
Distributed Computing Made Secure:

A New Cycle Cover Theorem∗

Merav Parter Eylon Yogev†

Abstract

In the area of distributed graph algorithms a number of network’s entities with local views
solve some computational task by exchanging messages with their neighbors. Quite unfortu-
nately, an inherent property of most existing distributed algorithms is that throughout the
course of their execution, the nodes get to learn not only their own output but rather learn
quite a lot on the inputs or outputs of many other entities. This leakage of information might
be a major obstacle in settings where the output (or input) of network’s individual is a private
information (e.g., distributed networks of selfish agents, decentralized digital currency such as
Bitcoin, voting systems).

While being quite an unfamiliar notion in the classical distributed setting, the notion of secure
multi-party computation (MPC) is one of the main themes in the Cryptography community.
Yet despite all extensive work in the area, no existing algorithm fits the framework of classical
distributed models in which there are no assumptions on the graph topologies and only messages
of bounded size are sent on the edges in each round.

In this paper, we introduce a new framework for secure distributed graph algorithms and
provide the first general compiler that takes any “natural” non-secure distributed algorithm
that runs in r rounds, and turns it into a secure algorithm that runs in Õ(r ·D ·poly(∆)) rounds
where ∆ is the maximum degree in the graph and D is its diameter. We also show that this is
nearly (existentially) optimal for any round-by-round compiler for bounded degree graphs.

The main technical part of our compiler is based on a new cycle cover theorem: We show
that the edges of every bridgeless graph G of diameter D can be covered by a collection of cycles
such that each cycle is of length Õ(D) and each edge of the graph G appears in Õ(1) many
cycles. In fact, our construction can be made instance optimal with respect to each single edge.
Letting Ce be the shortest cycle containing e in G, our cycle collection contains a cycle of length
Õ(|Ce|) that covers e for every e ∈ G, and in addition, each edge appears on Õ(1) many cycles.
As a result, our compiler becomes instance optimal for bounded degree graphs.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Emails: {merav.parter,eylon.yogev}@weizmann.ac.il.
†Supported in part by grants from the Israel Science Foundation grant no. 950/16.



Contents

1 Introduction 1
1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 From Security Requirements to Graph Structures . . . . . . . . . . . . . . . . 2
1.1.2 Secure Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Our Techniques 6
2.1 Low Congestion Cycle Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 From Low Congestion to Secure Simulation . . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries and Model 10
3.1 Distributed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Cryptography with Perfect Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Low-Congestion Covers 14
4.1 Cycle Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Covering Non-Tree Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Covering Tree Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Private Neighborhood Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 P2 Cycle Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Universally (Nearly) Optimal Covers 32
5.1 Cycle Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Private Neighborhood Cover and P2 Covers . . . . . . . . . . . . . . . . . . . . . . . 35

6 Secure Simulation via Low-Congestion Covers 36
6.1 Our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Secure Simulation of a Single Round . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 The Final Secure Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Distributed Computation of Low Congestion Covers 42
7.1 Cycle Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.1 Distributed Algorithm for Covering Non-Tree Edges . . . . . . . . . . . . . . 43
7.1.2 Analysis of Algorithm DistNonTreeCover . . . . . . . . . . . . . . . . . . . . . 48
7.1.3 Distributed Algorithm for Covering Tree Edges . . . . . . . . . . . . . . . . . 52

7.2 Additional Low Congestion Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Pre-processing for Improved Cover Structures . . . . . . . . . . . . . . . . . . . . . . 55

8 Discussion and Future Work 56

A Balanced Partitioning of a Tree 60

B Missing Details for Algorithm DistCycleCover 61

C Distributed Construction of Neighborhood Cover in the Congest Model 62

2



1 Introduction

In distributed graph algorithms (or network algorithms) a number of individual entities are con-
nected via a potentially large network. Starting with the breakthrough by Awerbuch et al. [ALGP],
and the seminal work of Linial [Lin92], Peleg [Pel00] and Naor and Stockmeyer [NS95], the area of
distributed graph algorithm is growing rapidly. Recently, it receives considerably more theoretical
and practical attention motivated by the spread of multi-core computers, cloud computing, and
distributed databases. We consider the standard synchronous message passing model where in each
round O(log n) bits can be transmitted over every edge (the CONGEST model).

The common principle underlying all distributed algorithms (regardless of the model specifica-
tion) is that the input of the algorithm is given in a distributed format, and consequently the goal
of each vertex is to compute its own part of the output, e.g., whether it is a member of a computed
maximal independent set, its own color in a valid coloring of the graph, its incident edges in the
minimum spanning tree, or its chosen edge for a maximal matching solution. In most distributed
algorithms, throughout execution, vertices learn much more than merely their own output but
rather collect additional information on the input or output of (potentially) many other vertices
in the network. This seems inherent in many distributed algorithms, as the output of one node is
used in the computation of another. For instance, most randomized coloring (or MIS) algorithms
[Lub86, BE13, BEPS16, HSS16, Gha16, CPS17] are based on the vertices exchanging their current
color with their neighbors in order to decide whether they are legally colored.

In cases where the data is sensitive or private, these algorithms may raise security concerns. To
exemplify this point, consider a voting task for a distributed network, where the goal is to elect
the candidate with most votes in the network. This is a rather simple distributed task: construct
a BFS tree and let the nodes send the votes from the leaves to the root where each intermediate
node sends to its parent in the tree, the sum of all votes for each candidate. While the output goal
has been achieved, privacy has been compromised as intermediate nodes learn more information
regarding the votes of their subtrees. As privacy in election processes is a fundamental property
of any “democratic system”, it is desirable to design a secure distributed voting algorithm, in
which information of other nodes’ votes do not get revealed throughout the course of execution.
Additional motivation for secure distributed computation are settings that involve private medical
data, networks of selfish agents with private utility functions or even decentralized digital currency
such as the Bitcoin.

Whereas much effort in recent years has been devoted to improving the round complexities of
various distributed algorithms, e.g., coloring, MIS, Lovász Local lemma [Suo13, BEK14, FHK16,
BEPS16, Gha16, CPS17, CHL+17] and many more, the challenge of making these algorithms
secure – was left behind. To this point, we have no distributed algorithms for general graphs in the
standard CONGEST model that are secure and efficient compared to their non-secure counterparts.

While being a rather virgin objective in the distributed graph algorithm setting, the notion of
secure multi-party computation (MPC) is one of the main themes in the Cryptography community.
The goal of an MPC protocol is to allow parties to jointly compute a function of their inputs without
revealing any about their input except the output of the function. There has been tremendous work
on MPC protocols, from general feasibility results [Yao82, GMW87, BGW88, CCD88] to efficient
protocols for specific functionalities [BNP08, BLO16]. Despite the large progress, almost all prior
protocols require a private channel between every two nodes in the network in order to secure
compute the desired function. This, of course, defeats the whole purpose of distributed computing.

1



Only a handful of works have considered a general graph interaction patterns [HLP11, HIJ+16,
GGG+14, BGI+14], or locality of MPC protocols [BGT13, CCG+, BIPW]. Unfortunately, they all
have many major drawbacks: they rely on heavy computational assumptions (e.g., obfuscation),
they assume a trusted setup phase (which is often not reusable), they require many rounds of
interaction, they do not obey bandwidth limitations and they assume specific interaction patterns
(e.g., star topology).

Despite some common interests, up to this point, both areas of distributed graph algorithms
and secure multi-party computation have been developed in almost total isolation, each in its
own community with different requirements and goals in mind. The distributed area puts most
emphasis on locality, while the study of MPC focuses mostly on security. In this paper, we aim
towards bridging this gap and combine the goods from both worlds, by tackling the following
question:

How to design distributed algorithms that are both efficient (in terms of round and
bandwidth complexity) and secure (where nothing is learned but the desired output)?

One tedious way to attack this challenge is to go through the most popular distributed problems
(e.g., coloring, MIS, matching) and design a secure distributed algorithm for each of them one by
one. Much more desirable, however, is to have a general recipe for adding security to existing
algorithms, while incurring a small overhead in the round complexity.

Towards this end, we introduce the first general compiler that can take any (possibly insecure)
distributed algorithm to one that has perfect security (a notion that will be explained next). The
compiled algorithm respects the same bandwidth limitations, relies on no setup phase nor on any
computational assumption and works for (almost) any graph, while paying a small overhead only
in the number of rounds.

This quite general and powerful framework is made possible due to fascinating connections be-
tween “secure cryptographic definitions” and natural combinatorial graph properties. Most notably
is the cycle cover of a graph. While cycle covers have been studied in the literature, e.g., the well-
known double cycle cover conjecture by Szekeresand and Seymour [JT92]; the Chinese postman
problem by Edmond [EJ73], none of the known results satisfy our requires. Instead, we prove a new
theorem regarding cycle covers with low congestion which we foresee being of independent interest
and exploited in future work.

1.1 Our Approach and Results

1.1.1 From Security Requirements to Graph Structures

We demonstrate our approach with a simple example. Let G be an n-vertex graph and suppose
that each vertex u has an input xu. Suppose that each pair of neighbors u, v in the graph (with
inputs xu, xv) wishes to compute a function f(xu, xv) securely, i.e., each party should learn the
output f(xu, xv) but “nothing more” (the precise notion of security will be later elaborated).

Kushilevitz [Kus89] showed that almost all (non-trivial) functions cannot be computed between
u and v with this notion of privacy, and this was generalized for weaker notions of (information
theoretic) privacy as well [FJS14]. To circumvent these barriers, Feige, Kilian and Naor [FKN94]
(later generalized by [IK97]) suggested a “minimal model” called PSM1 where a third party s aids

1The term PSM stands for Private Simultaneous Model.

2



the computation. In the model, u and v share private randomness (not known to s) and each sends
a single message to s which depends on its own input and the shared randomness. This allows s
to compute the output f(x, y) while learning nothing more.

In this paper we introduce Distributed PSM protocols which generalize the standard two party
PSM protocols to general graphs. To provide secure communication between neighboring nodes
u, v, we need to find a third node s in the graph so that both u and v can communicate with s
without seeing each other’s messages. This requirement translates into covering the edge (u, v)
with a cycle containing the edge. The number of rounds of the protocol (e.g., sending messages on
the cycle to w) is proportional to the length of the cycle. Furthermore, as we wish to run such a
protocol for all edges of the graph simultaneously, we need to cover all edges in the graph while
having each individual edge participating in a small number of cycles (this is desirable since the
bandwidth is limited).

Low Congestion Covers. These requirements motivate the genuine definition of (d, c)-cover C
which is a collection of cycles of length at most d such that each edge appears at least once and
at most c many times on each of the cycles (the congestion of the cover). Given a (d, c)-cycle
cover, we can have all vertices of the graph compute a function f(xu, xv) for every edge in the
graph simultaneously in Õ(d+ c) rounds2 (in the CONGEST models). A-priori, it is not clear that
cycle covers that enjoy both low congestion and short lengths even exist, nor if it is possible to
efficiently find them. Perhaps quite surprisingly, we prove the following theorem regarding cycle
cover. Throughout, we will have an n-vertex graph G and use the notation Õ is the “Big O”
notation that hides polylog(n) factors.

Theorem 1 (Low Congestion Cycle Cover). Every 2-edge connected graph with diameter D has a
(d, c)-cycle cover where d = Õ(D) and c = Õ(1). That is, the edges of G can be covered by cycles
such that each cycle is of length at most d and each edge participates in at most c cycles.

We note that this theorem is existentially tight, in the sense that the Θ(D) factor is necessary
(consider a cycle graph). We also obtain a construction that is nearly optimal with respect to the
best possible for the input graph G. For each edge e, let Ce be the shortest cycle in G containing e
and let OPT(G) = maxe |Ce|. Clearly, every (d, c)-cycle cover must satisfy that d ≥ OPT(G). Note
that whereas it might be that OPT(G) = O(D), in general OPT(G) might be much smaller. Thus,
we show an instance optimal version of our cycle cover theorem:

Theorem 2 (Instance Optional Low Congestion Cycle Cover). For every 2-edge connected graph
G, one can construct a (d, c) cycle cover C where d = Õ(OPT(G)) and c = Õ(1). In addition, for
every edge e, there is a cycle in C that covers e and is of length Õ(|Ce|).

Although several variants of cycle cover problems have been considered in the literature, none
of them fit our objective of having both short cycles and small congestion. For instance the k-
cycle cover problem aims to minimize only the congestion, i.e., restricting each edge to appear on
at most k cycles while allowing arbitrary long cycles. On the other hand, in the minimum cycle
cover problem that objective is minimize the total length of all cycles in the cover (i.e., instead of
minimizing the length of the longest cycle as in our setting) [Fan97].

In order to use these covers in our compiler, we build them once, in a prepossessing step, and
show that the covers of Theorem 1 can be constructed distributively in Õ(n + D ·∆) rounds (see

2The Õ(·) notation hides polylog(n) factors where n is the number of vertices in the graph.

3



Lemma 11 and corollary 7). Alternatively, in Section 7 we also provide a much more efficient
distributed construction on the expense of having somewhat worse bounds in the quality of the
output covers.

Theorem 3 (Distributed Low Congestion Cycle Cover). For every 2-edge connected graph G
with diameter D and every ε ∈ [0, 1], there is a distributed algorithm that constructs a (Õ(41/ε ·
OPT(G)), Õ(nε)) cycle cover in Õ(41/ε · OPT(G) + nε) rounds.

Our low congestion cycle covers turn out to be a basic building block for constructing two
other, more complex, covers which we need in our final secure compiler. The first is private
neighborhood cover which generalizes the standard notion of neighborhood covers introduced by
Awerbuch et al. [ABCP98]. Roughly speaking, the private neighborhood cover of a graph G =
(V,E) is a collection of n trees, one per node ui, where each tree T (ui) ⊆ G \ {ui} contains all
the neighbors of ui but do not contain ui. Intuitively, the private neighborhood covers allow all
neighbors Γ(ui) of all nodes ui, to exchange a secret without ui. Note that these covers exists if
and only if the graph is 2-vertex connected3. Similarly to low-congestion cycle covers, we define
(d, c)-private neighborhood covers in which each tree T (ui) has depth at most d and each edge
belongs to at most c many trees. This allows us to use all trees simultaneously in Õ(d+ c) rounds.

Theorem 4 (Private Neighborhood Cover). Every 2-vertex connected graph with diameter D and
maximum degree ∆, has a (d, c)-private neighborhood cover for d = Õ(D ·∆) and c = Õ(D).

The second covering structure can be seen as a generalization of (edge) cycle covers. In P2 cycle
covers we wish to cover every P2 path in the graph by a cycle. Intuitively, P2 cycle covers provide
private communication between every pair of nodes of distance 2 in the graph. We show:

Theorem 5 (P2 Cover). For every 2-vertex connected graph with diameter D and maximum degree
∆, there exist a (d, c)-P2 cycle cover where d = Õ(D ·∆) and c = Õ(D ·∆2).

Similarly to Theorem 2, the dependency in D in Theorems 4 and 5 can be replaced by the
optimal dilation of the corresponding structure in the input graph G. Finally, both these covering
structures can be constructed also distributively by extending the constructions of low-congestion
cycle covers (see Lemmas 9 and 10 in Section 7).

1.1.2 Secure Simulation

The Security Notion. With this graph framework in mind, we return to our original of con-
structing secure distributed algorithms. We want to design an algorithm in which every node u
learns its desired output but does not learn anything else about the inputs and outputs of the rest
of the nodes in the graph. In our framework, the topology of the graph is not considered private
and is not protected by our security notion. While there are many possible ways to define this kind
of privacy, we use the strongest possible notion of perfect privacy which is information theoretic
and relies and no computation assumptions. This notion uses the existence of an (unbounded)
simulator, with the following intuition: a node learns nothing, except its own output y, from the
messages it receives throughout the execution of the algorithm, if a simulator can produce the same
output while receiving only y and the graph G.

3A graph G = (V,E) is 2-vertex connected if for all u ∈ V the graph G′ = (V \ {u}, E) is connected.

4



We achieve security in what is known as the “semi-honest” model, where the adversary, acting
as one of the nodes in the graph, is not allowed to deviate from the prescribed protocol, but can run
arbitrary computation given all the messages it received. Moreover, we assume that the adversary
does no collude with other nodes in the graph. It is possible to extend the security notion to include
these notions, more on this is discussed at Section 8.

The General Compiler. In a distributed algorithm, every node has a state and in each round,
it updates its state by applying a local function f that depends on its immediate neighbors. The-
orems 1, 4 and 5 provide the required graph framework for computing this function f in a secure
and efficient manner (using a distributed PSM) for all nodes in the graph simultaneously. The
communication complexity of the secure protocol depends on the computational complexity of the
function f . In almost all distributed algorithms, the local update function f can be computed in
polynomial time and as a result the communication overhead of the secure protocol is negligible.
We call this family of functions natural and for simplicity of presentation we state our results for
natural distributed algorithms. Finally, we can state our main result: any natural distributed al-
gorithm can be compiled to an equivalent one (that is one that has the same output for each node)
that is secure.

Theorem 6 (Secure Simulation). Let G be a 2-vertex connected n-vertex graph with diameter D and
maximal degree ∆. Let A be a natural distributed algorithm that runs on G in r rounds. Then, A
can be transformed to an equivalent algorithm A′ with perfect privacy which runs in Õ(rD ·poly(∆))
rounds, using Õ(n+D ·∆) rounds of pre-processing.

By using Theorem 2, the diameter dependency in the bounds of Theorem 6 can be replaced by
OPT(G). Hence, we obtain our simulation blows up the round complexity by factor Õ(OPT(G) ·
poly(∆)) where OPT(G) is the best possible round complexity for a secure computation over a
single edge in G. We note that our compiler works for any distributed algorithm rather than
only on natural ones. The number of rounds will be proportional to the space complexity of the
algorithm (an explicit statement for any algorithm can be found in Remark 1). Moreover, to avoid
the preprocessing step, one can use Theorem 3 with ε = 1/

√
log n, to get a secure simulation with

Õ(r ·2
√

logn ·D ·poly(∆)) rounds (with no preprocessing). We observe that the barrier of [Kus89] can
be extended to a cycle graph, which shows that the linear dependency in D in the round complexity
of our compiler is existentially unavoidable. Our results are summarized in Figure 1.

Applications for Known Distributed Algorithms. Theorem 6 enables us to compile almost
all of the known distributed algorithms to a secure version of them, examples include computing
majority of votes as well as many other examples which we briefly mention next. It is worth noting
that deterministic algorithms for problems in which the nodes do not have any input cannot be
made secure by our approach since these algorithms only depend on the graph topology which
we do not try to hide. Our compiler is meaningful for algorithms where the nodes have input or
for randomized algorithms which define a distribution over the output of the nodes. For instance,
whereas the deterministic coloring algorithms cannot be made secure, the randomized coloring
algorithms (see e.g., [BE13]) which sample a random legal coloring of the graph can be made
secure. Specifically, we get a distributed algorithm that (legally) colors a graph (or computes a
legal configuration, in general), while the information that each node learns at the end is as if
a centralized entity ran the algorithm for the entire network, and revealed each node’s output
privately (i.e., revealing v the final color of v).

5



Cycle Cover
(Theorem 1)

Private-Neighborhood-Cover
(Theorem 4)

P2-Cover
(Theorem 5)

Secure Distributed Algorithm
(Theorem 6)

Figure 1: An illustrated summary of our results.

MIS, Coloring, Matching and More. Our approach captures global (e.g., MST) as well as
many local problems [NS95]. The MIS algorithm of Luby [Lub86] along with our compiler yields
Õ(D · poly(∆)) secure algorithm according to the notion described above. Slight variations of this
algorithm also gives the O(log n)-round (∆ + 1)-coloring algorithm (e.g., Algorithm 19 of [BE13]).
Combining it with our compiler we get a secure (∆ + 1) coloring4 algorithm with round complexity
of Õ(D · poly(∆)). Using the Matching algorithm of Israeli and Itai [II86] we get an Õ(D · poly(∆))
secure maximal matching algorithm. Finally, another example comes from distributed algorithms
for the Lovász local lemma (LLL) which receives a lot of attention recently [BFH+16, FG17, CP17]
for the class of bounded degree graphs. Using [CPS17], most of these (non-secure) algorithms for
defective coloring, frugal coloring, and list vertex-coloring can be made secure within Õ(D) rounds.

2 Our Techniques

2.1 Low Congestion Cycle Covers

We give an overview of our low congestion cycle cover of Theorem 1. Let G = (V,E) be a 2-edge
connected n-vertex graph with diameter D. We begin by observing that all but 2n of the edges
in the graph can be covered by edge-disjoint cycles of length at most log n. Since the girth of any
graph with at least 2n edges is logn, we can repeatedly add a short cycle (up to length log n) to
the collection and remove it from the graph. The main challenge is in covering these last 2n edges,
as these edges might be arbitrary with potentially a large diameter.

The remaining 2n are covered as follows. We construct a BFS tree T in the graph G. All the
remaining uncovered edges in the graph are either tree edges or non-tree edges. Our cover consists
of two procedures, where the first constructs a low congestion cycle cover for the non-tree edges
and the second covers the tree edges.

4We observe that Algorithm 19 of [BE13] can implemented with O(log ∆) memory.

6



Covering the Non-Tree Edges. Let E′ be the set of uncovered non-tree edges. The main
difficulty in covering E′ stems from the fact that the diameter5 of G\T might be large (e.g., Ω(n)).
Hence, to cover the edges of E′ by short cycles, one must use the edges of T . A näıve approach is
to cover every edge e = (u, v) in E′ by taking its fundamental cycle in T (i.e., using the u-v path in
T ). Although this yields cycles of optimal lengths, the congestion on the tree edges might become
Ω(n). The key challenge is to use the edges of T (as we indeed have to) in a way that cycles enjoy
the small diameter of the graph while not overloading any tree edge more than Õ(1) times.

Our approach is based on using the tree T edges only for the purpose of connecting nodes that
are somewhat close to each other, and thus the path between them should not occupy too many
edges of the tree. To realize this approach, we define a specific way of partitioning the nodes of the
tree T to blocks according to E′. In a very rough manner, a block would consist of a set of nodes
that have few incident edges in E′. To define these blocks, we number the nodes based on postorder
traversal in T and partition them into blocks containing nodes with consecutive numbering. The
density of a block B is the number of edge in E′ with one endpoint in B. The blocks are partitioned
such that no block has large density (at most some constant), and moreover, the number of blocks
is not too large (say, at most n/8). The only exception is a block containing a single node, in such
a case its density can be unbounded (i.e., even Ω(n)). The end goal is to connect nodes by their
tree path only if they reside in the same block.

We then consider the contracted graph obtained by contracting all nodes in a given block into
one supernode and connecting two supernodes B1 and B2, if there is an edge in E′ whose one
endpoint is in B1, and the other endpoint is in B2. This graph is in fact a multigraph, that might
contain self-loops or multi-edges. The key idea is that the contracted graph contains only n′ = n/8
nodes, and hence we can reuse the girth approach from before, and repeatedly find short cycles
(length log n′) in it until we are left with at most 2n′ = n/4 edges. These cycles are translated to
cycles in the origin graph G by using the tree paths π(u, v, T ) between nodes u, v belonging to the
same supernode (block).

Our key insight is that eventhough paths between two nodes in a block might be long, we show
that every tree edge is “used” by at most two blocks. That is, for each edge e of the tree, there are
at most 2 blocks such that the tree path π(u, v) of nodes u, v in the block passes through e. (If a
block has only a single node, then it will use no tree edges.) Since the blocks have constant density,
we are able to bound the congestion on the edge e. The translation of cycles in the contracted
graph to cycles in the original graph yields O(D log n)-length cycles in the original graph where
every edge belongs to O(1) cycles.

The above step already covered all but 2n′ = n/4 edges. We continue this process log n times
until all edges of E′ are covered, and thus get a log n factor in the congestion. We note that while
producing short cycles of small congestion that cover all the non-tree edges with low congestion,
these cycles might be non-simple. To handle that, we add an additional “cleanup” step (procedure
SimplifyCycles) which takes the output collection of non-simple cycles and produces a collection of
simple ones. In this process, some of the edges in the non-simple cycles might be omitted, however,
we prove that only tree edges might get omitted and all non-tree edges remain covered by the
simple cycles. This concludes the high level idea of covering the non-tree edges. We note the our
blocking definition is quite useful also for distributed implementations. The reason is that although
the blocks are not independent, in the sense that the tree path connecting two nodes in a given

5The graph G \ T might be disconnected, when referring to its diameter, we refer to the maximum diameter in
each connected component of G \ T .

7



block pass through other blocks, this independence is very limited. The fact that each tree edge is
used in the tree paths for only two blocks allows us also the work distributively on many blocks
simultaneously (see Section 7).

Covering the Tree Edges. Covering the tree edges turns out to be the harder case where new
ideas are required. Specifically, whereas in the non-tree edge our goal is to find cycles that use the
tree edge as rarely as possible, here we aim to find cycles that cover all edges in the tree, but still
avoiding a particular tree edge from participating in too many cycles.

The algorithm for covering the tree edges is recursive, where in each step we split the tree into
two edge disjoint subtrees T1, T2 that are balanced in terms of number of edges. To perform a
recursive step, we would like to break the problem into two independent subproblems, one that
covers the edges of T1 and the other that covers the edges of T2. However, observe that there might
be edges (u, v) ∈ T1 where the only cycle that covers them6 passes through T2 (and vice versa).
For every such node u ∈ T1, let s(u) be the first node in T2 that appears on the fundamental cycle
of the edge (u, v).

To cover these tree edges, we employ two procedures, one on T1 and the other on T2 that
together form the desired cycles (for an illustration, see Figures 9 and 11). First, we mark all nodes
u ∈ T1 such that their s(u) is in T2. Then, we use an Algorithm called TreeEdgeDisjointPath (see
Lemma 4.3.2 [Pel00]) which solves the following problem: given a rooted tree T and a set of 2k
marked nodes M ⊆ V (T ) for k ≤ n/2, find a matching of these vertices 〈ui, uj〉 into pairs such that
the tree paths π(ui, uj , T ) connecting the matched pairs are edge-disjoint.

We employ Algorithm TreeEdgeDisjointPath on T1 with the marked nodes as described above.
Then for every pair ui, uj ∈ T1 that got matched by Algorithm TreeEdgeDisjointPath, we add a
virtual edge between s(ui) and s(uj) in T2. Since this virtual edge is a non-tree edge with both
endpoints in T2, we have translated the dependency between T1 and T2 to covering a non-tree edge.
At that point, we can simply use Algorithm NonTreeCover on the tree T2 and the non-virtual edges.
This computes a cycle collection which covers all virtual edges (s(ui), s(uj)). In the final step,
we replace each virtual edge (s(ui), s(uj)) with the edge disjoint tree path 〈ui, uj〉 and the paths
between ui and s(ui) (as well as the path connecting uj and s(uj)).

This above description is simplified and avoids many details and complications that we had to
address in the full algorithm. For instance, in our algorithm, a given tree edge might be responsible
for the covering of up to Θ(D) many tree edges. This prevents us from using the edge disjoint paths
of Algorithm TreeEdgeDisjointPath in a näıve manner. In particular, our algorithm has to avoid
the multiple appearance of a given tree edge on the same cycle as in such a case, when making the
cycle simple that tree edge might get omitted and will no longer be covered. See Section 4.1 for the
precise details of the proof, and see Figure 2 for a summary of our algorithm. The construction of
nearly optimal covers is in Section 5. The high level approach is to first construct the neighborhood
cover for the graph and then apply the above algorithm is each cluster of the neighborhood cover.

2.2 From Low Congestion to Secure Simulation

Consider a distributed algorithm A that runs in r rounds. In a broad view, A can be considered
as a collection of r functions f1, . . . , fr. At round i, a node u holds a state σi and needs to update
its state according to a function fi that depends on σi and the state of its immediate neighbors.
We assume that the final state σr is the final output of the algorithm for node u.

6Recall that the graph G is two edge connected.

8



Algorithm CycleCover(G = (V,E))

1. While there is a cycle of uncovered edges of length at most log n, add it to C.

2. Construct a BFS tree T of G.

3. Let Ẽ ⊆ E be the subset of all uncovered non-tree edges.

4. Repeat log n times:

(a) Partition the nodes of T with block density b with respect to Ẽ.

(b) While there are t edges (u1, v1), . . . , (ut, vt) ∈ Ẽ for t ≤ log n such that for all i ∈ [t−1],
vi and ui+1 are in the same block and vt and u1 are in the same block (with respect
to the partitioning B): Add the cycle u1 → v1 → π(v1, u2) → v2 → π(v2, u3) → v3 →
. . .→ vt → u1 to C.

5. C ← C ∪ TreeEdgeCover(T ) (see Figure 12).

6. Output SimplifyCycles(C).

Figure 2: Procedure for covering non-tree edges.

Our goal is to simulate this process of computing σ1, σ2, . . . , σr, however, in an oblivious way
without knowing any σi except the last one σr which contains the final output. Thus, we will have
the node u hold an “encrypted” state, σ̂i, instead of the actual state σi. This encryption uses a a
random mask R such that σ̂i⊕R = σi. The key R will be secret shared among the neighbors of u.
That is, each of them will hold a single random string (called a share) Rj , such that R =

⊕
Rj .

The neighbors of u, in turn, hold an encrypted version of their own state as well. The key
for their state is secret shared among their neighbors. Thus, the information required in order to
compute the function fi is now spread out among the 2-neighborhood of u. Define a related function
f ′i to be a function that gets an encrypted state of u and its neighbors and the corresponding keys.
Then the function decrypts the states, computes fi and finally re-encrypts the new state using
a new encryption key. Our goal is to enable u to compute the function f ′i that depends on its
2-neighborhood while learning but the output. Actually, we need all nodes u ∈ V to be able to
compute f ′i simultaneously.

To achieve this, we use a PSM protocol where u is the server and its 2-neighborhood are the
parties. The first step of a PSM protocol, is for all parties to share private common randomness
(not known to u). This is exactly the reason for introducing the notion of low congestion private
neighborhood cover. Using this cover, the neighborhood can communicate privately, and moreover,
this can be done for all nodes simultaneously (with independent randomness for each neighborhood),
with low congestion on the edges. The number of rounds is proportional to the depth of the trees
computed in the neighborhood cover.

The last component missing in order to run a PSM protocol by u with its 2nd-neighborhood
is a private channel between each party and u. The immediate neighbors of u have this private
channel by definition. However, 2-hop neighbors do not. To simulate a private channel, each 2-hop
neighbor w secret shares its message to two parts. Each individual part leaks no information about

9



the message. Then, w sends the two parts via two vertex disjoint paths to u. This is indeed the
motivation for introducing the notion of P2 cycle covers. Indeed, covering the 2-length path between
w and u by a cycle, provides two vertex disjoint paths between w and u. Since only the node u
gets both parts and it is the only node in the graph that can learn the message of w, hence we have
established a virtual private channel to u. Moreover, since the P2 cycle cover has low congestion,
all 2-hop neighbors in the graph can communicate simultaneously with their target with bounded
congestion. Again, the number of rounds of this communication is proportional to the length of
the cycles.

Our secure compiler works round by round, where all nodes in the graph apply the PSM protocol
for every round of the original algorithm A. After securely simulating all the rounds of A, each
node holds an encrypted version of the last state, which contains nothing but the desired output.
The neighbors of each node u send it the encryption key (keys used solely for the last encryption),
this allows u to decrypt and obtain the final output of the algorithm. As a result, each node u sees
only perfectly encrypted states along the whole duration of the algorithm, where it proceeds from
one state to the other using the PSM protocol. The security of the PSM protocol ensures that it
learns nothing but the next encrypted state. A summary of the algorithm for a single node u is
given in Figure 3.

The description of the simulation of algorithm A with respect to u.

1. For each round i = 1 . . . r do:

(a) u holds the encrypted state σ̂i.

(b) For each neighbor v of u samples new encryption keys.

(c) Run a distributed PSM protocol for with server u to compute the next state of u:

i. Using the private 2-neighborhood cover the distance 2 neighbors of u share
private randomness.

ii. Nodes with distance 2 from u use the P2 cycle cover to simulate private channels
to u.

(d) u learns its new encrypted state σ̂i+1.

2. Each neighbor of u sends the final encryption key to u.

3. Using these keys, u computes its final output σr.

Figure 3: A schematic overview of the simulated algorithm.

3 Preliminaries and Model

Unless stated otherwise, the logarithms in this paper are base 2. For a distribution D we denote by
x← D an element chosen from D uniformly at random. For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. We denote by Un the uniform distribution over n-bit strings. For two distributions
(or random variables) X,Y we write X ≡ Y if they are identical distributions. That is, for any x
it holds that Pr[X = x] = Pr[Y = x].

10



Graph Notations. For a tree T ⊆ G, let T (z) be the subtree of T rooted at z, and let π(u, v, T )
be the tree path between u and v, when T is clear from the context, we may omit it and simply
write π(u, v). The fundamental cycle Ce,T of an edge e = (u, v) /∈ T is the cycle formed by
taking e and the tree path between u and v in T0, i.e., Ce,T = e ◦ π(u, v, T ). For u, v ∈ G, let
dist(u, v,G) be the length (in edges) of the shortest u − v path in G. For every integer i ≥ 1, let
Γi(u,G) = {v | distG(u, v) ≤ i}. When i = 1, we simply write Γ(u,G). Let deg(u,G) = |Γ(u,G)|
be the degree of u in G. For a subset of edges E′ ⊆ E(G), let deg(u,E′) = |{v : (u, v) ∈ E′}| be the
number of edges incident to u in E′. For a subset of nodes U , let deg(U,E′) =

∑
u∈U deg(u,E′).

For a u1-u2 path P1 and an u2-u3 path, the path P1 ◦P2 is the concatenation of the two paths. For
a subset of vertices Si ⊆ V (G), let G[Si] be the induced subgraph on Si.

Fact 1. [Moore Bound, [Bol04]] Every n-vertex graph G = (V,E) with at least 2n1+1/k edges has
a cycle of length at most 2k.

3.1 Distributed Algorithms

The Communication Model. We use a standard message passing model, the CONGEST model
[Pel00], where the execution proceeds in synchronous rounds and in each round, each node can send
a message of size O(log n) to each of its neighbors. In this model, local computation is done for free
at each node and the primary complexity measure is the number of communication rounds. Each
node holds a processor with a unique and arbitrary ID of O(log n) bits. Throughout, we make an
extensive use of the following useful tool, which is based on the random delay approach of [LMR94].

Theorem 7 ([Gha15, Theorem 1.3]). Let G be a graph and let A1, . . . , Am be m distributed algo-
rithms in the CONGESTmodel, where each algorithm takes at most d rounds, and where for each
edge of G, at most c messages need to go through it, in total over all these algorithms. Then, there
is a randomized distributed algorithm (using only private randomness) that, with high probability,
produces a schedule that runs all the algorithms in O(c+ d · log n) rounds, after O(d log2 n) rounds
of pre-computation.

A Distributed Algorithm. Consider an n-vertex graph G with maximal degree ∆. We model a
distributed algorithm A that works in r rounds as describing r functions f1, . . . , fr as follows. Let
u be a node in the graph with input xu and neighbors v1, . . . , v∆. At any round i, the memory of
a node u consists of a state, denoted by σi and ∆ messages mv1→u . . . ,mv∆→u that were received
in the previous round.

Initially, we set σ0 to contained only the input xu of u and its ID and initialize all messages
to ⊥. At round i the node u updates its state to σi+1 according to its previous state σi and the
message from the previous round, and prepares ∆ messages to send mu→v1 , . . . ,mu→v∆ . To ease
notation (and without loss of generality) we assume that each state contains the ID of the node u,
thus, we can focus on a single update function fi for every round that works for all nodes. The
function fi gets the state σi and messages mv1→u . . . ,mv∆→u, and randomness si and outputs the
next state and outgoing message:

σi,mu→v1 , . . . ,mu→v∆ ← f(σi−1,mv1→u, . . . ,mv∆→u, si).

At the end of the r rounds, each node u has a state σr and a final output of the algorithm. Without
loss of generality, we assume that σr is the final output of the algorithm (we can always modify fr
accordingly).

11



Natural Distributed Algorithms. We define a family of distributed algorithms which we call
natural, which captures almost all known distributed algorithms. A natural distributed algorithm
has two restrictions for any round i: (1) the size the state is bounded by |σi| ≤ ∆ · polylog(n), and
(2) the function fi is computable in polynomial time. The input for fi is the state σi and at most
∆ message each of length log n. Thus, the input length m for fi is bounded by m ≤ ∆ · polylog(n),
and the running time should be polynomial in this input length.

We introduce this family of algorithms mainly for simplifying the presentation of our main result.
For these algorithms, our main statement can be described with minimal overhead. However, our
results are general and work for any algorithm, with appropriate dependency on the size of the
state and the running time the function fi (i.e., the internal computation time at each node u in
round i).

Notations. We introduce some notations: For an algorithm A, graph G, input X = {xv}v∈G we
denote by Au(G,X) the random variable of the output of node u while performing algorithm A on
the graph G with inputs X (recall that A might be randomized and thus the output is a random
variable and not a value). Denote by A(G,X) = {Au(G,X)}u∈G the collection of outputs (in some
canonical ordering). Let ViewAu (G,X) be a random variable of the viewpoint of u in the running of
the algorithm A. This includes messages sent to u, its memory and random coin during all rounds
of the algorithm.

Secure Distributed Computation. Let A be a distributed algorithm. Informally, we say that
A′ computes A (or simulates A) in a secure manner of A if when running the algorithm A′ every
node u learns the final output σr of A but “nothing more”. This notion is captured by the existence
of a simulator and is defined below.

Definition 1 (Perfect Privacy). Let A be a distributed (possibly randomized) algorithm, that works
in r rounds. We say that an algorithm A′ computes A with perfect privacy if for every graph G,
every u ∈ G and it holds that:

1. Correctness: For every input X = {xv}v∈V : A(G,X) ≡ A′(G,X).

2. Perfect Privacy: There exists a randomized algorithm (simulator) Sim such that for every
input X = {xv}v∈V it holds that

ViewA
′

u (G,X) ≡ Sim(G, xu,Au(G,X)).

This security definition is known as the “semi-honest” model, where the adversary, acting a
one of the nodes in the graph, is not allowed to deviate from the prescribed protocol, but can run
arbitrary computation given all the messages it received. Moreover, we assume that the adversary
does no collude with other nodes in the graph. It is possible to extend the security notion to include
these notions, more on this is discussed at Section 8.

3.2 Cryptography with Perfect Privacy

One of the main cryptographic tools we use is a specific protocol for secure multiparty computation
that has perfect privacy. Feige Kilian and Naor [FKN94] suggested a model where two players
having inputs x and y wish to compute a function f(x, y) in a secure manner. They achieve this by
each sending a single message to a third party that is able to compute the output of the function

12



f from these messages, but learn nothing else about the inputs x and y. For the protocol to work,
the two parties need to share private randomness that is not known to the third party. This model
was later generalized to multi-players and is called the Private Simultaneous Model [IK97], which
we formally describe next.

Definition 2 (The PSM model). Let f : ({0, 1}m)k → {0, 1}m be a k variant function. A PSM
protocol for f consists of a pair of algorithms (PSM.Enc,PSM.Dec) where PSM.Enc : {0, 1}m ×
{0, 1}r → {0, 1}t and PSM.Dec : ({0, 1}t)k → {0, 1}m such that

• For any X = (x1, . . . , xk) it holds that:

Pr
R∈{0,1}r

[PSM.Dec(PSM.Enc(x1, R), . . . ,PSM.Enc(xk, R)) = f(x1, . . . , xk)] = 1.

• There exists a randomized algorithm (simulator) Sim such that for X = x1, . . . , xk and for R
sampled from {0, 1}r, it holds that

{PSM.Enc(xi, R)}i∈[k] ≡ Sim(f(x1, . . . , xk)).

The communication complexity of the PSM protocol is the encoding length t and the randomness
complexity of the protocol is defined to be |R| = r.

Theorem 8 (Follows from [IK97]). For every function f : ({0, 1}m)k → {0, 1}` that is computable
by an s = s(m, k)-space TM there is an efficient perfectly secure PSM protocol whose communication
complexity and randomness complexity are O(km` · 22s).

We describe two additional tools that we will use, secret sharing and one-time-pad encryption.

Definition 3 (Secret Sharing). Let x ∈ {0, 1}n be a message. We say x is secret shared to k shares
by choosing k random strings x1, . . . , xk ∈ {0, 1}n conditioned on x =

⊕k
j=1 x

j. Each xj is called a

share, and notice that the joint distribution of any k − 1 shares is uniform over ({0, 1}n)k−1.

Definition 4 (One-Time-Pad Encryption). Let x ∈ {0, 1}n be a message. A one-time pad is an
extremely simple encryption scheme that has information theoretic security. For a random key
K ∈ {0, 1}n the “encryption” of x according to K is x̂ = x⊕K. It is easy to see that the encrypted
message x̂ (without the key) is distributed as a uniform random string. To decrypt x̂ using the
key K we simply compute x = x̂ ⊕ K. The key K might be references as the encryption key or
decryption key.

Paper Organization. In Section 4 we describe the centralized constructions of our low-congestion
covers. We start by showing the construction of cycle covers (in Section 4.1). We then use the cycle
cover construction to compute private neighborhood cover and P2 covers (in Sections 4.2 and 4.3
respectively). Section 6 describes the secure simulation which generalizes PSM to general graphs.
Finally, Section 7 considers the distributed construction of our low congestion covers.

13



4 Low-Congestion Covers

4.1 Cycle Cover

We give the formal definition of a cycle cover and prove our main theorem regarding low-congestion
cycle covers. Intuitively, a cycle cover is a collection is cycles in the graph such that each edge is
covered by at least one cycle from the collection. We care about two main parameters regarding
the cycle cover that we wish to minimize: (1) cycle length: the maximal length of a cycle and (2)
edge congestion: the maximal number of cycles an edge participates in.

Definition 5 (Low-Congestion Cycle Cover). For a given graph G = (V,E), a (d, c) low-congestion
cycle cover C of G is a collection of cycles that cover all edges of G such that each cycle C ∈ C is
of length at most O(d) and each edge appears in at most O(c) cycles in C. That is, for every e ∈ E
it holds that 1 ≤ |{C ∈ C : e ∈ C}| ≤ O(c).

We also consider partial covers, that cover only a subset of edges E′. We say that a cycle cover
C is a (d, c) cycle cover for E′ ⊆ E, if all cycles are of length at most D, each edge of E′ appears
in at least one of the cycles of C, and no edge in E(G) appears in more than c cycles in C. That
is, in this restricted definition, the covering is with respect to the subset of edges E′, however, the
congestion limitation is with respect to all graph edges.

The main contribution of this section is an existential result regarding cycle covers with low
congestion. Namely, we show that any graph that is 2-edge connected has a cycle cover where each
cycle is at most the diameter of the graph (up to log n factors) and each edge is covered by O(log n)
cycles. Moreover, the proof is actually constructive, and yields a polynomial time algorithm that
computes such a cycle cover.

Theorem 1. For every n-vertex graph G with diameter D that is 2-edge connected, there exists a
(d, c)-cycle cover with d = O(D log n) and c = O(log3 n).

Our construction of a (d, c)-cycle cover C is composed of 3 different covers C1, C2, C3, each
covering a different subset of edges E1, E2, E3 respectively, such that E1 ∪ E2 ∪ E3 = E. In a
high-level overview, C1 will be constructed by a greedy algorithm and will contain a all edges of the
graph except 2n. Then, C2 and C3 will be more precisely crafted to cover the remaining uncovered
edges. Specifically, we compute a BFS tree T on the graph G, and define E2 to be all the non-tree
edges of E that are not covered by C1, and similarly we define E3 to be all the tree edges of E
not covered by C1. We describe each cover separately. The pseudo-code for the algorithm is given
in Figure 4. The algorithm uses two procedures, NonTreeCover and TreeCover which are given in
Section 4.1.1 and Section 4.1.2 respectively.

Reducing to Linear Number of Edges. The first part of the algorithm computes a cycle cover
with no congestion (that is, each edge participates in at most one cycle) that covers all edges except
at most a linear number of edges in the graph. In particular, Item 1 of the CycleCover algorithm,
can be seen as performing the following: it starts with graph G′ ← G and as long as that G′ has
at least 2n edges it finds the shortest cycle C in G, adds C to the cycle collection C1 and remove
C from G′. In the next lemma, we show that this step covers all edges expect at most 2n edges.

Lemma 1. For every n-vertex graph which is 2-edge connected, all graph edges, except for at most
2n edges, can be covered by a (log n, 1)-cycle cover. In particular, the output cover C1 of Algorithm
CycleCover is a (log n, 1) cycle cover for all but 2n edges in G.

14



Algorithm CycleCover(G = (V,E))

1. While there is a cycle of uncovered edges of length at most log n, add it to C1.

2. Construct a BFS tree T of G (with respect to edge set E).

3. Let E2 be all uncovered non-tree edges, and let E3 be all uncovered tree edges.

4. C2 ← NonTreeCover(T,E2).

5. C3 ← TreeCover(T,E3)

6. Output C1 ∪ C2 ∪ C3.

Figure 4: Centralized algorithm for finding a cycle cover of a graph G.

Proof. The proof mainly uses the fact that while the graph many edges, then the firth is small.
Specifically, using Fact 1, with k = log n we get that the girth of a graph with at least 2n edges is
at most 2 log n. Hence, as long as that the graph has at least 2n edges, a cycle of length 2 log n can
be found. We get that all but 2n edges in G are covered by edge-disjoint cycles of length 2 log n,
and therefore C1 is a (2 log n, 1)-cover for these edges.

The collection of all these edge distinct cycles is C1 and the edges covered are E1. The other
cycle covers will cover the rest of the edges. To cover the remaining 2n edge, we construct a BFS
tree T in G and define E2 = E(G) \ {E(T ) ∪ E1} to be all edges E that where not covered by C1

and are not tree edges. Finally, set E3 = E(T ) \E1 and note that E1 ∪E2 ∪E3 = E. The covering
of E2 and E3 is described in Section 4.1.1 and Section 4.1.2 respectively.

4.1.1 Covering Non-Tree Edges

In this subsection, we show that the set of edges E2, i.e., the set of non-tree edges the are not covered
in the previous phase, can be covered by a (D log n,O(1))-cycle cover denoted C2. Actually, what
we show is slightly more general: if the tree is of depth D(T ) the length of the cycles is at most
O(D(T ) log n). Lemma 2 will be useful for covering the tree-edges as well and is used again in see
next subsection (Section 4.1.2).

Lemma 2. Let G = (V,E) be a n-vertex graph, let T ⊆ G be a tree of depth D(T ) and let E′ ⊆ E
be such that |E′| ≤ 2n. Then, there exists a (D(T ) log n, log n)-cycle cover C2 for the edges of E′.
In addition, each cycle in C2 is used to cover O(log n) edges in E′.

The rest of this subsection is devoted to the proof of Lemma 2. A key component in the proof
is a partitioning of the nodes of the tree T into blocks. The partitioning is based on a numbering
of the nodes from 1 to n and grouping nodes with consecutive numbers into blocks under certain
restrictions. We define a numbering of the nodes

N : V (T )→ [|V (T )|]

by traversing the nodes of the tree in post order. That is, we let N(u) = i if u is the ith node
traversed. Using this mapping, we proceed to defining a partitioning of the nodes into blocks and
show some of their useful properties.

15



For a block B of nodes, the notation deg(B,E′) is the number of edges in E′ that have an
endpoint in the set B. We call this the density of block B with respect to E′. For a subset of
edges E′, and a density bound b (which will be set to a constant), an (E′, b)-partitioning B is a
partitioning of the nodes of the graph into blocks that satisfies the following properties:

1. Every block consists of a consecutive subset of nodes (w.r.t. their N(·) numbering).

2. If a block B has density deg(B,E′) > b then B consists of a single node.

3. The total number of blocks is at most 4|Ẽ|/b.

Claim 1. For any b and E′, there exists an (E′, b)-partitioning partitioning of the nodes of T
satisfying the above properties.

Proof. This partitioning can be constructed by a greedy algorithm that traverses nodes of T in
increasing order of their numbering N(·) and groups them into blocks while the density of the
block does not exceed b (see Figure 5 for the precise procedure). Indeed, properties 1 and 2

Algorithm Partition(T, Ẽ)

1. Let B be an empty partition, and let B be an empty block.

2. Traverse the nodes of T in post-order, and for each node u do:

(a) If deg(B, Ẽ) + deg(u, Ẽ) ≤ b add u to B.

(b) Otherwise, add the block B to B and initialize a new block B = {u}.

3. Output B.

Figure 5: Partitioning procedure.

are satisfied directly by the construction. For property 3, let t be the number of blocks B with
deg(B,E′) ≤ b/2. By the construction, we know that for any such block B the block B′ that comes
after B satisfies deg(B,E′) + deg(B′, E′) > b. Let B1, . . . , B` be the final partitioning. Then, we
have t pairs of blocks that have density at least b and the rest of the (` − t/2) blocks that have
density at least b/2. Formally, we have

∑̀
i=1

deg(Bi, E
′) > tb + (`− t/2)b/2 = `b/2.

On the other hand, since it is a partitioning of E′ we have that
∑`

i=1 deg(Bi, E
′) = 2|E′|. Thus,

we get that `b/2 ≤ 2|E′| and therefore ` ≤ 4|E′|/b as required.

Our algorithm for covering the edges of E′ makes use of this block partitioning with b = 16.
For any two nodes u, v ∈ V (T ), we use the notation π(u, v, T ) (or simply π(u, v)) to denote the
unique simple path in the tree T from u to v. The algorithm begins with an empty collection C
and then performs log n iterations where each iteration works as follows: Let Ẽ ⊆ E′ be the set
of uncovered edges (initially Ẽ = E′). Then, we partition the nodes of T with respect to Ẽ and

16



density parameter b. Finally, we search for cycles of length at most log n between the blocks. If
such a cycle exists, we map it to a cycle in G by connecting nodes u, v within a block by the path
π(u, v) in the tree T . This way a cycle of length log n between the blocks translates to a cycle of
length D(T ) log n in the original graph G. Denote the resulting collection by C.

We note that the cycles C might not be simple. This might happen if and only if the tree paths
π(vi, ui+1) and π(vj , uj+1) intersect for some j ∈ [t]. Notice that the if an edge appears more than
once in a cycle, then it must be a tree edge. Thus, we can transform any non-simple cycle C into a
collection of simple cycles that cover all edges that appeared only once in C (the formal procedure
is given at Figure 7). Since these cycle are constructed to cover only non-tree edges, we get that
this transformation did not hurt the cover of E′. The formal description of the algorithm is given
in Figure 6.

Algorithm NonTreeEdgeCover(T,E′)

1. Initialize a cover C as an empty set.

2. Repeat log |E′| times:

(a) Let Ẽ ⊆ E′ be the subset of all uncovered edges.

(b) Construct an (Ẽ, b)-partitioning B of the nodes of T .

(c) While there are t edges (u1, v1), . . . , (ut, vt) ∈ Ẽ for t ≤ log n such that for all i ∈ [t−1],
vi and ui+1 are in the same block and vt and u1 are in the same block (with respect
to the partitioning B): Add the cycle u1 → v1 → π(v1, u2) → v2 → π(v2, u3) → v3 →
. . .→ vt → u1 to C.

3. Compute C′ ← SimplifyCycles(C) and output C′.

Figure 6: Procedure for covering non-tree edges.

Algorithm SimplifyCycles(C)

1. While there is a cycle C ∈ C with a vertex w ∈ C that appears more than once:

(a) Remove C from C.
(b) Let C = v1 → · · · → vk and define vk+i = vi.

(c) Let i1, . . . , i` be such that vij = w for all j ∈ [`], and let i`+1 = i1.

(d) For all j ∈ [`] let Cj = vij → vij+1 · · · → vij+1 , and if |Cj | ≥ 3, add Cj to C.

2. Output C.

Figure 7: Procedure making all cycles in C simple.

We move to the analysis of the algorithm, and show that it yields the desired cycle cover. That
is, we show three things: that every cycle has length at most O(D(T ) log n), that each edge is
covered by at most O(log n) cycles, and that each edge has at least one cycle covering it.

17



Cycle Length. The bound of the cycle length follows directly from the construction. The cycles
added to the collection are of the form u1 → v1 → π(v1, u2)→ v2 → π(v2, u3)→ v3 → . . .→ vt →
u1, where each π(vi, ui+1) are paths in the tree T and thus are of length at most 2D(T ). Notice
that the simplification process of the cycles can only make the cycles shorter. Since t ≤ log n we
get that the cycle lengths are bounded by O(D(T ) log n).

Congestion. To bound the congestion of the cycle cover we exploit the structure of the partition-
ing, and the fact that each block in the partition has a low density. We begin by showing that by
the post-order numbering, all nodes in a given subtree have a continuous range of numbers. For
every z ∈ V (T ), let minN (z) be the minimal number of a node in the subtree of T rooted by z.
That is, minN (z) = minu∈Tz N(u) and similarly let maxN (z) = maxu∈Tz N(u).

Claim 2. For every z ∈ V (T ) and for every u ∈ G it holds that (1) maxN (z) = N(z) and (2)
N(u) ∈ [minN (z),maxN (z)] iff u ∈ Tz.

Proof. The proof is by induction on the depth of Tz. For the base case, we consider the leaf nodes
z, and hence Tz with 0-depth, the claim holds vacuously. Assume that the claim holds for nodes in
level i+ 1 and consider now a node z in level i. Let vi,1, . . . , vi,` be the children of z ordered from
left to right. By the post-order traversal, the root vi,j is the last vertex visited in Tvi,j and hence
N(vi,j) = maxN (vi,j). Since the traversal of Tvi,j starts right after finishing the traversal of Tvi,j−1

for every j ≥ 2, it holds that minN (vi,j) = N(vi,j−1) + 1. Using the induction assumption for vi,j ,
we get that all the nodes in Tz \ {z} have numbering in the range [minN (vi,1),maxN (vi,`] and any
other node not in Tz is not in this range. Finally, N(z) = N(vi,`) + 1 and so the claim holds.

The cycles in the cover we compute are composed of paths π(u, v) for two nodes u and v in
the same block. Thus, to bound the congestion on an edge e ∈ T we need to bound the number
of blocks such that there contains u, v in that block such that π(u, v) passes through e. The next
claim shows that every edge in the tree is effected by at most 2 blocks.

Claim 3. Let e ∈ T be a tree edge and define B(e) = {B ∈ B | ∃u, v ∈ B s.t. e ∈ π(u, v)}. Then,
|B(e)| ≤ 2 for every e ∈ T .

Proof. Let e = (w, z) where w is closer to the root in T , and let u, v be two nodes in the same
block B such that e ∈ π(u, v). Let ` be the LCA of u and v in T (it might be that ` ∈ {u, v}),
then the tree path between u and v can be written as π(u, v) = π(u, `) ◦ π(`, v). Without loss of
generality, assume that e ∈ π(`, v). This implies that v ∈ Tz but u /∈ Tz. Hence, the block of u
and v intersects the nodes of Tz. Each block consists of a consecutive set of nodes, and by Claim 2
also Tz consists of a consecutive set of nodes with numbering in the range [minN (z),maxN (z)],
thus there are at most two such blocks that intersect e = (w, z), i.e., blocks B that contains both
a vertex y with N(y) ∈ [minN (z),maxN (z)] and a vertex y′ with N(y′) /∈ [minN (z),maxN (z)], and
the claim follows.

Finally, we use the above claims to bound the congestion. Consider any tree edge e = (w, z)
where w is closer to the root than z. Let Tz be the subtree of T rooted at z. Fix an iteration i of
the algorithm. We characterize all cycles in C that go through this edge.

For any cycle that passes through e there must be a block B and two nodes u, v ∈ B such that
e ∈ π(u, v). By Claim 3, we know that there are that at each iteration of the algorithm, there are
at most two such blocks B that can affect the congestion of e. Moreover, we claim that each such

18



block has density at most b. Otherwise it would be a block containing a single node, say u, and
thus the path π(u, u) = u is empty and cannot contain the edge e. For each edge in E′ we construct
a single cycle in C, and thus for each one of the two blocks that affect e the number of pairs u, v
such that e ∈ π(u, v) is bounded by b/2 (each pair u, v has two edges in the block B and we know
that the total number of edges is bounded by b).

To summarize the above, we get that for each iteration, that are at most 2 blocks that can
contribute to the congestion of an edge e: one block that intersects Tz but has also nodes smaller
than minN (z) and one block that intersects Tz but has also nodes larger than maxN (z). Each of
these two blocks can increase the congestion of e by at most b/2. Since there are at most log n
iterations, we can bound the total congestion by b log n. Notice that if an edge appears k times in
a cycle, then this congestion bound counts all k appearances. Thus, after the simplification of the
cycles, the congestion remains unchanged.

Cover. We show that each edge in E′ was covered by some cycle. We begin by showing cover
for the cycles before the simplification procedure, and then show that the cover remains after this
procedure. The idea is that at each iteration of the algorithm, the number of uncovered edges is
reduced by half. Therefore, the log n iterations should suffice for covering all 2n edges of E′. In
each iteration we partition the nodes into blocks, and we search for cycles between the blocks. The
point is that if the number of edges is large, then we considering the blocks as nodes in a new
virtual graph, this graph has a large number of edges and thus must have a short cycle. At each
iteration, the blocks become larger which make the virtual have less nodes and the number of edges
is larger relative to the small number of nodes.

In what follows, we formalize the intuition given above. Let Ẽi be the set Ẽ at the ith iteration
of the algorithm. Consider the iteration i with the set of uncovered edge set Ẽi. Our goal is to
show that Ẽi+1 ≤ 1/2Ẽi. By having log |E′| iterations, last set will be empty.

Let Bi be the partitioning performed at iteration i with respect to the edge set Ẽi. Define a
super-graph G̃ in which each block Bj ∈ Bi is represented by a node ṽj , and there is an edge (ṽj , ṽj′)

in G̃ if there is an edge in Ẽi between some node u in Bj and a node u′ in Bj′ , i.e.,

(ṽj , ṽj′) ∈ E(G̃) ⇐⇒ Ẽi ∩ (Bj ×Bj′) 6= ∅.

See Figure 8 for an illustration. The number of nodes in G̃, which we denote by ni, is the number of
blocks in the partition and is bounded by ni ≤ 4|Ẽi|/b. Let B(u) be the block of the node u. The
algorithm finds cycles of the form u1 → v1 → π(v1, u2) → v2 → π(v2, u3) → v3 → . . . → vt → u1,
which is equivalent to finding the cycle B(u1), . . . , B(ut) in the graph G̃. In general, any cycle of
length t in G̃ is mapped to a cycle in G of length at most t ·D(T ). Then, the algorithm adds the
cycle to C and removes the edges of the cycle (thus removing them also from G̃). At the end of
iteration i the graph G̃ has no cycles of length at most log n. At this point, the next set of edges
Ẽi+1 is exactly the edges left in G̃. By Fact 1 (and recalling that b = 16) we get that if G̃ does not
have any cycles of length at most log n then we get the following bound on the number of edges:

Ẽi+1 ≤ 2ni = 8|Ẽi|/b = |Ẽi|/2.

Thus, all will be covered by a cycle C before the simplification process. We show that the
simplification procedure of the cycle maintains the cover requirement. This stems from the fact
that any edge that appears more than once in a cycle, might be dropped but is not the edge for
which this cycle was constructed to cover. That is, for each non-tree edge, we construct a cycle

19



𝐵1

𝐵1

𝐵4

𝐵2

𝐵2
𝐵3

𝐵4

𝐵3

Figure 8: Left: Schematic illustration of the block partitioning in the tree T . Dashed edges are those
that remain to be covered after employing Alg. LocalCover, where each two blocks are connected
by exactly one edge. Each dashed edge corresponds to super-edges in G̃. Right: A triangle in the
super-graph G̃.

that covers it. By the construction of the cycles, if a cycle is not simple it must be because of a
tree edge. It is left to show that this process only drops edges that appear more than once:

Claim 4. Let C be a cycle and let C′ ← SimplifyCycles(C). Then, for every edge e ∈ C that appears
at most once in C there is a cycle C ′ ∈ C′ such that e ∈ C ′.

Proof. The procedure SimplifyCycles works in iterations where in each iteration it chooses a vertex
w that appears more than once in C and partitions the cycle C to consecutive parts, C1, . . . , C`.
All edges in C appear in some Cj . However, Cj might not be a proper cycle since it might be the
case that |Cj | ≤ 2. Thus, we show that in an edge e ∈ C appeared at most once in a cycle C then
it will appear in Cj for some j where |Cj | ≥ 3. We show that this holds for any iteration and thus
will hold at the end of the process.

We assume without loss of generality that no vertex has two consecutive appearances. Denote
e = (v2, v3) and let C = v1 → v2 → v3 → . . . vk for k ≥ 3. Since e does not appear again in C we
know that v1, v2, v3 are distinct. Thus, if k = 3 then C will not be split again and the claim follows.

Therefore, assume that k ≥ 4. Since e does not appear again in C we know that v2, v3, v4

are distinct (it might be the case that v1 = v4). Thus, we know that |{v1, v2, v3, v4}| ≥ 3. Any
subsequence begins and ends at the same vertex and thus the subsequence Cj that contains e must
contains all of v1, v2, v3, v3 and thus |Cj | ≥ 3, and the claim follows.

4.1.2 Covering Tree Edges

Finally, we present Algorithm TreeCover that computes a cycle cover for the tree edges. The
algorithm is recursive and uses Algorithm NonTreeCover as a black-box. Formally, we show:

Lemma 3. For every n-vertex graph G and a tree T ⊆ G of depth D, there exists a (D log n, log3 n)
cycle cover C3 for the edges of T .

20



We begin with some notation. Throughout, when referring to a tree edge (u, v) ∈ T , the node
u is closer to the root of T than v. Let E(T ) = {e1, . . . , en−1} be an ordering of the edges of T
in non-decreasing distance from the root. For every tree edge e ∈ T , define the swap edge of e by
e′ = Swap(e) to be an arbitrary edge in G that restores the connectivity of T \{e}. Since the graph
G is 2-edge connected such an edge Swap(e) is guaranteed to exist for every e ∈ T . Let e = (u, v)
and (u′, v′) = Swap(e), we denote u by p(v) (since u is the parent of v in the tree) and v′ by s(v),
where s(v) is the endpoint of Swap(e) that do not belong to T (u′) (i.e., the subtree T rooted at u).
Define the v-s(v) path

Pe = π(v, u′) ◦ Swap(e).

For an illustration see Figure 9.
For the tree T , we construct a subset of tree edges denoted by I(T ) that we are able to cover.

These edges are independent in the sense that their Pe paths are “almost” edge disjoint (as will be
shown next). The subset I(T ) is constructed by going through the edges of T in non-decreasing
distance from the root. At any point, we add e to I(T ) only if it is not covered by the Pe′ paths of
the e′ edges already added.

Claim 5. The subset I(T ) satisfies the following properties:

• For every e ∈ E(T ), there exists e′ ∈ I(T ) such that e ∈ e′ ◦ Pe′.

• For every e, e′ ∈ I(T ) such that e 6= e′ it holds that Pe and Pe′ have no tree edge in common
(no edge of T is in both paths).

• For every swap edge (z, w), there exists at most two paths Pe, Pe′ for e, e′ ∈ I(T ) such that
one passes through (z, w) and the other through (w, z). That is, each swap edge appears at
most twice on the Pe paths, once in each direction.

Proof. The first property follows directly from the construction. Next, we show that they share no
tree edge in common. Assume that there is a common edge (z, w) ∈ Pe ∩ P ′e ∩ E(T ). Then, both
e, e′ must be on the path from root to z on the tree and hence e′ ∈ Pe, leading to contradiction.
For the third property, assume towards constriction that both Pe and Pe′ use the same swap edge
in the same direction. Again it implies that both e, e′ are on the path from the root to z on T .

Our cycle cover for the I(T ) edges will be shown to cover all the edges of the tree T . This is
because the cycle that we construct to cover an edge e ∈ I(T ) necessarily contains Pe.

Algorithm TreeCover uses the following procedure TreeEdgeDisjointPath, usually used in the
context of distributed routing.

Key Tool: Route Disjoint Matching. Algorithm TreeEdgeDisjointPath solves the following
problem defined by Peleg (see Lemma 4.3.2 [Pel00]): given a rooted tree T and a set of 2k marked
nodes M ⊆ V (T ) for k ≤ n/2, the goal is to find (by a distributed algorithm) a matching of these
vertices 〈wi, wj〉 into pairs such that the tree paths π(wi, wj , T ) connecting the matched pairs are
edge-disjoint. This matching can be computed distributively in O(Diam(T )) rounds by working
from the leaf nodes towards the root. In each round a node u that received information on more
` ≥ 2 unmarked nodes in its subtree, match all but at most one into pairs and upcast to its parent
the ID of at most one unmarked node in its subtree. It is easy to see that all tree paths between
matched nodes are indeed edge disjoint.

We are now ready to explain the cycle cover construction of the tree edges E(T ).

21



Description of Algorithm TreeCover. We restrict attention for covering the edges of I(T ). The
tree edges I(T ) will be covered in a specific manner that covers also the edges of E(T ) \ I(T ). The
key idea is to define a collection of (virtual) non-tree edges Ẽ = {(v, s(v)) : (p(v), v) ∈ I(T )} and
covering these non-tree edges by enforcing the cycle that covers the non-tree edge (v, s(v)) to covers
the edges e = (p(v), v) as well as the path Pe. Since every edge e′ ∈ T appears on one of the e ◦ Pe
paths, this will guarantee that all tree edges are covered.

Algorithm TreeCover is recursive and has O(log n) levels of recursion. In each independent
level of the recursion we need to solve the following sub-problem: Given a tree T ′, cover by cycles
the edges of I(T ′) along with their Pe paths. The key idea is to subdivide this problem into two
independent and balanced subproblems. To do that, the tree T ′ gets partitioned7 into two balanced
edge disjoint subtrees T ′1 and T ′2, where |T ′1|, |T ′2| ≤ 2/3 · |T ′| and E(T ′1) ∪ E(T ′2) = E(T ′). Some of
the tree edges in T ′ are covered by applying a procedure that computes cycles using the edges of
T ′, and the remaining ones will be covered recursively in either T ′1 or T ′2. Specifically, the edges of
I(T ′) are partitioned into 4 types depending on the position of their swap edges. Let

E′x,y = {(u, v) ∈ E(T ′x) ∩ I(T ′) | v ∈ V (T ′x) and s(v) ∈ V (T ′y) \ V (T ′x)}, for every x, y ∈ {1, 2}.

The algorithm computes a cycle cover C1,2 (resp., C2,1) for covering the edges of E′1,2, E
′
2,1 respec-

tively. The remaining edges E′11 and E′22 are covered recursively by applying the algorithm on T ′1
and T ′2 respectively. See Fig. 9 for an illustration.

We now describe how to compute the cycle cover C1,2 for the edges of E′1,2. The edges E′2,1 are
covered analogously (i.e., by switching the roles of T ′1 and T ′2). Recall that the tree edges E′1,2 are
those edges (p(v), v) such v ∈ T ′1 and s(v) ∈ T ′2. The procedure works in O(log n) phases, each
phase i computes three cycle collections C′i,1, C′i,2 and C′i,3 which together covers at least half of the
yet uncovered edges of E′1,2 (as will be shown in analysis).

Consider the ith phase where we are given the set of yet uncovered edges Xi ⊆ E′1,2. We
first mark all the vertices v with (p(v), v) ∈ Xi. Let Mi be this set of marked nodes. For ease of
description, assume that Mi is even, otherwise, we omit one of the marked vertices w (from Mi) and
take care of its edge (p(w), w) in later phases. We apply Algorithm TreeEdgeDisjointPath(T ′1,Mi)
(see Lemma 4.3.2 [Pel00]) which matches the marked vertices Mi into pairs Σ = {〈v1, v2〉 | v1, v2 ∈
Mi} such that for each pair σ = 〈v1, v2〉 there is a tree path π(σ) = π(v1, v2, T

′
1) and all the tree

paths π(σ), π(σ′) are edge disjoint for every σ, σ′ ∈ Σ.
Let X ′′i = {e = (p(v), v) ∈ Xi : ∃v′ and 〈v, v′〉 ∈ Σ, s.t. e ∈ π(v, v′, T ′1)} be the set of edges in

Xi that appear on the collection of edge disjoint paths {π(σ), σ ∈ Σ}. Our goal is to cover all edges
in E′′i = X ′′i ∪ {Pe | e ∈ X ′′i } by cycles Ci. To make sure that all edges E′′i are covered, we have to
be careful that each such edge appears on a given cycle exactly once. Towards this end, we define a
directed conflict graph GΣ whose vertex set are the pairs of Σ, and there is an arc (σ′, σ) ∈ A(GΣ)
where σ = 〈v1, v2〉, σ = 〈v′1, v′2〉, if at least one of the following cases holds: Case (I) e = (p(v1), v1)
on π(v1, v2, T

′
1) and the path π′ = π(v′1, v

′
2, T

′
1) intersects the edges of Pe; Case (II) e′ = (p(v2), v2)

on π(v1, v2, T
′
1) and the path π′ intersects the edges of Pe′ . Intuitively, a cycle that contains both

π′ and Pe is not simple and in particular might not cover all edges on Pe. Since the goal of the pair
σ = 〈v1, v2〉 is to cover all edges on Pe (for e ∈ π(v1, v2, T

′
1)), the pair σ′ “interferes” with σ.

In the analysis section (Claim 6), we show that the outdegree in the graph GΣ is bounded by
1 and hence we can color GΣ with 3 colors. This allows us to partition Σ into three color classes

7This partitioning procedure is described in Appendix A. We note that this partitioning maintains the layering
structure of T ′.

22



Σ1,Σ2 and Σ3. Each color class Σj is an independent set in GΣ and thus it is “safe” to cover all
these pairs by cycles together. We then compute a cycle cover Ci,j , for each j ∈ {1, 2, 3}. The
collection of all these cycles will be shown to cover the edges E′′i .

To compute Ci,j for j = {1, 2, 3}, for each matched pair 〈v1, v2〉 ∈ Σj , we add to T ′2 a virtual
edge ê between s(v1) and s(v2). Let

Êi,j = {(s(v1), s(v2)) | 〈v1, v2〉 ∈ Σj}.

We cover these virtual non-tree edges by cycles using Algorithm NonTreeCover on the tree T ′2
with the non-tree edges Êi,j . Let C′′i,j be the output O(D log n, log n) cycle cover of Algorithm
NonTreeCover(T ′2, E

′
i,j). The output cycles of C′′i,j are not yet cycles in G as they consists of two

types of virtual edges: the edges in Êi,j and the edges Ẽ = {(v, s(v)) | (p(v), v) ∈ I(T )}. First,

we translate each cycle C ′′ ∈ C′′i,j into a cycle C ′ in G ∪ Ẽ by replacing each of the virtual edges

ê = (s(v1), s(v2)) ∈ Êi,j in C ′′ with the path P (ê) = (s(v1), v1) ◦π(v1, v2, T
′
1) ◦ (v2, s(v2)). Then, we

replace each virtual edge (v, s(v)) ∈ Ẽ in C ′ by the v-s(v) path Pe for e = (p(v), v). This results in
cycles Ci,j in G.

Finally, let Ci = Ci,1 ∪ Ci,2 ∪ Ci,3 and define Xi+1 = Xi \ X ′′i to be the set of edges e ∈ Xi

that are not covered by the paths of Σ. If in the last phase ` = O(log n), the set of marked nodes
M` is odd, we omit one of the marked nodes w ∈ M`, and cover its tree edge e = (p(w), w) by
taking the fundamental cycle of the swap edge Swap(e) into the cycle collection. The final cycle
collection for E′1,2 is given by C1,2 =

⋃`
i=1 Ci. The same is done for the edges E′2,1. This completes

the description of the algorithm. The final collection of cycles is denoted by C3. See Figure 12 for
the full description of the algorithm. See Figures 9 to 11 and for illustration.

We analyze the TreeCover algorithm and show that it finds short cycles, with low congestion
and that every edge of T is covered.

Short Cycles. By construction, each cycle that we compute using Algorithm NonTreeCover con-
sists of at most O(log n) non-tree edges Êi,j . The algorithm replaces each non-tree edge ê = (v1, v2)
by an v1-v2 path in G of length O(D). This is done in two steps. First, ê = (v1, v2) is replaced by
a path Pê = (v1, s(v1)) ◦ π(v1, v2, T ) ◦ (v2, s(v2)) in G ∪ Ẽ. Then, each (v, s(v)) edge is replaced by
the path P(p(v),v) in G, which is also of length O(D). Hence, overall the translated path v1-v2 path
in G has length O(D). Since there are O(log n) virtual edges that are replaced on a given cycle,
the cycles of G has length O(D log n).

Cover. We start with some auxiliary property used in our algorithm.

Claim 6. Consider the graph GΣ constructed when considering the edges in E′1,2. The outdegree
of each pair σ′ = 〈v′1, v′2〉 ∈ Σ in GΣ is at most 1. Therefore, GΣ can be colored in 3 colors.

Proof. Let σ = 〈v1, v2〉 be such that σ′ interferes with σ (i.e., (σ′, σ) ∈ A(GΣ)). Without loss of
generality, let e = (p(v1), v1) be such that e ∈ π(v1, v2, T

′
1) and π(v′1, v

′
2, T

′
1) intersects the edges of

Pe.
We first claim that this implies that e appears above the LCA of v′1 and v′2 in T ′1, and hence by

the properties of our partitioning, also in T . Assume towards contradiction otherwise, since e ◦ Pe
is a path on T (where e is closer to the root) and since Pe intersects π(v′1, v

′
2, T

′
1), it implies that

e ∈ π(v′1, v
′
2, T

′
1). Since the vertex v1 is marked, we get a contradiction that v′1 got matched with

v′2 as the algorithm would have matched v1 with one of them. In particular, we would get that the

23



𝑠(𝑣)
𝑣′

𝑣

𝑝(𝑣)

𝑃𝑒

𝑒

𝑒′

𝑣1 𝑣2

𝑣′1

𝑣′2

𝑝(𝑣1)

𝑠(𝑣1)

𝑠(𝑣2)

𝑠(𝑣′2)

𝑠(𝑣′1)

𝑇1
′𝑇2

′

𝑠(𝑣4)
𝑣4

𝑠(𝑣3)

𝑣3

𝑣5
𝑠(𝑣5)

Figure 9: Left: Illustration the swap edge e′ = Swap(e) and the path Pe for an edge e ∈ T . For each
tree edge e = (u, v) ∈ T , we add the auxiliary edge (v, s(v)). Right: The tree T ′ is partitioned into
two balanced trees T ′1 and T ′2. The root vertex in this example belongs to both trees. The edges Ẽ
are partitioned into four sets: E′1,1 (e.g., the edge (p(v3), v3)), E′2,2 (e.g., the edge (p(v4), v4)), E′1,2
(e.g., the edge (p(v1), v1)), E′2,1 (e.g., the edge (p(v5), v5)). The algorithm covers the edges of E′1,2
by using Algorithm TreeEdgeDisjointPath to compute a matching and edge disjoint paths in T ′1. See
the tree paths between v1 and v2 and v′1 and v′2. Based on this matching, we add virtual edges
between vertices of T ′2, for example the edges (s(v1), s(v2)) and (s(v′1), s(v′2)) shown in dashed. The
algorithm then applies Algorithm NonTreeCover to cover these non-tree edges in T ′2.

paths π(σ) and π(σ′) are not edge disjoint, as both contain e. Hence, we prove that e is above the
LCA of v′1 and v′2.

Next, assume towards contradiction that there is another pair σ′′ = 〈v′′1 , v′′2〉 ∈ Σ such that σ′

interferes with σ′′. Without loss of generality, let v′′1 be such that e′′ = (p(v′′1), v′′1) in on π(v′′1 , v
′′
2 , T

′
1)

and Pe′′ intersects with π(v′1, v
′
2, T

′
1). This implies that e′′ is also above the LCA of v′1 and v′2 in

T ′1. Since one of the edges of Pe′′ is on π(v′1, v
′
2, T

′
1) it must be that either e′′ on Pe or vice verca, in

contradiction that e, e′′ ∈ I(T ).

We now claim that each edge e ∈ T is covered. By the definition of I(T ) ⊆ E(T ), it is sufficient
to show that:

Claim 7. For every edge e ∈ I(T ), there exists a cycle C ∈ C3 such that e ◦ Pe ⊆ C.

We now consider a specific tree edge e = (p(v), v). First, note that since (v, s(v)) is a non-tree
edge, there must be some recursive call with the tree T ′ such that v ∈ T ′1 and s(v) ∈ T ′2 where T ′1
and T ′2 are the balanced partitioning of T ′. At that point, (v, s(v)) is an edge in E′1,2. We show
that in the ` = O(log n) phases of the algorithm for covering the E′1,2, there is a phase in which
e = (p(v), v) is covered.

24



𝑣1 𝑣2𝑠(𝑣1)

𝑠(𝑣2)

𝑇1
′

𝑇2
′

𝑠(𝑣1)

𝑠(𝑣2)

𝑠(𝑣1)

𝑃𝑒1

𝑃𝑒1

𝑃𝑒2
𝑒2

𝑠(𝑣2)

𝑝(𝑣1)

𝑒1

Figure 10: Illustration of replacing a single virtual edge (s(v1), s(v2)) in a cycle C ′′ ∈ C′′i,j by an
s(v1)-s(v2) path in G.

𝑠(𝑣1)
𝑃𝑒1

𝑃𝑒2
𝑒2

𝑠(𝑣2)
𝑒1

𝑠(𝑣3)

𝑠(𝑣5)
𝑠(𝑣6)

𝜋(𝑣1, 𝑣2)
𝑣1

𝑣2

𝑃𝑒5

𝑒5

𝑃𝑒6

𝑣5
𝑣6

𝑣3

𝑣4

𝑃𝑒4

𝑃𝑒3
𝑠(𝑣4)

𝑠(𝑣1)

𝑠(𝑣2)

𝑠(𝑣3)
𝑠(𝑣4)

𝑠(𝑣5)

𝑠(𝑣6)

Figure 11: Translating virtual cycles into cycles in G. Each cycle contains O(log n) virtual edges
which are are replaced by (almost) edge disjoint paths in G. Note that each edge on ei ◦ Pei
appears exactly once since the Pe paths are tree-edge disjoint and the pairs σ = 〈uj , vj〉 in Σi,j do
not interfere with each other.

Claim 8. (I) For every e = (p(v), v) ∈ E′1,2 except at most one edge e∗, there is a phase ie where
Algorithm TreeEdgeDisjointPath matched v with some v′ such that e ∈ π(v, v′).

25



Algorithm TreeCover(T ′)

1. If |T ′| = 1 then output empty collection.

2. Let C be an empty collection.

3. Partition T ′ into balanced T ′1 ∪ T ′2.

4. Let E′ be an empty set.

5. For every (u, v) ∈ T let (u′, v′) = Swap((u, v)) and add a virtual edge (v, v′) to E′.

6. For i = 1, ..., O(log n):

(a) Let Mi be all active nodes v ∈ V (T ′1) s.t. Swap(v) ∈ V (T2)}.
(b) Apply TreeEdgeDisjointPath(T ′1,Mi) and let Σ = {〈v1, v2〉} be the collection of matched

pairs.

(c) Partition Σ into 3 independent sets Σ1,Σ2 and Σ3.

(d) For every j ∈ {1, 2, 3} compute a cycle cover Ci,j as follows:

i. For every pair 〈v1, v2〉 in Σj add a virtual edge (s(v1), s(v2)) to Êi,j .

ii. C′′i,j ← C′′i,j ∪ NonTreeCover(T2, Êi,j).

iii. Translate C′′i,j to cycles Ci,j in G.

(e) Let Ci = Ci,1 ∪ Ci,2 ∪ Ci,3.

7. C1 =
⋃
i Ci.

8. Repeat where T ′1 and T ′2 are switched.

9. Add to C the output of TreeCover(T ′1) ∪ TreeCover(T ′2).

10. Output SimplifyCycles(C ∪ C1).

Figure 12: Procedure for covering tree edges.

(II) Each edge e 6= e∗ is covered by the cycles computed in phase ie.

Proof. Consider phase i where we need to cover the edges of Xi. Recall, that the algorithm marks
the set of nodes v with (p(v), v) ∈ Xi, resulting in the set Mi. Let Σ be the output pairs of
Algorithm TreeEdgeDisjointPath(T ′1,Mi). We first show that at least half of the edges in Xi are
covered by the paths of Σ.

If Mi is odd, we omit one of the marked nodes and then apply Algorithm TreeEdgeDisjointPath
to match the pairs in the even-sized set Mi. The key observation is that for every matched pair
〈v1, v2〉, it holds that either (p(v1), v1) or (p(v2), v2) is on π(v1, v2, T

′
1) (or both). Hence, at least

half of the edges of Xi are on the edge disjoint paths π(v1, v2, T
′
1).

We therefore get that after ` = c log n phases, we are left with |M`| = O(1) at that point if |M`|
is odd, we omit one vertex v∗ such that e∗ = (p(v∗), v∗). Claim (I) follows.

26



We now consider (II) , let e = (p(v), v) and consider phase i = ie in which e ∈ π(v, v′, T ′1)
where v′ is the matched pair of v. We show that all the edges of e ◦Pe are covered by the cycles Ci
computed in that phase. By definition, 〈v, v′〉 belongs to Σ. By Claim 6, GΣ can be colored by 3
colors, let Σj ⊆ Σ be the color class that contains 〈v, v′〉.

We will show that there exists a cycle C in Ci,j that covers each edge e′′ ∈ e ◦ Pe exactly once.
Recall that the algorithm applies Algorithm NonTreeCover which computes a cycle cover C′′i,j to

cover all the virtual edges Êi,j in T ′2. Also, (s(v), s(v′)) ∈ Êi,j .
Let C ′′ be the (simple) cycle in C′′i,j that covers the virtual edge (s(v), s(v′)). In this cycle

C ′′ we have two types of edges: edges in T ′2 and virtual edges (s(v1), s(v2)). First, we transform
C ′′ into a cycle C ′ in which each virtual edge ê = (s(v1), s(v2)) is replaced by a path P (ê) =
(s(v1), v1) ◦ π(v1, v2, T

′
1) ◦ (v2, s(v2)). Next, we transform C ′ into C ⊆ G by replacing each edge

(v1, s(v1)) ∈ Ẽ in C ′′ by the v1-s(v1) path Pe1 for e1 = (p(v1), v1).
We now claim that the final cycle C ⊆ G, contains each of the edges e ◦ Pe exactly once, hence

even if C is not simple, making it simple still guarantees that e ◦ Pe remain covered. Since T ′1 and
T ′2 are edge disjoint, we need to restrict attention only two types of T ′1 paths that got inserted to
C: (I) the edge disjoint paths Πi,j = {π(v1, v2, T

′
1) | 〈v1, v2〉 ∈ Σj} and (II) the v′-s(v′) paths Pe′

for every edge e′ = (p(v′), v′) (appears on C ′).
We first claim that there is exactly one path π(v1, v2, T

′
1) ∈ Πi,j that contains the edge e =

(p(v), v). By the selection of phase i, e ∈ π(v, v′, T ′1) where v′ is the pair of v. Since all paths Πi,j

are edge disjoint, no other path contains e. Next, we claim that there is no path π ∈ Πi,j that
passes through an edge e′ ∈ Pe. Since e = (p(v), v) ∈ π(v, v′, T ′1) and all edges on Pe are below
e on T 8, the path π(v, v′, T ′1) does not contain any e′ ∈ Pe. In addition, since all pairs in Σj are
independent in GΣ, there is no path in π(σ′) ∈ Πi,j that intersects Pe (as in such a case, σ interferes
with 〈v, v′〉). We get that e appears exactly once on Πi,j and no edge from Pe appears on Πi,j .
Finally, we consider the second type of paths in T ′1, namely, the Pe′ paths. By construction, every
e′ ∈ Xi is in I(T ) and hence that Pe′ and Pe share no tree edge. We get that when replacing the
edge (v, s(v)) with Pe all edges e′ ∈ Pe appears and non of the tree edges on Pe co-appear on some
other Pe′′ . All together, each edge on e ◦ Pe appears on the cycle C exactly once. This completes
the cover property.

Since the edge e∗ is covered by taking the fundamental cycle of its swap edge, we get that all
edges of E′1,2 are covered. Since each edge (v, s(v)) belongs to one of these E′1,2 sets, the cover
property is satisfied.

Congestion. A very convenient property of our partitioning of T ′ into two trees T ′1 and T ′2 is that
this partitioning is closed for LCAs. In particular, for j ∈ {1, 2} then if u, v ∈ T ′j , the LCA of u, v
in T ′ is also in T ′j . Note that this is in contrast to blocks of Section 4.1.1 that are not closed to
LCAs.

We begin by proving by induction on i = {1, . . . , O(log n)} that all the trees T ′, T ′′... considered
in the same recursion level i are edge disjoint. In the first level, the claim holds vacuously as there
is only the initial tree T . Assume it holds up to level i and consider level i+ 1. As each tree Tj in
level i− 1 is partitioned into two edge disjoint trees in level i+ 1, the claim holds.

Note that each edge e = (v, s(v)) is considered exactly once, i.e., in one recursion call on
T ′ = T ′1 ∪ T ′2 where without loss of generality, v ∈ T ′1 and s(v) ∈ T ′2 \ T ′1. By Claim 8, there is at
most one edge e∗ ∈ E′1,2, which we cover by taking the fundamental cycle of Swap(e∗) in T .

8Since our partitioning into T ′1, T
′
2 maintains the layering structure of T , it also holds that Pe is below e on T ′1.

27



We first show that the congestion in the collection of all the cycles added in this way is bounded
by O(log n). To see this, we consider one level i of the recursion and show that each edge appears
on at most 2 of the fundamental cycles Fi added in that level. Consider an edge e∗ that is
covered in this way in level i of the recursion. That is the fundamental cycle of Swap(e∗) given by
π(v∗, s(v∗)) ∪ Pe∗ was added to Fi. Let T ′ be such that T ′ = T ′1 ∪ T ′2 and e∗ = (p(v∗), v∗) is such
that v∗ ∈ T ′1 and s(v∗) ∈ T ′2. Since both v and s(v) are in T ′, the tree path π(v∗, s(v∗)) ⊆ T ′. As
all other trees T ′′ 6= T ′ in level i of the recursion are edge disjoint, they do not have any edge in
common with π(v∗, s(v∗)). For the tree T ′, there are at most two fundamental cycles that we add.
One for covering an edge in E′1,2 and one for covering an edge in E′2,1. Since e∗ ∈ I(T ), and each
edge appears on at most two paths Pe, Pe′ for e, e′ ∈ I(T ), overall each edge appears at most twice
on each of the cycles in Fi (once in each direction of the edge) and over all the O(log n) of the
recursion, the congestion due to these cycles is O(log n).

It remains to bound the congestion of all cycles obtained by translating the cycles computed
using Algorithm TreeCover. We do that by showing that the cycle collection Ci computed in phase i
to cover the edges of E′1,2 is an O(D log n, log n) cover. Since there are O(log n) phases and O(log n)

levels of recursion, overall it gives an O(D log n, log3 n) cover.
Since all trees considered in a given recursion level are edge disjoint, we consider one of them:

T ′. We now focus on phase i of Algorithm TreeCover(T ′). In particular, we consider the output
cycles C′′i,j for j ∈ {1, 2, 3} computed by Algorithm NonTreeCover for the edges Ê1,2 and T ′2. Each
edge e ∈ T ′2 appears on O(log n) cycles of C′′i,j . Each virtual edge ê = (s(v1), s(v2)) is replaced by an

s(v1)-s(v2) path P (ê) = (s(v1), v1)◦π(v1, v2, T
′
1)◦(s(v1), v1) in G∪Ẽ. Let C′i,j be the cycles in G∪Ẽ

obtained from C′′i,j by replacing the edges of ê ∈ Ê1,2 with the paths P (ê) in G∪ Ẽ. Note that every

two paths P (ê) and P (ê′) are edge disjoint for every ê, ê′ ∈ Ê1,2. The edges (s(v1), v1) of Ẽ gets
used only in tree T ′ in that recursion level. Hence, each edge (v1, s(v1)) appears on O(log n) cycles
C ′ in G ∪ Ẽ. Since the paths π(v1, v2, T

′
1) are edge disjoint, each edge e′ ∈ π(v1, v2, T

′
1) appears on

at most O(log n) cycles C ′ in G ∪ Ẽ (i.e., on the cycles translated from C ′′ ∈ C′′i,j that contains the

edge ê = (s(v1), s(v2))). Up to this point we get that each virtual edge (v, s(v)) ∈ Ẽ appears on
O(log n) cycles of C′i,j . Finally, when replacing (v, s(v)) with the paths P(p(v),v), the congestion in
G is increased by factor of at most 2 as every two path Pe and Pe′ for e, e′ ∈ I(T ), are nearly edge
disjoint (each edge (z, w) appears on at most twice of these paths, one time in each direction). We
get that the cycle collection Ci is an O(D log n, log n) cover, as desired.

4.2 Private Neighborhood Cover

An neighborhood cover, introduced by Awerbuch et al. [ABCP98] is a set of overlapping sets of
nodes in the graph (called clusters) with the property that every node has its entire r-neighborhood
contained in one of these clusters. We introduce the notion of Private Neighborhood Cover in
which the graph G is decomposed into overlapping trees T (u1), . . . , T (un) such that each tree
T (ui) contains the r-neighborhood of ui in G but does not contain ui. Hence, T (ui) provides the
d-neighborhood of ui a way to communicate privately without their root ui. As in the setting of
classical neighborhood cover, also in this private variant, the goal is to compute a collection of trees
(or clusters) with small overlap and small diameter. Thus, we are interested in the existence of a
low-congestion private neighborhood cover. Note that the standard notion of neighborhood cover of
Awerbuch et al. [ABCP98] plays a role in computing instance-optimal covers (see Section 5). This

28



is independent of the current section which studies private neighborhood cover to provide private
channels between the neighbors of a given vertex.

Definition 6 (Private Neighborhood Cover). Let G = (V = {u1, . . . , un}, E) be an 2-vertex
connected graph and let d ∈ {1, . . . ,Diam(G)}. The private d-neighborhood cover N of G is a
collection of n subtrees T (u1), . . . , T (un) in G such that for every i ∈ {1, . . . , n} it holds that
Γd(ui) \ {ui} ⊆ T (ui), but ui /∈ T (ui). An (d, c) private d-neighborhood cover N is a private
d-neighborhood cover that satisfies:

1. Diam(T (ui)) = O(d) for every i ∈ {1, . . . , n},

2. Every edge e ∈ E appears in at most O(c) trees.

Note that since the graph is 2-vertex connected, all nodes of Γ(u) are indeed connected in G\{u}
for every node u. The main challenge is in showing that all n neighborhood spanning trees (i.e.,
for each Γ(u,G)) can be both of small diameter and of low-congestion.

Our main contribution is for the most interesting case where d = 1. Later on in the section, we
show how private 1-neighborhood cover can be used to obtain P2 cover, which is what we need for
the distributed secure simulations.

Theorem 4 (Nearly-Optimal Neighborhood-Cover). For every 2-vertex connected graph G with
maximum degree ∆ and diameter D, there exists a (d, c) private 1-neighborhood cover with d =
O(D ·∆ · log n) and c = O(D · log ∆ · log3 n).

In fact we show that given a construction of (d, c) cycle cover C, we can construct an (d ·∆, c ·
D · log ∆) private neighborhood cover N . In particular, using our construction of (D log n, log3 n)
cycle cover C yeilds the desired bound.

The construction of the private 1-neighborhood cover N consists of ` = O(log ∆) phases. In
each phase, we compute an (D log n, log3 n) cycle cover in some auxiliary graph using Theorem 1.
We start by having for each node u an empty forest F0(u) = (Γ(u,G), ∅) consisting only of u’s
neighbors. Then in each phase, we add edges to these forests so that the number of connected
components (containing the neighbors Γ(u,G)) is reduced by factor 2. After O(log ∆) phases, we
will have for every u ∈ V , a tree T (u) in G \ {u} that spans all neighbors Γ(u,G). We need some
notation. Let C0 be a cycle cover of G. For every i ∈ {0, . . . , `}, let CCi(u) be the number of
connected components in the forest Fi(u). In particular, CC0(u) = deg(u).

In each phase i ≥ 1, we are given a collection of forests Ni−1 = {Fi−1(u1), . . . , Fi−1(un)}
such that (I) Fi−1(uj) ⊆ G \ {uj}, (II) Γ(uj) ⊆ V (Fi−1(uj)) and (III) Fi−1(uj) has CCi−1(uj) ≤
deg(uj)/2

i−1 connected components. The goal of phase i is to add edges to each Fi−1(uj) in
order to reduce the number of connected components by factor 2. The algorithm uses the current
collection of forests Ni−1 to define an auxiliary graph G̃i which contains the edges of G and some
additional virtual nodes and edges. For every u ∈ V , we add to G̃i a set of k = CCi−1(u) virtual
nodes ũ1, . . . , ũk. We connect u to each of its virtual copies ũj and in addition connect the jth

virtual copy ũj is connected to all the neighbors of u (in Γ(u,G)) that belong to the jth connected
component in the forest Fi−1(u) ∈ Ni−1. This is done for every u ∈ G. The final auxiliary graph
G̃i has O(m) nodes, O(m) edges and diameter at most 2D. Note that each edge of G̃i has one real
endpoint (i.e., node of G) and one virtual endpoint. Next, the algorithm uses Algorithm CycleCover
to compute an (D log n, log3 n) cycle cover C̃i for the edges of G̃i. To map these virtual cycles to real
cycles Ci in G, we simply replace a virtual node ũj with the real node u. As the virtual neighbors

29



of u, namely, ũj , are connected to the neighbors of u, this indeed defines legal cycles in G. Define
Gi(u) = Fi−1(u) ∪ {C | C ∈ Ci and (u, v) ∈ C} \ {u} and let Fi(u) ⊆ Gi(u) be a forest that
spans all the neighbors of u. This forest can be computed, for instance, by running a BFS from
a neighbor u in each connected component of Gi(u). This completes the description of phase i.
The final neighborhood cover is given by N = {F`(u1), . . . , F`(un)}. We now turn to analyze this
construction and prove Theorem 4.

Small Diameter Trees. We begin by showing that the diameter of each tree T (ui) is bounded by
O(∆D · log n). Note that this bound is existentially tight (up to logarithmic factors) as there are
graphs G with diameter D and there is a node u with degree ∆ such that the diameter of G \ {u}
is O(∆D).

Claim 9. For every i ∈ {0, . . . , log ∆} and for every u ∈ V the number of connected components
satisfies CCi(u) ≤ ∆/2i.

Proof. The lemma is shown by induction on i. The case of i = 0 holds vacuously. Assume that the
claim holds up to i − 1 and consider phase i. By construction, for each u, the auxiliary graph G̃i
contains CCi−1(u) virtual nodes ũj that are connected to u.

The cycle cover C̃i for G̃i covers all these virtual (u, ũj) by virtual cycles, each such cycle

connects two virtual nodes. Since every two virtual nodes of u in G̃i are connected to neighbors of
u that belong to different components in Gi−1(u), every cycle that connects two virtual neighbors
is mapped into a cycle that connects two of u’s neighbors that belong to a different connected
component in phase Gi−1(u). Hence, the number of connected components in the forest Fi(u) has
been decreased by factor at least 2 compared to that of Fi−1(u).

Claim 10. The diameter of each tree T (ui) ∈ N is O(∆ ·D · log n).

Proof. We first claim that the diameter of each component in the forest Fi(u) is bounded by
O(∆ ·D · log n) for every u ∈ V and every i ∈ {1, . . . , `}. To see this, note that the forest Fi(u) is
formed by collection of O(D log n)-length cycles that connect u’s neighbors. Hence, when removing
u, we get paths of length O(D log n). Consider the process where in each phase i, every two u’s-
neighbors that are connected by a cycle in Ci are connected by a single “edge”. By the Proof
of Claim 9, after ` = O(log ∆) phases, we get a connected tree with deg(u) nodes, and hence of
“diameter” deg(u). Since each edge corresponds to a path of length O(D log n) in G, we get that
the final diameter of F`(u) is O(deg(u) ·D · log n).

Congestion.

Claim 11. Each edge e appears on O(D log3 n) different subgraphs T (ui) ∈ N .

We first show that the cycles Ci computed in G have congestion O(log3 n) for every i ∈ {1, . . . , `}.
Clearly, the cycles C̃i computed in G̃i have congestion of O(log3 n). Consider the mapping of cycles
C̃i in G̃i to a cycles Ci in G. Edges of the type (u, ũj) are replaced by (u, u) and hence there is no
real edge in the cycle. Edges of the type (ũj , w) are replaced by (u,w). Since there is only one
virtual node of u that connects to w, and since (ũj , w) appears in O(log3 n) many cycles, also (u,w)
appears in O(log3 n) many cycles (i.e., this conversion does not increase the congestion).

Note that the cycle C of each edge (u, v) joins the Gi subgraphs of at most D nodes since in
our construction a cycle C might cover up to D edges. (Recall that in Algorithm TreeCover a cycle

30



that covers an a tree edge e, also covers up to D edges on the path Pe). In addition, each edge e′

appears on different cycles in Ci.
We now claim that each edge e appears on O(i log3 n ·D) graphs Gi(u). For i = 1, this holds

as the cycle C of an edge (u, v) joins the subgraphs G1(x) and G1(y) for every edge (x, y) that
is covered by C. Assume it holds up to i − 1 and consider phase i. In phase i, we add to the
Gi(u) graphs the edges of Ci. Again, each cycle C ′ of an edge (u, v) joins D graphs Gi(x), Gi(y)
for every (x, y) that is covered by C ′. Hence each edge e appears on O(D · log3 n) of the subgraphs
Gi(uj)\Gi−1(uj). By induction assumption, each e appears on (i−1) log3 n·D graphs Gi−1(uj) and
hence overall each edge e appears on O(i log3 n) graphs Gi(uj). Therefore we get that each edge
appears on O(log ∆ · log3 n ·D) trees in N . Finally, we show that we can construct low-congestion
2-neighborhood cover using the construction for 1-neighborhood.

Corollary 1 (Private 2-Neighborhood Cover). Given an (d, c) 1-neighborhood cover N , there exists
an (d + 1, c + ∆) 2-neighborhood cover N ′.

Proof. For each y, and for every w ∈ Γ2(y,G) that is not in T (y), we add w to T (y) ∈ N by
connecting w to some neighbor z ∈ Γ(y,G) ∩ Γ(w,G). Let T ′(y) be the resulting tree and let
N ′ = {T ′(y), y ∈ V }. Clearly, Γ2(y,G) ⊆ V (T ′(y)). Since each edge (w, z) that we add to T (y)
might be added to ∆ many trees y′ for y′ ∈ Γ(z), each edge appears in c+ ∆ many trees in N ′.

In particular, plugging in our 1-neighborhood cover we get the following corollary:

Corollary 2. For every 2-node connected n-node graph with maximum degree ∆ and diameter D,
there exists a (d, c) private 2-neighborhood cover with d = Õ(D∆) and c = Õ(∆ +D).

We observe that our bounds are nearly optimal. To see this, consider a node u that has ∆
neighbors and Θ(∆2) nodes at distance 2, that is |Γ2(u)| = Θ(∆2). The node u must participate
in the neighborhood cover of each node v ∈ Γ2(u), where for each such cover, at least one edge
connected to u is covered. That is, there are Θ(∆2) covers where each contains at least one of the
∆ edges of u, and therefore there must be an edge with congestion at least Θ(∆).

4.3 P2 Cycle Cover

In section, we consider cycles that cover not only a single edge, but rather paths of length 2. In
particular, such cycles provide two-node disjoint paths between each node u and its second hop
neighbor v ∈ Γ2(u,G). We begin by providing a general definition of Pk cycle cover which can be
viewed as a natural extension to (edge) cycle cover which is in fact a P1 cycle cover.

Definition 7 (Pk Cycle Cover). Let G = (V,E) be an n-node graph and let k be an integer. A Pk
Cycle Cover C of G is a collection of simple cycles that cover all paths of length k in G. That is,
for every length-k path P ′ in G, there exists a cycle C ∈ C such that P ′ ⊆ C.

An (d, c) Pk cycle cover C satisfies in addition that each cycle C ∈ C is of length at most O(d)
and each edge appears in at most O(c) cycles in C.

It is easy to see that Pk cycle cover exist (i.e., each Pk path in the graph is covered by a cycle)
iff the graph is (k−1)-node connected. For our algorithmic purposes, it is sufficient to consider the
case of P2 cycle cover. An alternative viewpoint on P2 cycle cover is that it computes low-congestion
collection consisting of two node disjoint u − v paths for every u ∈ V and v ∈ Γ2(u). We note

31



that our construction of P2 cycle cover can be extended to general Pk covers, with the expense of
stricter bounds and connectivity constraints.

We prove the existence of a low-congestion P2 cover. Namely, we show that every u − v path
of length 2 is contained in at least one simple cycle of C (i.e., this is the covering property of
C). In addition, all cycles in C are of length O(∆ · D · log2 n) and each edge appears on at most
O(∆2 log ∆ · log3 n ·D) different cycles.

Theorem 5 (P2 cycle cover). For every two-node connected n-node graph G = (V,E) with diameter
D and maximum degree ∆, there exists a (∆·D·log n,∆2·D·log ∆ log3 n) P2 cycle cover C. Moreover,
these parameters are existentially optimal (up to poly-logarithmic factors).

Proof. In fact we show that given a construction of (d, c) private neighborhood cover N , one can
have also a (d, c ·∆2) P2 cover C.

We will use the construction of (D ·∆ · log n, log3 n · log ∆ ·D) private neighborhood cover N
to define a simple cycle Cx,y,z for every y ∈ V and every x, z ∈ Γ(y,G). To define cycles Cx,y,z for
a particular node y, we use the tree T (y) ∈ N . This tree contains an x − z path π(x, z, T (y)) in
G \ {y} for every x, z ∈ Γ(y,G). Now, define

Cx,y,z = π(x, z, T (y)) ◦ (x− y − z), for every y ∈ V and x, z ∈ Γ(y), and C =
⋃
y∈V

⋃
x,z∈Γ(y)

Cx,y,z.

Clearly, every cycle in C is simple and has length O(D ·∆ · log n) (i.e., the bound on the diameter
of each tree T (y) ∈ N ). In addition, every two-edge path x − y − z in G is covered by one of the
cycles in C. It remains to bound the congestion.

By the properties of N , each edge e appears on ` = O(log ∆ log3 n ·D) different trees T (y1), . . . ,
T (y`). For a fixed yi, each edge e ∈ T (yi) appears on O(∆2) cycles Cx,yi,z as there are ∆2 pairs x, z
in Γ(yi, G). Hence, e appears on O(∆2 ·D · log ∆ · log2 n) segments of π(x, z, T (y)) ⊆ Cx,y,z. Note
that the cycle Cx,y,z also contains the edges (x, y) and (y, z) which are not in the neighborhood
cover of y (since y /∈ T (y)). Each edge (x, y) appears on at most 2∆ P2 cycles in this role (i.e., not
as part of a tree T (y)). Hence, overall each edge appears on O(∆2 ·D · log ∆ · log3 n) P2 cycles in C.

We next claim that these parameters are existentially tight up to logarithmic factors. Since the
degree of each node is ∆, the diameter of G \ {u} might be Ω(D ·∆). Since we compute two node
disjoint y − z paths for every y ∈ V and z ∈ Γ2(y), one of the paths might be of length Ω(D ·∆)
and so is the length of the cycle covering a given two-edge path. Turning to congestion, we show
that there are graphs in which in any P2 cycle cover C, there must bean edge e that appears on
Ω(∆2) cycles. In particular, this holds for the edge e in the figure. The node y has two sets of
Ω(∆) neighbors, L and R. Any cycle covering the path x − y − z for x ∈ L and z ∈ R must go
through e. Hence, overall Ω(∆2) cycles go through e.

5 Universally (Nearly) Optimal Covers

The goal of this section is to construct covers that are competitive with the best possible cover for
a given graph (rather than being competitive with respect to the worst possible graph).

32



𝑦

𝐿 𝑅

𝑥 𝑧

𝑒

Figure 13: Illustration of P2 cycle cover with congestion Ω(∆2). The node y in the above graph
is such that all simple cycles covering the paths x − y − z for x ∈ L and z ∈ R must through the
same edge e. Thus, e has congestion at least Ω(∆2).

5.1 Cycle Covers

For a given graph G, let OPTG be the optimal dilation of any cycle cover (even with unbounded
congestion) for G. In this section, we show the construction of (Õ(OPTG), Õ(1)) cycle cover C. Our
nearly optimal cycle cover can also be tuned to be nearly optimal with respect to each edge e in
the sense that each edge e is covered in the cycle cover by a cycle of length OPTG,e, where OPTG,e
is the length of the shortest cycle in G that contains e.

Theorem 9. (I) For any graph G, one can construct an Õ(OPTG), Õ(1)) cycle cover C. (II) In
addition, for each edge e ∈ G, there is a cycle Ce in C containing e such that |Ce| = Õ(OPTG,e).

We say that an algorithm A for constructing a (d, c) cycle cover C is nice if it does not require
that G is bridgeless (i.e., 2 edge connected) but rather covers by cycles all edges that participate
in some cycle. That is, for every graph G and for every edge e ∈ G such that G \ {e} is connected,
it holds that e is covered by a cycle in C. We first claim that our main algorithm (Algorithm
CycleCover) is nice.

Claim 12. Algorithm CycleCover is nice, that is it covers all edge that participate in some cycle
and does not require that the input graph is 2-edge connected.

Proof. Let e be an edge for which there is cycle in G. If e is covered by the first part of the algorithm
(where a collection of edge disjoint cycles is computed), then we are done. It remains to consider
two cases. Case (1) is where e is a non-tree edge covered by Algorithm NonTreeCover. In such a
case, by Lemma 2, the edge e is covered by the output cycle collection of Algorithm NonTreeCover.
Case (2) is where e is a tree edge and hence handled by Algorithm TreeCover. Recall that in this
algorithm, for each tree edge e′ = (u′, v′), we consider its swap edge Swap(e′). Since the edge e
belongs to some cycle in G, it implies that G \ {e} is connected and hence there is a swap edge
Swap(e) that restores the connectivity of T \ {e}. In Algorithm TreeCover, we make sure that tree
edge that has a swap edge is covered by the output cycles. In particular, each swap edge Swap(e′)
is replaced by a virtual non-tree edge that is incident to v′, and there is some cycle that covers

33



both the virtual edge along with its corresponding tree edge e′. These cycles are later converted to
cycles in G which cover all tree edges that have swap edges. The claim follows.

Now, to show Theorem 9 (I), we in fact prove the following transformation lemma that holds
for every nice algorithm.

Lemma 4. For any graph G with diameter D, every nice algorithm A that constructs an (f(D), c)
cover C for G can be transformed into an algorithm A′ that constructs an (f(Õ(OPTG)), Õ(c))
cover for G.

Applying the above transformation to Algorithm CycleCover we get that Theorem 9 (I) follows.
The key tool of this transformation Lemma is a t-neighborhood cover, a set of clusters in the
graph with small overlap, such that for every vertex there exists a cluster which contains its entire
t-neighborhood.

Definition 8 (Neighborhood Cover, [ABCP96]). A (k, t, q) neighborhood cover of an n-vertex
graph G = (V,E) is a collection of subsets of V (denoted as clusters), S = {S1, . . . , Sr} with the
following properties:

• For every vertex v, there exists a cluster Si such that Γt(V ) ⊆ Si.

• The strong diameter9 of each cluster Si is at most O(k · t).

• Each vertex belongs to at most q clusters.

Awerbuch et al. showed how to construct such a neighborhood cover in the LOCAL model.

Lemma 5 ([ABCP96]). For every integers k, t, and every n-vertex graph G = (V,E), there is
a (k, t, q) neighborhood cover with q = O(k · n1/k). In particular, for k = O(log n) we get that
q = Õ(1) and the diameter of each cluster is Õ(t).

For each edge e = (u, v), let Ce be the shortest cycle in G that contains e. Define αG =
maxe∈G |Ce| to be the length of the longest Ce cycle among all e ∈ G. It is easy to see that every
(d, c) cycle cover C of G must satisfy that d ≥ αG (regardless of the congestion c). Clearly, αG
is always upper bounded by O(D) but it can be much smaller. Since OPTG is the optimal cover
regardless of congestion, we have that OPTG = αG. We now prove Lemma 4, and construct a cycle
cover of dilation Õ(OPTG) while preserving a low congestion of Õ(1).

Proof. Let A be a nice algorithm that constructs an (f(D), c) cycle cover. We now describe
algorithm A′ that uses A to construct an (f(Õ(αG)), Õ(c)) cycle cover. Algorithm A′ starts by
constructing an (k, t, q) neighborhood coverS = {S1, . . . , Sr} for k = O(log n) and t = αG. Hence,
the diameter Di of each graph G(Si) is O(log n·αG). Then, it applies Algorithm A in each subgraph
G[Si] and computes an (f(Di), c) cycle cover Ci for every i ∈ {1, . . . , r}. The final cover is given
by C∗ =

⋃r
i=1 Ci. This completes the description of the algorithm.

We first show that C∗ is a cover. Consider an edge e = (u, v). Let Si be such that ΓαG(u) ⊆ Si.
By the definition of neighborhood cover such Si exists. Since e belongs to a cycle Ce in G of
length at most αG, it holds that Ce ⊆ G[Si]. Since A is nice, each edge in G′ that belongs to
some cycle in G′ is covered by the output cycles of Algorithm A. Hence, e is covered by the cycles

9The strong diameter of a cluster of the diameter of the subgraph induced by the vertices of the cluster.

34



of Ci. By construction, the diameter of G[Si] is Õ(αG) and hence each cycle in C∗ has length
f(Õ(αG)). It remains to bound the congestion. Each edge appears on at most c cycles in Ci for
every i ∈ {1, . . . , r}. Since each vertex v appears on O(log n) different clusters Sj ∈ S, overall, we

get that each edge appears on Õ(c) cycles in C∗.

We next show that by slightly adopting the construction algorithm of Lemma 4, we can obtain
also local (near) optimality – i.e., optimality (up to logarithmic factors) for each of the edges. Recall
that for each edge e, Ce is the shortest cycle that contains e.

Lemma 6. For every graph G = (V,E), one can construct a cycle cover C such that each edge e
is covered in C be a cycle of length Õ(|Ce|) and each edge appears on Õ(1) cycles.

Proof. The idea is to apply the algorithm of Lemma 4 for O(logαG) many times. In step i =
{1, . . . , dlogαGe}, we construct a (k = O(log n), t = 2i, q) neighborhood cover Si = {Si,1, . . . , Si,ri},
such that each subgraph G[Si,j ] has diameter Di,j = O(log n · 2i) and each vertex belongs to
O(log n) subsets Si,j . We then apply Algorithm CycleCover in each subgraph G[Si,j ], resulting in

an (Õ(log n · 2i), Õ(1)) cycle cover Ci,j . The final cover is C∗ =
⋃
i,j Ci,j .

We first claim that each edge e = (u, v) belongs to a cycle in C∗ of length Õ(|Ce|). Let i be such
that |Ce| ∈ [2i−1, 2i]. Then by the properties of the neighborhood cover, there exists a subset Si,j
such that V (Ce) ⊆ Si,j . By the same argument as in Lemma 4, e is covered by a cycle of length

Õ(2i) = Õ(|Ce|) in Ci,j . Finally, by the proof of Lemma 4, each edge appears on Õ(1) cycles in⋃
j Ci,j for every i ∈ {1, . . . , dlogαGe}. As there are O(log n) steps, overall, each edge appears on

Õ(1) cycles in C∗.

5.2 Private Neighborhood Cover and P2 Covers

We now turn to consider constructions of private neighborhood covers that are competitive with
the best possible one. Let OPTG be the optimal depth of private neighborhood cover (regardless of
the congestion). Let dv = Diam(G \ {v}). Clearly, there are bad graph examples G with maximum
degree ∆ and diameter D, for which there exists v ∈ G such that dv = Θ(∆ · D). However, in
general dv might be much small then the universal upper bound of O(∆ · D). The goal of this
subsection is to construct a private neighborhood cover in which the depth of each tree of v is
competitive with dv.

Corollary 3. For every 2-vertex connected n-vertex graph G with maximum degree ∆ and diameter
D, there exists a (d, c) private 1-neighborhood cover N = {T (u1), . . . , T (un)} with d = Õ(OPTG ·∆)
and c = Õ(OPTG). In addition, each tree T (ui) has diameter of Õ(

√
∆ · dv).

Proof. The construction is similar to that of Theorem 4 only that we apply Lemma 4with Algorithm
CycleCover. Since for each edge e = (u, v), it holds that |Ce| = O(dv), the computed cycles when
constructing T (v) are of length Õ(dv).

Next we consider P2-Covers. For each P2 path P , let CP be the shortest cycle in G that contains
P . Clearly the dilation of every P2-cover is at least βG = max{CP | P ⊆ G, |P | = 2}. In addition,
it is easy to see that βG ≥ αG. By combining Corollary 3 and Corollary 1, we get:

Corollary 4. For every 2-node connected n-node graph with maximum degree ∆, there exists a
(d, c) private 2-neighborhood cover with d = Õ(αG ·∆) and c = Õ(∆ + αG).

35



6 Secure Simulation via Low-Congestion Covers

In this section we describe how to transform any distributed algorithm A to a new algorithm A′
which has the same functionality as A (i.e., the output for every node u in A is the same as in
A′) but has perfect privacy (as is defined in Definition 1). Towards this end, we assume that
the combinatorial structures required are already computed (in a preprocessing stage), namely, a
2-path cover and a neighborhood cover for vertices in the graph. The output of the preprocessing
stage is given in a distributed manner. The (distributed) output of the cycle cover is such that each
vertex v knows for each of its incident edges (u, v) all edge IDs e′ such that (u, v) appears on the
cycle that covers e′. The output of the private neighborhood cover for each node u, is such that
each vertex v knows its parent in the private neighborhood cover of u (if such exists). Finally, in
P2 cover, each vertex v knows for each of its incident edges e = (u, v), the IDs of all P2 paths10

that are covered by cycles that go through e.

Theorem 6. Let G be an n-vertex graph with diameter D and maximal degree ∆. Let A be a natural
distributed algorithm that works on G in r rounds. Then, A can be transformed to an equivalent
algorithm A′ with perfect privacy which runs in Õ(rD·poly(∆)) rounds (after a preprocessing stage).

As a preparation for our secure simulation, we provide the following convenient view of dis-
tributed algorithm.

6.1 Our Framework

We treat the distributed r-round algorithm A from the view point of some fixed node u, as a
collection of r functions f1, . . . , fr as follows. Let Γ(u) = {v1, . . . , vk}. At any round i, the memory
of u consists of a state, denoted by σi and ∆ messages mv1→u . . . ,mv∆→u that were received in
the previous round (in the degree of the node is less than ∆ the rest of the messages are empty).
Initially, we set σ0 to be a fixed string and initialize all messages to NULL. At round i the node
u updates its state to σi+1 according to its previous state σi and the messages that it got in the
previous round. It then prepares k messages to send mu→v1 , . . . ,mu→v∆ . To ease notation (and
without loss of generality) we assume that each state contains the ID of the node u. Thus, we can
focus on a single update function fi for every round that works for all nodes. The function fi gets
the state σi, the messages mv1→u . . . ,mv∆→u, and the randomness s. The output of fi is the next
state σi+1, and at most k outgoing messages:

(σi,mu→v1 , . . . ,mu→v∆)← fi(σi−1,mv1→u, . . . ,mv∆→u, s).

Our compiler works round-by-round where each round i is replaced by a collection of rounds
that “securely” compute fi, in a manner that will be explained next. The complexity of our
algorithm depends exponentially on the space complexity of the functions fi. Thus, we proceed
by transforming the original algorithm A to one in which each fi can be computed in logarithmic
space, while slightly increasing the number of rounds.

Claim 13. Any natural distributed algorithm A the runs in r rounds can be transformed to a
new algorithm Â with the same output such that Â is computable in logarithmic space using r′ =
r · poly(∆ + log n) rounds.

10The ID of the P2 path can be simply the concatenation of the three node IDs.

36



Proof. Let t be the running time of the function fi. Then, fi can be computed with a circuit of at
most t gates. Note that since A is natural, it holds that t ≤ poly(∆, log n).

Instead of letting u computing fi in round i, we replace the ith round by t rounds where each
round computes only a single gate of the function fi. These new rounds will have no communication
at all, but are used merely for computing fi with a small amount of memory.

Let g1, . . . , gt be the gates of the function fi in a computable order where gt is the output of the
function. We define a new state σ′i of the form σ′ = (σi, g1, . . . , gt), where σi is the original state,
and gj is the value of the jth gate. Initially, g1, . . . , gt are set to ⊥. Then, for all j ∈ [t] we define
the function

f ji (σi, g1, . . . , gj−1,⊥, . . . ,⊥) = (σi, g1, . . . , gj−1, gj ,⊥, . . . ,⊥).

In the jth round we compute f ji , until the final gt is computed. Note that f ji can be computed

with logarithmic space, and since t ≤ poly(∆, log n) we can compute f ji with space O(log ∆ +

log logn). As a result, the r-round algorithm A is replaced by an rt-round algorithm Â, where
t ≤ poly(∆, log n). That is, we have that r′ ≤ poly(∆, log n).

As we will see, our compiler will have an overhead of poly(∆, log n) in the round complexity
and hence the overhead of Claim 13 is insignificant. Thus, we will assume that the distributed
algorithm A satisfies that all its functions fi are computable in logarithmic space (i.e., we assume
that the algorithm is already after the above transformation).

6.2 Secure Simulation of a Single Round

In the algorithm A each node u computes the function fi in each round i. In our secure algorithm
A′ we want to simulate this computation, however, on encrypted data, such that u does not get to
learn the true output of fi in any of the rounds except for the last one. When we say “encrypted”
data, we mean a “one-time-pad” (see Definition 4). That is, we merely refer to a process where we
the data is masked by XORing it with a random string K. Then, K is called the encryption (and
also decryption) key. Using this notion, we define a related function f ′i that, intuitively, simulates
fi on encrypted data, by getting an encrypted state and messages as input, decrypting them, then
computing fi and finally encrypting back the output. We simulate every round of the original
algorithm A by a PSM protocol for the function f ′i .

The Secure Function f ′i . The function f ′i gets the following inputs (encrypted elements will be
denoted by the ·̂ notation):

1. An encrypted state σ̂i−1 and encrypted messages {m̂vj→u}∆j=1.

2. Shares for the decryption key of the state {Rjσi−1}∆j=1 and messages {Rkvj→u}
∆
j,k=1.

3. Shares for randomness {Rjs}∆j=1 for the function fi.

4. Secret shared keys for encrypting the new state {Rjσi}∆j=1 and messages {Rku→vj}
∆
j,k=1.

The function f ′i decrypts the state and messages and runs the function fi (using randomness s)
to get the new state σi and the outgoing messages mu→v1 , . . . ,mu→v∆ . Then, it encrypts the new
state and messages using the encryption keys. In total, the function f ′i has O(∆2) inputs. The
precise description of f ′i is given in Figure 14.

37



The description of the function f ′i .

Input: A secret shared encrypted state {σ̂ji−1}∆j=1, encrypted messages
{
m̂vj→u

}∆

j=1
, secret shared

keys for decrypting the input
{
Rjσi−1

}∆

j=1
,
{
Rkvj→u

}∆

j,k=1
, secret shared randomness

{
Rjs
}∆

j=1
and

secret shared keys for encrypting the output
{
Rjσi

}∆

j=1
,
{
Rku→vj

}∆

j,k=1
.

Run:

1. Compute σi−1 ←
(⊕∆

j=1 σ̂
j
i−1

)
⊕
(⊕∆

j=1R
j
σi−1

)
and s←

(⊕∆
j=1R

j
s

)
.

2. For j = 1 . . .∆: compute mvj→u ← m̂vj→u ⊕
(⊕∆

k=1R
k
vj→u

)
.

3. Run σi,mu→v1 , . . . ,mu→v∆ ← f(σi−1,mv1→u, . . . ,mv∆→u, s).

4. Compute σ̂i ← σi ⊕
(⊕∆

j=1R
j
σi

)
.

5. For j = 1 . . .∆: compute m̂u→vj ← mu→vj ⊕
(⊕∆

k=1R
k
u→vj

)
.

6. Output σ̂i, m̂u→v1 , . . . , m̂u→v∆ .

Figure 14: The function f ′i .

Recall that in the PSM model, we have k parties p1, . . . , pk and a server s, where it was assumed
that (PI) all parties have private shared randomness (not known to s) and (PII) that each of
party has a private communication channel to the server. Our goal is to compute f ′i securely by
implementing a PSM protocol for all nodes in the graph simultaneously. We call this implementation
a distributed PSM algorithm.

The distributed PSM algorithm securely computes f ′i by simulating the PSM protocol for f ′i ,
treating u as the server and its 2nd-neighborhood as the parties. The private neighborhood cover
and the P2 cycle cover provide the graph theoretical and algorithmic framework for implementing
this distributed PSM protocol in general graph topologies by allowing the simultaneous computation
for all nodes. For property (PI) we need to provide for every node u in the graph a tree Tu that
spans all the vertices of Γ2(u) (i.e., the parties) in G \ {u}. Using this tree, all the parties can
share private randomness that is not known to u. This can be done in O(Diam(Tu) + R) rounds,
where Diam(Tu) is the diameter of the tree and R is the number of random bits. To allow the
simultaneous communication on these trees, we want each edge to appear in small number of
trees and in addition, we would like the trees to be of small depth. These two requirements are
encapsulated in our notion of low-congestion private-neighborhood-cover.

For property (PII) we need to provide a way for each party pi to communicate privately with
the node u. If pi is an immediate neighbor of u then this is achieved trivially. For a 2-hop neighbor
pi, we simulate a private channel between u and pi by computing two vertex-disjoint paths between
pi and u. To have a private channel between u and pi, we use the idea of secret sharing: pi sends a
private message m to u by secret sharing the message to two parts (i.e., sampling random m1,m2

conditioned on m1⊕m2 = m) and sending m1 on one u−pi path and m2 on the other. In this way,
only the node u gets both shares of the secret and thus it is the only node that can reconstruct

38



the message m. The two disjoint paths from pi to u can be obtained by computing a simple cycle
that covers the (length 2) path from pi to u. The number of rounds required for communicating
over this u-pichannel is proportional to the length of the cycle. Since we would like all nodes
to communicate this way simultaneously with all their 2-hop neighbors, it is desired that each of
these cycle be short and that each edge appears in a small number of different cycles. These two
requirements are encapsulated in our low-congestion P2 cycle cover. The final algorithm A′i(u) for
securely computing f ′i is described in Figure 15.

The algorithm A′i(u) for securely computing f ′i .
Input: Each node v ∈ Γ2(u) has input xv ∈ {0, 1}m.

1. Let T be the tree spanning Γ2(u) in G \ {u} and let w be the root.

2. w chooses a random string R and sends it to Γ2(u) using the tree T .

3. Each node v ∈ Γ2(u) computes Mv = PSM.Enc(f ′i , xv, R).

4. Each immediate neighbor v ∈ Γ1(u) sends Mv to u directly.

5. Each 2-hop neighbor v ∈ Γ2(u) \ Γ1(u) do as follows:

(a) Secret share the message Mv to Mv = M1
v ⊕M2

v .

(b) Let P 1
v→u and P 2

v→u be two vertex disjoint paths from v to u (as obtained from the P2

cover).

(c) Send M1
v to u via P 1

v→u and M2
v via P 2

v→u.

6. u computes Mv = M1
v ⊕M2

v for each 2-hop neighbor v ∈ Γ2(u) \ Γ1(u).

7. u computes y = PSM.Dec
(
f ′i , {Mv}v∈Γ2(u)

)
.

Figure 15: The description of the distributed PSM algorithm of node u for securely computing the
function f ′i .

In what follows analyze the security and round complexity of Algorithm A′i.
Round Complexity. Let f : {0, 1}m·|Γ2(u)| → {0, 1}` be a function with |Γ2(u)| ≤ ∆2 inputs,
where each input is of length m bits. The communication complexity of the PSM protocol depends
on the input and output length of the function and also on the memory required to compute
f . Suppose that f is computable by an s-space TM. Then, by Theorem 8 the communication
complexity (and randomness complexity) of the protocol is at most O(∆2m` · 22s).

In the first phase of the protocol, the root w sends a collection of random bits R to Γ2(u) using
the private 2-neighborhood cover, where |R| = O(∆2 · m · ` · 22s). By Corollary 2, the diameter
of the tree is at most Õ(D∆) and each edge belongs to Õ(∆) different trees. Therefore, there are
total of Õ(∆ · |R|) many bits that need to go through a single edge when sending the information
on all trees simultaneously. Using the random delay approach of Theorem 7, this can be done in
Õ(D∆ + ∆3 ·m · ` · 22s) rounds. For the rest of the protocol, we need to send the PSM messages
of length |R| on the edges of the P2-cycle cover. By Theorem 5, the length of these cycles is
at most Õ(D · ∆) and each edge appears on Õ(D · ∆2) cycles. Hence, on each edge we need to

39



send Õ(D ·∆2 · |R|) bits. Using the random delay approach again, this can be done on all cycles
simultaneously using Õ(D∆4 ·m · ` · 22s) rounds. This is summarized by the following Lemma:

Lemma 7. Let f : ({0, 1}m)∆2 → {0, 1}` be a function over ∆2 inputs where each is of length at
most m and that is computable by a s-space TM. Then, there is a distributed algorithm A′i(u) (in
the CONGEST model) with perfect privacy where each node u outputs f evaluated on Γ2(u). The
round complexity of A′i(u) is Õ(D∆4 ·m` · 22s).

6.3 The Final Secure Algorithm

Using the function f ′i , we define the algorithm A′u for computing the next state and messages of
the node u. We describe the algorithm for any u in the graph and at the end we show that all the
algorithms {A′u}u∈G can be run simultaneously with low congestion.

The algorithm A′u involves running the distributed algorithm A′i(u) for all rounds i on the 2-
neighborhood of u. First, each immediate neighbor vj of u samples a share of an encryption key

Rjσi for encrypting the next state of u. Moreover, vj sample a share of the randomness Rjs used to
evaluate the function fi. Each neighbor wk of vj (wk is of distance 2 from u) samples a share of an
encryption key Rku→vj for encrypting the message mu→vj from u to vj .

Then they run A′i(u) algorithm with u as the server and Γ2(u) as the parties for computing the
function f ′i (see Figure 15). The node u has the encrypted state and message, the neighbors of u
have the (encryption and decryption) keys for the state (and randomness). For each neighbor vj of
u the neighbors of vj (not including u) have the (encryption and decryption) keys for the messages
sent from u to vj . At the end of the protocol, u computes the output of f ′i which is the encrypted
output of the function fi and sends the encrypted message m̂u→vj to vj .

After the final round, u holds an encryption of the final state σ̂r which contains only the output
of the original algorithm A. At this point, the neighbors of u send it the decryption key for this
last state, u decrypts its state and outputs the decrypted state. Initially, the state σ0 is a fixed
string which is not encrypted, and the all encryption keys for this round are assumed to be 0. This
description is summarized in Figure 16.

Finally, we show that the protocol is correct and secure.

Correctness. The correctness follows directly from the construction. Consider a node u in the
graph. Originally, u computes the sequence of states σ0, . . . , σr where σr contained the final output
of the algorithm. In the compiled algorithm A′, for each round i of A and every node u the
sub-algorithm A′i(u) computes σ̂i, where σ̂i = σi ⊕ (

⊕∆
j=1R

j
σi), and each neighbor vj ∈ Γ1(u) has

Rjσi . Thus, after the last round, u has σ̂r and each of its neighbor vj has Rjσr . Thus, u computes

σ̂r ⊕ (
⊕∆

j=1R
j
σr) = σr and outputs σr as required.

Round Complexity. We compute the number of rounds of the algorithm for any natural algorithm
A. The algorithm consists of r′ = r · poly(∆ + log n) iterations. In each iteration, every vertex u
implements algorithm A′i for the function f ′i (there are other operations in the iteration but they
are negligible). We know that fi can be computed in s-space where s = O(log ∆ + log log n), and
thus we can bound the size of each input to f ′i by poly(∆) · polylog(n). Indeed, the state has this
bound by the definition of a natural algorithm, and thus also the encrypted state (which has the
exact same size), the messages and encryption keys for the messages have length at most log n, and
the randomness shares are of size at most the running time of fi which is at most 2s where s is the
space of fi and thus the bound holds. The output length shares the same bound as well.

40



The description of the algorithm A′u.

1. For each round i = 1 . . . r do:

(a) u secret shares σ̂i =
⊕∆

j=1 σ̂
j
i and sends σ̂ji to neighbor vj .

(b) For each neighbor vj of u:

i. vj samples Rjσi and Rjs at random (and stores it).

ii. Each neighbor wk of vj samples Rku→vj at random (and stores it).

(c) Run the Ai(u) algorithm for f ′i with server u and parties Γ2(u) where:

i. Each neighbor vj of u has input σ̂ji , m̂vj→u, R
j
σi−1 , R

j
σi , R

j
s.

ii. Each neighbor wk of vj has input Rkvj→u, R
k
u→vj .

iii. u learns the final output of the algorithm (σ̂i, m̂u→v1 , . . . , m̂u→v∆).

(d) u sends m̂u→vj to vj for all j ∈ [∆].

2. Each neighbor vj of u sends Rjσr to u.

3. u computes σr = σ̂r ⊕ (
⊕∆

j=1R
j
σr) and outputs σr.

Figure 16: The description of the Algorithm A′u. In the description above, we assume that in
“round 0” all keys are initialized to 0. That is, we let Rjσ0 = 0 for all j ∈ [∆], and initially set
Rkvj→u = 0 for all j, k ∈ [∆].

Since fi can be computed in s-space where s = O(log ∆ + log log n), we observe that f ′i can be
computed in s-space as well. This includes running fi is a “lazy” manner. That is, whenever the
TM for computing fi asks to read a the ith bit of the input, we generate the this bit by performing
the appropriate XOR operations for the ith bit of the input elements. The memory required for
this is only storing indexes of the input which is log(∆ · poly(log n)) bits and thus s bits suffice.

Then, by Lemma 7 we get that the PSMf ′i
algorithm runs in Õ(D ·poly(∆)) rounds, and the total

number of rounds of our algorithm is Õ(rD · poly(∆)). In particular, if the degree ∆ is bounded by
polylog(n) then we get Õ(rD) number of rounds.

Remark 1 (Round complexity for non-natural algorithms). If A is not a “natural” algorithm then
we can bound the number of rounds with dependency on the time complexity of the algorithm. If
each function fi (the local computation of the nodes) can be computed by a circuit of size t then the
number of rounds of the compiled algorithm is bounded by Õ(rDt · poly(∆)).

Security. We begin by describing the security of a single sub-protocol A′u for any node u in the
graph. The algorithm A′u has many nodes involved, and we begin by showing how to simulate the
messages of u. Fix an iteration i, and consider the all the messages sent to u by the PSM protocol
in A′i(u) denoted by {Mv}v∈G, and let σ̂i, m̂u→v1 , . . . , m̂u→v∆ be the output of the protocol. By the
security of the PSM protocol, there is a simulator Sim such that the following two distributions are
equal:

{Mv}v∈G ≡ Sim(σ̂i, m̂u→v1 , . . . , m̂u→v∆).

41



Since σ̂i and m̂u→v1 , . . . , m̂u→v∆ are encrypted by keys that are never sent to u we have that from
the viewpoint of u the distribution of σ̂i and of m̂u→v1 , . . . , m̂u→v∆ are uniformly random. Thus,
we can run the simulator with a random string R of the same length and have

Sim(σ̂i, m̂u→v1 , . . . , m̂u→v∆) ≡ Sim(R).

While this concludes the simulator for u, we need to show a simulator for other nodes that
participate in the protocol. Consider the neighbors of u. Each neighbor vj of u has the elements

σ̂ji , m̂vj→u, R
j
σi−1 , R

j
σi , R

j
s in its viewpoint. All these elements are uniform random strings which can

be simulated by a simulator Sim by sampling a random string of the same length. Indeed, σ̂ji is a
share of σ̂i where the other shares are shared among the rest of the neighbors of u, and each share
individually is completely uniform. The messages m̂vj→u are encrypted by a key that is shared

among the neighbors of vj and thus it is again uniform. Finally, Rjσi , R
j
s are chosen to be random

and thus can be simulated. In additional, vj receives messages of the PSM protocol. It gets the
shared random string, which can be trivially simulated, and in addition it might receive the share
M b
w for b ∈ {1, 2} for some node w. However, the other share M3−b

w is sent on a vertex-disjoint
path to u and thus v does not see it. Therefore, this share alone is a uniformly random string.
A similar reasoning holds for distance 2 neighbors of u and also for all other nodes in the graph
that participate in the protocol, as they only receive a subset of the messages that the neighbours
receive.

To conclude, the privacy of A′i(u) follows from the perfect privacy of PSM protocol we use. The
PSM security guarantees a perfect simulator for the server’s viewpoint, and it is easy to construct
a simulator for all other parties in the protocol as they only receive random messages. While the
PSM was proven secure in a stand alone setting, in our protocol we have a composition of many
instances of the protocol. Fortunately, it was shown in [KLR10] that any protocol that is perfectly
secure and has a black-box non-rewinding simulator, is also secure under universal composability,
that is, security is guaranteed to hold when many arbitrary protocols are performed concurrently
with the secure protocol. We observe that the PSM has a simple simulator that is black-box and
non-rewinding, and thus we can apply the result of [KLR10]. This is since the simulator of the
PSM protocol is an algorithm that runs the protocol on an arbitrary message that agrees with the
output of the function.

7 Distributed Computation of Low Congestion Covers

In this section, we describe the distributed algorithms for constructing the low-congestion covering
structures. We start by describing the construction of low-congestion cycle cover.

7.1 Cycle Cover

We describe Algorithm DistCycleCover which constructs a low congestion cycle cover in the dis-
tributed setting. The output of the algorithm is defined as follows: the endpoints of every edge
e = (u, v) know all the identifiers of all the edges that are covered by the cycles that go through e.

Theorem 3. For every 2-edge connected n-node graph G = (V,E) with diameter D and maximum
degree ∆, Algorithm DistCycleCover computes a (41/ε ·D · log ∆, nε log2 n) cycle cover C in Õ(41/ε ·
D + nε) rounds for every ε ∈ (0, 1).

42



We start by claiming that up to logarithmic factors in the round complexity and in the quality
of our cycle cover, it is sufficient to restrict attention to graphs with maximum degree 5.

Lemma 8. Let A′ be an algorithm that computes a (d, c) cycle cover for every N -node graph G′

with maximum degree 5 within f(N, d, c,Diam(G)) rounds. Then, there exists an algorithm A that
computes a (d log ∆, c) cycle cover for every n-node graph G = (V,E) with maximum degree ∆,
within f(|E|, d log ∆, c,Diam(G) · log ∆) rounds.

Proof. The 2-edge connected graph G can be transformed to a graph G′ with bounded degree 5 in
the following manner: For every node u with degree ` = deg(u), we add in G′, 2`− 1 many copies
û1, . . . , û2`−1 that are connected as follows. The node u is the root of a binary tree T̂u of depth
log(deg(u)) and with the leaf nodes û1, . . . , û` which correspond to the Γ(u,G) nodes. That is, each
leaf node ûj corresponds to the jth neighbor of u. In addition, all these leaf nodes are connected

via a path. The leaf nodes of different trees are connected as follows: the leaf node ûj in T̂u that

corresponds to the jth neighbor v ∈ Γ(u,G) is connected to the corresponding copy of u in T̂v,
namely, v̂i. Overall we get a 2-edge connected graph with Θ(|E(G)|) nodes and Θ(|E(G)|) edges,
has maximum degree 5 and is of diameter Θ(log ∆ · Diam(G)). Any round of an algorithm for G′

can be simulated by a single round in the graph G. In addition, any cycle computed in G′ can be
easily translated into a cycle in G without increasing the congestion by replacing each virtual copy
ûj with the node u.

Given Lemma 8, we can assume without loss of generality, that G has maximum degree O(1).
As in the centralized construction, we start by constructing a BFS tree T . We first cover all the
non-tree edges E′ using Algorithm DistNonTreeCover, and then cover the tree edges E(T ), using
Algorithm DistTreeCover. Since we already assume that we work on bounded degree graphs (by
paying an extra factor of log ∆ in the length of the cycles), there is no need for the preliminary
step that computes short edge disjoint cycles of length O(log n).

7.1.1 Distributed Algorithm for Covering Non-Tree Edges

In this subsection we describe Algorithm DistNonTreeCover that constructs an (21/ε ·D,n2ε) cycle
cover C1 for the non tree edges. We next describe two basic procedures used by algorithm and then
describe how to used them to compute the cover.

Tool (I): Computing an Hierarchy of Block Partitioning. We are given a BFS tree T ,
a subset of non-tree edges E′ and an input parameter ε ∈ [0, 1]. Computing the cycle cover is
based upon constructing a hierarchy of (E′, bi) block partitioning where bi = m/ni·ε for every
i ∈ {0, . . . , `} where ` = c · d1/εe. As in Section 4.1, every block consists of a subset of nodes with
consecutive postorder traversal numbering. To see how we can compute the postorder numbering
distributively, see Appendix B. We now define the hierarchical block partitioning and then explain
how to compute it in a distributed manner. The 0-level of the hierarchy consists of one block
containing all nodes. In the ith-level of the hierarchy, each (i − 1)-level block is subdivided into
nε sub-blocks, each with bounded density of bi = m/ni·ε. This subdivision is done greedily, going
through the nodes in the block from the lowest numbered node to the highest and grouping them
into blocks of capacity bi. Just like in the centralized setting, each block either consists of a single
node with at least bi edges in E′ or with a block of bounded density O(bi).

43



Turning to the distributed implementation, we consider the i-phase for i ≥ 1, where we are given
the (i−1)-level of the partitioning Bi−1,1, . . . , Bi−1,` such that each node know the ID of the (i−1)-
level block Bi,j to which it belongs and the LCA of its block in T (knowing the LCA is important
for communicating in the tree TBi−1,j ). Equipped with that knowledge, we now describe how to

compute the ith-level of the partitioning. We will work on each block separately but simultaneously.
That is, in phase i, we run (simultaneously) a collection of ` algorithms, one per (i− 1)-level block
Bi−1,j . From this point on, we focus on one such (i− 1)-block B = Bi−1,j and describe Algorithm
PartitionSingleBlock which partitions B into O(nε) blocks, each with bounded density bi.

The output of this algorithm is that each node u knows the block IDs and the LCAs of all its
blocks in each of O(1/ε) levels of the hierarchy. Throughout, the density of a subset S ⊆ V is the
number of edges in E′ that have at least one endpoint in S. We say that a block in level i is full
if its density is at least bi. We need some notation. Almost all our computation for a block B are
restricted to the subtree in T that connects all B nodes, namely, the subtree TB =

⋃
u∈B π(u, `, T )

where ` is the LCA of B in T . Note that V (TB) is not necessarily B, that is, TB might contain
nodes that belong to different blocks than B. For u ∈ B, bi(u) is the ID of the i-level block of u.
For u ∈ TB (which might not necessarily be in B), let maxB(u) be the node of maximum ID in
TB(u) ∩ B (if u ∈ B, then maxB(u) = u). Finally, let b∗i (u) be the i-level block ID of maxB(u).
We work from the leaf nodes of TB up the root (i.e., the LCA of B-nodes). Letting DB be the
diameter of the tree TB, at step j ≥ 0, we assume that all nodes u in layers DB − j of TB hold the
following information:

• the block ID b∗i (u),

• the LCA of the block b∗i (u),

• the density of the block b∗i (u),

• the number of i-level blocks in TB(u) ∩B11.

These values are trivially computed for all leaf nodes in level DB of TB. We now show how to
compute this information in level DB−(j+1). All nodes in layer D−j send their block information
to their parents in TB. Consider now a parent u (in layer DB − (j+ 1)) and its children in TB ∩B:
v1, . . . , vk, ordered from left to right. The node u looks for a maximal sequence of children (from
left to right) each with only one i-level block in their subtree TB(vp) ∩ B. For any such maximal
sequence, it merges these i-level blocks greedily, by filling up blocks as long as the density of the
block is below bi. Once all mergings of i-level blocks of u’s children is done, u can obtain all desired
information. If u ∈ B, and the last i-level block of its rightmost child is not completely full (i.e.,
its density is below bi), then u joins that block, and otherwise, it opens a new block and the ID of
the block is simply the ID of u.

Hence, it is easy to see that u has all the required information as it can easily get the density of
the block to which it belongs and compute the number of block in TB(u) ∩B. This completes the
description of phase i. After DB rounds of working bottom up on TB, we start working top-down.
Here, there is no need to work layer by layer, but rather each node u that just merged the blocks
of its children into a full block (with density at least bi), sends all the information about that
block (ID, LCA which is node u) to all its relevant children (whose block got merged) and this
information propagates down their tree TB(vp). Since we only merge subtrees that contain a single

11In fact it is sufficient to know if there is exactly one block in TB(u) or more.

44



i-level block, there is no congestion in propagating the information of the full block down the tree.
This completes the description of Algorithm PartitionSingleBlock.

We analyze the partitioning algorithm and show:

Claim 14. Algorithm PartitionSingleBlock partitions an (i−1)-block Bi−1,j into O(nε) i-level blocks.

Proof. Let B′ = Bi−1,j and T ′ = TB′ be the subtree of T connecting all nodes of B′. Let D′ be the
depth of T ′. For node u ∈ T ′, let d(u,B′) =

∑
v∈(T ′(u)∩B′) deg(v,E′).

The blocks are defined bottom up on T ′. We will claim by induction on the number of round
r ≥ 0, that for each node u ∈ V (T ′) in layer D′ − r (in T ′) the following holds: If T ′(u) ∩ B′
(the subtree of u in T ′) has more than one block of level i , then for any i-level block in T ′(u)
with density less than bi, either the i-level block before it or after it in T ′(u) ∩ B′ has density at
least bi. As a result, we will get that that the number of i-level blocks in T (u) ∩ B′ is at most
d(u,B′)/bi. Applying this to the root of T ′ (the LCA of the nodes of B′), we get that there are
at most deg(B′, E′)/bi. Since B′ is a block in level i− 1, we get that deg(B′, E′) ≤ m/nε·(i−1) and
hence, there are at most nε i-level blocks.

For r = 0, the claim holds vacuously. Assume that it holds up to round r and consider round
r + 1. Let u be a node in layer D′ − r + 1 and let v1, . . . , v` be its children that belongs to B′ in
layer D − r. First, consider all vj with at least two i-level blocks and such that their last block
has density less than bi. By induction, we know that each such low-density block has a block of
density at least bi before it. All vj with a single i-level block in T ′(vj) ∩B′ are merged until there
is at most one low-density block. We note that if in T ′(vj), there are at least two i-level blocks, it
implies that either the block right before the block of vj has density of at least b, or that vj ∈ B′
and deg(vj , E

′) ≥ b). Finally, if the i-level block of v` has low-density, u ∈ B′ and deg(u,E′) ≤ bi,
then the number of low-density blocks is not increased and hence the claim holds by induction
assumption.

We turn to bound the round complexity of the hierarchical partitioning.

Claim 15. The hierarchical block partitioning can be computed in O(D) rounds.

The algorithm for computing the hierarchical block partitioning has O(1/ε) steps, where in each
step i, we run Algorithm PartitionSingleBlock for each (i − 1)-level block Bi−1,j simultaneously.
It is easy to a single application of Algorithm PartitionSingleBlock for one block Bi−1,j in level
i − 1 takes O(D) rounds. The next lemma proves Claim 15 by showing that since Algorithm
PartitionSingleBlock only communicates on the tree edges TBi−1,j , we can run this algorithm for all
the blocks in level i − 1 simultaneously (at the cost of increasing the number of rounds by factor
2). The next lemma is quite general and will be useful later, since most of the computation that
we do for blocks B uses only the tree edges TB.

Claim 16. Consider the collection of blocks in the i level of the partitioning: B1, . . . , Bk and
A1, . . . ,Ak be a set of algorithms, each takes O(R) rounds, and sends messages only on the edges
of TBj respectively. Then, all algorithms A1, . . . ,Ak for each of the blocks can run simultaneously
in 2R rounds, in the CONGEST model.

Proof. By Claim 3, each edge e = (x, y) can appear in at most 2 different blocks Bi, Bj . Hence,
the congestion when working on all blocks simultaneously is increased by factor of at most 2 when
compared to working on a single block.

45



Tool (II): Edge Disjoint Matching inside a Block. Our next tool uses again Algorithm
TreeEdgeDisjointPath from [Pel00] (see Lemma 4.3.2 within). Recall that TBi =

⋃
u∈Bi π(`i, u) is

the subtree of T that connects all nodes of Bi where ` is the LCA of the nodes in Bi. In the Block
Matching Problem we are given a block Bi in the partitioning, a subset of marked nodes Mi ⊆ Bi
and a spanning tree T . The goal is to match nodes in Mi (but at most one) into pairs, such that
the (unique) tree path in TBi between each pair are all edge disjoint. The distributed output of the
problem is that each edge on the path Px,y between a matching pair 〈x, y〉 for x, y ∈Mi knows the
endpoints of the path, namely, x and y, and in addition, each node on the path knows the next
hops towards x and y respectively.

Algorithm DistBlockMatching works in O(D) rounds. In the first phase which works in D rounds
from the leafs up, it computes the matching and in the second phase (which takes O(D) rounds as
well), the edges of the paths between the matched nodes are getting marked. We start by explaining
the first phase. We keep the invariant that in round D− i, every node u at layer i in TBi , keeps at
most one ID of a node in Mi which is not yet matched. In every round i ≥ 0, each node v sends
the ID of at most one unmatched node in TBi(v) to its parent u. A node u in layer D − i + 1
that received more than one ID of marked nodes in Mi, arbitrary match all but at most one of the
received nodes into pairs. In D rounds, all (but at most one) nodes of Mi get matched.

In the second phase, for every matched pair 〈x, y〉, we mark the edges on its path Px,y. Let v be
the node that matched x and y in the first phase. We now let v send this matching outcome back
to its children from which it got these IDs (i.e., it sends the pair 〈x, y〉 to its children that send it
x or y). A node receiving this pair continues to send it to its children who sent it x or y. This
message backtracks until it gets to x and y. It is easy to see that all this informed edges (that got
an 〈x, y〉 message) are precisely the edges on the x − y path in T . Moreover, all these computed
paths are edge disjoint and the messages containing the matching result traverses only the edges
belonging to the path between the matched pair. If the number of nodes in Mi is not even, then
the last unmatched node is matched to an arbitrary (already matched) node. This increases the
congestion on the path edges by at most 1. By using Claim 16 we have:

Claim 17. (I) The Block Matching problem can be solved in O(D) rounds.
(II) The Block Matching problem can be solved for all blocks simultaneously in O(D) rounds.

Algorithm DistNonTreeCover. As in our centralized construction, we first consider the non-tree
edges E′ = E(G) \ E(T ) and construct a cycle cover C1 for these edges.

We begin with an high level description. The algorithm has ` = c · d1/εe phases. During each
phase, some virtual edges Ẽ are added to the set of edges E′ that we wish to cover. For clarity, in
our description we treat the virtual edges as standard edges in G. Informally speaking, whenever
the algorithm adds a virtual edge between two nodes u and v, it implies that the algorithm has
already computed an u-v path, and the virtual edge (u, v) indicates the need for computing another
u-v path so that we will endup with a cycle. In other words, adding a virtual edge means that we
deffer the closure of the cycle to the future iterations. These cycles get completed only at a point
where the congestion (or overlap) between cycles can be bounded.

In phase i, we are given the set of edges E′ in G and a subset Ẽi of virtual edges that should
be covered by cycles. The algorithm assumes at that phase that all the edges in E′ ∪ Ẽi between
nodes belonging to different j-level blocks for some j ≤ i − 1 are already taken care of (in a way
that becomes clear later). It then restricts attention to cover the edges (u, v) in E′ ∪ Ẽi between
nodes u and v that belong to the same block in all first (i − 1)-levels of the hierarchy, but belong

46



to different blocks in level i. To handle these edges we will have n2ε applications of Algorithm
DistBlockMatching for each pair of i level blocks Bx and By which belong to the same block in level
i− 1. The subset of marked nodes in each application of Algorithm DistBlockMatching depends on
the edges in E′∪ Ẽi that connects these pair of blocks. Based on the output matching of Algorithm
DistBlockMatching, the algorithm defines a new set of virtual edges which are internal to i-level
blocks. After ` = c · d1/εe phases, the remaining edges in E′ ∪ Ẽ` are between nodes that belong
to the same `-level block. As will be shown in the analysis section, at that point the total number
of edges E′ ∪ Ẽ` that have both endpoint in the same `-level block is O(1). Hence, the algorithm
covers these remaining edges by taking their fundamental cycles in T .

We explain the procedure in more details. The algorithm starts by computing ` = c ·d1/εe levels
of block hierarchies (with respect to the input E′ of non-tree edges). By letting all nodes exchange
their information on their ` blocks with their neighbors, all nodes know which of the E′-edges
should be considered in a given phase i. (The knowledge about the virtual edges is acquired at the
point of their creation). Initially, let Ẽ1 = ∅ be the (empty) set of virtual edges of phase 1.

We now focus on phase i ≥ 1 and on one particular (i− 1)-level block B that is partitioned (in
level i of the hierarchy) into k = dnεe blocks B = {B1, . . . , Bk}. We assume that we have in addition
to E′ a collection of virtual edges Ẽi and that each of the endpoints of a virtual edge in Ẽi knows
about its second endpoint. Let Ei = E′∪ Ẽi. The goal of each block Bx ∈ B at that phase is to take
care of all its edges in E′ ∪ Ẽi whose second endpoint is in By for every By ∈ B \Bx. To take care
of these k different types of edges, we run (in Bx) k applications of Algorithm DistBlockMatching
simultaneously.

Consider a pair of blocks Bx, By ∈ B, and let Ex,y be the edges in Ei with one endpoint in Bx
and one endpoint in By. We divide Ex,y into two subsets. Let Vx,y ⊆ Bx be the nodes in Bx that
have at least two incident edges in Ex,y and let E1

x,y be the subset of edges in Ex,y incident to the
nodes of Vx,y. The set of these E1

x,y edges are handled locally with a single round of communication.
We let each node u ∈ Vx,y, compute an arbitrary matching between its Ex,y-neighbors in By. We

then connect each of the matched pairs by a virtual edge to be added to Ẽi+1. To do that, we
simply let each u ∈ Vx,y send to each of its Ex,y-neighbors in By the ID of their matched node
(indicating to them their new virtual edge to this node).

From now on, we restrict attention to the set of E2
x,y = Ex,y \E1

x,y edges, in which each node in
Bx has exactly one incident edge in Ex,y. Here we cannot decide locally about which virtual edges
(between By nodes) should be added. To do this, we define a subset of marked nodes Mx,y ⊆ Bx
as the nodes in Bx that have exactly one incident edge in Ex,y.
Case (I): |Mx,y| = 1. The algorithm covers the single edge between Bx and By in Ex,y by taking
its fundamental cycle in T and add it to C1.
Case (II): |Mx,y| ≥ 2. First, if |Mx,y| is odd, the root of TBx picks one edge (u, v) in Ex,y
incident to node in Mx,y, add the fundamental cycle of that edge to the cycle cover C1 (i.e., by
marking the cycle edges) and omit u from Mx,y. From now on, assume that |Mx,y| is even. The
algorithm then applies Algorithm DistBlockMatching on Bx with the marked nodes Mx,y. This
algorithm matches the nodes of Mx,y into pairs and mark the edge disjoint paths between these
paired nodes on TBx . This pairing of nodes in Mx,y is now used to define the set of virtual edges
between nodes of By. In particular, let 〈a, b〉 be a matched pair in Mx,y and let (a, a′), (b, b′) ∈ Ex,y
where a′, b′ ∈ By. The algorithm will connect a′ and b′ in By by a virtual edge to be added to

Ẽi+1. Recall that Algorithm DistBlockMatching computes an edge disjoint path π(a, b, TBx). If
(a, a′), (b, b′) are true edges in G it is easy to see how to inform a′ about its virtual endpoint b′

47



and vice versa. In such a case, we also send the information of the edges (a, a′) and (b, b′) on the
path Wa′,b′ = (a′, a) ◦ π(a, b, TBx) ◦ π(b, b′). This way the edges on the path Pa′,b′ of every virtual
edge (a′, b′) added know the G-edges that this path (which will become later a cycle) covers. In
case where one of the edges (a, a′), (b, b′) is virtual, say the edge (a, a′), the algorithm sends this
information using the a-a′ walk Wa,a′ computed in previous phases. These walks are shown to have
length at most O(21/ε ·D) and overlap of O(nε) and hence this information passing on these walks
can be done efficiently of all virtual edges simultaneously using the random delay approach. These
details are further explained in Appendix B. For an illustration see Figure 18.

Overall, for eachBx ∈ B, we run simultaneously12 k applications of Algorithm DistBlockMatching
with different subsets of marked nodes Mx,y for every By ∈ B. At the end of all these applications,
there are new virtual edges connecting nodes that belong to the same block By. For each such
virtual edge, we have computed a path in G between its endpoints. This completes the description
of phase i ≤ `.

In the last phase `, we consider all edges e = (u, v) in E′ ∪ Ẽ` such that u and v belong to the
same `-level block. We connect these virtual edge endpoints by taking their paths in T . Since each
virtual edge (a, b) ∈ E′ ∪ Ẽ` already has a walk Wu,v which is shown to be of length O(21/εD), we
get a cycle Pu,v ◦ π(u, v, T ) which is added to the cycle collection. This cycle is not yet simple but
by letting all edges on the cycle learn all the edges of the cycle (using the random delay approach),
the cycle can be made simple locally (by internal computation at each node of the cycle) using the
centralized algorithm of Section 4.1. In Claim 22 we show that making the cycle simple does not
violate the covering property. Further implementation Details are provided in Appendix B. This
completes the description of the main algorithm for covering non-tree edges. Let C1 be the output
cycle collection.

𝑢
𝑣′

𝐵𝑥𝐵𝑦

Figure 17: Dealing with nodes with more than one endpoint in a different block. The node u locally
matched its neighbors in By which defines a new set of virtual edges to be covered.

7.1.2 Analysis of Algorithm DistNonTreeCover

Congestion and Dilation Analysis. We start by showing that each edge appears on O(1/ε ·n2ε)
cycles. Recall that bi(u) is the i-level block of u and that ` = c · d1/εe. For every i = {1, . . . , `} and
u ∈ V , let Ei(u) = {(u, v) ∈ Ei | bi−1(u) = bi−1(v)} be the set of all u edges in Ei that are internal

12When saying simultaneously we mean using the random delay approach.

48



𝑢 𝑣𝑢′ 𝑣′

𝑥 𝑦𝑥′ 𝑦′

Figure 18: Illustration of the hierarchical block partitioning and the addition of virtual edges. Top:
In phase 1, we have nε blocks. Zoom into two blocks B1 and B2. The pair 〈u, v〉 got matched in
B1 and hence the virtual edge is added in B2. Bottom: In phase 2, we consider only internal edges
in 2-level blocks. Zoom into B′1 and B′2 which were part of the same block in level 1. The matched
pair 〈x, y〉 has two virtual edges to x′ and y′ respectively and define a new virtual edge between x′

and y′. This define a path Px′,y′ obtained by concatenating the path Px,x′ , Py,y′ and π(x, y, TB′1)
computed in the tree of B′1.

to its (i − 1)-level block. Note that Algorithm DistNonTreeCover, in phase i, considers only edges
belonging to

⋃
u Ei(u).

Claim 18. The number of edges in E` that have both endpoints in a given `-level block B is O(1).

Proof. For every i = {1, . . . , `} and u ∈ V , let degi(u) = |Ei(u)|. We now claim that degi(u) ≥
degi+1(u) for every i = {1, . . . , `}. To see this, observe that each edge (u, v) ∈ Ei(u) \ Ei+1(u)
(i.e., in this case, bi−1(u) = bi−1(v) but bi(u) 6= bi(v)) leads to the introduction of at most one
virtual edge (u, v′) ∈ Ei+1(u) \ Ei(u) where bi(u) = bi(v

′). In addition, all the virtual edges added
to Ei+1(u) \ Ei(u) are due to edges in Ei(u) \ Ei+1(u). Combining these two observations, we get
that degi+1(u) ≤ degi(u).

We therefore have that for every u ∈ V , deg1(u) ≥ deg`(u). By definition

E1(u) = {(u, v) | (u, v) ∈ E′}

and hence deg1(u) = deg(u,E′). Let B′ be an (` − 1) level block such that B ⊆ B′. By the
construction of the (`− 1) level block B′, we get that

∑
u∈B′ deg`(u) ≤ b`−1 = O(1). In particular,

since B ⊆ B′, it also holds that
∑

u∈B deg`(u) = O(1), since deg`(u) is the number of u edges in E`
whose second endpoint is in the same (`− 1)-level block, it also holds that number of u edges that
have both endpoints in its `-level block is bounded by O(1).

Let C′i be the collection of fundamental cycles added at phase i. Recall that we cover an edge
e ∈ Ei by its fundamental cycle in T if the edge e is the only edge in that set the connects two
brother blocks Bx and By.

49



Claim 19. Every edge appears on at most O(n2ε) cycles in C′i.

Proof. Let B1, . . . , Bk be the collection of all (i − 1)-level blocks. We now consider a particular
block Bj which is partitioned into Bj,1, . . . , Bj,` blocks in level i where ` = O(nε). For such Bj we
add at most O(`2) fundamental cycles to C′i (one per pair of blocks in Bj,1, . . . , Bj,`). Note that
all these cycles are edges in TBj . By Claim 3, every edge e appears on at the trees of at most two
(i− 1)-blocks, hence overall each edge appears in O(n2ε) cycles.

We now turn to consider cycles that are computed using the addition of the virtual edges.

Claim 20. For each virtual edge (u, v) added in phase i, the algorithm computes a u-v walk Wu,v

of length at most 2i ·D. In addition, this walk “covers” O(2i) edges in E′.

Proof. Both claims are shown by induction on i. For i = 1, when adding a virtual edge (u, v), we
have two edges (u, u′) and (v, v′) in E′ such that u, v (resp., u′, v′) are in the same 1-level block.
Using Algorithm DistBlockMatching, we have marked the tree path between u′ and v′ and hence we
have a path Wu,v = (u, u′) ◦ π(u′, v′, T ) ◦ (v′, v). Clearly, |Wu,v| ≤ 2D+ 2. This path covers exactly
two edges (u, u′) and (v, v′) which proves the claims for the induction base.

Assume that the claims hold up to phase i−1 and consider phase i. Here, when adding a virtual
edge (u, v) in phase i, same story holds as in the induction phase only that the two edges (u, u′)
and (v, v′) might be virtual edges that were added in previous phases. The u-v walk is given by
Wu,v = Wu,u′ ◦ π(u′, v′, T ) ◦Wv′,v where Wu,u′ ,Wv′,v is either an edge in G or a walk computed in
previous phases. Using the induction assumption, we get that the length of the walk Wu,v at most
2 · 2i−1 · D + 2D ≤ 2i · D. In addition, if (u, u′) is a virtual edge, then by induction assumption,
Wu,u′ covers at most 2i−1 edges in E′ and same goes to Wv,v′ . If (u, u′) is an edge in E′ than it
covers only itself (same for (v, v′)). Overall the walk Wu,v covers 2i edges. The claim follows.

Let Wi = {Wu,v | (u, v) ∈ Ei+1 \ Ei} be the collection of all u-v walks between all virtual edges

(u, v) added in phase i. Let W =
⋃`
i=1Wi be the collection of all these walks.

Claim 21. For every i, each edge e ∈ G appears at most O(i · nε) in total on all walks of Wi (this
takes into account the multiple appearance of the edge on the same walk). Hence, overall, each edge
e appears O((1/ε)2 · nε) time on all walks of W.

Proof. Recall that we add a virtual edge (u, v) in phase i ≥ 1 for u, v ∈ By, in case where there
are edges (u, u′), (v, v′) in Ei such that u′, v′ are in Bx and Bx and By are brothers (i.e., belong to
the same block in level i− 1). Note that for i ≥ 2, the edges (u, u′), (v, v′) might be virtual. In any
case, we have have u-v walk Wu,v = Wu,u′ ◦ π(u′, v′, T ) ◦Wv′,v where in phase 1, Wu,u′ ,Wv,v′ are
simply the edges (u, u′) and (v, v′).

We prove the claim by induction on i. For the base of the induction, consider i = 1. In this
case, all walks Wu,v for the virtual edges added at phase 1 are in fact paths. Thus, we only need to
bound the number of an edge e on different such paths. Since we have nε applications of Algorithm
PartitionSingleBlock in each 1-level block, and using Claim 16, we get that each edge e appears on
O(nε) different paths in W1.

Assume that the claim holds up to phase i − 1 and consider phase i. Here, we can apply the
induction assumption for Wu,u′ and Wv′,v (it is sufficient to consider the case where (u, u′), (v, v′)
are virtual edges added in previous phases, as this is the interesting case). The walk Wu,v has two
types of segments: (I) walks connecting virtual edges that were added in phase j ≤ i− 1, namely,

50



Wu,u′ ,Wv,v′ and (II) tree segment π(u, v). By the same reasoning as in the base of the induction,
each edge e can appear on at most O(nε) tree paths π(u, v) for every virtual edge (u, v) added in
phase i. By the induction assumption, each edge e appears at most (i−1)nε times on the collection
of walks in Wj for j ≤ i− 1. Hence, overall an edge e appears i · nε many time on the walks of Wi.
The claim holds.

We therefore have:

Corollary 5. Every edge appears on O(n2ε) cycles in the final cycle collection. Each cycle has
length O(21/ε ·D) and covers O(21/ε) many non-tree edges.

Covering Analysis of Algorithm DistNonTreeCover. Note that the cycles computed are not
necessarily simple. We next claim that they can be made simple without loosing the covering
property. Recall that in each phase i, for every virtual edge (u, v) added in phase i we compute a
walk Wu,v in G.

Claim 22. For every virtual edge (u, v), any edge that appears more than once on the walk Wu,v

is a T -edge.

Proof. The proof is shown by induction on the phase number i. For i = 1, there exists two edges
(u, u′) and (v, v′) in E′ such that u, v (resp., u′, v′) are in the same 1-level block and u′, v′ have been
paired in their block by Algorithm DistBlockMatching. In this case, Wu,v = (u, u′) ◦ π(u′, v′, T ) ◦
(v′, v) which is in fact a path!.

Assume that the claim holds up to phase i− 1 and consider phase i. For any virtual edge (u, v)
added in phase i, there exists two edges (u, u′) and (v, v′) in Ei such that u, v (resp., u′, v′) are in
the same i-level block and u′, v′ have been paired in their block by Algorithm DistBlockMatching.
The only difference to the induction base is that now the edges (u, u′) and (v, v′) might be virtual
edges added in some phase j ≤ i − 1. In either case Wu,u′ is either an edge (u, u′) are of walk
for which the induction assumption can be applied. The walk Wu,v = Wu,u′ ◦ π(u′, v′, T ) ◦Wv′,v

adds a tree segment π(u′, v′, T ) to the existing walks Wu,u′ ,Wv′,v. Hence, it can only increase the
appearance of the tree edges. Combining with the induction assumption, the claim holds.

Claim 23. Every edge e′ ∈ E′ is covered by the cycles of Algorithm DistNonTreeCover.

Proof. By Claim 22, it remains to show that for every edge e′ ∈ E′, there is a walk Wu,v such that e′

appears on it. Let e′ = (x, y) and define i to be the first index such that x and y belong to different
i-level block. The edge e′ is then considered in phase i of the algorithm. If the algorithm did not
cover e′ by taking its fundamental cycle, it implies that i is not the last phase and necessarily some
virtual edge was added due to e′ = (w, z). By construction, e′ connects two nodes in the same
i-level block and hence will be handled in phase j ≥ i + 1 and in addition, (x, y) appears on the
walk Ww,z.

We can continue with the argument with the virtual edge (w, z) which is handled only at later
phase j, claiming that the edge (x, y) appears when another virtual edge (w′, z′) is added when
considering (w, z) and hence (x, y) appears on the walk Ww′,z′ . This continues until we get to a
point where the fundamental cycle of some virtual edge (a, b) such that (x, y) ∈Wa,b is added and
at that point, Claim 22 guarantees that when making the cycle Wa,b ◦ π(a, b, T ) simple the edge
(x, y) is covered. Recall that indeed in the last phase ` we handle all remaining edges (also the
virtual onces) by taking their fundamental cycles. The claim follows.

51



Round Complexity of Algorithm DistNonTreeCover.

Claim 24. Algorithm DistTreeCover has round complexity Õ(1/ε · (21/εD + n2ε))

Proof. By Claim 15, the hierarchical block partitioning can be computed in O(d) rounds. The
algorithm has O(1/ε) phases. We show that each phase can be implemented can in O(21/εD + nε)
rounds. We have O(nε) applications of Algorithm DistBlockMatching in each block Bx. Using the
random delay approach and Claim 17 all the O(nε) applications in a given block Bx can be done
in Õ(nε + D) rounds. Using Claim 16, this can be done for all blocks in Õ(nε + D) rounds as
well. We next bound the number of rounds required to form the virtual edges (a′, b′) and exchange
information about the G edges that are covered by the Wa′,b′ path. By Claims 20 and 21, using

the random delay approach it can be done in Õ(n2ε + 21/εD) rounds. Finally, once the cycles are
computed, using the random delay approach again, all edges can learn all the cycles that go through
it in Õ(n2ε + 21/εD) round and locally make them simple.

7.1.3 Distributed Algorithm for Covering Tree Edges

We turn to consider the remaining tree edges E(T ). Algorithm DistTreeCover essentially mimics
the centralized construction of Section 4.1. Recall that p(v) is the parent of v in the BFS tree T . A
non-tree edge e′ = (u′, v′) is a swap edge for the tree edge e = (p(v), v) if e ∈ π(u′, v′), let s(v) = v′

by the endpoint of e′ that is not in T (v). By using the algorithm of Section 4.1 in [GP16], we can
make every node v know s(v) in O(D) rounds.

A key part in the algorithm of Section 4.1 is the definition of the path Pe = π(v, u′) ◦ (u′, s(v))
for every tree edge e = (p(v), v). By computing swap edges using Section 4.1 in [GP16] all the
edges of each Pe get marked.

Computing the set I(T ) ⊆ E(T ). We next describe how to compute a maximal collection of tree
edges I = {ei} whose paths Pei are edge disjoint and in addition for each edge ej ∈ E(T ) \ I there
exists an edge ei ∈ T ′ such that ej ∈ Pei . To achieve this, we start working on the root towards the
leaf. In every round i ∈ {1, . . . , D}, we consider only active edges in layer i in T . Initially, all edges
are active. An edge becomes inactive in a given round if it receives an inactivation message in any
previous round. Each active edge in layer i, say ej , initiates an inactivation message on its path
Pej . An inactivation message of an edge ej propagates on the path Pej round by round, making all
the corresponding edges on it to become inactive.

Note that the paths Pej and Pej′ for two edges ej and ej′ in the same layer of the BFS tree,
are edge disjoint and hence inactivation messages from different edges on the same layer do not
interfere each other. We get that an edge in layer i active in round i only if it did not receive any
prior inactivation message from any of its BFS ancestors. In addition, any edge that receives an
inactivation message necessarily appears on a path of an active edge. It is easy to see that within
D rounds, all active edges I on T satisfy the desired properties (i.e., their Pei paths cover the
remaining T edges and these paths are edge disjoint).

Distributed Implementation of Algorithm TreeCover. First, we mark all the edges on the
Pe paths for every e ∈ I(T ). As every node v with e = (p(v), v) know its swap edge, it can send
information along Pe and mark the edges on the path. Since each edge appears on the most two
Pe paths, this can be done simultaneously for all e ∈ I(T ).

From this point on we follow the steps of Algorithm TreeCover. The partitioning of Appendix A
can be done in O(D) rounds as it only required nodes to count the number of nodes in their subtree.

52



We define the ID of each tree T ′1, T
′
2 to be the maximum edge ID in the tree (as the trees are edge

disjoint, this is indeed an identifier for the tree). By passing information on the Pe paths, each
node v can learn the tree ID of its swap endpoint s(v). This allows to partition the edges of T ′

into E′x,y for x, y ∈ {1, 2}. Consider now the ith phase in the computation of cycle cover C1,2 for
the edges E′1,2.

Applying Algorithm TreeEdgeDisjointPath can be done in O(D) round. At the end, each node
vj knows its matched pair v′j and the edges on the tree path π(vj , v

′
j , T

′
1) are marked. Let Σ be the

matched pairs. We now the virtual conflict graph GΣ. Each pair 〈vj , v′j〉 ∈ Σ is simulated by the
node of higher ID, say, vj . We say that vj is the leader of the pair 〈vj , v′j〉 ∈ Σ. Next, each node
v that got matched with v′ activates the edges on its path Pe ∩ E(T ′1) for e = (p(v), v). Since the
π edges of the matched pairs are marked as well, every edge e′ ∈ π(vk, v

′
k, T

′
1) that belongs to an

active path Pe sends the ID of the edge e to the leader of the pair 〈vk, v′k〉. By Claim 6, every pair
σ′ interferes with at most one other pair and hence there is no congestion and a single message
is sent along the edge-disjoint paths π(vj , v

′
j , T

′
1) for every 〈vj , v′j〉 ∈ Σ. Overall, we get the the

construction of the virtual graph can be done in O(D) rounds.
We next claim that all leaders of two neighboring pairs σ, σ′ ∈ GΣ can exchange O(log n) bits of

information using O(D) rounds. Hence, any r-round algorithm for the graph GΣ can be simulated
in T ′1 in O(r · D) rounds. To see this, consider two neighbors σ = 〈x, y〉, σ′ = 〈x′, y′〉 where σ′

interferes σ. Without loss of generality, assume that the leader x′ of σ′ wants to send a message to
the leader x of σ. First, x′ sends the message on the path π(x′, y′, T ′1). The edge e′ ∈ π(x′, y′, T ′1)∩Pe
for e = (p(x), x) that receives this message sends it to the leader x along the path Pe. Since we only
send messages along edge disjoint paths, there is no congestion and can be done in O(D) rounds.

Since the graph GΣ has arboricity O(1), it can be colored with O(1) colors and O(log n) rounds
using the algorithm of [BE10]. By the above, simulating this algorithm in G takes O(D log n)
rounds. We then consider each color class at a time where at step j we consider Σi,j . For every
σ = 〈x, y〉, x sends the ID of s(y) to s(x) along the Pe path for e = (p(x), x). In the same manner,
y sends the ID of s(x) to s(y). This allows each node in T ′2 know its virtual edge. At that point
we run Algorithm DistNonTreeCover to cover the virtual edges. Each virtual edge is later replaced
with a true path in G in a straightforward manner.

Analysis of Algorithm DistTreeCover.

Claim 25. Algorithm DistTreeCover computes a (21/εD,nε log2 n) cycle cover C2 for the tree edges
E(T ) and has round complexity of O(21/εD · nε · log2 n).

Proof. The correctness follows the same line of arguments as in the centralized construction (see the
Analysis of Section 4.1.2), only the here we use Algorithm DistNonTreeCover. Each cycle computed
by Algorithm DistNonTreeCover has length O(21/εD) and the cycle covers O(21/ε) non-tree edges.
In our case, each non-tree edge is virtual and replaced by a path of length O(D) hence the final
cycle has still length O(21/εD). With respect to congestion, we have O(log n) levels of recursion
and in each level when working on the subtree T ′ we have O(log n) applications of Algorithm
DistNonTreeCover which computes cycles with congestion O(nε). The total congestion is then
bounded by O(nε · log2 n).

We proceed with round complexity. The algorithm has O(log n) levels of recursion. In each
level we work on edge disjoint trees simultaneously. Consider a tree T ′. The partitioning into T ′1, T

′
2

takes O(D) rounds. We now have O(log n) phases. We show that each phase takes O(21/εD · nε)
rounds, which is the round complexity of Algorithm DistNonTreeCover. In particular, In phase i

53



we have the following procedures. Applying Algorithm TreeEdgeDisjointPath in T ′1, T
′
2 takes O(D)

rounds. The computation of the conflict graph GΣ takes O(D) rounds as well and coloring it using
the coloring algorithm for low-arboricity graphs of [BE10] takes O(D log n) rounds. Then we apply
Algorithm DistNonTreeCover which takes Õ(21/ε ·D+n2ε) rounds. Translating the cycles into cycles
in G takes Õ(21/ε ·D + n2ε) rounds. Overall, we have Õ(21/ε ·D + n2ε) rounds.

Theorem 3 follows by combining Lemma 8 and Claims 24 and 25.

7.2 Additional Low Congestion Covers

Private Neighborhood Cover. We now show how to use the distributed construction of cycle
covers to construct private neighborhood covers. The distribute output format of private neigh-
borhood cover N is that each node u knows its parent in the spanning tree T (v) ∈ N for every
v ∈ V .

Lemma 9. There exists an Õ(41/ε ·∆ ·D+nε ·D)-round algorithm that computes an (41/ε ·D ·∆ ·
log ∆, nε ·D · log2 n · log ∆) private neighborhood cover.

Proof. We start by running Algorithm DistCycleCover which computes a (d, c) cycle cover C for
d = O(41/ε ·D) and c = O(nε · log2 n). By using Õ(d + c) rounds, we can make each edge (u, v)
know the edges of all the cycles it belongs to in C. We mimic the centralized reduction to cycle
cover. In this reduction, we have O(log ∆) applications of Algorithm DistCycleCover on some virtual
graph. Since a node v knows the cycles of its edges, it knows which virtual edges it should add in
phase i. Simulating the virtual graph can be done with no extra congestion in G. In each phase
i, we compute (d, c) cycle cover Ci in G obtained by computing the cycle cover in a virtual graph.
By the same argument as in Claim 11, translating these cycles to cycles in G does not increase
the congestion. Using Õ(d + c) rounds, each edge e can learn all the edges on the cycles that pass
through it appears in Ci. At the last phase ` = O(log ∆), the graph G`(uj) consists of O(log ∆ ·∆)
cycles. In particular,

G`(uj) =
⋃̀
i=1

{C ∈ Ci | (uj , v) ∈ C, v ∈ Γ(uj , v)}.

By the same argument of Claim 11, each edge e appears on O(log ∆ · log2 n · nε · D) different
subgraphs G`(uj) for uj ∈ V . The diameter of each subgraph can G`(uj) can be clearly bounded
by the number of nodes it contained which is O(41/ε · log ∆ · ∆ · D). Since each edge e knows
all cycles it appears on13, it also knows all the graphs G`(uj) to which it belongs. Computing a

spanning tree in G`(ui)\{ui} can be done in Õ(41/ε∆·D) rounds. Using the standard random delay
approach, and using the fact that each edge appears on O(log ∆ · log2 n · nε ·D), all the spanning
trees in G`(uj) \ {uj} can be construct simultaneously in Õ(41/ε ·∆ ·D + nε ·D) rounds.

P2 Cycle Cover Recall that in P2 cycle cover C, for every two-edge path P = [x − y − z], there
is a cycle C ∈ C that contains P . We now show how to construct low-congestion P2 cycle cover
using private neighborhood cover. The distributed output of P2 cycle cover is that each edge e ∈ C
knows that identifier of all the two-edge paths that are covered by the cycles that pass through e.

13We say that an edge (u, v) knows a piece of information, if at least one of the edge endpoints know that.

54



The cycles that cover of all paths P = [x − y − z] for every x, z ∈ Γ(y,G) are all contained
in the tree T (y) ∈ N where N is the private neighborhood cover. As shown in Lemma 9, every
edge e ∈ Γ(y,G) knows all the graphs y to which it belongs. We first explain how to mark the
collection of ∆ paths between each x and z for every x, z ∈ Γ(y,G). Since the tree T (y) contains
Õ(41/ε ·D ·∆) nodes, by standard pipeline procedure, all nodes in T (y) can learn all the edges of
the tree in O(|T (y)|) rounds. This allows every edge e that belongs to an x− z path in T (y) mark
itself on the cycle that covers [x− y − z].

Since each edge e appears on Õ(D · nε) different trees T (uj) for uj ∈ V , we can work on
all trees simultaneously using the random delay approach. Overall the P2 cover is computed in
Õ(41/ε ·D ·∆ +D · nε) rounds. We have:

Lemma 10. An (41/ε ·D ·∆ · log ∆, D ·∆2 · nε · log2 n · log ∆) P2 cycle cover C can be computed in
Õ(41/ε ·D ·∆ +D · nε) rounds.

By combining our general compiler Theorem 6 with our distributed low-congestion covers of
Lemmas 9 and 10, we get:

Corollary 6 (Distributed PSM with no pre-processing). Let G be a 2-vertex connected n-vertex
graph with diameter D and maximal degree ∆. Let A be a natural distributed algorithm that runs
on G in r rounds. Then, A can be transformed to an equivalent algorithm A′ with perfect privacy
which runs in Õ(r · 2

√
logn ·D · poly(∆))

7.3 Pre-processing for Improved Cover Structures

We next show how the nearly optimal covers of Theorems 1, 4 and 5 can be constructed using
Õ(n+D ·∆) rounds in the distributed setting. This pre-processing step should be done only once
and any general compiler that will run in the network in the future will be able to use it (i.e., these
structures should be computed once for a given network).

Lemma 11. For every 2-edge connected n-vertex graph a (D log n, log3 n) cycle cover can be com-
puted distributively in Õ(n) rounds of pre-processing.

Proof. Compute a BFS tree T and consider the set of non-tree edges E′. Let E0 = E′. So long
that number of edges Ei to be covered in E′ is at least O(logcn · n), we do as follows in phase i.

Let ∆i = |Ei|/n. We partition the edges of Ei into `i = ∆i/(c · log n) edge-disjoint subgraphs
by letting each edge in Ei pick a number in [1, `i] uniformly at random. We have that w.h.p. each
subgraph Ei,j contains Θ(n log n) edges of Ei.

At the point, we work on each subgraph Ei,j independently. We compute a BFS tree Ti,j in
each Ei,j (using only communication on Ei,j edges). We then collect all edges of Ei,j to the root
by pipelining these edges on Ti,j . At that point, each root of Ti,j can partition all but 2n edges
of Ei,j into edge disjoint cycles of length O(log n). The root also pass these cycle information
to the relevant edges using the communication on Ti,j . Note that since the Ei,j subgraphs are
disjoint, this can be done simultaneously for all subgraphs Ei,j . At the end of that phase, we are
left with 2n · `i = O(|Ei|/ log n) uncovered edges Ei+1 to be handled in the next phase. Overall,
after O(log n/ log logn) phases, we are left with O(n log n) uncovered edges. At the point, we can
pipeline these edges to the root of the BFS tree, along with the n − 1 edges of the BFS tree and
let the root compute it locally as explained in Section 4.1. The lemma follows.

55



Combining that with Lemmas 9 and 10, we have:

Corollary 7. For every 2-vertex connected n-vertex graph G = (V,E) with diameter D and max-
imum degree ∆: (I) an O(D · ∆ · log n,D · log3 n · log ∆) private neighborhood cover N can be
constructed using Õ(n+D ·∆) rounds.
(II) an O(D ·∆·log n·log ∆, D ·∆2 ·log3 n·log ∆) P2 cycle cover C can be constructed in Õ(n+D ·∆)
rounds.

Distributed Construction of Instance-Optimal Covers. As discussed in Section 5, it is de-
sirable to obtain cover constructions with bounds that are competitive with the best possible covers
for the given graph. Recall that Section 5 (specifically, Lemma 4) provides a recipe for transforming
an algorithm for (f(D), c) cycle cover, to an algorithm that constructs (f(Õ(OPTG)), Õ(c)) cycle
cover where OPTG is the best dilation possible. Also, recall that OPTG = αG where αG is the
maximum over all edges e ∈ G of the shortest cycle containing an edge e in G.

To apply this transformation in the distributed setting, we first observe that Alg. DistCycleCover
is nice, that is, it covers every edge e ∈ G for which there exists some cycle containing it in G
(does not require G to be bridgeless). Now, by using the network decomposition construction of
Appendix C, and applying Alg. DistCycleCover in each cluster of the decomposition, we get an
(Õ(41/ε · OPTG), Õ(nε)) cycle cover. Since each vertex belongs to Õ(1) clusters, this increases the
round complexity of Algorithm DistCycleCover by a logarithmic factor. The distributed construction
of private neighborhood cover and P2 cover can be obtained by replacing Algorithm DistCycleCover
with the approximation distributed algorithm for cycle cover, describe above.

8 Discussion and Future Work

In this paper we introduce a new framework for secure distributed graph algorithms. We present
the construction of a general compiler that can turn any natural non-secure distributed algorithm to
a secure one, while increasing the round complexity by factor Õ(D ·∆). There are many remaining
interesting research directions.

First, we note that our protocols are secure against an adversary that controls a single node in
the graph. To see this, imagine our secret sharing approach in which a node w ∈ Γ2(v,G) sends
a secret to v along two vertex disjoint paths P, P ′ (which are given by the P2 cycle cover). If the
adversary takes over two nodes, one on each path P, P ′, the communication between w and v is no
longer secure. This example also suggests that to provide resilience against coalition of k nodes,
the graph is required to be (k + 1) vertex connected and in addition, the low-congestion covers
should be adopted accordingly. For instance, such k-resilience calls for private neighborhood covers
in which every neighborhood is k-connected, and P2 cycle covers in which each P2 is covered by k
(almost vertex disjoint) cycles, etc.

An additional research direction involves the distribution computation of (Õ(D), Õ(1)) cycle
covers in sublinear number of rounds. Our current efficient distributed algorithm obtains (Õ(41/ε ·
D), Õ(nε)) cycle covers in O(41/ε · D + nε) rounds. We note that computing (Õ(D), Õ(1)) cycle
covers boils into the following problem:

Given a graph G = (V,E) compute (in the CONGEST model) a maximal collection of
edge disjoint O(log n)-length cycles.

56



Note that in the LOCAL model, this problem is easy, and the main challenges comes from the
bandwidth limitations of the CONGEST model.

Acknowledgments

We thank Benny Applebaum, Uri Feige, Moni Naor and David Peleg for fruitful discussions con-
cerning the nature of distributed algorithms, cycle covers and secure protocols.

References

[ABCP96] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Fast distributed
network decompositions and covers. Journal of Parallel and Distributed Computing,
39(2):105–114, 1996.

[ABCP98] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time
construction of sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–
277, 1998.

[ALGP] Baruch Awerbuch, Michael Luby, Andrew V Goldberg, and Serge A Plotkin. Network
decomposition and locality in distributed computation. In Foundations of Computer
Science, 1989., 30th Annual Symposium on, pages 364–369. IEEE.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis algorithm for
sparse graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–
379, 2010.

[BE13] Leonid Barenboim and Michael Elkin. Distributed graph coloring: Fundamentals and
recent developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171,
2013.

[BEK14] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (δ+1)-coloring in
linear (in δ) time. SIAM Journal on Computing, 43(1):72–95, 2014.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. Journal of the ACM (JACM), 63(3):20, 2016.

[BFH+16] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,
Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovász
local lemma. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 479–488. ACM, 2016.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part II, pages 387–404, 2014.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure
multi-party computation - how to run sublinear algorithms in a distributed setting. In

57



Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, pages 356–376, 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BIPW] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? IACR Cryptology ePrint Archive, 2017:567.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure
multiparty computation for the internet. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 578–590, 2016.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, pages 257–266, 2008.

[Bol04] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

[CCG+] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail
Ostrovsky, and Vassilis Zikas. Optimally resilient and adaptively secure multi-party
computation with low communication locality. IACR Cryptology ePrint Archive,
2014:615.

[CHL+17] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity
of distributed edge coloring with small palettes. arXiv preprint arXiv:1708.04290, 2017.

[CP17] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. FOCS,
2017.

[CPS17] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász
local lemma and graph coloring. Distributed Computing, 30(4):261–280, 2017.

[EJ73] Jack Edmonds and Ellis L Johnson. Matching, euler tours and the chinese postman.
Mathematical programming, 5(1):88–124, 1973.

[EN17] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse span-
ners and emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 652–669. Society for Industrial and Applied Math-
ematics, 2017.

[Fan97] Genghua Fan. Minimum cycle covers of graphs. Journal of Graph Theory, 25(3):229–
242, 1997.

58



[FG17] Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for
lov\’asz local lemma, and the complexity hierarchy. DISC, 2017.

[FHK16] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on,
pages 625–634. IEEE, 2016.

[FJS14] Joan Feigenbaum, Aaron D. Jaggard, and Michael Schapira. Approximate privacy:
Foundations and quantification. ACM Trans. Algorithms, 10(3):11:1–11:38, 2014.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In STOC, 1994.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Advances in Cryptology - EUROCRYPT, pages 578–602, 2014.

[Gha15] Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing, PODC, pages 3–12,
2015.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 270–277. Society for Industrial and Applied Mathematics, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229, 1987.

[GP16] Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-
tolerant tree structures. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 387–396. ACM, 2016.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure
multiparty computation with general interaction patterns. In ITCS, pages 157–168,
2016.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Com-
puting without simultaneous interaction. In Advances in Cryptology - CRYPTO 2011
- 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, pages 132–150, 2011.

[HSS16] David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (+ 1)-coloring in
sublogarithmic rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, pages 465–478. ACM, 2016.

[II86] Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters, 22(2):77–80, 1986.

59



[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with appli-
cations. In Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997,
Ramat-Gan, Israel, June 17-19, 1997, Proceedings, pages 174–184, 1997.

[JT92] Ury Jamshy and Michael Tarsi. Short cycle covers and the cycle double cover conjecture.
Journal of Combinatorial Theory, Series B, 56(2):197–204, 1992.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure pro-
tocols and security under composition. SIAM J. Comput., 39(5):2090–2112, 2010.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA,
30 October - 1 November 1989, pages 416–421. IEEE Computer Society, 1989.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LMR94] Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and
job-shop scheduling ino (congestion+ dilation) steps. Combinatorica, 14(2):167–186,
1994.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM journal on computing, 15(4):1036–1053, 1986.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.

[Suo13] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24,
2013.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164, 1982.

A Balanced Partitioning of a Tree

We show that every rooted tree T can be partitioned into two edge-disjoint rooted trees T1 and T2

such that (I) E(T1) ∪ E(T2) = E(T ) and (II) V (T1), V (T2) ≤ 2/3 ·N where N = |T |. In addition,
this partitioning maintains the layering structure of T as will be described later. To compute this
partitioning, define the weight w(v) of each vertex v in T to be the number of vertices in its subtree
T (v). First, consider the case, where there is a vertex v∗ with weight w(v∗) ∈ [1/3N, 2/3N ]. In
such a case, define T1 = Tv∗ and T2 = T \ E(T (v∗)). By definition, both T1 and T2 are trees, all
edges of T are covered and |T1|, |T2| ∈ [1/3N, 2/3N ].

Else, if no such balanced vertex exists, there must be a vertex v∗ such that w(v∗) ≥ 2/3N
but for each of its children in T , ui, it holds that w(ui) ≤ 1/3N . In such a case, we consider
the children of v∗ from left to right u1, . . . , uk and sum up their weights until we get to a value
in the range [1/3N, 2/3N ]. Formally, let ` ∈ {1, . . . , k} be the minimal index satisfying that

60



∑`
i=1w(ui) ∈ [1/3N, 2/3N ]. Since each w(ui) ≤ 1/3N , such an index ` exists. We then set T1 =⋃`
i=1 (T (ui) ∪ {(ui, v∗)}) and T2 = T \

⋃`
i=1 V (T (ui)). By construction, all edges of T are covered

by T1 and T2. In addition, by definition, |T1| ∈ [1/3N, 2/3N ] and hence also T2 ∈ [1/3N, 2/3N ].
Finally, we pick the roots r1, r2 of T1, T2 (respectively) to be the vertices the are close-most to

the root r in T . We then get for u, v ∈ T1, that if u is closer to the root than v in T , then also u is
closer to the root r1 than v in T1.

B Missing Details for Algorithm DistCycleCover

Postorder Numbering on a Tree. Given a BFS tree T , We now show a procedure which assigns
the vertices numbers N : V → [1, n] according to a postorder traversal on T in O(D) rounds. Each
node u first computes the number of vertices in T (u). This can be done in O(D) rounds by working
from the leafs up. At the end, each node also knows the number of nodes in the subtree of each
of its children. For a range of integers R = [i, j], let max(R) = j and min(R) = i. By working
from root to leaf nodes, each vertex u computes a range R(u), indicating the bucket of post-order
numbers given to its vertices in T (u). Let R(s) = [1, n]. Given that a vertex v has received its
range R(v), it sends to its children their ranges in the following manner. Let u1, . . . , u` be the
children of v ordered from left to right. Then R(u1) = [min(R(v)),min(R(v)) + |T (u1)|− 1] and for
every i ≥ 1, R(ui) = [max(R(ui−1)) + 1,max(R(ui−1)) + |T (ui)|]. This proceeds for O(D) rounds,
at the end every u knows R(u). Now, each node u, sets its own number N(u) = max(R(ui)). Since
by this numbering, each vertex has the maximum number in its subtree, it is indeed a postorder
numbering.

Sending Information on Virtual Edges. For every virtual edge (a, a′) added in phase i ≥ 1, we
show in the analysis section, that there is a precomputed a-a′ walk Wa,a′ in G of length O(2i ·D).
We assume that in phase i, all the edges on the walk of virtual edge added in phase j ≤ i− 1, are
already marked and that each such edge on the walk knows the endpoint of the virtual edges and
the edges in G that this walk should cover. The analysis shows that in the virtual edges added in
phase i− 1 are important of O(2i−1) edges in G.

Assume that it is given for all virtual edges added in phase j ≤ i − 1, we now show how the
algorithm provides these properties for the virtual edges added in phase i. Assume that both edges
(a, a′) and (b, b′) incident to the matched pair 〈a, b〉 are virtual. Then, we send the information on
the walks π(a, b, TBx), Wa,a′ and Wb,b′ . This allows the endpoints of virtual edge a′, b′to learn about
each other. In addition, by passing the identifiers of the 2i−1 edges that are supposed to be covered
by the walks Wa,a′ and Wb,b′ , all the nodes on the new walk Wa′,b′ = Wa′,a ◦ π(a, b, TBx) ◦Wb,b′ can
get this information. This is done on for all the virtual edges added in phase i simultaneously using
the random delay approach. In the analysis section we show that the length of the walks Wa,a′ is
bounded by O(21/εD) and each edge appears on O(n2ε) many paths. Thus using the random delay
approach, this can be done in O(21/ε ·D + n2ε) rounds.

Marking Edges on Cycles and Making Them Simple. We first make every edge e (i.e., the
endpoints of the edge) know the set of edges that are covered by the cycles that go through e.
To do that, the endpoints of the virtual edges keep information of the covered edge endpoints. In
phase 1, this is easily obtained since the endpoint of the virtual edges are also the vertices whose
two edges should be covered by the cycle. Assuming that this information is kept up to phase i−1,
in phase i, when adding the virtual edge u − v, the combined information traverses through the

61



edge disjoint path π(u, v) computed on the tree of the block.
We next make every edge e know all the edges of the cycles that go through e. Since each

edge appears on nε cycles and the length of the cycles is O(21/ε ·D), using standard random delay
techniques, it can be done in Õ(n2ε + 21/ε ·D) rounds. Once each edge e sees the entire cycle, it
can locally correct it to be simple as described in Section 4.1.

C Distributed Construction of Neighborhood Cover in the Con-
gest Model

In this section we describe how to construct neighborhood cover in the CONGEST model. As far
as we know, the previous explicit constructions for neighborhood cover (such as [ABCP96]) are in
the LOCAL model and use large messages. For the definition of (k, t, q) neighborhood cover, see
Definition 8. For ease of presentation, we construct slightly weaker covers where the diameter of
each cluster is O(k · t · log n) rather than O(k · t) as in Definition 8. This construction is implicit in
the recent spanner construction of [EN17]. We show:

Lemma 12. For every integer t, and every n-vertex graph G = (V,E), one can construct in in
O(k · t · log n) rounds, an (k, t, q) neighborhood cover with k = 2 log n, q = O(log n) and the strong
diameter of each cluster is O(t · k · log n), w.h.p.

We first describe how using the spanner construction of [EN17], we get a neighborhood cover
that succeeds with constant probability. That is, we show that using the algorithm of [EN17]
for constructing a (k · t)-spanner, one can get in O(kt log n) rounds, a collection of subsets S =
{S1, . . . , Sn} such that (I) the diameter of each G[Si] is O(k · t · log n), (II) w.h.p., each vertex
belongs to O(k · n1/k) sets and (III) for each vertex v, there is a constant probability that there
exists Si that contains its entire t-neighborhood. Repeating these procedure for O(log n) many
times yields the final cover.

We now describe the phase i = {1, . . . ,Θ(log n)} where we construct a collection of n sets
Si,u1 , . . . , Si,un that satisfy (I-III). Each vertex u ∈ V samples a radius ru from the exponential
distribution14 with parameter β = ln(c·n)/(3k ·t). Each vertex w that received a message originated
at u, stores mu(w) = ru − dist(w, u,G), and also a neighbor pu(w) that lies on the shortest path
from w to u. Let m(w) = maxu∈V mu(w). For every vertex u, let Si,u = {w | mu(w) ≥ m(w)−1}.
The final neighborhood cover is given by S =

⋃
i

⋃
u Si,u.

We now show that the output collection of sets are indeed neighborhood cover. We fix one
phase i, and claim the following about the output sets Si,u1 , . . . , Si,un .

Lemma 13. (I) Each Si,u is connected with diameter O(k · t log n) with high probability.

(II) For every i, every vertex w appears in O(log n · (cn)1/(kt)) sets Si,u with high probability.

(III) For every vertex w, there exists Si,u such that Γt(w) ⊆ Si,u, with constant probability.

Proof. For each of notation, let Si,u = Su. For every u and w, let pu(w) be the neighbor of w that
lies on the shortest path from w to u, from which w received the message about u (breaking ties
based on IDs).

14Recall the exponential distribution with parameter β where f(x) = β · e−β·x for x ≥ 0 and 0 otherwise.

62



To show that each set Su is connected, it is sufficient to show that if w ∈ Su then also pu(w) ∈ Su.
The proof is as Claim 5 in [EN17]. In particular, since w and w′ = pu(w) are neighbors, it holds
that m(w) ≥ m(w′) − 1 and hence w′ ∈ Su. In addition, by Claim 3 in [EN17] (and plugging our
value of β) it holds that w.h.p. for every u, ru ≤ O(k · t log n).

We proceed with Claim (II). For each w and u, let Xw,u ∈ {0, 1} be the random variable
indicating that w ∈ Su. Let Qw =

∑
uXw,u be the random variable of the number of sets to

which u belongs. Let Zw be the random variable of the value m(w). By Lemma 2 of [EN17],
E(Qu) ≤ (cn)1/(3kt). By the proof of Lemma 2, it also holds that E(Qu | Zw = z) ≤ (cn)1/(3kt)

for every value z (that is, the bound holds even when conditioning it on particular value of Zw).
We now claim that for every z, P(Qu ≥ c′ · log n · (cn)1/(3kt) | Zw = z) ≤ 1/nc

′
. We first claim

that when conditioning on a specific value of Zw, the variables Xw,u and Xw,u′ are independent
for u 6= u′. Let Zw = z, then Xw,y = 1 if ry ≥ dist(y, w,G) + z − 1 for y ∈ {u, u′}. In particular,
P(Xw,y = 1 | Zw = z) = P(ry ≥ dist(y, w,G) + z − 1). Since the random choices of ry are
independent, it holds that P(Xw,u = 1 and Xw,u′ = 1 | Zw = z) = P(Xw,u = 1 | Zw =
z) · P(Xw,u′ = 1 | Zw = z).

Using Hoeffding Inequality of Lemma 14, we get that P(Qu ≥ c′ · log n · (cn)1/(3kt) | Zw = z) ≤
1/nc

′
. Since it holds for every z, the claim follows.

Finally, we consider claim (III). We consider the more strict event, Yw, in which the entire
t-neighborhood of w belongs to Su∗ where u∗ is the vertex that attains m(w) = mu∗(w) (breaking
ties based on IDs). We now show that Yw = 0 with probability of at most constant. Consider u∗

as above, we now bound the probability that there is a vertex y ∈ Γt(w) that does not belong to
Su∗ . We therefore have:

m(y) > mu∗(y)− 1 = ru∗ − dist(u∗, y,G)− 1 ≥ ru∗ − dist(u∗, w,G)− t− 1 = m(w)− t− 1 , (1)

and in the same manner, m(w) ≥ m(y)− t−1. Therefore, m(w) ∈ [m(y)− t−1,m(y)+ t+1]. This
happens with probability of 1− e−3β·t = 1− ln(cn)/k ≤ c′ for k = 2 log n. The claim follows.

We are now ready to complete the proof of Lemma 12.

Proof. It is easy to see that each phase can be implemented in O(k ·t log n) rounds (see Sec. 2.1.1 in
[EN17] for more details), hence overall the construction takes O(k · t log2 n) rounds. By Lemma 13,
w.h.p., all subsets have small diameter and bounded overlap. In addition, for every verte w, with
constant probability, the entire t-neighborhood of w is covered by some of the Si,u sets. Since
we repeat this process for O(log n) many times, w.h.p., there exists a set that covers Γt(w). By
applying the union bounded overall sets, we get that w.h.p. all vertices are covered, the Lemma
follows.

Lemma 14. [Hoeffding Inequality] Let X1, . . . , Xn be independent random variables bounded by the
interval [0, 1], i.e, 0 ≤ Xi ≤ 1. Let Q =

∑
iXi. Then, P(Q− E(Q) ≥ t) ≤ e−2n·t2.

63


	Introduction
	Our Approach and Results
	From Security Requirements to Graph Structures
	Secure Simulation


	Our Techniques
	Low Congestion Cycle Covers
	From Low Congestion to Secure Simulation

	Preliminaries and Model
	Distributed Algorithms
	Cryptography with Perfect Privacy

	Low-Congestion Covers
	Cycle Cover
	Covering Non-Tree Edges
	Covering Tree Edges

	Private Neighborhood Cover
	P2 Cycle Cover

	Universally (Nearly) Optimal Covers
	Cycle Covers
	Private Neighborhood Cover and P2 Covers

	Secure Simulation via Low-Congestion Covers
	Our Framework
	Secure Simulation of a Single Round
	The Final Secure Algorithm

	Distributed Computation of Low Congestion Covers
	Cycle Cover
	Distributed Algorithm for Covering Non-Tree Edges
	Analysis of Algorithm DistNonTreeCover
	Distributed Algorithm for Covering Tree Edges

	Additional Low Congestion Covers
	Pre-processing for Improved Cover Structures

	Discussion and Future Work
	Balanced Partitioning of a Tree
	Missing Details for Algorithm DistCycleCover
	Distributed Construction of Neighborhood Cover in the Congest Model

