The SM9 Cryptographic Schemes

Zhaohui Cheng
Independent Consultant
zhaohui_cheng@hotmail.com

Abstract

SM9 is a Chinese official cryptography standard which defines a set of identity-based cryptographic schemes from pairings. This report describes the technical specification of SM9 as a reference for those practitioners who have difficult to access the Chinese version of the standard.

1 Introduction

In this document, the identity-based signature (IBS), the identity-based key agreement(IB-KA) and the identity-based encryption (IBE) schemes from SM9 are described. These schemes are instantiated with an efficient bilinear pairing on elliptic curves [3] such as the optimal Ate pairing [7] or the R-Ate pairing [6].

Without loss of generality, a pairing is defined as a bilinear map

$$
\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

where $\mathbb{G}_{1}, \mathbb{G}_{2}$ are additive groups and \mathbb{G}_{T} is a multiplicative group. All three groups have prime order r.

The map \hat{e} has the following properties:

1. Bilinearity. For all $P \in \mathbb{G}_{1}$ and $Q \in \mathbb{G}_{2}$ and all $a, b \in \mathbb{Z}, \hat{e}([a] P,[b] Q)=$ $\hat{e}(P, Q)^{a b}$.
2. Non-degeneracy. For generator $P_{1} \in \mathbb{G}_{1}$ and $P_{2} \in \mathbb{G}_{2}, \hat{e}\left(P_{1}, P_{2}\right) \neq 1$

2 Notation

The following list briefly describes the notation used in the document. One may refer to ISO/IEC 18033-2 [4] for detailed definitions.

1. BITS (m) the primitive to count bit length of a bit string m.
2. $B S 2 I P(m)$ the primitive to convert a bit string m to an integer.
3. $E C 2 O S P(C)$ the primitive to convert an elliptic curve point C to an octet string.
4. $F E 2 O S P(w)$ the primitive to convert a field element w to an octet string.
5. $\operatorname{I2OSP}(m, l)$ the primitive to convert an integer m to an octet string of length l.

3 Supporting Functions

Before presenting the main schemes, two supporting functions used in the schemes are described here.

The first function is a key derivation function (KDF) which works as KDF2 in ISO/IEC 18033-2 [4].

KDF2 $\left(H_{v}, Z, l\right)$. Given a hash function H_{v} with output bit length v, a bit string Z and a non-negative integer l

1. Set a 32 -bit counter $c t=0 \times 00000001$.
2. For $i=1$ to $\lceil l / v\rceil$.
(a) Set $H a_{i}=H_{v}(Z \| \operatorname{I2OSP}(c t, 4))$.
(b) Set $c t=c t+1$.
3. Output the first l bits of $H a_{1}\left\|H a_{2}\right\| \cdots \| H a_{\lceil l / v\rceil}$.

The second function is a hash to range function (H2RF) which runs as follows:
$\operatorname{H2RF}_{i}\left(H_{v}, Z, n\right)$. Given a hash function H_{v} with output bit length v, a bit string Z and a non-negative integer n and a non-negative integer index i

1. Set $l=8 \times\lceil(5 \times \operatorname{BITS}(n)) / 32\rceil$.
2. Set $H a=\operatorname{KDF2}\left(H_{v}, \operatorname{I2OSP}(i, 1) \| Z, l\right)$.
3. Set $h=B S 2 I P(H a)$.
4. Output $h_{i}=(h \bmod (n-1))+1$.

4 Identity-Based Signature

The SM9 signature scheme consists of following four operations: Setup, Private-Key-Extract, Sign and Verify.

Setup $\mathbb{G}_{\text {ID }}\left(1^{\kappa}\right)$. On input 1^{κ}, the operation runs as follows:

1. Generate three groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} of prime order r and a bilinear pairing map $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$. Pick random generator $P_{1} \in \mathbb{G}_{1}, P_{2} \in \mathbb{G}_{2}$.
2. Pick a random $s \in \mathbb{Z}_{r}^{*}$ and compute $P_{p u b}=[s] P_{2}$.
3. Set $g=\hat{e}\left(P_{1}, P_{\text {pub }}\right)$.
4. Pick a cryptographic hash function H_{v} and a one byte appendix hid.
5. Output the master public key $M_{\mathfrak{p k}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}, P_{1}, P_{2}, P_{p u b}, g, \mathbf{H 2 R F}_{1}\left(H_{v}, \cdot, \cdot\right)\right.$, $\mathbf{H 2 R F}{ }_{2}\left(H_{v}, \cdot, \cdot\right)$, hid) and the master secret key $M_{\mathfrak{s k}}=s$. SM9 standard requires $h i d=1$.

Private-Key-Extract $\mathbb{X}_{\mathrm{ID}}\left(M_{\mathfrak{p k}}, M_{\mathfrak{s k}}, \mathrm{ID}_{A}\right)$. Given an identity string $\mathrm{ID}_{A} \in$ $\{0,1\}^{*}$ of entity $A, M_{\mathfrak{p e}}$ and $M_{\mathfrak{s k}}$, the operation outputs error if

$$
s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right) \quad \bmod r=0
$$

otherwise outputs

$$
D_{A}=\left[\frac{s}{s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)}\right] P_{1}
$$

$\operatorname{Sign}\left(M_{\mathfrak{p k}}, D_{A}, M\right)$. Given the message M, the private key D_{A} and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:

1. Pick a random $x \in \mathbb{Z}_{r}^{*}$.
2. Set $w=g^{x}$.
3. Set $h=\mathbf{H 2 R F}_{2}\left(H_{v}, M \| \operatorname{FE2OSP}(w), r\right)$.
4. Set $l=(x-h) \bmod r$.
5. Set $S=[l] D_{A}$.
6. Output $\langle h, S\rangle$.
$\operatorname{Verify}\left(M_{\mathfrak{p k}}, \mathrm{ID}_{A}, M,\langle h, S\rangle\right)$. Given the message M, the signer's identity string ID_{A}, the signature $\langle h, S\rangle$ and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:
7. If $h \notin \mathbb{Z}_{r}^{*}$ or $S \notin \mathbb{G}_{1}^{*}$, then output failure and terminate.
8. Set $h_{1}=\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)$.
9. Set $Q=\left[h_{1}\right] P_{2}+P_{\text {pub }}$.
10. Set $u=\hat{e}(S, Q)$.
11. Set $t=g^{h}$.
12. Set $w^{\prime}=u \cdot t$.
13. Set $h_{2}=\operatorname{H2RF}_{2}\left(H_{v}, M \| F E 2 O S P\left(w^{\prime}\right), r\right)$.
14. If $h \neq h_{2}$, then output failure, otherwise output success.

5 Identity-Based Key Agreement

The SM9 key agreement is an authenticated two-pass (or three-pass) key agreement (with key confirmation). The scheme consists of following operations: Setup, Private-Key-Extract, Message Exchange, Session Key Generation and Session Key Confirmation.

Setup $\mathbb{G}_{\text {ID }}\left(1^{\kappa}\right)$. On input 1^{κ}, the operation runs as follows:

1. Generate three groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} of prime order r and a bilinear pairing map $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$. Pick random generator $P_{1} \in \mathbb{G}_{1}, P_{2} \in \mathbb{G}_{2}$.
2. Pick a random $s \in \mathbb{Z}_{r}^{*}$ and compute $P_{p u b}=[s] P_{1}$.
3. Set $g=\hat{e}\left(P_{\text {pub }}, P_{2}\right)$.
4. Pick a cryptographic hash function H_{v} and a one byte appendix hid.
5. Output the master public key $M_{\mathfrak{p k}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}, P_{1}, P_{2}, P_{p u b}, g\right.$, $\mathbf{H 2 R F}_{1}\left(H_{v}, \cdot, \cdot\right)$, hid) and the master secret key $M_{\mathfrak{s k}}=s$. SM9 standard requires hid $=2$.

Private-Key-Extract $\mathbb{X}_{\mathrm{ID}}\left(M_{\mathfrak{p k}}, M_{\mathfrak{s k}}, \mathrm{ID}_{A}\right)$. Given an identity string $\mathrm{ID}_{A} \in$ $\{0,1\}^{*}$ of entity $A, M_{\mathfrak{p k}}$ and $M_{\mathfrak{s k}}$, the operation outputs error if

$$
s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right) \quad \bmod r=0
$$

otherwise outputs

$$
D_{A}=\left[\frac{s}{s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)}\right] P_{2}
$$

Message Exchange.

$$
\begin{aligned}
& A \rightarrow B: R_{A}=\left[x_{A}\right]\left(\left[\mathbf{H} 2 \mathbf{R F}_{1}\left(H_{v}, \mathrm{ID}_{B} \| h i d, r\right)\right] P_{1}+P_{p u b}\right) \\
& B \rightarrow A: R_{B}=\left[x_{B}\right]\left(\left[\mathbf{H} 2 \mathbf{R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)\right] P_{1}+P_{p u b}\right), S_{B} \\
& A \rightarrow B: S_{A}
\end{aligned}
$$

where random $x_{A}, x_{B} \in \mathbb{Z}_{r}^{*}$ are picked by A and B respectively and S_{B} and S_{A} are the optional session key confirmation parts. The method to generate such optional values is explained later.

Session Key Generation.

1. Entity A computes intermediate values

$$
g_{1}=\hat{e}\left(R_{B}, D_{A}\right), g_{2}=\hat{e}\left(P_{p u b}, P_{2}\right)^{x_{A}}=g^{x_{A}}, g_{3}=g_{1}^{x_{A}} .
$$

2. Entity A computes session key

$$
\begin{gathered}
S K_{A}=\operatorname{KDF2}\left(I D_{A}\left\|I D_{B}\right\| E C 2 O S P\left(R_{A}\right)\left\|E C 2 O S P\left(R_{B}\right)\right\|\right. \\
\left.F E 2 O S P\left(g_{1}\right)\left\|F E 2 O S P\left(g_{2}\right)\right\| F E 2 O S P\left(g_{3}\right), \text { klen }\right) .
\end{gathered}
$$

3. Entity B computes intermediate values

$$
g_{1}^{\prime}=\hat{e}\left(P_{p u b}, P_{2}\right)^{x_{B}}=g^{x_{B}}, g_{2}^{\prime}=\hat{e}\left(R_{A}, D_{B}\right), g_{3}^{\prime}=g_{2}^{\prime x_{B}} .
$$

4. Entity B computes session key

$$
\begin{gathered}
S K_{B}=\operatorname{KDF2}\left(I D_{A}\left\|I D_{B}\right\| \operatorname{EC} 2 O S P\left(R_{A}\right)\left\|\operatorname{EC} 2 O S P\left(R_{B}\right)\right\|\right. \\
\left.F E 2 O S P\left(g_{1}^{\prime}\right)\left\|F E 2 O S P\left(g_{2}^{\prime}\right)\right\| F E 2 O S P\left(g_{3}^{\prime}\right), k l e n\right) .
\end{gathered}
$$

Session Key Confirmation.

1. Entity B computes its key confirmation

$$
S_{B}=H_{v}\left(0 x 82\left\|F E 2 O S P\left(g_{2}^{\prime}\right)\right\|\right.
$$

$H_{v}\left(F E 2 O S P\left(g_{1}^{\prime}\right)\left\|F E 2 O S P\left(g_{3}^{\prime}\right)\right\| I D_{A}\left\|I D_{B}\right\| E C 2 O S P\left(R_{A}\right) \| E C 2 O S P\left(R_{B}\right)\right)$.
Entity A should verify S_{B} 's correctness with g_{1}, g_{2}, g_{3}.
2. Entity A computes its key confirmation

$$
\begin{gathered}
S_{A}=H_{v}\left(0 x 83\left\|F \operatorname{E2OSP}\left(g_{1}\right)\right\|\right. \\
H_{v}\left(F E 2 O S P\left(g_{2}\right)\left\|F E 2 O S P\left(g_{3}\right)\right\| I D_{A}\left\|I D_{B}\right\| \operatorname{EC} 2 O S P\left(R_{A}\right) \| \operatorname{EC} 2 O S P\left(R_{B}\right)\right)
\end{gathered}
$$

Entity B should verify S_{A} 's correctness with $g_{1}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}$.
Note that entity $A(B)$ should check $R_{B}\left(R_{A}\right)$ lies in \mathbb{G}_{1}^{*}.

6 Identity-Based Encryption

The SM9 encryption is a hybrid encryption scheme built from an identity-based key encapsulation scheme (KEM) and a data encapsulation scheme (DEM). DEM can be one of those schemes standardized in ISO/IEC 18033-2 [4]. First the SM9 KEM is presented, then the hybrid encryption scheme is described. The KEM scheme consists of four operations: Setup, Private-Key-Extract, KEM-Encap and KEM-Decap. They works follows:

Setup $\mathbb{G}_{\mathrm{ID}}\left(1^{\kappa}\right)$. On input 1^{κ}, the operation runs as follows:

1. Generate three groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} of prime order r and a bilinear pairing map $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$. Pick random generator $P_{1} \in \mathbb{G}_{1}, P_{2} \in \mathbb{G}_{2}$.
2. Pick a random $s \in \mathbb{Z}_{r}^{*}$ and compute $P_{p u b}=[s] P_{1}$.
3. Set $g=\hat{e}\left(P_{p u b}, P_{2}\right)$.
4. Pick a cryptographic hash function H_{v} and a one byte appendix hid.
5. Output the master public key $M_{\mathfrak{p k}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}, P_{1}, P_{2}, P_{p u b}, g\right.$, $\mathbf{H 2 R F}_{1}\left(H_{v}, \cdot, \cdot\right)$, hid) and the master secret key $M_{\mathfrak{s k}}=s$. SM9 standard requires hid $=3$.

Private-Key-Extract $\mathbb{X}_{\mathrm{ID}}\left(M_{\mathfrak{p k}}, M_{\mathfrak{s k}}, \mathrm{ID}_{A}\right)$. Given an identity string $\mathrm{ID}_{A} \in$ $\{0,1\}^{*}$ of entity $A, M_{\mathfrak{p e}}$ and $M_{\mathfrak{s k}}$, the operation outputs error if

$$
s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right) \quad \bmod r=0
$$

otherwise outputs

$$
D_{A}=\left[\frac{s}{s+\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)}\right] P_{2}
$$

KEM-Encap $\left(M_{\mathfrak{p k}}, \mathrm{ID}_{A}, l\right)$. Given an identify string ID_{A}, the DEM key length l and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:

1. Set $h_{1}=\mathbf{H} 2 \mathbf{R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)$.
2. Set $Q=\left[h_{1}\right] P_{1}+P_{\text {pub }}$.
3. Pick a random $x \in \mathbb{Z}_{r}^{*}$.
4. Set $C_{1}=[x] Q$.
5. Set $t=g^{x}$.
6. Set $K=\operatorname{KDF2}\left(H_{v}, E C 2 O S P\left(C_{1}\right)\|F E 2 O S P(t)\| I D_{A}, l\right)$.
7. Output $\left\langle K, C_{1}\right\rangle$.

KEM-Decap $\left(M_{\mathfrak{p k}}, \mathrm{ID}_{A}, D_{A}, C_{1}, l\right)$. Given an identify string ID_{A}, the corresponding private key D_{A}, the encapsulation part C_{1}, the DEM key length l and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:

1. If $C_{1} \notin \mathbb{G}_{1}^{*}$, then output \perp and terminate.
2. Set $t=\hat{e}\left(C_{1}, D_{A}\right)$.
3. Set $K=\operatorname{KDF2}\left(H_{v}, \operatorname{EC} 2 O S P\left(C_{1}\right)\|F E 2 O S P(t)\| I D_{A}, l\right)$.
4. Output K.

The full SM9 encryption scheme works as follows:
KEM-DEM-Encrypt $\left(M_{\mathfrak{p k}}, \mathrm{ID}_{A}, m\right)$. Given an identify string ID_{A}, the plain text m and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:

1. Set $h_{1}=\mathbf{H 2 R F}_{1}\left(H_{v}, \mathrm{ID}_{A} \| h i d, r\right)$.
2. Set $Q=\left[h_{1}\right] P_{1}+P_{p u b}$.
3. Pick a random $x \in \mathbb{Z}_{r}^{*}$.
4. Set $C_{1}=[x] Q$.
5. Set $t=g^{x}$.
6. Set $K_{1} \| K_{2}=\operatorname{KDF2}\left(H_{v}, \operatorname{EC2OSP}\left(C_{1}\right)\|\operatorname{FE} 2 O S P(t)\| I D_{A}, \operatorname{BITS}(m)+v\right)$.
7. Set $C_{2}=K_{1} \oplus m$.
8. Set $C_{3}=H_{v}\left(C_{2} \| K_{2}\right)$.
9. Output $\left\langle C_{1}, C_{2}, C_{3}\right\rangle$.

KEM-DEM-Decrypt $\left(M_{\mathfrak{p k}}, \mathrm{ID}_{A}, D_{A},\left\langle C_{1}, C_{2}, C_{3}\right\rangle\right)$. Given an identify string ID_{A}, the corresponding private key D_{A}, the cipher text $\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ and the master public key $M_{\mathfrak{p k}}$, the operation runs as follows:

1. If $C_{1} \notin \mathbb{G}_{1}^{*}$, then output \perp and terminate.
2. Set $t=\hat{e}\left(C_{1}, D_{A}\right)$.
3. Set $K_{1} \| K_{2}=\operatorname{KDF2}\left(H_{v}, \operatorname{EC2OSP}\left(C_{1}\right)\|F E 2 O S P(t)\| I D_{A}, \operatorname{BITS}\left(C_{2}\right)+\right.$ $v)$.
4. Set $C_{3}^{\prime}=H_{v}\left(C_{2} \| K_{2}\right)$.
5. If $C_{3}^{\prime} \neq C_{3}$, then output \perp and terminate.
6. Output $m=K_{1} \oplus C_{2}$.

7 Performance Evaluation

Here we briefly compare the performance of SM9 with the identity-based signature schemes included in ISO/IEC 14888-3 [2], identity-based key agreements included in ISO/IEC 11770-3 [1] and encryption schemes in ISO/IEC 18033-5 [5]. Table 1 shows that the SM9 signature scheme is more efficient than those two IBS schemes in ISO/IEC 14888-3. Table 2 shows that the SM9 key agreement is more efficient than those two IB-KA schemes in ISO/IEC 11770-3 [1]. Table 3 shows that the SM9 KEM maintains better performance in terms of both the computation efficiency and the cipher text size than those three schemes in ISO/IEC 18033-5.

References

1. ISO/IEC. Information technology - Secruity techniques - Key management - Part 3: Mechanisms using asymmetric techniques. ISO11770-3, 2015.
2. ISO/IEC. Information technology - Secruity techniques - Digital signatures with appendix - Part 3: Discrete logarithm based mechanisms. ISO14888-3, 2015.

Table 1. Performance of IBS from Pairings

	IBS1 [2]	IBS2 [2]	SM9-IBS
Private Key Extract			
Hash to \mathbb{G}_{1}	1	1	
Mul in \mathbb{G}_{1}	1	1	$\overline{1}$
Sign	$\overline{2}^{(1)}$	$\overline{2}^{(2)}$	$\overline{1}$
Mul in \mathbb{G}_{1}			$\overline{1}$
Exp in \mathbb{G}_{T}	1		
Pairings			
Verify	1	1	
Hash to \mathbb{G}_{1}	$1^{(1)}$	1	$\overline{1}$
Mul in \mathbb{G}_{1}			$\overline{1}$
Mul in \mathbb{G}_{2}	2	2	1
Exp in \mathbb{G}_{T}	Pairings	$\lambda+\gamma$	2γ
Signature Size	$\lambda+\gamma$		

1. Assume muplication in \mathbb{G}_{1} is faster than exponentiation in \mathbb{G}_{T}.
2. Assume Y is pre-computed in producing the pre-signature [2] which is reasonable for a signer.
3. Symbols \bar{m} and n denote m fix-based multiplications or exponentiations and n general operations respectively.
4. Symbols λ, γ denote the length of an element in \mathbb{Z}_{r}^{*} and \mathbb{G}_{1} respectively.

Table 2. Performance of IB-KAs from Pairings

	SCC [1] FSU [1] SM9-KA		
Private Key Extract			
Hash to \mathbb{G}_{1}	1	1	
Mul in \mathbb{G}_{1}	1	1	$\overline{1}$
Message Exchange			
Mul in \mathbb{G}_{1}	$\overline{1}$	$\overline{1}$	$\overline{2}$
Session Key Generation			
Hash to \mathbb{G}_{1}	1	1	
Mul in \mathbb{G}_{1}	$1+\overline{1}$	$1+\overline{1}^{(1)}$	
Exp in \mathbb{G}_{T}			$1+\overline{1}$
Pairings	2	2	1
Message Size	γ	γ	γ

1. The FSU scheme requires $\mathbb{G}_{1}=\mathbb{G}_{2}$.

Table 3. Performance of IBEs from Pairings

	BF-IBE [5] BB $_{1}$-KEM [5] SK-KEM [5] SM9-KEM				
Private Key Extract					
Hash to \mathbb{G}_{2}	1		$\overline{1}$	$\overline{1}$	
Mul in \mathbb{G}_{2}	1	$\overline{2}$	$\overline{1}$		
Encapsulate	1				
Hash to \mathbb{G}_{2}	$1+\overline{1}$	$\overline{3}$	$\overline{2}$	$\overline{2}$	
Mul in \mathbb{G}_{1}		$\overline{1}$	$\overline{1}$	$\overline{1}$	
Exp in \mathbb{G}_{T}	1				
Pairings	$\overline{1}$		$\overline{1}^{(1)}$		
Decapsulate					
Mul in \mathbb{G}_{1}	1	2	1	1	
Mul in \mathbb{G}_{2}					
Pairings	Cipher Text Size	$\gamma+\delta+\zeta$	$2 \gamma+\eta$	$\gamma+\delta+\eta$	$\gamma+\eta$

1. Assume Q is pre-computed in KEM-Decrypt [5] which is reasonable for a decryptor.
2. Symbols $\gamma, \delta, \zeta, \eta$ denote the length of an element in \mathbb{G}_{1}, a random message, a plain text and a DEM respectively.
3. ISO/IEC. Information technology - Security techniques - Cryptographic techniques based on elliptic curves - Part 5: Elliptic curve generation. ISO15946-5, 2009.
4. ISO/IEC. Information technology - Security techniques - Encryption algorithms - Part 2: Asymmetric ciphers. ISO18033-2, 2006.
5. ISO/IEC. Information technology - Security techniques - Encryption algorithms - Part 5: Identity-based ciphers. ISO18033-5, 2015.
6. E. Lee, H. Lee and C. Park. Efficient and generalized pairing computation on abelian varieties. In IEEE Transactions on Information Theory, Volume 55, pp. 1793-1803, 2009.
7. F. Vercauteren. Optimal pairings. In IEEE Transactions on Information Theory, Volume: 56, Issue: 11, pp. $455-461,2010$.
