The SM9 Cryptographic Schemes

Zhaohui Cheng

Independent Consultant zhaohui_cheng@hotmail.com

Abstract. SM9 is a Chinese official cryptography standard which defines a set of identity-based cryptographic schemes from pairings. This report describes the technical specification of SM9 as a reference for those practitioners who have difficult to access the Chinese version of the standard.

1 Introduction

In this document, the identity-based signature (IBS), the identity-based key agreement(IB-KA) and the identity-based encryption (IBE) schemes from SM9 are described. These schemes are instantiated with an efficient bilinear pairing on elliptic curves [3] such as the optimal Ate pairing [7] or the R-Ate pairing [6].

Without loss of generality, a pairing is defined as a bilinear map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

where $\mathbb{G}_1, \mathbb{G}_2$ are additive groups and \mathbb{G}_T is a multiplicative group. All three groups have prime order r.

The map \hat{e} has the following properties:

- 1. Bilinearity. For all $P \in \mathbb{G}_1$ and $Q \in \mathbb{G}_2$ and all $a, b \in \mathbb{Z}$, $\hat{e}([a]P, [b]Q) = \hat{e}(P, Q)^{ab}$.
- 2. Non-degeneracy. For generator $P_1 \in \mathbb{G}_1$ and $P_2 \in \mathbb{G}_2$, $\hat{e}(P_1, P_2) \neq 1$

2 Notation

The following list briefly describes the notation used in the document. One may refer to ISO/IEC 18033-2 [4] for detailed definitions.

- 1. BITS(m) the primitive to count bit length of a bit string m.
- 2. BS2IP(m) the primitive to convert a bit string m to an integer.
- 3. EC2OSP(C) the primitive to convert an elliptic curve point C to an octet string.
- 4. FE2OSP(w) the primitive to convert a field element w to an octet string.
- 5. I2OSP(m, l) the primitive to convert an integer m to an octet string of length l.

3 Supporting Functions

Before presenting the main schemes, two supporting functions used in the schemes are described here.

The first function is a key derivation function (KDF) which works as KDF2 in ISO/IEC 18033-2 [4].

KDF2 (H_v, Z, l) . Given a hash function H_v with output bit length v, a bit string Z and a non-negative integer l

- 1. Set a 32-bit counter $ct = 0 \ge 00000001$.
- 2. For i = 1 to $\lfloor l/v \rfloor$.
 - (a) Set $Ha_i = H_v(Z || I2OSP(ct, 4))$.
 - (b) Set ct = ct + 1.
- 3. Output the first l bits of $Ha_1 || Ha_2 || \cdots || Ha_{\lceil l/v \rceil}$.

The second function is a hash to range function (H2RF) which runs as follows:

 $\mathbf{H2RF}_i(H_v, Z, n)$. Given a hash function H_v with output bit length v, a bit string Z and a non-negative integer n and a non-negative integer index i

- 1. Set $l = 8 \times [(5 \times BITS(n))/32]$.
- 2. Set $Ha = \mathbf{KDF2}(H_v, I2OSP(i, 1) || Z, l)$.
- 3. Set h = BS2IP(Ha).
- 4. Output $h_i = (h \mod (n-1)) + 1$.

4 Identity-Based Signature

The SM9 signature scheme consists of following four operations: **Setup**, **Private-Key-Extract**, **Sign** and **Verify**.

Setup $\mathbb{G}_{\mathrm{ID}}(1^{\kappa})$. On input 1^{κ} , the operation runs as follows:

- 1. Generate three groups \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T of prime order r and a bilinear pairing map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$. Pick random generator $P_1 \in \mathbb{G}_1, P_2 \in \mathbb{G}_2$.
- 2. Pick a random $s \in \mathbb{Z}_r^*$ and compute $P_{pub} = [s]P_2$.
- 3. Set $g = \hat{e}(P_1, P_{pub})$.
- 4. Pick a cryptographic hash function H_v and a one byte appendix hid.
- 5. Output the master public key $M_{\mathfrak{pt}} = (\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, \hat{e}, P_1, P_2, P_{pub}, g, \mathbf{H2RF}_1(H_v, \cdot, \cdot), \mathbf{H2RF}_2(H_v, \cdot, \cdot), hid)$ and the master secret key $M_{\mathfrak{st}} = s$. SM9 standard requires hid = 1.

Private-Key-Extract $\mathbb{X}_{ID}(M_{\mathfrak{pt}}, M_{\mathfrak{st}}, ID_A)$. Given an identity string $ID_A \in \{0, 1\}^*$ of entity $A, M_{\mathfrak{pt}}$ and $M_{\mathfrak{st}}$, the operation outputs error if

$$s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r) \mod r = 0,$$

otherwise outputs

$$D_A = \left[\frac{s}{s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)}\right] P_1.$$

Sign $(M_{\mathfrak{pt}}, D_A, M)$. Given the message M, the private key D_A and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. Pick a random $x \in \mathbb{Z}_r^*$.
- 2. Set $w = g^x$.
- 3. Set $h = \mathbf{H2RF}_2(H_v, M \| FE2OSP(w), r)$.
- 4. Set $l = (x h) \mod r$.
- 5. Set $S = [l]D_A$.
- 6. Output $\langle h, S \rangle$.

Verify $(M_{\mathfrak{pt}}, \mathrm{ID}_A, M, \langle h, S \rangle)$. Given the message M, the signer's identity string ID_A , the signature $\langle h, S \rangle$ and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. If $h \notin \mathbb{Z}_r^*$ or $S \notin \mathbb{G}_1^*$, then output failure and terminate.
- 2. Set $h_1 = \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)$.
- 3. Set $Q = [h_1]P_2 + P_{pub}$.
- 4. Set $u = \hat{e}(S, Q)$.
- 5. Set $t = q^h$.
- 6. Set $w' = u \cdot t$.
- 7. Set $h_2 = \mathbf{H2RF}_2(H_v, M \| FE2OSP(w'), r)$.
- 8. If $h \neq h_2$, then output failure, otherwise output success.

5 Identity-Based Key Agreement

The SM9 key agreement is an authenticated two-pass (or three-pass) key agreement (with key confirmation). The scheme consists of following operations: Setup, Private-Key-Extract, Message Exchange, Session Key Generation and Session Key Confirmation.

Setup $\mathbb{G}_{ID}(1^{\kappa})$. On input 1^{κ} , the operation runs as follows:

- 1. Generate three groups \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T of prime order r and a bilinear pairing map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$. Pick random generator $P_1 \in \mathbb{G}_1, P_2 \in \mathbb{G}_2$.
- 2. Pick a random $s \in \mathbb{Z}_r^*$ and compute $P_{pub} = [s]P_1$.
- 3. Set $g = \hat{e}(P_{pub}, P_2)$.
- 4. Pick a cryptographic hash function H_v and a one byte appendix *hid*.
- 5. Output the master public key $M_{\mathfrak{pt}} = (\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, \hat{e}, P_1, P_2, P_{pub}, g,$ **H2RF**₁(H_v, \cdot, \cdot), *hid*) and the master secret key $M_{\mathfrak{st}} = s$. SM9 standard requires *hid* = 2.

Private-Key-Extract $\mathbb{X}_{ID}(M_{\mathfrak{pt}}, M_{\mathfrak{st}}, ID_A)$. Given an identity string $ID_A \in \{0, 1\}^*$ of entity $A, M_{\mathfrak{pt}}$ and $M_{\mathfrak{st}}$, the operation outputs error if

$$s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A || hid, r) \mod r = 0,$$

otherwise outputs

$$D_A = \left[\frac{s}{s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)}\right] P_2.$$

Message Exchange.

$$A \rightarrow B : R_A = [x_A]([\mathbf{H2RF}_1(H_v, \mathbf{ID}_B \| hid, r)]P_1 + P_{pub})$$

$$B \rightarrow A : R_B = [x_B]([\mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)]P_1 + P_{pub}), S_B$$

$$A \rightarrow B : S_A$$

where random $x_A, x_B \in \mathbb{Z}_r^*$ are picked by A and B respectively and S_B and S_A are the optional session key confirmation parts. The method to generate such optional values is explained later.

Session Key Generation.

1. Entity A computes intermediate values

$$g_1 = \hat{e}(R_B, D_A), g_2 = \hat{e}(P_{pub}, P_2)^{x_A} = g^{x_A}, g_3 = g_1^{x_A}$$

2. Entity A computes session key

$$SK_A = \mathbf{KDF2}(ID_A \| ID_B \| EC2OSP(R_A) \| EC2OSP(R_B) \|$$

 $FE2OSP(g_1) || FE2OSP(g_2) || FE2OSP(g_3), klen).$

3. Entity B computes intermediate values

$$g_1' = \hat{e}(P_{pub}, P_2)^{x_B} = g^{x_B}, g_2' = \hat{e}(R_A, D_B), g_3' = g_2'^{x_B}.$$

4. Entity B computes session key

$$SK_B = \mathbf{KDF2}(ID_A \| ID_B \| EC2OSP(R_A) \| EC2OSP(R_B) \|$$

 $FE2OSP(g'_1) || FE2OSP(g'_2) || FE2OSP(g'_3), klen).$

Session Key Confirmation.

1. Entity B computes its key confirmation

$$S_B = H_v(0x82 \| FE2OSP(g_2') \|$$

$$H_v(FE2OSP(g'_1) || FE2OSP(g'_3) || ID_A || ID_B || EC2OSP(R_A) || EC2OSP(R_B)).$$

- Entity A should verify S_B 's correctness with g_1, g_2, g_3 .
- 2. Entity A computes its key confirmation

$$S_A = H_v(0x83 \| FE2OSP(g_1) \|$$

$$\begin{split} H_v(FE2OSP(g_2) \| FE2OSP(g_3) \| ID_A \| ID_B \| EC2OSP(R_A) \| EC2OSP(R_B)). \\ \text{Entity B should verify S_A's correctness with g_1', g_2', g_3'.} \end{split}$$

Note that entity A(B) should check $R_B(R_A)$ lies in \mathbb{G}_1^* .

6 Identity-Based Encryption

The SM9 encryption is a hybrid encryption scheme built from an identity-based key encapsulation scheme (KEM) and a data encapsulation scheme (DEM). DEM can be one of those schemes standardized in ISO/IEC 18033-2 [4]. First the SM9 KEM is presented, then the hybrid encryption scheme is described. The KEM scheme consists of four operations: **Setup**, **Private-Key-Extract**, **KEM-Encap** and **KEM-Decap**. They works follows:

Setup $\mathbb{G}_{\mathsf{TD}}(1^{\kappa})$. On input 1^{κ} , the operation runs as follows:

- 1. Generate three groups \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T of prime order r and a bilinear pairing map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$. Pick random generator $P_1 \in \mathbb{G}_1, P_2 \in \mathbb{G}_2$.
- 2. Pick a random $s \in \mathbb{Z}_r^*$ and compute $P_{pub} = [s]P_1$.
- 3. Set $g = \hat{e}(P_{pub}, P_2)$.
- 4. Pick a cryptographic hash function H_v and a one byte appendix hid.
- 5. Output the master public key $M_{\mathfrak{pt}} = (\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, \hat{e}, P_1, P_2, P_{pub}, g,$
- **H2RF**₁(H_v, \cdot, \cdot), *hid*) and the master secret key $M_{\mathfrak{st}} = s$. SM9 standard requires hid = 3.

Private-Key-Extract $\mathbb{X}_{\mathrm{ID}}(M_{\mathfrak{pt}}, M_{\mathfrak{st}}, \mathrm{ID}_A)$. Given an identity string $\mathrm{ID}_A \in \{0, 1\}^*$ of entity $A, M_{\mathfrak{pt}}$ and $M_{\mathfrak{st}}$, the operation outputs error if

$$s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r) \mod r = 0,$$

otherwise outputs

$$D_A = \left[\frac{s}{s + \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)}\right] P_2.$$

KEM-Encap $(M_{\mathfrak{pt}}, \mathrm{ID}_A, l)$. Given an identify string ID_A , the DEM key length l and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. Set $h_1 = \mathbf{H2RF}_1(H_v, \mathbf{ID}_A || hid, r)$.
- 2. Set $Q = [h_1]P_1 + P_{pub}$.
- 3. Pick a random $x \in \mathbb{Z}_r^*$.
- 4. Set $C_1 = [x]Q$.
- 5. Set $t = g^x$.
- 6. Set $K = \mathbf{KDF2}(H_v, EC2OSP(C_1) || FE2OSP(t) || ID_A, l)$.
- 7. Output $\langle K, C_1 \rangle$.

KEM-Decap $(M_{\mathfrak{pt}}, \mathrm{ID}_A, D_A, C_1, l)$. Given an identify string ID_A , the corresponding private key D_A , the encapsulation part C_1 , the DEM key length l and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. If $C_1 \notin \mathbb{G}_1^*$, then output \perp and terminate.
- 2. Set $t = \hat{e}(C_1, D_A)$.
- 3. Set $K = \mathbf{KDF2}(H_v, EC2OSP(C_1) || FE2OSP(t) || ID_A, l)$.
- 4. Output K.

The full SM9 encryption scheme works as follows:

KEM-DEM-Encrypt $(M_{\mathfrak{pt}}, \mathrm{ID}_A, m)$. Given an identify string ID_A , the plain text m and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. Set $h_1 = \mathbf{H2RF}_1(H_v, \mathbf{ID}_A \| hid, r)$.
- 2. Set $Q = [h_1]P_1 + P_{pub}$.
- 3. Pick a random $x \in \mathbb{Z}_r^*$.
- 4. Set $C_1 = [x]Q$.
- 5. Set $t = g^x$.
- 6. Set $K_1 || K_2 = \mathbf{KDF2}(H_v, EC2OSP(C_1) || FE2OSP(t) || ID_A, BITS(m) + v).$
- 7. Set $C_2 = K_1 \oplus m$.
- 8. Set $C_3 = H_v(C_2 || K_2)$.
- 9. Output $\langle C_1, C_2, C_3 \rangle$.

KEM-DEM-Decrypt $(M_{\mathfrak{pt}}, \mathrm{ID}_A, D_A, \langle C_1, C_2, C_3 \rangle)$. Given an identify string ID_A , the corresponding private key D_A , the cipher text $\langle C_1, C_2, C_3 \rangle$ and the master public key $M_{\mathfrak{pt}}$, the operation runs as follows:

- 1. If $C_1 \notin \mathbb{G}_1^*$, then output \perp and terminate.
- 2. Set $t = \hat{e}(C_1, D_A)$.
- 3. Set $K_1 || K_2 = \mathbf{KDF2}(H_v, EC2OSP(C_1) || FE2OSP(t) || ID_A, BITS(C_2) + v).$
- 4. Set $C'_3 = H_v(C_2 || K_2)$.
- 5. If $C'_3 \neq C_3$, then output \perp and terminate.
- 6. Output $m = K_1 \oplus C_2$.

7 Performance Evaluation

Here we briefly compare the performance of SM9 with the identity-based signature schemes included in ISO/IEC 14888-3 [2], identity-based key agreements included in ISO/IEC 11770-3 [1] and encryption schemes in ISO/IEC 18033-5 [5]. Table 1 shows that the SM9 signature scheme is more efficient than those two IBS schemes in ISO/IEC 14888-3. Table 2 shows that the SM9 key agreement is more efficient than those two IB-KA schemes in ISO/IEC 11770-3 [1]. Table 3 shows that the SM9 KEM maintains better performance in terms of both the computation efficiency and the cipher text size than those three schemes in ISO/IEC 18033-5.

References

- ISO/IEC. Information technology Secruity techniques Key management Part 3: Mechanisms using asymmetric techniques. ISO11770-3, 2015.
- ISO/IEC. Information technology Secruity techniques Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms. ISO14888-3, 2015.

 Table 1. Performance of IBS from Pairings

	IBS1 [2] IBS2 [2]	SM9-IBS
Private Key Extract			
Hash to \mathbb{G}_1	1	1	
Mul in \mathbb{G}_1	1	1	$\overline{1}$
Sign			
Mul in \mathbb{G}_1	$\overline{2}^{(1)}$	$\overline{2}^{(2)}$	$\overline{1}$
Exp in \mathbb{G}_T			$\overline{1}$
Pairings	1		
Verify			
Hash to \mathbb{G}_1	1	1	
Mul in \mathbb{G}_1	$1^{(1)}$	1	
Mul in \mathbb{G}_2			$\overline{1}$
Exp in \mathbb{G}_T			$\overline{1}$
Pairings	2	2	1
Signature Size	$\lambda + \gamma$	2γ	$\lambda + \gamma$

- 1. Assume muplication in \mathbb{G}_1 is faster than exponentiation in \mathbb{G}_T .
- 2. Assume Y is pre-computed in producing the pre-signature [2] which is reasonable for a signer.
- 3. Symbols \overline{m} and n denote m fix-based multiplications or exponentiations and n general operations respectively.
- 4. Symbols λ, γ denote the length of an element in \mathbb{Z}_r^* and \mathbb{G}_1 respectively.

	SCC [1]	FSU [1]	SM9-KA
Private Key Extract			
Hash to \mathbb{G}_1	1	1	
Mul in \mathbb{G}_1	1	1	$\overline{1}$
Message Exchange			
Mul in \mathbb{G}_1	1	$\overline{1}$	$\overline{2}$
Session Key Generation			
Hash to \mathbb{G}_1	1	1	
Mul in \mathbb{G}_1	$1+\overline{1}$	$1+\overline{1}^{(1)}$	
Exp in \mathbb{G}_T			$1+\overline{1}$
Pairings	2	2	1
Message Size	γ	γ	γ

 Table 2. Performance of IB-KAs from Pairings

1. The FSU scheme requires $\mathbb{G}_1 = \mathbb{G}_2$.

Table 3.	Performance	of IBEs	from	Pairings
----------	-------------	---------	------	----------

	BF-IBE [5]	BB_1 -KEM [5] SK-KEM [5] SM9-KEM
Private Key Extract				
Hash to \mathbb{G}_2	1			
Mul in \mathbb{G}_2	1	$\overline{2}$	$\overline{1}$	$\overline{1}$
Encapsulate				
Hash to \mathbb{G}_2	1			
Mul in \mathbb{G}_1	$1+\overline{1}$	$\overline{3}$	$\overline{2}$	$\overline{2}$
Exp in \mathbb{G}_T		$\overline{1}$	$\overline{1}$	$\overline{1}$
Pairings	1			
Decapsulate				
Mul in \mathbb{G}_1	Ī		$\overline{1}^{(1)}$	
Mul in \mathbb{G}_2				
Pairings	1	2	1	1
Cipher Text Size	$\gamma + \delta + \zeta$	$2\gamma + \eta$	$\gamma + \delta + \eta$	$\gamma + \eta$

1. Assume Q is pre-computed in KEM-Decrypt [5] which is reasonable for a decryptor.

2. Symbols $\gamma, \delta, \zeta, \eta$ denote the length of an element in \mathbb{G}_1 , a random message, a plain text and a DEM respectively.

- ISO/IEC. Information technology Security techniques Cryptographic techniques based on elliptic curves Part 5: Elliptic curve generation. ISO15946-5, 2009.
- ISO/IEC. Information technology Security techniques Encryption algorithms – Part 2: Asymmetric ciphers. ISO18033-2, 2006.
- ISO/IEC. Information technology Security techniques Encryption algorithms – Part 5: Identity-based ciphers. ISO18033-5, 2015.
- E. Lee, H. Lee and C. Park. Efficient and generalized pairing computation on abelian varieties. In *IEEE Transactions on Information Theory*, Volume 55, pp. 1793–1803, 2009.
- F. Vercauteren. Optimal pairings. In *IEEE Transactions on Information Theory*, Volume: 56, Issue: 11, pp. 455 – 461, 2010.