo

xor are computationally
indistinguishable.

Proof of Theorem 2. We argue the correctness and security of ODSEwo
ro in the semi-honest setting as

follows:
Correctness: ODSEwo

ro leverages the SSS-based PIR protocol for keyword search, which was proven to be
correct in [4]. Similar to ODSEwo

xor, ODSE
wo
ro uses Write-Only ORAM for file update, which was proven to

achieve a negligible inconsistent probability in [5].
Security: ODSEwo

ro leverages a SSS-based PIR protocol and therefore, achieves t-privacy for keyword
search due to the t-privacy property of SSS, as shown in [4, 13]. Similar to ODSEwo

xor, ODSE
wo
ro leverages

Write-Only ORAM over IND-CPA encrypted database, which offers computational security as shown
in [5]. For each actual operation, the client performs both search and update protocols. Therefore, the
access pattern in ODSEwo

ro is a computationally indistinguishable in the presence of t colluding servers.

Proof of Theorem 3. We argue the correctness and security of ODSEwo
it in the semi-honest setting as fol-

lows:
Correctness: ODSEwo

it leverages a SSS-based PIR protocol over the shares of the encrypted index for
keyword search. In this case, the answer from each server is the share represented by a 2t-degree poly-
nomial. There are more than 2t+ 1 honest servers in the system and therefore, the client can be able to
reconstruct the secret correctly to obtain the search result. ODSEwo

it also leverages Write-Only ORAM
for file update, which was proven to achieve negligible inconsistent probability in [5]. In overall, ODSEwo

it

is correct except with a negligible probability.
Security: ODSEwo

it leverages a SSS-based PIR protocol and therefore, achieves t-privacy for keyword
search due to the t-privacy property of SSS. Recall that Write-Only ORAM incurs random memory
access on the encrypted index. Meanwhile, this index in ODSEwo

it is information-theoretically secure
since it is shared by SSS. Therefore, any access patterns incurred by update operation in ODSEwo

it are
information-theoretically (statistically) indistinguishable, in the presence of t colluding servers. Given
that search and update are individually information-theoretically secure, we conclude that ODSEwo

it is
information-theoretically secure in the coalition of up to t servers.

A.2 Malicious Setting Extension

ODSEwo
it scheme uses SSS as the building block and therefore, it can tolerate with a number of incorrect

shares to recover the secret shared by SSS scheme. The main idea is to leverage error correction techniques
such as Reed Solomon Decoding in [4] or List Decoding algorithms in [13] as follows:

18

Let α be the value and JαKi be the share of α for server Pi using (t − `)-SSS. For simplicity, we
assume that all ` servers respond to the client, some of which return malicious answers. The Reed
Solomon Decode in [4] can recover the α correctly from ` shares JαK, given the number of incorrect shares
is:

tm ≤ t <
`

3
. (1)

Goldberg et al. in [13] proposed to use List decoding algorithm with verification to tolerate more
malicious servers. With this technique, the number of malicious servers is:

tm ≤ t < `− d
√
`te. (2)

To extend ODSEwo
ro and ODSEwo

it schemes presented in Section 4 into the malicious setting, we insert
the Reed Solomon decode [4] or List Decoding in [13] into the SSS.Recover Algorithm presented in Section
2 after the Lagrange interpolation, and verify if the recovered secret is consistent as follows. If there exists
a incorrect answer among ` answers due to the malicious server, the Lagrange interpolation might return
an inconsistent value, given that the incorrect answer is selected to participate in the reconstruction. To
prevent this, the client will invoke correction techniques presented above to detect malicious servers and
to obtain the correct value in case the interpolation function does not return a consistent result when
performing on t+ 1 random shares several times. As indicated in Eq. (1) and (2), the minimum number
of servers in ODSEwo

it is also increased, compared with the semi-honest setting.
Notice that in the semi-honest setting, the update protocol of ODSEwo

it presented in ODSEwo
it .Update

Algorithm is communication-optimized, in which the client only communicates with 2t+1 random servers
to read and recover k columns correctly (e.g., step 2). In the malicious setting, the client needs to read
from all ` servers to verify the consistency of columns and to recover them correctly.

19

	Introduction
	State-of-the-art and Limitations
	Research Objective
	Our Contributions

	Preliminaries and Building Blocks
	Definition and Models
	The Proposed ODSE Schemes
	 ODSE Data Structures
	 ODSExorwo : Fast ODSE
	 ODSErowo: Robust ODSE
	 ODSEitwo: Robust and IT-Secure ODSE

	Security
	Experimental Evaluation
	Conclusions
	Appendix
	Proofs
	Malicious Setting Extension

