
Implementing Joux-Vitse’s Crossbred Algorithm
for Solving MQ Systems over F2 on GPUs

Ruben Niederhagen1, Kai-Chun Ning2, and Bo-Yin Yang3

1 Fraunhofer SIT, Darmstadt, Germany
ruben@polycephaly.org

2 Eindhoven University of Technology, Eindhoven, The Netherlands
kaichun.ning@gmail.com

3 IIS and CITI, Academia Sinica, Taipei, Taiwan
by@crypto.tw

Abstract. The hardness of solving multivariate quadratic (MQ) sys-
tems is the underlying problem for multivariate-based schemes in the
field of post-quantum cryptography. The concrete, practical hardness of
this problem needs to be measured by state-of-the-art algorithms and
high-performance implementations. We describe, implement, and evalu-
ate an adaption of the Crossbred algorithm by Joux and Vitse from 2017
for solvingMQ systems over F2. Our adapted algorithm is highly paral-
lelizable and is suitable for solving MQ systems on GPU architectures.
Our implementation is able to solve an MQ system of 134 equations
in 67 variables in 98.39 hours using one single commercial Nvidia GTX
980 graphics card, while the original Joux-Vitse algorithm requires 6200
CPU-hours for the same problem size. We used our implementation to
solve all the Fukuoka Type-I MQ challenges for n ∈ {55, . . . , 74}. Based
on our implementation, we estimate that the expected computation time
for solving an MQ system of 80 equations in 84 variables is about one
year using a cluster of 3600 GTX 980 graphics cards. These parameters
have been proposed for 80-bit security by, e.g., Sakumoto, Shirai, and
Hiwatari at Crypto 2011.

Keywords: Post-quantum cryptography, multivariate quadratic systems,
parallel implementation, GPU.

1 Introduction

With the advent of quantum computing, an adversary can efficiently break uni-
versally adopted public-key cryptographic schemes, e.g. RSA and elliptic-curve
cryptography, with a sufficiently large quantum computer [16,17]. In order to
mitigate this imminent threat, cryptographic schemes that are resistant against
quantum computers have drawn great attention from academia. These schemes
are collectively referred to as post-quantum cryptography (PQC).

One potential candidate for PQC is multivariate cryptography. Multivariate
cryptography relies on the difficulty of solving a system of m polynomial equa-
tions in n variables over a finite field. The complexity of solving a multivariate

This work is based on Kai-Chun Ning’s master thesis under the supervision of Ruben
Niederhagen, Tanja Lange, and Daniel J. Bernstein. Date: 2018.01.23. Permanent
ID of this document: f9066f7294db4f2b5fbdb3e791fed78e.

polynomial system (MP problem) or a multivariate quadratic system (MQ
problem) where coefficients of the monomials are independently and uniformly
distributed (i.e. random) is well-known to be NP-hard. An arbitraryMP system
can be transformed into an equivalent MQ system by substituting monomials
of degree larger than two with new variables and introducing extra equations to
the system. Furthermore, a polynomial system over any extension field F2n can
be reduced into an equivalent system over F2 using Weil descent.

Since the early 1980s, various asymmetric multivariate encryption schemes
(e.g., [14,5,18]) based on Hidden Field Equations (HFE) [10] as well as signature
schemes (e.g., [13,12,6]) have been proposed. Besides these asymmetric schemes,
some symmetric encryption schemes, e.g., the stream cipher QUAD [1], have
been proposed and analyzed [20].

Introducing a trapdoor into an MQ system for the use in public-key cryp-
tography results in a system that is not truly random and typically exhibits a
hidden structure that often can be exploited in its cryptanalysis. However, we
do not focus on the cryptanalysis of any particular cryptographic scheme by ex-
ploiting some hidden structure. Our goal is to investigate the concrete, practical
hardness of the underlying problem of solving random MQ systems over F2 by
providing an efficient, parallel implementation of the state-of-the-art algorithm.

This paper is structured as follows: In Section 2, we introduce the Crossbred
algorithm by Joux and Vitse and our adaption to this algorithm. In Section 3,
we describe our implementation of the adapted algorithm for a cluster of GPUs.
In Section 4 we describe how to choose the parameters for our implementation,
given a specific MQ system size, and in Section 5, we provide an evaluation of
our implementation.

The source code of our implementation and further information are available
at www.polycephaly.org/mqsolver/.

2 Joux-Vitse’s Crossbred Algorithm

There are several approaches for solving MP systems, e.g., Faugère’s F4 and
F5 algorithms [7,8] based on the computation of Gröbner-bases and a family of
algorithms based on extended linearization (XL) [19]. ForMQ systems over F2,
Fast Exhaustive Search (FES) [3], i.e., efficient enumeration over the search
space, was the approach used by the previous record holder [4] of Fukuoka MQ
Type-I and Type-IV challenges4. The record on Type-I challenges is now held
by an implementation of the Crossbred algorithm by Joux and Vitse [11].

The basic idea of the XL algorithm is to extend the original MQ system by
multiplying it by all monomials up to a certain degree D − 2 and by treating
monomials in the resulting degree-D system as linear variables. Solving this
linear system gives a solution for the originalMQ system with high probability,
if D is chosen large enough.

FES works by enumerating all possible assignments of the variables and by
checking the correctness of each assignment with the original MQ system. In

4 https://www.mqchallenge.org/

www.polycephaly.org/mqsolver/
https://www.mqchallenge.org/

contrast to a plain brute-force search, the possible assignments are enumerated
in Gray-code order such that there is only one single variable with a different
assignment in each enumeration step. This allows to compute the new evaluation
result efficiently based on the change in regard to the previous evaluation result,
which requires storage and recursive update of partial derivatives up to the total
degree of the system [4].

2.1 The Crossbred Algorithm

The basic idea of Joux and Vitse’s Crossbred algorithm is to extend the original
MQ system to a system with a degree D lower than the degree required for XL
and to derive a sub-system that has at most degree d in the first k variables. This
sub-system is then solved by iterating over the remaining n − k variables and
solving the resulting degree-d system in k variables in each iteration. For d = 1,
this requires to only solve a linear system in k variables for each assignment of
n− k variables.

For example, by fixing the last two variables x3 and x4, the sub-system

S =

x1x4 + x2x3 + x1 + x3 + x4 = 0

x1x3 + x3x4 + x2 + 1 = 0

x2x3 + x2x4 + x3x4 + x1 + x4 = 0

becomes a linear system in x1 and x2. Clearly, the resulting linear system can be
directly solved with Gaussian elimination, with which solutions to the system S
can be derived efficiently.

For a monomial xα = xα1
1 xα2

2 . . . xαk

k x
αk+1

k+1 . . . xαn
n , the total degree of the

first k variables is denoted as degkx
α =

∑k
i=1 αi. Given an MQ system F , the

Crossbred algorithm first computes a degree-D Macaulay matrix with respect
to a monomial order >degkwhere monomials are sorted according to degk in
descending order. Subsequently the algorithm extracts at least k equations where
the monomials of degk larger than one (which are non-linear in x1, . . . , xk) are
eliminated and only keeps monomials of degk ≤ 1 (which are linear in x1, . . . , xk).
These equations give a sub-system that can be transformed into a linear system
in the first k variables by fixing the remaining n − k variables. After one such
sub-system S is obtained, Crossbred performs exhaustive search by fixing the
last n− k variables and testing whether or not the resulting linear system S ′ is
solvable. If so, solutions to S ′ are checked with the originalMQ system F . The
algorithm terminates if a solution is found, otherwise it fixes n− k variables in
S with another set of values and continues the exhaustive search procedure.

To obtain a linear system S ′ from the extracted sub-system S, the Crossbred
algorithm uses a recursive algorithm called FastEvaluate to fix n − k variables
in S. The basic idea of this algorithm is to split each polynomial into two groups
of monomials. An arbitrary polynomial p can be written as p = p0 +xip1, where
xip1 are monomials that involve a specific variable xi while p0 are monomials
that do not. It is clear from this form that p0 is exactly the result of fixing

Algorithm 1 The Original Crossbred Algorithm

1: procedure Crossbred
2: Input:
3: an MQ system of m equations in n variables F = {f1, f2, . . . , fm}
4: Macaulay degree: D
5: number of variables to keep: k
6: number of variables to fix during MQ external hybridization: p
7:
8: for each (xn−p+1, . . . , xn) in {0, 1}p do
9: 1. Fix the last p variables in F to obtain an MQ system F ′.

10: 2. Compute the degree-D Macaulay matrix MackD
11: where monomials are sorted by degk based on F ′.
12: 3. Extract r linearly independent equations S = {s1, s2, . . . , sr} from MackD
13: where monomials of degk > 1 have been eliminated.
14:
15: Call FastEvaluate(S, k, n− p) and
16: for each output linear system S ′ do
17: 4. Test if S ′ is solvable. If so, extract solutions and verify them with F .
18: 5. Continue if no solution is found.
19: Otherwise output the solution and terminate.
20: end for
21: end for
22: end procedure

xi = 0 in p and p0 + p1 is the result of fixing xi = 1 in p. This idea can be
applied recursively to fix n− k variables.

One can further fix some variables in the original MQ system before com-
puting Macaulay matrices, which is referred to as external hybridation by the
authors [11]; here, we use the term external hybridization. The authors of the
Crossbred algorithm consider external hybridization merely as a method to dis-
tribute the workload between computers and do not expect it to be asymp-
totically useful [11]. Nevertheless, this technique can be helpful to increase the
number of variables that can be kept for linearization, which reduces the runtime
of the algorithm significantly.

2.2 Adapting the Crossbred Algorithm for Parallel Implementation

The FastEvaluate algorithm proposed by Joux and Vitse has the disadvantage
that computing the subsets p0 and p1 on higher levels of the recursion is relatively
expensive. We propose to use Gray-code enumeration [3] instead of FastEvalu-
ate, which requires only O(2n−k · D · k) machine instructions on the cost of

O(
∑D
i=0

(
n−k
i

)
· k) memory.

Gray-code enumeration was proposed to efficiently evaluate a polynomial
function f(x1, x2, . . . , xn) in all points (x1, x2, . . . , xn) ∈ Fn2 . To obtain the result
of evaluating f on the next point a ∈ Fn2 from the current result f(a′) where only
the ith coordinates of a and a′ differ, O(1) machine instructions are executed to
combine f(a′) with the result of evaluating the first order partial derivative ∂f

∂xi

on a′ [3]. In particular, f(a) = f(a′) + ∂f
∂xi

(a′). This technique can be applied

recursively to evaluate ∂f
∂xi

(a′) and its higher order partial derivatives until the
partial derivative reduces to a constant. Therefore, if f is of degree D, O(D)
operations are required to compute f(a).

The same technique can also be applied to evaluate a function f whose output
is a linear function in k variables instead of a constant over F2 by simply splitting
the polynomial into a sum of k+1 sub-polynomials, one for each of the k variables
and one for a constant term. For example, the polynomial

f = x1x4x5x6 + x1x4x5x7 + x4x5x6x7 + x1x4x5 + x3x4x7 + x3x5

+ x2x4x6 + x4x6x7 + x1x4 + x1x5 + x5x7 + x6x7 + x1 + x2 + x4 + 1

which is linear in x1, x2, and x3 can be split into the 4 polynomials

f1 = x1(x4x5x6 + x4x5x7 + x4x5 + x4 + x5 + 1),

f2 = x2(x4x6 + 1),

f3 = x3(x4x7 + x5),

f4 = x4x5x6x7 + x4x6x7 + x5x7 + x6x7 + x4 + 1,

such that f = f1 + f2 + f3 + f4. Now, f can be evaluated by applying Gray-code
enumeration to f1, f2, f3, andf4 individually.

Since the result of evaluating f or any of its partial derivatives on a point
a ∈ F4

2 is a linear function that can be represented by four F2 elements (three
variables and the constant term) and the last order partial derivatives reduce to
constants, evaluating f(a) takes at most 3·(3+1)+1 xor-operations and another
4 ·2 operations for computing the indices of the coordinates that changed during
enumeration. In general, for a polynomial function f of degree D whose output
is a linear function in k variables, evaluating f requires O(D · k) operations.

Since a machine instruction operates on machine words, which for example
have size 64 for 64-bit architectures or 32 on GPUs, multiple polynomials can be
evaluated with Gray-code enumeration simultaneously. Therefore, the algorithm
described above can be applied to fix n−k variables in an extracted sub-system
S of m equations in n variables using O(D · k) instructions, as long as m is not
larger than the machine word size.

Gray-code enumeration can be easily parallelized: To run the enumeration
with 2t threads in parallel, first fix t variables in the sub-system S with all t-
tuples in {0, 1}t to create 2t smaller sub-systems in n − t variables. With this
approach, although the sub-systems are distinct from each other, their last order
partial derivatives with respect to the n− t− k variables that must be fixed are
identical.

3 Implementation

Our target platform for the implementation is a hybrid cluster of workstations
equipped with GPUs. Therefore, we have two processor architectures to our dis-
posal: AMD64 CPUs and Nvidia GPUs (Kepler and Maxwell microarchitecture).

The Gray-code enumeration part of the Crossbred algorithm is particularly easy
to parallelize and therefore suitable for GPU deployment. Thus, we use the CPUs
to generate and process the Macaulay matrix and the GPUs for Gray-code enu-
meration and linear-system solving.

3.1 Macaulay-Matrix Computations

The first step in Joux-Vitse’s Crossbred algorithm is to extend the originalMQ
system to a Macaulay matrix of degree D. (Our implementation works for D = 3
and D = 4.) The columns are ordered such that the monomials with degk > 1
are in the front. Then, several (in our implementation 32) non-trivial vectors
in the left kernel of the Macaulay matrix are computed. Finally, a sub-system
linear in x1, . . . , xk is extracted for Gray-code enumeration.

Since the Macaulay matrix is very sparse, a sparse-system solver like the block
Lanczos algorithm or the block Wiedemann algorithm could be used. However,
the Macaulay matrix exhibits a special structure: Since the Macaulay matrix
is generated from the original system by multiplying the polynomials with all
monomials up to a certain degree, the resulting matrix is close to being diagonal.
Therefore, we decided to exploit this special structure in a specifically adapted
implementation of Gaussian elimination.

The first step is to compute the reduced echelon form of the original input
system. This is a very small computation and requires a negligible amount of
time. Then, we compute the Macaulay matrix M such that the columns are in
the required order. We store M in a sparse representation. Then we search for
rows in the Macaulay matrix that have an increasing number of leading zeros
and swap them into place: Find a row that has no leading zeros and swap it to
the top, find a row that has one leading zero and swap it to the second row, and
so on. Due to the structure of the Macaulay matrix, usually about two thirds of
the rows of the upper-triangular form ofM can be obtained just by swapping in
suitable rows. Now, only the remaining one third of the upper-triangular form
ofM needs to be computed. Observe that up to this point,M can be stored in
a sparse format and no costly row reductions needed to be performed.

In order to compute the remaining rows of the upper-triangular form of M,
one must perform row reduction. Therefore, we switch over to a dense represen-
tation by first performing row reduction on rows that have not found their final
position during row-swapping with those that did. In this manner, we drop those
rows and columns that already have been pivoted by row-swapping and obtain a
dense, reduced matrix RM. On this matrix, we perform classical Gaussian elim-
ination in order to compute the desired sub-system that is linear in x1, . . . , xk.

After RM is computed, it can be copied to the GPU if the off-chip memory
if large enough to accommodate it. Subsequently a sub-system can be extracted
with Gaussian elimination on the GPU and copied back to the system main mem-
ory. On the other hand, if the size of RM is too large or if the overall workload
is pipelined between CPU and GPU, Gaussian elimination is simply performed
on the CPU. We parallelized the CPU implementation using the POSIX Thread

API to distribute the workload over all CPU cores. We observed during ex-
periments that our GPU implementation on a Nvidia GTX 980 graphics card
outperforms our CPU version on a AMD FX-8350 4GHz processor by a factor
of 9 in most cases.

Since the size of registers on a GPU is 32 bits and both Gray-code enumera-
tion and linear system solving require the input system to be stored in column-
wise format, only 32 linearly independent equations need to be extracted from
the reduced Macaulay matrix RM for the sub-system S.

3.2 Fixing Variables in the Sub-system

We implemented the Gray-code enumeration algorithm for fixing n−k variables
in the degree-D sub-system S to enumerate linear systems in k variables for
the GPU architecture. The data structures used by Gray-code enumeration are
allocated from the off-chip global memory. We simply distribute the workload
over 2t threads by fixing t variables in S to obtain individual and independent
smaller sub-systems Si, 1 ≤ i ≤ 2t for each thread. Since the last partial deriva-
tives are constants and remain the same for all 2t smaller sub-systems as noted
in Section 2.2, they can be shared by all threads. Since they are constant, we
store them in read-only constant memory.

The GPU threads in a warp begin enumeration with the same starting point
and consequently they will access partial derivatives in the same order in each
iteration. Therefore, the data structures for one warp can be interleaved to obtain
optimal memory throughput. In addition, because of the cyclic nature of Gray-
code enumeration, the last-level derivatives stored in constant memory are likely
to be cached in the constant memory cache. Since the data of the 32 equations in
the sub-system is stored in column-wise format, in total

(
n−k−t
D

)
32-bit integers

are required for storing the constant last-level derivatives.
As described in Section 2.2, the evaluation of a k-linear polynomial is split

into the evaluation of k + 1 polynomials. Therefore, we store the data for the
non-constant partial derivatives for the 32 threads in one warp in basic units
of 32(k + 1) words interleaved in memory. Since for each of the k + 1 polyno-
mials n − k − t variables have to be fixed during enumeration, storing results
of evaluating the non-constant partial derivatives of Si requires

∑D−1
j=1

(
n−k−t

j

)
such basic memory units for one warp. Together with the result of evaluating
Si at the current point (which requires one basic unit as well) a warp requires∑D−1
j=0

(
n−k−t

j

)
basic units. Therefore, in total Gray-code enumeration requires

(2t−5 ·
∑D−1
j=0

(
n−k−t

j

)
) · 32 · (k + 1) words of size 32-bit in global memory and(

n−k−t
D

)
words of size 32-bit in constant memory.

3.3 Testing the Solvability of a Linear System

After a linear system has been computed during an iteration step of Gray-code
enumeration, the system needs to be checked for solvability. Since the linear

system is small, the straight-forward approach for testing its solvability is to
simply solve it with Gauss-Jordan elimination.

In the standard Gauss-Jordan elimination algorithm, once a pivot row for
the ith pivot element is located, it is moved to its final position by swapping
with the ith row. However, we are storing the linear system in column order, so
row swapping is expensive. Therefore, we avoid row-swapping by maintaining a
mask that tracks which rows are in their final position.

After as many rows as the number of variables k in the linear system Si have
been marked as final, the algorithms stops. The remaining unmarked rows are
redundant equations and their first k coefficients which represent the variables
x1, x2, . . . , xk are guaranteed to be zero. Therefore, testing the solvability of Si
is as simple as checking if the constant term of any of the redundant equations
is non-zero.

Clearly, if the system is solvable, a solution can be extracted from the last
column based on the first k columns. In particular, the position of 1 in the ith

column points to the value for xi in the last column. Note that before extracting
a solution, one has to test whether or not the system is underdetermined. To
achieve this, one can simply verify that none of the first k columns is completely
zero since one such column implies a missing pivot element. This verification can
be done simultaneously while extracting a solution and does not require extra
computation.

We avoid storing data for linear system solving in global memory by storing
the entire data in registers. In order to make sure that the compiler maps data
to registers, we do not use an array data structure to store the data. Instead, we
use a Python script to generate unrolled code with distinct variables for all data.
However, the consequence of generating CUDA code at compilation time is that
the program has to be re-compiled for each choice of k. This takes roughly 6
seconds on an AMD FX-8350 4GHz processor, which is negligible.

3.4 Probability of False Positives

There are three possible outcomes of solving the linear system: there can be
no, one, or more than one solution. The expected outcome is that there is no
solution in which case we proceed to the next Gray-code iteration step. Ideally,
we find one single solution only once — which then is also a solution for the
original quadratic system. However, there is a small probability that a solution
for the subsystem S is not a solution for the original system, i.e., it is a false
positive. Finally, there is also a chance for finding more than one solution which
requires further processing.

Suppose we have a random linear system of m equations in F2 of n variables.
We would like to estimate the probability that this system has at least one
solution. Let A be the augmented matrix of this system (m× (n+ 1)).

Assume that during Gaussian elimination the upper-left corner is a pivot.
This means that there is at least one 1 in the first column (2m− 1 possibilities).
The first row with a leading 1 gets swapped to the top, and the rest of the first

column is eliminated. There are n other entries in the first row (2n possibilities).
The remaining (m− 1)× n sub-matrix remain uniformly random.

We can continue this reasoning conclude that if the Gaussian elimination
have pivots in columns a1 < a2 < · · · < a` ≤ n+ 1 exactly

2
∑`

j=1(n+1−aj)

∏̀
j=1

(2m+1−j − 1)

times. Thus, when m > n, we can tell that the largest block of consistent systems
have pivots a1 = 1, a2 = 2, . . . , an = n, and these number

2n(n+1)/2

 n∏
j=1

(2m+1−j − 1)

 < 2n(n+1)/2

 n∏
j=1

(2m+1−j)

 = 2n(m+1).

There are 2m(n+1) possible matrices so probability of a full-rank consistent
system is bounded by 2−(m−n). More precisely, for large m = n, the probability
of full-rank consistency is 1

2 ·
3
4 ·

7
8 · · ·

(
1− 1

2n

)
& p0 =

∏∞
j=1

(
1− 1

2j

)
≈ 0.288788.

In general a full-rank consistent systems occurs with probability roughly

2−(m−n)
n∏
j=1

(1− 2m−n+j) & pm−n := p0 · 2−(m−n)/

m−n∏
j=1

(1− 2−j)

 .

The second largest block of systems (missing a pivot in column n) is less
likely by a factor of 1

2(2(m+1−n)−1) . Systems missing a pivot in column (n− j) are

a further factor of 1/2j−1 less likely. Thus, probability of consistent systems with
(n− 1) pivots is ≈ pm−n

2(2(m+1−n)−1)

(
1 + 1

2 + 1
4 + 1

8 + · · ·+ 1
2n−1

)
≈ pm−n

(2(m+1−n)−1) .

The largest block missing two pivots (in columns n and n − 1) is a factor
1

23(2(m+1−n)−1)(2(m+2−n)−1) smaller than full-rank. Each time we move the first

missing pivot left there is a factor of 1/2. Each time we move the second (right-
most) missing pivot left there is a factor of 1/4. Summing over 2−i4−j gets a
factor of 8/3, so we end up having probability of missing 2 pivots close to

≈ pm−n
3(2(m+1−n) − 1)(2(m+2−n) − 1)

Continuing this argument, we note that the largest term missing k pivots is

smaller by a factor of 2k(k+1)
(∏k

j=1(2m−n+k − 1)
)

. Summing over all matrices

missing k pivots, we get a factor of . 2
1
4
3 · · ·

2k

2k−1 . So the totality of all matrices

missing k pivots is ≈ pm−n/
(∏k

j=1(2m−n+k − 1)
)(∏k

j=1(2k − 1)
)

.

The probability of a set of consistent equations for large m and n approaches p0

2m−n
(∏m−n

j=1 (1− 2−j)
)
 ∞∑

k=0

 1(∏k
j=1(2m−n+k − 1)

)(∏k
j=1(2k − 1)

)
 .

If we only take two terms, it becomes roughly p0

2m−n
(∏m−n+1

j=1 (1− 2−j)
)
→ 2−(m−n) for large m− n.

This is consistent with intuition. For example, to have no more than 1 consistent
system in 1000, we need m − n ≥ 10. For two further examples, we note that
p1 = p0 = 0.288788. The probability when m − n = 1 of a set of consistent
equations is approximately

p1 ·

 ∞∑
k=0

 1(∏k
j=1(2k+1 − 1)

)(∏k
j=1(2k − 1)

)
 = 0.389678.

When m = n, the probability of a set of consistent equations is approximately

p0

∞∑
k=0

1(∏k
j=1(2k − 1)

)2 = 0.610322,

which is exactly the complement of the previous result!

3.5 Verification of Solution Candidates

When a single solution candidate is found, it needs to be verified with the original
MQ system. Ideally, one would copy the solution candidate from the GPU off-
chip memory back to the main memory and verify it on the CPU immediately.
In practice, this is not efficient because checking each solution candidate right
away on the CPU interrupts the workflow of the GPU. Therefore, an alternative
approach is to store all solution candidates in a buffer and only copy them back
to the main memory after the GPU kernel finishes. One caveat of this approach
is that a sufficiently large buffer must be allocated on the off-chip memory,
which may have little capacity left after allocating memory blocks for the data
structures used in Gray-code enumeration. If the number of solution candidates
is larger than the size of the buffer, some candidates must be dropped.

To avoid this pitfall, we copy some polynomials from the originalMQ system
to the GPU which serve as a filter. Evaluating a random polynomial over F2 at a
random input results in zero with probability 0.5. Therefore, using i polynomials
reduces the number of candidates by a factor of 2−i (for i � n). Only solution
candidates that pass the filter will then be verified with the rest of the equations
in the original MQ system by the CPU.

We are using 32 polynomials that are stored in column-wise format. In this

manner, to apply the filter a thread needs to evaluate n(n−1)
2 +n+1 monomials in

the polynomials with the solution candidate. Therefore, this takes at most O(n2)
machine instructions. However, filtering only needs to be applied when the linear
system has a solution, which happened very rarely during our experiments and
its execution time was completely hidden.

If more than one solution is found, more effort is required in order not to
miss the solution. The probability of having more than one solution is very
small for well chosen implementation parameters (see Section 3.4). Therefore,
our implementation simply reports when it encounters this case and moves on
to the next iteration step. During all our experiments, this case never occurred.

3.6 Pipelining

When external hybridization is applied, i.e, p variables are fixed in the original
MQ system, one has to extract a sub-system and subsequently perform Gray-
code enumeration at most 2p times. Since we perform Gray-code enumeration
on the GPU, which operates independently from the CPU, we are able pipeline
the two stages. In other words, while performing Gray-code enumeration on the
GPU, a sub-system for the next Gray-code enumeration can be computed in
parallel on the CPU. In this manner, as long as extracting a sub-system takes at
most as much time as Gray-code enumeration, which can be controlled by the
choice of p, only the runtime of extracting the first sub-system will manifest.

4 Choice of Parameters

There are several parameters to choose before the Crossbred algorithm can be
executed on a CPU/GPU cluster. First, we need to know how many variables k
we can keep for linearization. This depends on the Macaulay degree D and the
number of variables p fixed in external hybridization. Finally we need to decide
how many variables to fix before deploying the workload to the GPUs and how
many GPU threads to launch in parallel.

4.1 Number of Variables to Keep

We want to set the parameter k as high as possible in order to reduce the search
space for Gray-code enumeration: For every extra variable that can be kept, the
search space is halved. As described in the original Crossbred algorithm [11],
the maximum of k depends on the Macaulay degree D as well as the number
of variables n and the number of equations m in the original MQ system. The
number of linearly independent equations that can be extracted from a Macaulay
matrix can be computed as the difference of the number of independent rows
Nindep row in the Macaulay matrix and the number of monomials Nnl which are
non-linear in x1, . . . , xk. This number must be no less than k; otherwise, there
will not be enough equations in the sub-system to obtain a unique solution.
The maximum value of k for MQ systems with n = m and m = 2n, based on
Macaulay degree D = 3 and 4, can be computed as

Nindep row =

{
m · (n+ 1), when D = 3,

m · (
(
n
2

)
+ n+ 1)− (

(
m
2

)
+m), when D = 4,

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

n

m
a
x
im

u
m

o
f
k

m = n,D = 3

m = n,D = 4

m = 2n,D = 3

m = 2n,D = 4

Fig. 1: Maximum number of variables k that can be kept depending on n and m.

Nnl =

D∑
i=2

i∑
j=2

(
k

j

)
·
(
n− k
i− j

)
,

Nindep row −Nnl

!
≥ k.

Figure 1 shows a graph for the number of variables we can keep in relation to
the system size for n < 200. Clearly, with degree-4 Macaulay matrices one can
keep more variables than with degree-3 Macaulay matrices for large enough n.
However, for some determined systems, e.g. n = 140, using a degree-4 Macaulay
matrix does not allow us to keep more variables than when using a degree-3
matrix. In addition, the gap between the two curves for overdetermined systems
becomes narrower as n grows. Therefore, similar to determined systems, the
effectiveness of degree-4 matrices is expected to become marginal at which point
degree-5 Macaulay matrices are required if one wishes to keep considerably more
variables than when using degree-3 matrices.

Note that k grows linearly in the beginning of each curve, where the degree of
regularity of theMQ system is smaller than or equal to the Macaulay degree. In
this case, a Gröbner basis can be extracted directly from the Macaulay matrix,
which immediately yields a solution to the system.

4.2 Macaulay Degree

As discussed in [11], since the Macaulay matrix is used to induce cancellation
of the monomials where any of the variables x1, x2, . . . , xk has a degree larger
than one, the degree of the Macaulay matrix must be no less than the degree
of regularity of a random system of m equations in k variables. In addition,
the Macaulay degree is a key factor that determines the maximum value of k.
One should therefore choose a Macaulay degree that is larger than the degree

of regularity requirement and that can provide a sufficient number of linearly
independent equations for the intended value of k.

One caveat of choosing the Macaulay degree is that the memory requirement
must be smaller than the available system memory. Since both the number of
rows and columns of a Macaulay matrix grow considerably when the degree
increases, one might have to choose a smaller Macaulay degree and subsequently
a smaller k in case the available memory is insufficient.

Our implementation supports both degree-3 and degree-4 Macaulay matrices.
Degree-3 Macaulay matrices are useful for small toy examples, while degree-4
Macaulay matrices are sufficient for the largest problem sizes that we target.

4.3 Number of Variables to Fix during External Hybridization

Section 4.1 gives the formula for computing the maximum value of k for a given
system. Since the parameter n in the formula is the number of variables in the
MQ system, one can achieve a higher k by fixing some p variables with external
hybridization. In this manner, the number of variables in the system drops by
p but the number of equations remains the same. Therefore, the number of
variables that can be kept may be higher.

For example, an MQ system of 148 equations in 74 variables allows to keep
k = 21 variables with a degree-4 Macaulay matrix. By fixing p = 4 variables, it
becomes a system in 70 variables, which allows to keep one more variable, i.e.,
k = 22. In this manner, the search space of Gray-code enumeration is split into
24 × 274−4−22 instead of 1 × 274−21, which reduces the total number of itera-
tions for Gray-code enumeration by half. On the other hand, 2p sub-systems of
Macaulay matrices need to be computed — so there is a limit on the effectiveness
of applying external hybridization.

4.4 Number of Variables to Fix before Exhaustive Search

In addition to fixing variables by external hybridization, one can further fix some
variables in the extracted sub-system before entering the exhaustive search stage.
By fixing b variables the sub-system beforehand, one can divide the workload
evenly into 2b smaller sub-systems which require less resources for applying ex-
haustive search. Clearly, since the main purpose of fixing these b variables in the
sub-system is to fine-tune the resource requirement, the choice of b should be
adjusted based on the hardware architecture and the remaining parameters.

4.5 Number of GPU Threads

Typically, more threads than available cores are launched on a GPU in order
to hide memory and instruction latencies. Therefore, there should be a certain
threshold for the number of threads after which increasing the number of threads
on the GPU does not have an influence on the performance anymore. To find
this threshold, we performed a series of experiments by running our GPU kernel

Number of
Threads

Memory
per Thread

Total
Memory

Constant
Memory

Search Space
per Thread

Runtime
(seconds)

29 15.41 kB 7.70 MB 5320 B 221 20.97
210 14.01 kB 14.01 MB 4560 B 220 11.93
211 12.68 kB 25.37 MB 3876 B 219 7.16
212 11.42 kB 45.69 MB 3264 B 218 4.89
213 10.22 kB 81.81 MB 2720 B 217 5.15
214 9.10 kB 145.56 MB 2240 B 216 5.15
215 8.04 kB 257.12 MB 1820 B 215 5.04
216 7.04 kB 450.50 MB 1456 B 214 4.95
217 6.11 kB 782.00 MB 1144 B 213 4.94
218 5.25 kB 1343.00 MB 880 B 212 4.79
219 4.45 kB 2278.00 MB 660 B 211 4.86
220 3.72 kB 3808.00 MB 480 B 210 4.86

Table 1: Effect of changing the number of GPU threads.

on a randomly generatedMQ system of 92 equations in 46 variables with differ-
ent numbers of 2t threads. We performed the experiments on a Nvidia Quadro
M1000M GPU using the following settings:

– GPU: Nvidia Quadro M1000M, 4GB off-chip memory, 512 CUDA cores
– Macaulay degree: D = 3
– external hybridization: p = 0
– Number of variables to fix before enumeration: b = 0
– Number of variables to keep: k = 16

The results are given in Table 1. As expected, the runtime basically remains
constant for t ≥ 12. For t < 12, the degree of parallelism is not sufficient and
the latencies manifest.

When t = 9, there are 29 = 512 GPU threads deployed, which is exactly
the number of CUDA cores available on this particular GPU. In this case, the
workload is evenly distributed to all the CUDA cores. Nevertheless, the degree
of parallelism is far from enough because executing one single thread per CUDA
core is not enough to hide latencies. For example, when the thread loads data
from the global memory, which requires hundreds of cycles to access, there is no
other thread that can take over the execution resources. Therefore, the CUDA
core has no choice but to stall.

Starting from t = 10, there are several threads per CUDA core and some
latencies can be hidden. The performance gradually improves until t = 12, where
the degree of parallelism reaches a point where deploying more threads does
not improve the ability of the GPU to hide latencies anymore. Therefore, for
these experimental settings the threshold where the optimal performance of our
implementation can be achieved is 212.

Note that as explained in Section 3.2, for each doubling in the number of
GPU threads the amount of global memory required for a single GPU thread
reduces slightly but the total amount of memory required for the GPU kernel
increases nearly twofold. However, since the last-level derivatives stored in con-
stant memory are shared by all threads, constant memory requirement decreases
as t increases.

5 Evaluation

We evaluated the performance of our implementation on the Saber clusters [2].
Saber is located at Eindhoven University of Technology and Saber2 at University
of Illinois at Chicago. The clusters consist of mostly homogeneous workstations.
Out of all the nodes in these two clusters, we used 27 cluster nodes, each equipped
with two Nvidia graphics cards. Twelve out of those 27 nodes have two GTX 780
graphics cards while the remaining 15 nodes have two GTX 980 cards. Each
node has 32GB RAM and one AMD FX-8350 4GHz processor, which has four
physical CPU modules (similar to a physical core in an Intel CPU) shared by
eight logical threads (similar to Intel’s hyper threading), 16KB L1 data cache
per thread, 2MB L2 cache per module, and 8MB L3 cache shared by the whole
CPU. We used CUDA version 7.5 and compiled our implementation with the
back-end compiler bundled with CUDA, which is GCC version 4.8.

We compare our results to the FES implementations on GPUs from [3] and
on FPGAs from [4] and to the Crossbred implementation on CPUs from [11].
Since [3] is using an older GTX 295 graphics card, we scale their results as
follows: The GTX 295 graphics card has 480 CUDA cores running at 1242 MHz.
Our GTX 980 graphics card has 2048 CUDA cores running at 1278.50 MHz.
Therefore, we scale the results of [3] by a factor of 1242

1278 ·
480
2048 in order to achieve

a rough comparison of the performance. This over-estimates the power of a
GTX 295 compared to a GTX 780 and therefore is in favor of [3] in some of the
comparisons.

5.1 Overdetermined Systems — Fukuoka MQ Challenge

We solved some of the FukuokaMQ challenges using our implementation. These
challenges were created in 2015 in order to help determining appropriate param-
eters for public-key cryptographic schemes based onMQ systems. In particular,
we chose to target Type-I challenges generated with seed 4 because they consist
of MQ systems in n variables and m = 2n equations over F2.

The experimental results of solving Type-I challenges for n ∈ {55, . . . , 67}
using one single GTX 980 graphics card are given in Table 2. The workflow
of the algorithm, i.e., how the search space is split and enumerated, is listed
in the 3rd column of the table. For parameters p > 0 and b > 0, external
hybridization and Gray-code enumeration need to be repeated at most 2p and
2b times respectively. The numbers inside the parentheses in the 4th and 5th

column specify how many repetitions were performed during the experiments.
For all these small experiments we used the GPU instead of the CPU to extract
sub-systems except for the last two experiments marked with an asterisk, because
the reduced Macaulay matrix was too large to fit into the 4GB off-chip memory
of the GTX 980 graphics card. As shown in Table 2, solving an MQ system of
134 equations in 67 variables requires at most 354231.11 seconds which equals
to 98.39 hours on a single GPU, including the computation time of extracting
sub-systems.

n
Parameters

(D, p, k, b, t)
Search Space

2p × 2b × 2n−p−k−b

Extracting
Sub-systems

(seconds)

Exhaustive
Search

(seconds)

Total
Runtime
(seconds)

Worst-case
Runtime
(seconds)

55 (4, 0, 19, 0, 14) 1× 1× 236 387.80 318.25 706.20 706.20
56 (4, 1, 20, 0, 14) 21 × 1× 235 491.60 (1) 169.94 (1) 658.67 1317.34
57 (4, 0, 20, 0, 14) 1× 1× 237 606.75 650.90 1258.73 1258.73
58 (4, 0, 20, 0, 14) 1× 1× 238 670.26 1311.97 1982.74 1982.74
59 (4, 0, 20, 0, 14) 1× 1× 239 741.62 2619.00 3361.77 3361.77
60 (4, 0, 20, 0, 14) 1× 1× 240 782.12 5211.05 5994.41 5994.41
61 (4, 0, 20, 1, 14) 1× 21 × 240 872.34 5204.18 (1) 6077.13 11280.34
62 (4, 0, 20, 2, 14) 1× 22 × 240 920.24 10485.95 (2) 11407.64 21892.14
63 (4, 4, 21, 0, 14) 24 × 1× 238 9406.21 (11) 14827.94 (11) 24234.15 35250.72
64 (4, 3, 21, 1, 13) 23 × 21 × 239 1991.48 (2) 10469.58 (4) 12456.97 49844.24
65 (4, 3, 21, 2, 14) 23 × 22 × 239 1046.62 (1) 10517.21 (4) 11565.10 92510.64
66* (4, 1, 21, 5, 13) 21 × 25 × 239 16268.10 (2) 133896.93 (51) 151867.70 184295.62
67* (4, 0, 21, 7, 13) 1× 27 × 239 10298.95 198835.78 (74) 209172.34 354231.11

Table 2: Solving overdetermined systems with a single GTX 980 graphics card.

n
Parameters

(D, p, k, b, t)
Search Space

2p × 2b × 2n−p−k−b

Extracting
Sub-systems

(seconds)

Total
Runtime
(seconds)

Worst-case
Runtime

(GPU-hours)

68 (4, 6, 21, 2, 13) 26 × 22 × 239 9799.15 12802.11 214.45
69 (4, 8, 22, 0, 13) 28 × 1× 239 11238.49 56697.70 229.10
70 (4, 7, 22, 2, 13) 27 × 22 × 239 14367.71 44223.81 452.65
71 (4, 8, 22, 2, 13) 28 × 22 × 239 14392.00 87415.91 947.20
72 (4, 9, 22, 2, 13) 29 × 22 × 239 13912.39 144145.58 1867.44
73 (4, 8, 22, 4, 13) 28 × 24 × 239 18055.07 159585.32 3700.87
74 (4, 10, 22, 3, 13) 210 × 23 × 239 15163.72 118323.38 8236.05

Table 3: Solving overdetermined systems using 27 nodes of the Saber clusters.

For larger Type-I challenges with n ∈ {68, . . . , 74} we used 27 nodes in the
Saber and Saber2 clusters by distributing the 2p smaller MQ systems obtained
from external hybridization evenly over the nodes. The results are given in Ta-
ble 3, which basically has the same format and notation as Table 2. In these larger
experiments, sub-systems were extracted from degree-4 Macaulay matrices with
the CPU because the GPU off-chip memory cannot accommodate the size of the
reduced Macaulay matrices. However, these parameters allowed us to pipeline
the extraction of sub-systems on the CPU and the exhaustive search stage on the
GPU. Therefore, the computation time of the former can be completely hidden
except in the first run. Some of the cluster nodes we used have GTX 780 graph-
ics cards with only 3GB of off-chip memory while GTX 980 graphics cards have
4GB. Therefore, we adjusted the parameters t and b according to the memory
size of the GTX 780. Consequently, the 4GB off-chip memory on the GTX 980
was not fully utilized but there was no noticable impact on performance.

Impact of k. The experiments show that despite the number of variables in-
creasing by one for each experiment, whenever the maximum value of the pa-
rameter k increases (either with or without external hybridization), the runtime
almost stays the same. For example, for the overdetermined MQ system F68,
n = 68 by keeping k = 21 variables, there are 47 variables left in F68 to enumer-
ate (see Table 3). For the overdeterminedMQ system F69, n = 69, the maximum

n m k Approach Worst-case Runtime Our Speedup

74 148 – [4] (2014) 2900 FPGA-yearsa 3100.0

74 148 – [3] (2010) 610 GPU-yearsa,b 650.0
74 148 23 [11](2017) 41 CPU-years 44.0
74 148 22 our(2018) 0.94 GPU-years 1.0

46 46 12 [11](2017) 1900 CPU-seconds 23.0
46 46 12 our(2018) 82 GPU-seconds 1.0

59 59 – [4] (2014) 30 FPGA-daysa 12.0

59 59 – [3] (2010) 6.8 GPU-daysa,b 2.8
59 59 13 our(2018) 2.4 GPU-days 1.0
aextrapolated bscaled from GTX 259 to GTX 980

Table 4: Worst-case runtime and speedup of our work compared to previous work.

value of k can be increased by one (with external hybridization), so k = 22 vari-
ables can be kept. Therefore, there are also 47 variables to enumerate for F69.
Hence, for both systems the total maximum number of iterations that need to
be performed during Gray-code enumeration is the same. However, since for F69

linear systems in 22 variables instead of 21 have to be computed, the cost of
each iteration of Gray-code enumeration for F69 is slightly larger than for F68.
Thus, the worst-case runtime for n = 69 is slightly larger than for n = 68.

Comparison. Previous records of solving Type-I challenges were held by the
FES and Crossbred algorithms. The FES implementation for FPGAs is able
to perform full enumeration over the search space for an MQ system in 64
variables in 956 days [4]. Therefore, it solves a MQ system of 148 equations in
74 variables in at most 274−64 ·956 days ≈ 2900 FPGA-years. The corresponding
GPU implementation in [3] requires 21 minutes to solve an MQ system with
n = 48 variables on a GTX 295 graphics card. Scaling the performance on the
GTX 295 to our graphics cards as described before results in 274−48 ·21 minutes ·
1242
1287 ·

480
2048 ≈ 610 GPU-years. The original Crossbred implementation for CPUs

requires at most 41 CPU-years to solve the challenge [11] using k = 23. As
shown in Table 3, our implementation is most efficient with k = 22 and requires
at most 8236 GPU-hours, i.e., 0.94 GPU-years. Table 4 shows an overview of
the comparison including the respective speedup of our implementation.

Estimated Security for n = 74,m = 2n. As mentioned before, a GTX 980
graphics card consists of 2048 CUDA cores operating at 1278.50 MHz. Based on
profiling information, our implementation achieves 37% GPU utilization. There-
fore, we estimate the security strength of this particularMQ system, defined as
the number of operations required to solve the system, as

8236.05 · 2048 · 1278.50 · 106 · 3600 · 0.37 ≈ 264.6.

Thus, an MQ system with n = 74,m = 2n only provides about 64-bit security.

5.2 Determined Systems

Determined systems with n = m are not included in the Fukuoka MQ chal-
lenges. Therefore, we performed experiments for such systems using randomly
generated, solvable systems. We solved those systems with one single GTX 980

n
Parameters

(D, p, k, b, t)
Search Space

2p × 2b × 2n−p−k−b

Extracting
Sub-systems

(seconds)

Exhaustive
Search

(seconds)

Total
Runtime
(seconds)

Worst-case
Runtime
(seconds)

46 (4, 0, 12, 0, 16) 1× 1× 234 33.90 47.63 82.12 82.12
47 (4, 0, 12, 0, 15) 1× 1× 235 36.31 96.12 132.92 132.92
48 (4, 0, 12, 0, 15) 1× 1× 236 39.76 190.59 230.88 230.88
49 (4, 0, 12, 0, 15) 1× 1× 237 42.98 380.91 424.48 424.48
50 (4, 0, 12, 0, 15) 1× 1× 238 46.86 754.86 802.34 802.34
51 (4, 0, 12, 0, 15) 1× 1× 239 50.74 1542.07 1593.46 1593.46
52 (4, 0, 12, 0, 14) 1× 1× 240 53.59 3049.07 3103.21 3103.21
53 (4, 0, 12, 1, 14) 1× 21 × 240 57.05 6249.61 (2) 6307.22 6307.22
54 (4, 0, 12, 2, 14) 1× 22 × 240 60.86 3141.67 (1) 3205.11 12635.54
55 (4, 1, 13, 1, 14) 21 × 21 × 240 95.30 (1) 3322.54 (1) 3418.48 13480.76
56 (4, 0, 13, 3, 14) 1× 23 × 240 118.85 6600.55 (2) 6720.12 26521.05
57 (4, 0, 13, 4, 14) 1× 24 × 240 121.54 46053.43 (14) 46175.72 52754.03
58 (4, 0, 13, 5, 14) 1× 25 × 240 133.97 105432.90 (32) 105567.66 105567.66
59 (4, 0, 13, 6, 14) 1× 26 × 240 144.13 197303.32 (60) 197448.24 210601.00

Table 5: Solving determined systems with a single GTX 980 graphics card.

graphics card on a node in the Saber2 cluster. The experimental results are given
in Table 5, whose format and notation is the same as Table 2.

For determined systems, the number of variables that can be kept is much
smaller than for overdetermined systems due to that fact that fewer equations
are available. However, the linear systems that are enumerated during Gray-code
enumeration consist of fewer variables. Therefore, the cost of each iteration is
also lower. As Table 5 shows, solving a determinedMQ system in n variables is
roughly as difficult as solving an overdetermined MQ system where m′ = 2n′,
n′ = n + 7 ∼ n + 8. Nevertheless, Figure 1 shows that the gap between the
number of variables that can be kept for determined and overdetermined systems
gradually becomes larger as n grows. Therefore, this observation only applies to
the systems in Table 5 but not to larger determined systems, e.g. n = 172.

Comparison. The extrapolated worst-case runtime of the FES algorithm on
FPGAs from [4] is 259−64 · 956 days ≈ 30 FPGA-days. The corresponding run-
time on GPUs [3] is 259−48 · 21 minutes · 12421278 ·

480
2048 ≈ 6.8 GPU-days. Our imple-

mentation requires at most 210601 seconds, i.e., about 2.4 GPU-days. Table 4
shows the speedup of our implementation. Our speedup over FES for n = m = 59
is significantly lower than for n = 74,m = 148. This shows that the Crossbred al-
gorithm is less efficient for small k and therefore more suitable for larger systems
and for overdetermined systems. The authors of the Crossbred-CPU implemen-
tation in [11] do not provide performance numbers for n = m = 59. Therefore,
we show a comparison for n = m = 46 in Table 4.

“80-bit Security”. Sakumoto, Shirai, and Hiwatari propose an MQ-based
public-key identification schemes and “80-bit secure” parameters n = 84, m = 80
in [15]. When using our implementation and hardware for solving such systems,
the best configuration is (D, p, k, b, t) = (4, 27, 16, 1, 14), because this choice gives
the largest k for the smallest p such that the computation on one Macaulay
matrix does not take more time than the corresponding computations on the
GPU. Therefore, the runtime of extracting the sub-systems can be completely

hidden by pipelining CPU and GPU computations. Extracting a sub-system
with these parameters takes 985.86 seconds and each GPU kernel launch takes
on average 4338.59 seconds for 240 iterations. The worst-case runtime for solving
the MQ system is therefore 4338.59 seconds · 2(84−16−40) ≈ 37000 GPU-years.

However, since the probability of obtaining a solution for a determined system
is approximately 1 − 1

e ≈ 0.63 [9] and the runtime r for exploring a sub-space

of size 280−16 is r = 4338.59 seconds · 2(80−16−40) ≈ 2300 GPU-years (with the
parameters as above), the expected runtime of solving an MQ system where
n = 84, m = 80 is only

r ·
(

1− 1

e

)
·
∞∑
i=1

i
1

ei−1
= r · e

e− 1
≈ 3600 GPU-years.

Following the calculation in Section 5.1, the expected number of operations
required for solving such a system on a GPU is therefore

3600 · 2048 · 1278.50 · 106 · 365 · 24 · 3600 · 0.3706 ≈ 276.5,

i.e., these parameters are roughly “76-bit secure” which is very close to the
security claimed in [15]. Due to the small k, the Crossbred algorithm gives only
a moderate improvement over the FES algorithm as in [3] with an expected cost
of roughly 280 · 4 · e

e−1 ≈ 282.7 GPU-operations.
However, solving the underlyingMQ systems of this public-key identification

scheme using the security parameters of [15] is feasible on average within about
one year using 3600 GTX 980 graphics cards at the cost of electricity and about
$2 million US dollars for hardware, assuming a price of $550 US dollars per GTX
980 graphics card5. This shows that breaking 80-bit security is within reach at
moderate cost and time using today’s technology and that 128-bit security must
be the minimum requirement for multivariate cryptography.

Acknowledgments

We would like to thank Daniel J. Bernstein for granting us access to his Saber
GPU clusters at Eindhoven University of Technology and the University of Illi-
nois at Chicago. This research was partially supported by the project MOST105-
2923-E-001-003-MY3 of the Ministry of Science and Technology, Taiwan.

References

1. Berbain C., Gilbert H., Patarin J.: QUAD: A Practical Stream Cipher with Prov-
able Security. In: Vaudenay S. (ed.) Advances in Cryptology — EUROCRYPT
2006. LNCS, vol. 4004, pp. 109–128. Springer (2006)

2. Bernstein D.J.: The Saber Cluster. URL: https://blog.cr.yp.to/20140602-

saber.html

5 https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review

https://blog.cr.yp.to/20140602-saber.html
https://blog.cr.yp.to/20140602-saber.html
https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review

3. Bouillaguet, C., Chen, H.C., Cheng, C.M., Chou, T., Niederhagen, R., Shamir, A.,
Yang, B.Y.: Fast Exhaustive Search for Polynomial Systems in F2. In: Mangard, S.,
Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Systems — CHES
2010. LNCS, vol. 6225, pp. 203—218. Springer Berlin Heidelberg (2010)

4. Bouillaguet C., Cheng C.M., Chou T., Niederhagen R., Yang B.Y.: Fast Exhaustive
Search for Quadratic Systems in F2 on FPGAs. In: Lange T., Lauter K., Lisoněk P.
(ed.) Selected Areas in Cryptography — SAC 2013. LNCS, vol. 8282, pp. 205–222.
Springer (2014)

5. Clough C., Baena J., Ding J., Yang B.Y., Chen M.: Square, a New Multivariate
Encryption Scheme. In: Fischlin M. (ed.) Topics in Cryptology — CT-RSA 2009.
LNCS, vol. 5473, pp. 252–264. Springer (2009)

6. Ding J., Schmidt D.: Rainbow, a New Multivariable Polynomial Signature Scheme.
In: Ioannidis J., Keromytis A., Yung M. (ed.) Applied Cryptography and Network
Security — ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer (2005)

7. Faugère J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

8. Faugère J.C.: A new efficient algorithm for computing Gröbner bases without re-
duction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002. pp. 75–83. ACM Press (2002)

9. Fusco G., Bach E.: Phase Transition of Multivariate Polynomial Systems. Mathe-
matical Structures in Computer Science 19, 9–23 (2009)

10. J., P.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two
New Families of Asymmetric Algorithms. In: U., M. (ed.) Advances in Cryptology
— EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer (1996)

11. Joux A., Vitse V.: A Crossbred Algorithm for Solving Boolean Polynomial Systems.
IACR Cryptology ePrint Archive (2017), https://eprint.iacr.org/2017/372

12. Kipnis A., Patarin J., Goubin L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern J. (ed.) Advances in Cryptology — EUROCRYPT 1999. LNCS, vol. 1592,
pp. 206–222. Springer (1999)

13. Patarin J., Courtois N., Goubin L.: QUARTZ, 128-Bit Long Digital Signatures.
In: Naccache D. (ed.) Topics in Cryptology — CT-RSA 2001. LNCS, vol. 2020,
pp. 282–297. Springer (2001)

14. Porras J., Baena J., Ding J.: ZHFE, a New Multivariate Public Key Encryp-
tion Scheme. In: Mosca M. (ed.) Post-Quantum Cryptography — PQCrypto 2014.
LNCS, vol. 8772, pp. 229–245. Springer, Cham (2014)

15. Sakumoto K., Shirai T., Hiwatari H.: Public-Key Identification Schemes Based on
Multivariate Quadratic Polynomials. In: Rogaway P. (ed.) Advances in Cryptology
— CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer (2011)

16. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: Foundations of Computer Science. pp. 124—134. IEEE (1994)

17. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review 41(2), 303—332 (1999)

18. Szepieniec A., Ding J., Preneel B.: Extension Field Cancellation: A New Central
Trapdoor for Multivariate Quadratic Systems. In: Takagi T. (ed.) Post-Quantum
Cryptography. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016)

19. Yang B.-Y., Chen J.-M.: All in the XL Family: Theory and Practice. In: Park C.,
Chee S. (ed.) Information Security and Cryptology — ICISC 2004. LNCS, vol.
3506, pp. 67–86. Springer (2005)

20. Yang B.Y., Chen O.C.H., Bernstein D.J., Chen J.M.: Analysis of QUAD. In:
Biryukov A. (ed.) Fast Software Encryption. FSE 2007. LNCS, vol. 4593, pp. 290–
308. Springer (2007)

https://eprint.iacr.org/2017/372

	Implementing Joux-Vitse's Crossbred Algorithm for Solving MQ Systems over F2 on GPUs

