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Abstract. This paper presents an FPGA implementation of the Nieder-
reiter cryptosystem using binary Goppa codes, including modules for
encryption, decryption, and key generation. We improve over previous
implementations in terms of efficiency (time-area product and raw per-
formance) and security level. Our implementation is constant time in
order to protect against timing side-channel analysis. The design is fully
parameterized, using code-generation scripts, in order to support a wide
range of parameter choices for security, including binary field size, the de-
gree of the Goppa polynomial, and the code length. The parameterized
design allows us to choose design parameters for time-area trade-offs
in order to support a wide variety of applications ranging from smart
cards to server accelerators. For parameters that are considered to pro-
vide 128-bit “post-quantum security”, our time-optimized implementa-
tion requires 966,400 cycles for the generation of both public and private
portions of a key and 14,291 cycles to decrypt a ciphertext. The time-
optimized design uses only 121,806 ALMs (52% of the available logic)
and 961 RAM blocks (38% of the available memory), and results in a
design that runs at about 250 MHz on a medium-size Stratix V FPGA.

Keywords: post-quantum cryptography, code-based cryptography, Nie-
derreiter cryptosystem, FPGA, hardware implementation.

1 Introduction

Today’s dominant cryptographic algorithms, such as RSA, are built on assump-
tions about hardness of certain mathematical operations. Once sufficiently large
and efficient quantum computers can be built, however, these assumptions will
no longer hold. Shor’s algorithm [21,22] can solve the integer-factorization prob-
lem and the discrete-logarithm problem in polynomial time, which would allow
breaking cryptosystems built upon the hardness assumptions of these problems,
e.g., RSA, ECC, and Diffie-Hellman. In addition, Grover’s algorithm [10] gives a
square-root speedup on search problems and improves brute-force attacks that
check every possible key, which threatens, for example, symmetric key ciphers
like AES. In some cases, as for attacks based on Grover’s algorithm, simple dou-
bling of key size may be a sufficient solution to prevent the attack. However,
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for algorithms threatened by Shor’s algorithm, the solution is to use a differ-
ent cryptographic algorithm, against which there does not exist a known attack
leveraging quantum computers.

The are a number of algorithms from the field of Post-Quantum Cryptogra-
phy (PQC) which are expected to withstand attacks by adversaries who have
access to a sufficiently large quantum computer. Today, there are five popular
classes of PQC algorithms: hash-based, code-based, lattice-based, multivariate,
and isogeny-based cryptography [2,20]. Most code-based public-key encryption
schemes are based on the McEliece cryptosystem [16] or its more efficient dual
variant developed by Niederreiter [17]. This work focuses on the Niederreiter
variant of the cryptosystem using binary Goppa codes. There is some work
based on QC-MDPC codes, which have smaller key sizes compared to binary
Goppa codes [13]. However, QC-MDPC codes can have decoding errors, which
may be exploitable by an attacker [11]. Therefore, binary Goppa codes are still
considered the more mature and secure choice. Their disadvantage is in the key
size. Until now, the best known attacks on the McEliece and Niederreiter cryp-
tosystems using binary Goppa codes are generic decoding attacks which can be
warded off by a proper choice of parameters [4].

Any implementation of a PQC algorithm requires balancing the security level
with resource usage and performance. The PQCRYPTO project [19] recom-
mends to use a McEliece cryptosystem with binary Goppa codes with a binary
field of size m = 13, adding t = 119 errors, code length n = 6960, and code rank
k = 5413 in order to achieve 128-bit “post-quantum security” for public-key
encryption when accounting for the worst-case impact of Grover’s algorithm [1].
The classical security level for these parameters is about 266-bit [4] and they
provide maximum security for a public key of at most 1 MB [4], resulting in a
private key of about 13 kB, and a public key of about 1022 kB.

The design and implementation presented in this paper is fully tunable al-
lowing any reasonable choice of m, t, and n (where k = n−mt). In addition, for
a given set of parameters, i.e. security level, the design can be further configured
to trade-off performance and area, by changing widths of datapaths, memories,
and other parameters inside the design, without affecting the security level. All
of the parameters can be configured for the three modules implemented: key
generation, encryption, and decryption.

Inspired by the confidence in the McEliece/Niederreiter cryptosystem, there
are a few hardware implementations related to this cryptosystem, e.g., [12,15,23].
Most of the work only focuses on the encryption and decryption parts of the
cryptosystem due to the complexity of the key generation module. Moreover,
none of the prior designs are fully configurable as ours nor do they support the
recommended 128-bit “post-quantum security” level. We are aware of only one
publication [23] that provides the design of a full McEliece cryptosystem includ-
ing key generation, encryption and decryption modules. However, their design
only provides a 103-bit classical security level, which does not meet the cur-
rently recommended post-quantum security level. More importantly, the design
in [23] is not constant-time and has potential security flaws. For example, within
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their key generation part, they generate non-uniform permutations, and within
the decryption part, they implement a non-constant-time decoding algorithm. A
detailed comparison with related work is presented in Section 5.

Contributions. This paper presents the first post-quantum secure, constant-
time, efficient, and tunable FPGA-based implementation of the Niederreiter
cryptosystem using binary Goppa codes. The contributions are:

– full cryptosystem with tunable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code,

– new hardware implementation of merge sort for obtaining uniformly dis-
tributed permutations,

– new optimization of the Gao-Mateer additive FFT for polynomial evaluation,
– hardware implementation of a constant-time Berlekamp-Massey decoding

algorithm, and
– design testing using Sage reference code, iVerilog simulation, and output

from real FPGA runs.

2 Niederreiter Cryptosystem

The follwoing overview of the McEliece cryptosystem and the related Niederre-
iter cryptosystem was given in [25]:

The first code-based public-key encryption system was presented by McEliece
in 1978 [16]. The private key of the McEliece cryptosystem is a randomly cho-
sen irreducible binary Goppa code G with a generator matrix G that can cor-
rect up to t errors. The public key is a randomly permuted generator matrix
Gpub = SGP that is computed from G and the secrets P (a permutation matrix)
and S (an invertible matrix). For encryption, the sender encodes the message m
as a codeword and adds a secret error vector e of weight t to get a ciphertext
c = mGpub ⊕ e. The receiver computes cP−1 = mSG ⊕ eP−1 using the secret
P and decodes m using the decoding algorithm of G and the secret S. Without
knowledge of the code G, which is hidden by the secrets S and P , it is computa-
tionally hard to decrypt the ciphertext. The McEliece cryptosystem with correct
parameters is believed to be secure against quantum-computer attacks.

As an improvement of McEliece, in 1986, Niederreiter introduced a dual
variant of the McEliece cryptosystem by using a parity check matrix H for en-
cryption instead of a generator matrix [17]. For the Niederreiter cryptosystem,
the message m is encoded as a weight-t error vector e of length n. The Nieder-
reiter cryptosystem can also be used as a key-encapsulation scheme where the
random error vector e with t errors is used to derive a symmetric encryption
key. For encryption, e is multiplied with H and the resulting syndrome is sent to
the receiver. The receiver decodes the received syndrome, and obtains e. Original
Niederreiter cryptosystem which used Reed-Solomon codes has been broken [24].
However, Niederreiter cryptosystem which uses binary Goppa codes is believed
to be secure. As the main improvement, Niederreiter designed the algorithm to
compress H by computing the systemized form of the public key matrix. This
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improvement can be applied to some variants of the McEliece cryptosystem as
well. We focus on the Niederreiter cryptosystem due to its compact key size and
the efficiency of the syndrome decoding algorithms.

2.1 Algorithms

There are three main operations within the Niederreiter cryptosystem: key gen-
eration, encryption and decryption. Key generation is the most expensive opera-
tion; it is described in Algorithm 1. The implementation of the key generator has
been described in detail in [25]. To generate a random sequence of distinct field
elements, [25] presents a low-cost Fisher-Yates shuffle module which generates a
uniform permutation. However, the runtime of the permutation module in [25]
depends on the generated secret random numbers. This non-constant-time design
of the permutation module might have vulnerabilities which enable timing side-
channel analysis. In our work, we present a merge sort module, which generates
a uniform permutation within constant time, as described in Section 3.1.

Within the Niederreiter cryptosystem, the ciphertext is defined as a syn-
drome, which is the product between the parity check matrix and the plaintext.
As shown in Algorithm 2, the encryption operation is very simple and maps
to the multiplication between the extended public key [Imt|K] and the plain-
text e. In our work, we only focus on the core functionalities of the Niederreiter
cryptosystem, therefore we assume that the input plaintext e is an n-bit error
message of weight t.

As shown in Algorithm 3, the decryption operation starts from extracting
the error locator polynomial out of the ciphertext using a decoding algorithm.
We use the Berlekamp-Massey’s (BM) algorithm [14] in our design and develop
a dedicated BM module for decoding, as described in Section 3.2. One problem
within BM-decoding is that it can only recover t

2 errors. To solve this issue, we
use the trick proposed by Nicolas Sendrier [12]. We first compute the double-size
parity check matrix H(2) corresponding to g2(x), then we prepend k zeros to c.
Based on the fact that e and (0|c) belong to the same coset given H(2)× (0|c) =
H × e, computing the new double-size syndrome S(2) enables the BM algorithm
to recover t errors. Once the error locator polynomial is computed, it is evaluated
at the secret random sequence (α0, α1, . . . , αn−1), and finally the plaintext e is
recovered.

2.2 Structure of the Paper

The following sections introduce the building blocks for our cryptosystem in
a bottom-up fashion. Details of the GF(2m) finite field arithmetic and of the
higher-level GF(2m)[x]/f polynomial arithmetic can be found in [25]. Lever-
aging the arithmetic operations are modules that are used in key generation,
encryption, and decryption. For key generation, the description of the Gaussian
systemization and additive FFT module has been provided in [25] and in this
paper we will focus on the introduction of the new merge sort module and the
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Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.
Output: Private key (g(x), (α0, α1, . . . , αn−1)) and public key K.

1 Choose a random sequence (α0, α1, . . . , αn−1) of n distinct elements in GF(2m).
2 Choose a random polynomial g(x) such that g(α) 6= 0 for all α ∈ (α0, . . . , αn−1).
3 Compute the t× n parity check matrix

H =


1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) αt−1

1 /g(α1) · · · αt−1
n−1/g(αn−1)

 .

4 Transform H to a mt× n binary parity check matrix H ′ by replacing each entry
with a column of m bits.

5 Transform H ′ into its systematic form [Imt|K].
6 Return the private key (g(x), (α0, α1, . . . , αn−1)) and the public key K.

Algorithm 2: Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.
Output: Ciphertext c.

1 Compute c = [Imt|K]× e.
2 Return the ciphertext c.

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key (g(x), (α0, α1, . . . , αn−1)).
Output: Plaintext e.

1 Compute the double-size 2t× n parity check matrix

H(2) =


1/g2(α0) 1/g2(α1) · · · 1/g2(αn−1)
α0/g

2(α0) α1/g
2(α1) · · · αn−1/g

2(αn−1)
...

...
. . .

...
α2t−1
0 /g2(α0) α2t−1

1 /g2(α1) · · · α2t−1
n−1 /g

2(αn−1)

 .

2 Transform H(2) to a 2mt× n binary parity check matrix H ′(2) by replacing each
entry with a column of m bits.

3 Compute the double-size syndrome: S(2) = H ′(2) × (0|c).
4 Compute the error-locator polynomial δ(x) by use of the decoding algorithm

given S(2).
5 Evaluate the error-locator polynomial δ(x) at (α0, α1, . . . , αn−1) and determine

the plaintext bit values.
6 Return the plaintext e.
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Algorithm 4: Fisher-Yates shuffle

Output: Shuffled array A
Initalize: A = {0, 1, . . . , n− 1}

1 for i from n− 1 downto 0 do
2 Generate j uniformly from range [0, i)
3 Swap A[i] and A[j]

optimization of the additive FFT module, as described in Section 3. For encryp-
tion, a simple matrix-vector multiplication is needed. For decryption, additive
FFT is used as well, and a new Berlekamp-Massey decoding module is introduced
and described in Section 3. Then we describe how these modules work together
to obtain an efficient design for the full cryptosystem in Section 4. Validation of
the design using Sage, iVerilog, and Stratix V FPGAs is presented in Section 5
together with a discussion and comparison with related work.

3 Modules

The main building blocks within our Niederreiter cryptosystem (as shown in
Figure 3) are: two Gaussian systemizers for matrix systemization over GF(2m)
and GF(2) respectively, Gao-Mateer additive FFT for polynomial evaluations,
a merge-sort module for generating uniformly distributed permutations, and a
Berlekamp-Massey module for decoding. The Gaussian systemizer and the orig-
inal version of additive FFT have been described in detail in [25]. We will focus
on the merge-sort module, the Berlekamp-Massey module and our optimizations
for the additive-FFT module in this section.

3.1 Random Permutation

An important step in the key-generation process is to compute a random permu-
tation of selected field elements, which is part of the private key and therefore
must be kept secret. In [25], P was computed by performing Fisher-Yates shuf-
fle [8] on the ordered list (0, 1, . . . , 2m − 1). Algorithm 4 shows the operation of
the Fisher-Yates shuffle. This algorithm computes a permutation efficiently and
requires only a small amount of computational logic. As shown in in Algorithm 4,
in each iteration step i (in decrementing order), this module generates a random
integer 0 ≤ j < i (Alg. 4, line 2), and then swaps the data in array position i and
j. In [25], a PRNG is used, which keeps generating random numbers until the
output is in the required range. Therefore, this implementation of Fisher-Yates
shuffle produces a non-biased permutation (under the condition that the PRNG
has no bias) but it is not constant-time — causing a potential risk of timing
side-channel attacks.

Sorting a random list can be regarded as the inverse operation of permutation.
Therefore, given a constant-time sort algorithm, a constant-time algorithm for
generating a random permutation can easily be derived. To eliminate potential
timing attacks using the Fisher-Yates shuffle approach from [25], in this work,
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Algorithm 5: Merge sort

Input: Random list A, of length 2k

Output: Sorted list A
1 Split A into 2k sublists.
2 for i from 0 to k − 1 do
3 Merge adjacent sublists.

we implemented a non-biased and constant-time sorting module for permutation
based on the merge-sort algorithm.

Merge Sort. Merge sort is a comparison-based sorting algorithm which pro-
duces a stable sort. Algorithm 5 shows the merge sort algorithm. For exam-
ple, a given random list A = (92, 34, 18, 78, 91, 65, 80, 99) can be sorted by us-
ing merge sort within three steps: Initially, list A is divided into eight sublists
(92), (34), (18), (78), (91), (65), (80), and (99) with granularity of one. Since there
is only one element in each sublist, these sublists are sorted. In the first step, all
the adjacent sublists are merged and sorted, into four sublists (34, 92), (18, 78),
(65, 91), and (80, 99) of size two. Merging of two sorted lists is simple: iteratively,
first elements of the lists are compared and the smaller one is removed from its
list and appended to the merged list, until both lists are empty. In the second
step, these list are merged into two sublists (18, 34, 78, 92) and (65, 80, 91, 99) of
size four. Finally, these two sublists are merged to the final sorted list Asorted =
(18, 34, 65, 78, 80, 91, 92, 99).

In general, to sort a random list of n elements, merge sort needs log2(n)
iterations, where each step involves O(n) comparison-based merging operations.
Therefore, merge sort has an asymptotic complexity of O(n log2(n)).

Random Permutation. As mentioned above, sorting a random list can be re-
garded as the inverse operation of permutation. When given a random list A,
before the merge sort process begins, we attach an index to each element in
the list. Each element then has two parts: value and index, where the value
is used for comparison-based sorting, and the index labels the original posi-
tion of the element in list A. For the above example, to achive a permutation
for list P = (0, 1, .., 7), we first attach an index to each of the elements in A,
which gives us a new list A′ = ((92, 0), (34, 1), (18, 2), (78, 3), (91, 4), (65, 5),
(80, 6), (99, 7)). Then the merge sort process begins, which merges elements
based on their value part, while the index part remains unchanged. Finally, we
get A′sorted = ((18, 2), (34, 1), (65, 5), (78, 3), (80, 6), (91, 4), (92, 0), (99, 7)). By
extracting the index part of the final result, we get a random permutation of
P , which is (2, 1, 5, 3, 6, 4, 0, 7). In general, to compute a random permutation
we generate 2m random numbers and append each of them with an index. The
sorting result of these random numbers will uniquely determine the permutation.

In case there is a collision among the random values, the resulting permuta-
tion might be slightly biased. Therefore, the bit-width of the randomly generated
numbers needs to be selected carefully to reduce the collision rate and thusly the

7



  

 

Write Back
to

Mem P'/P 

Compare 
Outputs 

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'
In

st
.

G
ro

u
p

 1

Clock Cycle

Write Back
to

Mem P'/P 

Compare 
Outputs 

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Compare 
Outputs 

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Write Back
to

Mem P'/P 

Compare 
Outputs 

Write Back
to

Mem P'/P 

In
st

.
G

ro
u

p
 2

In
st

.
G

ro
u

p
 3

In
st

.
G

ro
u

p
 4

Write Back
to

Mem P'/P 

Compare 
Outputs 

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Compare 
Outputs 

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Fetch Data
from

Mem P/P' 

Issue Reads
to

Mem P/P'

Issue Reads
to

Mem P/P'

...

...

...

...

Fig. 1: Dataflow diagram of 4-stage pipelines in the merge-sort module.

bias. If the width of the random numbers is b, then the probability that there are

one or more collisions in 2m randomly generated numbers is 1 −
∏2m−1

i=1
(2b−i)

2b

due to the birthday paradox. Therefore, for a given m, the collision rate can be
reduced by using a larger b. However, increasing b also increases the required
logic and memory. Both m and b are parameters which can be chosen at compile
time in our implementation. The value for b can easily be chosen to fit to the
required m. For the parameters m = 13 and b = 32 the collision rate is 0.0078.
We further reduce the collision rate and thus the bias within merge sort by in-
corporating the following trick in our design at low logic cost: In case the two
random to-be-merged values are equal, we do a conditional swap based on the
least significant bit of the random value. Since the least significant bit of the
random value is random, this trick will make sure that if some random numbers
are generated twice, we can still get a non-biased permutation. There still is
going to be a bias in the permutation if some random values appear more than
two times. However, the probability of this is very low (prob ≈ 2−27.58 according
to [7]) for m = 13 and b = 32 and we ignore this case in our implantation.

Fully Pipelined Hardware Implementation. We implemented a parameterized
merge sort module using two dual-port memory blocks P and P ′ of depth 2m and
width (b+m). First, a PRNG is used, which generates 2m random b-bit strings,
each cell of memory block P then gets initialized with one of the random b-bit
strings concatenated with a m-bit index string (corresponding to the memory
address in this case). Once the initialization of P finishes, the merge sort process
starts. In our design, the merge sort algorithm is implemented in a pipelined
way, as shown in Figure 1. The basic three operations in the merge-sort module
are: read values from two sublists, compare the two values, and write down the
smaller one to a new list. In our design, there are four pipeline stages: issue reads,
fetch outputs from memory, compare the outputs, and write back to the other
memory. We built separate logic for these four stages and time-multiplex these
four stages by working on independent sublists in parallel whenever possible.
By having the four-stage pipelines, we achieve a high-performance merge-sort
design with a small logic overhead.
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Design Algorithm Const. Cycles Logic Time×Area Mem. Reg. Fmax

[25] FY-shuffle × 23, 635 149 3.52 · 106 7 111 334 MHz
Our merge-sort X 147, 505 448 6.61 · 107 46 615 365 MHz

Table 1: Performance of computing a permutation on 213 = 8192 elements with m = 13
and b = 32; Const. = Constant Time.

Table 1 shows a comparison between our new, constant time, sort-based
permutation module with the non-constant time Fisher-Yates shuffle approach
in [25]. Clearly, the constant-time permutation implementation requires more
time, area, and particularly memory. Therefore, a trade-off needs to be made
between the need for increased security due to the constant-time implementation
and resource utilization. In scenarios where timing side-channel protection is not
needed, the cheaper Fisher-Yates shuffle version might be sufficient.

3.2 Berlekamp-Massey Algorithm

Finding a codeword at distance t from a vector v is the key step in the decryp-
tion operation. We apply a decoding algorithm to solve this problem. Among
different algorithms, the Berlekamp-Massey (BM) algorithm [14] and Patterson’s
algorithm [18] are the algorithms most commonly used. Patterson’s algorithm
takes advantage of certain properties present in binary Goppa codes, and is able
to correct up to t errors for binary Goppa codes with a designated minimum
distance dmin ≥ 2t+ 1. On the other hand, general decoding algorithms like the
BM algorithm can only correct t

2 errors by default, which can be increased to t
errors using the trick proposed by Nicolas Sendrier [12]. However, the process of
BM algorithm is quite simple compared to Patterson’s algorithm. More impor-
tantly, it is easier to protect the implementation of BM algorithm against timing
attacks while it is not clear how to have an efficient constant-time implementa-
tion of Patterson’s algorithm, yet. Consequently, we use BM algorithm in our
decryption module.

The original BM algorithm as proposed by Berlekamp in 1986 is shown in
Algorithm 6. The algorithm begins with initializing polynomials σ(x) = 1 ∈
GF(2m)[x], β(x) = x ∈ GF(2m)[x], and integers l = 0 and δ = 1 ∈ GF(2m).

The input syndrome polynomial is denoted as S(x) =
∑2t−1

i=1 Six
i ∈ GF(2m)[x].

Then within each iteration step k (0 ≤ k ≤ 2t−1), the variables {σ(x), β(x), l, δ}
are conditionally updated. Note that updating polynomial β(x) only involves
multiplying a polynomial by x, which can be easily mapped to a binary shifting
operation on its coefficients in hardware. Updating integer l and field element δ
only invloves subtraction/addition operations, and these operations can also be
easily implemented in hardware. Therefore the bottleneck of the algorithm lies
in computing d and updating σ(x).

Hardware Implementation. The first step within each iteration is to calculate d.
We build an entry sum module (as shown in Figure 2) for this computation,
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Fig. 2: Dataflow diagram of the Berlekamp-Massey module.

Algorithm 6: Berlekamp-Massey algorithm for decryption.

Input : System parameter t, syndrome polynomial S(x).
Output: Error locator polynomial σ(x).

1 Initialize: σ(x) = 1, β(x) = x, l = 0, δ = 1.
2 for k from 0 to 2t− 1 do

3 d =
∑t

i=0 σiSk−i

4 if d = 0 or k < 2l:
5 {σ(x), β(x), l, δ} =

{
σ(x)− dδ−1β(x), xβ(x), l, δ

}
.

6 else:
7 {σ(x), β(x), l, δ} =

{
σ(x)− dδ−1β(x), xσ(x), k − l + 1, d

}
.

8 Return the error locator polynomial σ(x).

which maps to a vector-multiplication operation as described in [25]. We use two
registers σvec and βvec of m · (t+ 1) bits to store the coefficients of polynomials
σ(x) and β(x), where the constant terms σ0 and β0 are stored in the lowest
m bits of the registers, σ1 and β1 are stored in the second lowest m bits, and
so on. We also use a register Svec of m · (t + 1) bits to store at most (t +
1) coefficients of S(x). This register is updated within each iteration, where
Sk is stored in the least significant m bits of the register, Sk−1 is stored in
the second least significant m bits, and so on. The computation of d can then
be regarded as an entry-wise vector multiplication between register σvec and
register Svec = (0, 0, ..., S0, S1, ..., Sk−1, Sk) for all 0 ≤ k ≤ 2t − 1. Register
σvec is initialized as (0, 0, ..., 1) for the first iteration, and then gets updated
with the new coefficients of σ(x) for the next iteration. Svec is initialized as
all zeroes, and then constructed gradually by reading from a piece of memory
which stores coefficient Si of syndrome polynomial S(x) at address i for 0 ≤ i ≤
2t − 1. Within the k-th iteration, a read request for address k of the memory
is issued. Once the corresponding coefficient Sk is read out, it is inserted to the
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mulBM mulBM step Cycles Logic Time×Area Mem. Reg. Fmax

10 10 7379 6285 4.64 · 107 7 13, 089 364 MHz
20 20 4523 7052 3.19 · 107 7 13, 031 353 MHz
30 30 3571 7889 2.82 · 107 7 12, 956 361 MHz
40 40 3095 9047 2.8 · 107 7 13, 079 356 MHz
60 60 2619 11, 400 2.99 · 107 7 13, 274 354 MHz

Table 2: Performance of the Berlekamp-Massey module for m = 13, t = 119, and
deg(S(x)) = 237.

lowest m bits of Svec. After the computation of d, we start updating variables
{σ(x), β(x), l, δ}. To update σ(x), one field-element inversion, one field-element
multiplication, one scalar multiplication as well as one vector subtraction are
needed. At first, field element δ is inverted. As described in [25], the inversion
of elements in GF(2m) can be implemented by use of a pre-computed lookup
table. Each entry of the table can be read in one clock cycle. After reading
out δ−1, a field-element multiplication between d and δ−1 is performed, which
makes use of the GF(2m) multiplication module as described in [25]. Once we get
dδ−1, a scalar multiplication between field element dδ−1 and polynomial β(x)
starts, which can be mapped to an entry-wise vector multiplication between
vector (dδ−1, dδ−1, ..., dδ−1) and (βt, βt−1, ..., β1, β0). The last step for updating
σ(x) is to subtract dδ−1β(x) from σ(x). In a binary field GF(2m), subtraction
and addition operations are equivalent. Therefore, the subtraction between σ(x)
and dδ−1β(x) can simply be mapped to bit-wise xor operations between vector
(σt, σt−1, ..., σ1, σ0) and vector (dδ−1βt, dδ

−1βt−1, ..., dδ
−1β1, dδ

−1β0). Updating
polynomial β(x) is done by conditionally replacing its coefficient register βvec

with δvec, and then shift the resulting value leftwards by m bits. Updating
integer l and field element δ only involves simple and cheap hardware operations.

The above iterations are repeated for 2t times, and the final output is deter-
mined as the error locator polynomial σ(x). It is easy to see that within each
iteration, the sequence of instructions is fixed, as long as we make sure that
the conditional updates of variables {σ(x), β(x), l, δ} are constant time (which is
easy to achieve due to its fixed computational mapping in hardware), the whole
design of BM implementation is fully protected against timing attacks.

We built a two-level design. The lower level is a BM step module, which maps
to one iteration, shown as “Berlekamp-Massey Step” in Figure 2. The higher-
level BM module then iteratively applies BM step and entry sum modules. Table 2
shows performance for the BM module. A time-area trade-off can be achieved by
adjusting the design parameters mulBM and mulBM step, which are the number
of multipliers used in the BM and BM step modules.

3.3 Optimizations for Additive FFT

Evaluating a polynomial at multiple data points over GF(2m) is an essential
step in both the key generation and the decryption processes. In key generation,
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an evaluation of the Goppa polynomial g(x) is needed for computing the par-
ity check matrix H, while for decryption, it is required by the computation of
the double-size parity check matrix H(2) as well as the evaluation of the error
locator polynomial σ(x). Therefore, having an efficient polynomial-evaluation
module is very important for ensuring the performance of the overall design. We
use a characteristic-2 additive FFT algorithm introduced in 2010 by Gao and
Mateer [9], which was used for multipoint polynomial evaluation by Chou in
2013 [3]. Additive FFT consists of two parts. First, radix conversion and twist is
performed on the input polynomial. Given a polynomial g(x) of 2k coefficients,
the recursive twist-then-radix-conversion process returns 2k 1-coefficient polyno-
mials. Then, these 1-coefficient polynomials are used to iteratively evaluate the
input points by use of the reduction process.

We applied some modifications and improvements to both parts of the addi-
tive FFT design from [25]:

Optimizing Radix Conversion and Twisting. The radix-conversion step, which
includes both radix conversion and twist, consists of several rounds that itera-
tively compute the new output coefficients of the converted input polynomial.
The number of rounds is the base-2 logarithm of the degree of the input poly-
nomial. In each round, new temporary coefficients are computed as the sum of
some of the previous coefficients followed by a twist operation, i.e., a multiplica-
tion of each coefficient with a pre-computed constant to obtain a new basis for
the respective round.

The radix-conversion module in [25] is using dedicated logic for each round
for summing up the required coefficients, computing all coefficients within one
cycle. Computing all coefficients with dedicated logic for each round requires a
significant amount of area although radix conversion only requires a very small
amount of cycles compared to the overall additive FFT process. Therefore, this
results in a relatively high area-time product and a poor usage of resources.

We improve the area-time product at the cost of additional cycles and ad-
ditional memory requirements by using the same logic block for different coef-
ficients and rounds. An additional code-generation parameter is used to specify
how many coefficients should be computed in parallel, which equals to the num-
ber of multipliers used in twist when mapping to hardware implementations.
Each round then requires several cycles depending on the selected parameter.
The computation of the new coefficients requires to sum up some of the previous
coefficients. The logic therefore must be able to add up any selection of coeffi-
cients depending on the target coefficient. We are using round- and coefficient-
dependent masks to define which coefficients to sum up in each specific case.
These masks are stored in additional RAM modules.

Furthermore, in the design of [25], the length of the input polynomial is
constrained to be a power of 2. For shorter polynomials, zero-coefficients need
to be added, which brings quite some logic overhead especially on some extreme
cases. For example, for a polynomial of 129 coefficients (t = 128), a size-256 radix
conversion module will be needed. Instead, our improved design eliminates this
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Design Coeffs. Mult. Cycles Logic Time×Area Reg. Mem. Fmax

Our 120 2 385 1893 7.3 · 105 3541 6 305 MHz

Our 120 4 205 2679 5.5 · 105 3622 10 273 MHz
[25] 128 4 211 5702 1.2 · 106 7752 0 407 MHz

Our 120 8 115 4302 4.9 · 105 3633 17 279 MHz
[25] 128 8 115 5916 6.8 · 105 7717 0 400 MHz

Table 3: Performance of our radix-conversion module compared to [25] for GF(213).

constraint and allows an arbitrary input length with low overhead and therefore
is able to further reduce cycle count and area requirements.

Table 3 shows the performance improvements of the current radix-conversion
module compared to the design in [25]. The numbers for our new design are
given for a polynomial of length 120. The design in [25] requires the next larger
power of 2 as input length. Therefore, we give numbers for input length 128
for comparison. For a processing width of four coefficients (multipliers), our
new implementation gives a substantial improvement in regard to the time-area
product over the old implementation at the cost of a few memory blocks.

Parameterizing Reduction. In the previous design of the additive FFT in [25],
the configuration of the reduction module is fixed and uniquely determined by
the polynomial size and the binary field size. Before the actual computation
begins, the data memory is initialized with the 2k 1-coefficient polynomials from
the output of the last radix-conversion round. The data memory D within the
reduction module is configured as follows: The depth of the memory equals
to 2k. Based on this, the width of the memory is determined as m× 2m−k since
in total m×2m memory bits are needed to store the evaluation results for all the
elements in GF(2m). Each row of memory D is initialized with 2m−k identical 1-
coefficient polynomials. The other piece of memory within the reduction module
is the constants memory C. It has the same configuration as the data memory
and it stores all the elements for evaluation of different reduction rounds. Once
the initialization of data memory and constants memory is finished, the actual
computation starts, which consists of the same amount of rounds as needed in
the radix conversion process. Within each round, two rows of values (f0 and f1)
are read from the data memory and the corresponding evaluation points from
the constants memory, processed, and then the results are written back to the
data memory. Each round of the reduction takes 2k cycles to finish. In total, the
reduction process takes k × 2k cycles plus overhead for memory initialization.

In our current design, we made the reduction module parameterized by intro-
ducing a flexible memory configuration. The width of memories D and C can be
adjusted to achieve a trade-off between logic and cycles. The algorithmic pattern
for reduction remains the same, while the computational pattern changes due
to the flexible data reorganization within the memories. Instead of fixing the
memory width as m × 2m−k, it can be configured as a wider memory of width
m × 2m−k+i, i ≥ 0. In this way, we can store multiple 1-coefficient polynomials
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Mult. Cycles Logic Time×Area Mem. Bits Mem. Reg. Fmax

32 968 4707 4.56 · 106 212, 160 63 10, 851 421 MHz
64 488 9814 4.79 · 106 212, 992 126 22, 128 395 MHz

Table 4: Performance of our parameterized size-128 reduction module for GF(213).

Multipliers
Design Rad. Red. Cycles Logic Time×Area Mem. Reg. Fmax

Our 4 32 1173 7344 8.61 · 106 73 14, 092 274 MHz
[25] 4 32 1179 10, 430 1.23 · 107 63 18, 413 382 MHz

Our 8 64 603 13, 950 8.41 · 106 143 25, 603 279 MHz
[25] 8 32 1083 10, 710 1.16 · 107 63 18, 363 362 MHz

Table 5: Performance of our optimized additive-FFT mdule compared to [25] for
m = 13, deg(g(x)) = 119. Rad. and Red. are the number of multipliers used in radix
conversion and twist (reduction) separately.

at one memory address. The organization of the constants memory needs to be
adapted accordingly. Therefore, within each cycle, we can either fetch, do com-
putation on, or write back more data and therefore finish the whole reduction
process within much fewer cycles (k × 2k−i plus overhead of few initialization
cycles). However, the speedup of the running time is achieved at the price of
increasing the logic overhead, e.g., each time the width of the memory doubles,
the number of multipliers needed for computation also doubles.

Table 4 shows the performance of our parameterized reduction module. We
can see that doubling the memory width halves the cycles needed for the reduc-
tion process, but at the same time approximately doubles the logic utilization.
We can see that although the memory bits needed for reduction remain similar
for different design configurations, the number of required memory blocks dou-
bles in order to achieve the increased memory width. Users can easily achieve a
trade-off between performance and logic by tuning the memory configurations
within the reduction module.

Table 5 shows performance of the current optimized additive FFT module.
By tuning the design parameters in the radix conversion and reduction parts,
we are able to achieve a 28% smaller time-area product compared to [25].

4 Key Generation, Encryption and Decryption

We designed the Niederreiter cryptosystem by using the main building blocks
shown in Figure 3. Note that we are using two simple PRNGs in our design to
enable deterministic testing. For real deployment, these PRNGs must be replaced
with a cryptographically secure random-number generator, e.g., [5]. We require
at most b random bits per clock cycle per PRNG.
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Fig. 3: Dataflow diagrams of the three parts of the full cryptosystem: (a) key generation,
(b) encryption, and (c) decryption. Dark gray boxes represent block memories, while
white boxes represent major logic modules.

4.1 Key Generation

The overall design of our key-generation module is identical to the design in [25].
The dataflow diagram is shown in Figure 3a. However, we improve the security
of private-key generation by substituting the Fisher-Yates Shuffle module with
a merge-sort module in order to generate a uniform and random permutation in
constant time (see Section 3.1). The generation of the public key is improved by
several optimizations applied to the additive FFT module (see Section 3.3).

Table 6 shows a comparison of the performance of the old implementation
in [25] with our new, improved implementation. Despite the higher cost for the
constant-time permutation module, overall, we achieve an improvement in regard
to area requirements and therefore to the time-area product at roughly the
same frequency on the price of a higher memory demand. However, the overall
memory increase is less than 10% which we believe is justified by the increased
side-channel resistance due to the use of a constant-time permutation.
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Case NH NR Cycles Logic Time×Area Mem. Fmax Time

Prior work [25]
logic 40 1 11, 121, 220 29, 711 3.30 · 1011 756 240 MHz 46.43 ms
bal. 80 2 3, 062, 942 48, 354 1.48 · 1011 764 248 MHz 12.37 ms
time 160 4 896, 052 101, 508 9.10 · 1010 803 244 MHz 3.68 ms

Our work
logic 40 1 11, 121, 214 22, 716 2.53 · 1011 819 237 MHz 46.83 ms
bal. 80 2 3, 062, 936 39, 122 1.20 · 1011 827 230 MHz 13.34 ms
time. 160 4 966, 400 88, 715 8.57 · 1010 873 251 MHz 3.85 ms

Table 6: Performance of the key-generation module for parameters m = 13, t = 119,
and n = 6960. All the numbers in the table come from compilation reports of the
Altera tool chain for Stratix V FPGAs.

m t n Cycles Logic Time×Area Mem. Reg. Fmax

13 119 6960 5413 4276 2.31 · 107 0 6977 448 MHz

Table 7: Performance for the encryption module.

4.2 Encryption

The encryption module assumes that the public key K is fed in column by
column. The matrix-vector multiplication [Imt|K] × e is mapped to serial xor
operations. Once the PK column valid signal is high, indicating that a new
public-key column (PK column) is available at the input port, the module checks
if the corresponding bit of plaintext e is 1 or 0. If the bit value is 1, then an
xor operation between the current output register (initialized as 0) and the new
public-key column is carried out. Otherwise, no operation is performed. After
the xor operation between K and the last (n − mt) bits of e is finished, we
carry out one more xor operation between the output register and the first mt
bits of e. Then the updated value of the output register will be sent out as the
cipheretxt c. Table 7 shows performance of the encryption module.

4.3 Decryption

Within the decryption module, first the evaluation of the Goppa polynomial
g(x) is carried out by use of the optimized additive FFT module, which was
described in Section 3.3. In our implementation, instead of first computing the
double-size parity-check matrix H(2) and then computing the double-size syn-
drome S(2), we combine these two steps together. The computation of S(2) can
be mapped to serial conditional xor operations of the columns of H(2). Based
on the observation that the first (n −mt) bits of vector (0|c) are all zero, the
first (n −mt) columns of H(2) do not need to be computed. Furthermore, the
ciphertext c should be a uniformly random bit string. Therefore, for the last
mt columns of H(2), roughly only half of the columns need to be computed.
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Case B mulBM Cycles Logic Time×Area Mem. Reg. Fmax Time

area 10 10 34, 492 19, 377 6.68 · 108 88 47, 749 289 MHz 0.12 ms
bal. 20 20 22, 768 20, 815 4.74 · 108 88 48, 050 290 MHz 0.08 ms
time 40 40 17, 055 23, 901 4.08 · 108 88 49, 407 300 MHz 0.06 ms

Table 8: Performance for the decryption module for m = 13, t = 119 and n = 6960,
mulBM step is set to mulBM.

Finally, we selectively choose which columns of H(2) we need to compute based
on the nonzero bits of the binary vector (0|c). In total, approximately m × t2
field element multiplications are needed for computing the double-size syndrome.
The computation of the corresponding columns of H(2) is performed in a similar
column-block-wise method as described in [25]. The size B of the column block is
a design parameter that users can pick freely to achieve a trade-off between logic
and cycles during computation. After the double-syndrome S(2) is computed, it
is fed into the Berlekamp-Massey module described in Section 3.2 and the error-
locator polynomial δ(x) is determined as the output. Next, the error-locator
polynomial δ(x) is evaluated using the additive FFT module (see Section 3.3)
at all the data points over GF(2m). Then, the message bits are determined by
checking the data memory contents within the additive FFT module that cor-
respond to the secret key-element set (α0, α1, . . . , αn−1). If the corresponding
evaluation result for αi, i = 0, 1, ..., n− 1 equals to zero, then the i-th bit of the
plaintext is determined as 1, otherwise is determined as 0. After checking the
evaluation results for all the elements in the set (α0, α1, . . . , αn−1), the plaintext
is determined. Table 8 shows the performance of the decryption module with
different design parameters.

5 Testing, Evaluation, and Comparison

Our implementation of the Niederreiter cryptosystem is fully parameterized and
can be synthesized for any choice of reasonable security parameters. However, the
main target of our implementation is the 256-bit (classical) security level, which
corresponds to a post-quantum security level of at least 128 bits. For testing,
we used the parameters suggested in the PQCRYPTO recommendations [1]:
m = 13, t = 119, n = 6960 and k = 5413 (k = n−mt).
Testing. To validate the FPGA implementation, in addition to simulations, we
implemented a serial IO interface for communication between the host computer
and the FPGA. The interface allows us to send data and simple commands from
the host to the FPGA and receive data, e.g., public and private key, ciphertext,
and plaintext, from the FPGA. We verified the correct operation of our design
by comparing the FPGA outputs with our Sage reference implementation (using
the same PRNG and random seeds).

Evaluation. We synthesized our design using Altera Quartus 17.0 for these
parameters on a Stratix V FPGA (5SGXEA7N). The results are given in Table 9,
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Case NH NR B mulBM Logic Mem. Reg. Fmax

area 40 1 10 10 53, 447 (23%) 907 (35%) 118, 243 245 MHz
bal. 80 2 20 20 70, 478 (30%) 915 (36%) 146, 648 251 MHz
time 160 4 40 40 121, 806 (52%) 961 (38%) 223, 232 248 MHz

Table 9: Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V FPGA; mulBM step is set to mulBM.

Design Cyc. Key Cyc. Dec Logic Freq. Mem. Time Key Time Dec

m = 11, t = 50, n = 2048, V5-LX110
[23] 14670000 210270 14537 163 MHz 75 90.00 ms 1.290 ms
Our 1503927 5864 6660 180 MHz 68 8.35 ms 0.033 ms

m = 12, t = 66, n = 3307, V6-LX240
[15] – 28887 3307 162 MHz 15 – 0.178 ms
Our – 10228 6571 267 MHz 23 – 0.038 ms

m = 13, t = 128, n = 8192, Haswell vs. StratixV
[6] 1236054840 309583 – 4 GHz – 309 ms 0.077 ms
Our 1173750 17140 129059 231 MHz 1126 5.08 ms 0.074 ms

Table 10: Comparison with related work.

with included logic overhead of the IO interface. We provide numbers for three
performance parameter sets, one for small area, one for small runtime, and one
for balanced time and area. The parameters NR and NH control the size of the
systolic array in the Gaussian systemizer modules, which are used for computing
the private Goppa polynomial and the public key. Parameter B is the matrix-
block size used for computing the syndrome. Parameter mulBM determines the
number of multipliers used in the high-level BM decoding module. The number
mulBM step of multipliers used in the low-level BM step module is set to mulBM

for the evaluation. The memory requirement varies slightly due the differences
in the memory word size based on the design parameters.

Comparison. We compare our work with three previous designs:
First, we compare it with a 103-bit classical security-level hardware-design

described in [23]. This work is the only previously existing hardware implemen-
tation for the whole code-based cryptosystem, including a key generator, that we
have found in literature. To compare with their work, we synthesized our design
with the Xilinx tool-chain version 14.7 for a Virtex-5 XC5VLX110 FPGA. From
Table 10, we can see that our design is much faster when comparing cycles and
time, and also much cheaper in regard to area and memory consumption.

Second, we compare our work with a hardware design from [15], which
presents the previously fastest decryption module for a McEliece cryptosystem.
We synthesized our design with the parameters they used, which correspond
to a 128-bit classical security level, for a Virtex-6 XC6VLX240T FPGA. From
Table 10, we can see that the time-area product of our design is 10228 · 6571 =
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67, 208, 188, which is 30% smaller than the time-area product of their design of
28887 · 3307 = 95, 529, 309 when comparing only the decryption module. More-
over, our design is able to achieve a much higher frequency and a smaller cycle
counts compared to their design. Overall we are more than 4x faster than [15].

Finally, we also compare the performance of our hardware design with the
to-date fastest CPU implementation of the Niederreiter cryptosystem [6]. In this
case, we ran our implementation on an Altera Stratix V FPGA and compare it
to a Haswell CPU running at 4 GHz. Our implementation competes very well
with the CPU implementation, despite the over 10x slower clock of the FPGA.

6 Conclusion

This paper presented a complete hardware implementation of Niederreiters’s
code-based cryptosystem based on binary Goppa codes, including key genera-
tion, encryption and decryption. The presented design can be configured with
tunable parameters, and uses code-generation to generate vendor-neutral Ver-
ilog HDL code for any set of reasonable parameters. This work presented hard-
ware implementations of an optimization of the Gao-Mateer additive FFT for
polynomial evaluation, of merge sort used for obtaining uniformly distributed
permutations, and of a constant-time Berlekamp-Massey algorithm.

Open-Source Code. The source code for this project will be made available
under an open-source license.
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