
Signature Schemes with a Fuzzy Private Key⋆

Kenta Takahashi1, Takahiro Matsuda2, Takao Murakami2,
Goichiro Hanaoka2, and Masakatsu Nishigaki3

1 Hitachi, Ltd.
kenta.takahashi.bw@hitachi.com

2 National Institute of Advanced Industrial Science and Technology (AIST)
{t-matsuda,takao-murakami,hanaoka-goichiro}@aist.go.jp

3 Shizuoka University
nisigaki@inf.shizuoka.ac.jp

Abstract. In this paper, we introduce a new concept of digital signature that we call fuzzy signature,
which is a signature scheme that uses a noisy string such as biometric data as a private key, but does
not require user-specific auxiliary data (which is also called a helper string in the context of fuzzy
extractors), for generating a signature. Our technical contributions are three-fold: (1) We first give the
formal definition of fuzzy signature, together with a formal definition of a “setting” that specifies some
necessary information for fuzzy data. (2) We give a generic construction of a fuzzy signature scheme
based on a signature scheme that has certain homomorphic properties regarding keys and satisfies a
kind of related key attack security with respect to addition, and a new tool that we call linear sketch. (3)
We specify two concrete settings for fuzzy data, and for each of the settings give a concrete instantiation
of these building blocks for our generic construction, leading to two concrete fuzzy signature schemes.
We also discuss how fuzzy signature schemes can be used to realize a biometric-based PKI that uses
biometric data itself as a cryptographic key, which we call the public biometric infrastructure (PBI).

Keywords: Fuzzy Signature, Public Biometric Infrastructure.

⋆ This is the merged full version of the earlier papers that appeared in the proceedings of ACNS 2015 [32] and the
proceedings of ACNS 2016 [18].

Table of Contents

1 Introduction . 3
1.1 Background and Motivation . 3
1.2 Our Contributions . 4
1.3 Technical Overview . 5
1.4 Paper Organization . 8

2 Preliminaries . 9
2.1 Basic Notation . 9
2.2 Basic Definitions and Lemmas Related to Probability and Entropy 9
2.3 Universal Hash Function Family and the Leftover Hash Lemma 10
2.4 (Bilinear) Groups and Computational Problems . 11
2.5 Signature Schemes . 12

3 Special Definitions for (Ordinary) Signatures . 14
3.1 Homomorphic Properties . 14
3.2 RKA∗ Security . 15
3.3 Useful Facts . 15

4 Definitions for Fuzzy Signatures . 16
4.1 Fuzzy Key Setting . 16
4.2 Fuzzy Signatures . 17
4.3 Linear Sketch . 18

5 Generic Construction . 19
5.1 Description of the Construction . 19
5.2 Correctness . 19
5.3 Security . 20

6 First Instantiation . 23
6.1 Specific Fuzzy Key Setting . 24
6.2 Mathematical Preliminaries . 25
6.3 Concrete Linear Sketch . 26
6.4 Modified Waters Signature Scheme . 30
6.5 Full Description . 32

7 Second Instantiation . 33
7.1 Specific Fuzzy Key Setting . 33
7.2 Concrete Linear Sketch . 34
7.3 Full Description . 38

8 On the Treatment of Real Numbers in Implementations . 39
9 Towards Public Biometric Infrastructure . 41
A More on the Limitations of Fuzzy-Extractor-Based Approaches . 44
B Differences among RKA∗ Security and Existing RKA Security Definitions 44
C Our Previous Definitions of Linear Sketch . 45

C.1 ACNS’15 Version . 45
C.2 ACNS’16 Version . 46

D Proof of Lemma 4 . 47
E Proof Sketch of Lemma 5 . 47
F Proof of Lemma 6 . 48
G On the Plausibility of the CDH Assumption with Respect to BGGenMWS 50

1 Introduction

1.1 Background and Motivation

As the information society grows rapidly, the public key infrastructure (PKI) plays a more significant
role as an infrastructure for managing digital certificates. It is also expected to be widely used for
personal use such as national IDs and e-government services. One of the biggest risks in the PKI,
which needs to be considered in the personal use, lies in a user’s private key [10]: since the user’s
identity is verified based only on his/her private key, the user needs to protect the private key
in a highly secure manner. For example, the user is required to store his/her private key into a
smart card (or USB token), and remember a password to activate the key. Such limitations reduce
usability, and especially, carrying a dedicated device can be a burden to users. This becomes more
serious for elderly people in an aging society.

One of the promising approaches to fundamentally solve this problem is to use biometric data
(e.g. fingerprint, face, and iris) as a cryptographic private key. Since a user’s biometrics is a part of
human body, it can offer a more secure and usable way to link the individual with his/her private
key (i.e. it is not forgotten unlike passwords and is much harder to steal than cards). Also, a sensor
that captures multiple biometrics simultaneously (e.g. face and iris [5]; fingerprint and finger-vein
[26]) has been widely developed to obtain a large amount of entropy at one time, and a recent
study [21] has shown that very high accuracy (e.g. the false acceptance rate (FAR) is 2−133 (resp.
2−87) when the false rejection rate (FRR) is 0.055 (resp. 0.0053)) can be achieved by combining
four finger-vein features.

However, since biometric data is noisy and fluctuates each time it is captured, it cannot be used
directly as a cryptographic key. In this paper, we call such a noisy string fuzzy data. Intuitively, it
seems that this issue can be immediately solved by using a fuzzy extractor [8], but this is not always
the case. More specifically, for extracting a string by a fuzzy extractor, an auxiliary data called
a helper string is necessary, and therefore, either the user is still enforced to carry a dedicated
device that stores it, or it has to be stored in some server that has to be on-line at the time
of the signing process. (We discuss the limitations of the approaches with helper data (i.e. the
fuzzy-extractor-based approaches) in more detail in Appendix A.)

Hence, it is considered that the above problem cannot be straightforwardly solved by using fuzzy
extractors, and another cryptographic technique by which noisy data can be used as a cryptographic
private key without relying on any auxiliary data, is necessary.

Fuzzy Signature: Digital Signature with a Fuzzy Private Key. In this paper, we introduce a new
concept of digital signature that we call fuzzy signature. Consider an ordinary digital signature
scheme. The signing algorithm Sign is defined as a (possibly probabilistic) function that takes a
signing key sk and a message m as input, and outputs a signature σ ← Sign(sk,m)4. Thus, it is
natural to consider that its “fuzzy” version Sign should be defined as a function that takes a noisy
string x and a message m as input, and outputs σ ← Sign(x,m). In this paper, we refer to such
digital signature (i.e. digital signature that allows to use a noisy string itself as a signing key) as
fuzzy signature. It should be noted that some studies proposed a fuzzy identity based signature
(FIBS) scheme [11, 33, 34, 36, 38], which uses a noisy string as a verification key. However, fuzzy
signature is a totally different concept since it does not allow a fuzzy verification key, but allows a
fuzzy signing key (i.e. fuzzy private key).

Fig. 1 shows the architecture of fuzzy signature in the left, and that of digital signature using
a fuzzy extractor in the right. In fuzzy signature, the key generation algorithm KGFS takes a noisy

4 Strictly speaking, in this paper we adopt the syntax in which Sign also takes a public parameter (generated by the
setup algorithm) as input (see Section 2.5 for the formal definition). In the introduction, we omit it for simplicity.

3

Gen

Rep

Verification
key generation

x

x'

sk

sk
Sign Verify�

m m

helper string P

vk

or

Digital Signature Using the Fuzzy Extractor

KGFS
x

x'
SignFS VerFS

�

m m

vk

or

Fuzzy Signature (Our Proposal)

Fig. 1. Architecture of fuzzy signature (our proposal) (left), and that of digital signature using a fuzzy extractor
(right) (x, x′: noisy string, sk: signing key, vk: verification key, σ: signature, m: message, ⊤: valid, ⊥: invalid).

string (e.g. biometric feature) x as input, and outputs a verification key vk; The signing algorithm
SignFS takes another noisy string x′ and a message m as input, and outputs a signature σ. The
verification algorithm VerFS takes vk, m, and σ as input, and verifies whether σ is valid or not. If x′

is close to x, σ will be verified as valid. We emphasize that the signing algorithm SignFS in a fuzzy
signature scheme does not use the verification key in the signing process.5 Hence, a fuzzy signature
scheme cannot be constructed based on the straightforward combination of a fuzzy extractor and
an ordinary signature scheme, since it requires a helper string P along with a noisy string x′ to
generate a signature σ on a message m. To date, to the best of our knowledge, the realization of
fuzzy signature has been an open problem.

1.2 Our Contributions

In this paper, we initiate the study of fuzzy signature, and give several results on it. Our main
contributions are three-fold: we give (1) the formal definitions for fuzzy signatures, (2) a generic
construction of a fuzzy signature scheme from simpler primitives, and (3) two concrete constructions
of a fuzzy signature scheme (each of which is obtained by instantiating the building blocks of our
generic construction).

Below we detail each of the contributions as well as other results:

– Formal Definitions for Fuzzy Signatures: Our first main contribution is the formalizations
of fuzzy signature and concepts related to it, which we give in Section 4. More specifically, to
formally define fuzzy signatures, we need to first somehow give a formalization of fuzzy data,
e.g. a metric space to which fuzzy data belongs, a distribution from which each data is sampled,
etc. Therefore, we first formalize it as a fuzzy key setting in Section 4.1. We then give a formal
definition of a fuzzy signature scheme as a primitive that is associated with a fuzzy key setting
in Section 4.2. We also introduce a new primitive that we call linear sketch, which incorporates
a kind of encoding and error correction processes. This primitive is also associated with a fuzzy
key setting, and is one of the building blocks of our generic construction. We informally explain
how it works and how it is used in our generic construction in Section 1.3, and give the formal
definition in Section 4.3.

– Generic Construction: Our second main contribution is a generic construction of a fuzzy sig-
nature scheme from simpler primitives, which we give in Section 5. Specifically, in order to ease

5 We note that like an ordinary signature scheme, the algorithms of a fuzzy signature scheme actually take as input
a public parameter that is generated by the setup algorithm and does not contain any user-specific information.
We omit it from the explanations in the introduction for simplicity. (See the formal definitions of a fuzzy signature
in Section 4.)

4

understanding our ideas and the security proofs for our proposed schemes clearly and in a mod-
ular manner, we give a generic construction of a fuzzy signature scheme from the combination
of a linear sketch scheme (that we introduce in Section 4.3) and an ordinary signature scheme.
In this construction, we require that the underlying ordinary signature scheme have a certain
natural homomorphic property regarding public/secret keys, and furthermore satisfy a kind of
related-key attack (RKA) security with respect to addition, denoted by Φadd-RKA∗ security. We
give an overview of this generic construction in Section 1.3. Our concrete instantiations of a
fuzzy signature scheme are derived from this generic construction by concretely instantiating
the building blocks.

– Concrete Instantiations: Our third main contribution is two concrete instantiations of a
fuzzy signature scheme: The first construction is given in Sections 6 and the second one is given
in Section 7. For each of the constructions, we first specify a concrete fuzzy key setting,6 then
show how to concretely realize the underlying signature scheme and a linear sketch scheme that
can be used in the generic construction for this fuzzy key setting.

In Section 1.3, we give an overview of how our proposed fuzzy signature scheme is constructed,
and also an overview on what a linear sketch is like, how it works, as well as our strategies for
designing it.

It is expected that our fuzzy signature schemes can be used to realize a biometric-based PKI that
uses biometric data itself as a cryptographic key, which we call the public biometric infrastructure
(PBI). We discuss it in Section 9 in more detail. We would like to emphasize that although so far
we have mentioned biometric data as a main example of noisy data, our scheme is not restricted to
it, and can also use other noisy data such as the output of a PUF (physically unclonable function)
[22] as input, as long as it satisfies the requirements of fuzzy key settings.

On the Requirements for the Underlying Signature Scheme. As mentioned above, in our generic
construction of a fuzzy signature scheme, we use an ordinary signature scheme that has some special
structural/security properties (the homomorphic property regarding keys and Φadd-RKA security).
These special properties are formalized and studied in Section 3. That we require the underlying
signature scheme to satisfy a version of RKA security, might sound a strong requirement. To better
understand it and potentially make it easier to achieve, we show two technical results on them:

1. We show sufficient conditions for Φadd-RKA∗ security. More specifically, we show that if an
ordinary signature scheme that satisfies standard EUF-CMA security and the above mentioned
homomorphic property regarding public/secret keys, additionally satisfies a similarly natural
homomorphic property also regarding signatures, then it automatically satisfies Φadd-RKA∗.

2. We also show that the original Schnorr signature scheme [30] already satisfies Φadd-RKA∗ secu-
rity in the random oracle model under the discrete logarithm (DL) assumption (i.e. the same
assumption used for proving its standard EUF-CMA security in the random oracle model).

The first (resp. second) technical result listed above is used for our first (resp. second) concrete
instantiation of a fuzzy signature scheme.

1.3 Technical Overview

Linear Sketch. As mentioned above, we introduce a new primitive that we call a linear sketch
scheme, and use it as one of the building blocks in our generic construction. This primitive is

6 The underlying metric space to which fuzzy data belongs, required of our instantiations of a fuzzy signature scheme,
is assumed to be a real vector space [0, 1)n, where we use the L∞-distance as the distance function. For the details
of the formal requirements, see Sections 6.1 and 7.1.

5

somewhat similar to the one-time pad encryption scheme: Recall that in the one-time pad encryption
scheme (implemented over some finite additive group), a ciphertext c of a plaintext m under a key
K is computed as c = m +K. Due to the linearity of the structure, the one-time pad encryption
scheme satisfies the following properties: (1) given two ciphertexts c = m + K and c′ = m′ + K
(under the same key K)7, one can calculate the “difference” ∆m = m−m′ between two plaintexts
by calculating c − c′, and (2) given a ciphertext c = m +K and “shift” values ∆m and ∆K, one
can calculate a ciphertext c′ of the “shifted” message m+∆m under a “shifted” key K +∆K by
calculating c′ = c+∆m+∆K.

Linear sketch formalizes these functionalities of the one-time pad encryption scheme, except
that we use fuzzy data as a key. The main algorithms of this primitive are Sketch and DiffRec.
(It additionally has the setup algorithm that produces a public parameter, but we omit it here
for simplicity.) The first algorithm Sketch captures the encryption mechanism. It takes an element
s (of some additive group) and a fuzzy data x as input, and outputs a “sketch” c (which is like
an encryption of s using x as a key).8 The second algorithm DiffRec (which stands for “Differ-
ence Reconstruction”) captures the above mentioned property (1) of the one-time pad encryption
scheme, but has an additional “error correction” property. Namely, given two sketches c and c′

that respectively encrypt s and s′ using fuzzy data x and x′ as a key, if x and x′ are sufficiently
“close” according to some metric, then we can calculate the difference ∆s = s−s′. We stress that x
and x′ need not be exactly the same value, and thus the algorithm DiffRec is required to somehow
“absorb” the difference between two noisy data in addition to calculate the difference between s
and s′.

In addition to these functional requirements, we also require two additional properties for a
linear sketch scheme. The first property is what we call linearity, which is similar to the property
(2) of the one-time pad encryption mentioned above. Namely, given a sketch c that encrypts s using
a fuzzy data x as a key, and “shift” values ∆s and ∆x, one can generate a sketch c′ that encrypts a
shifted element s+∆s under a shifted key x+∆x. The second property is a confidentiality notion
(which we call weak simulatability), that roughly requires that c hides its content s if s and x come
from appropriate distributions. These two properties are used in the security proof. For the details
of the formalization, see Section 4.3.

For our concrete instantiations of a fuzzy signature scheme, we construct different linear sketch
schemes. The linear sketch scheme for the first instantiation is given in Section 6.3, and that for
the second instantiation is given in Section 7.2.

Generic Construction. Our proposed fuzzy signature scheme ΣFS is constructed based on an ordi-
nary signature scheme (let us call it the “underlying scheme” Σ for the explanation here), and a
linear sketch scheme. In Fig. 2, we illustrate an overview of our construction of a fuzzy signature
scheme.

An overview of our generic construction is as follows: In the signing algorithm SignFS(x
′,m)

(where x′ is a fuzzy data used as a signing key and m is a message to be signed), we do not
extract a signing key sk (for the underlying scheme Σ) directly from x′ (which is the idea of the

fuzzy-extractor-based approach), but generate a random fresh “temporary” key pair (ṽk, s̃k) of

the underlying signature scheme Σ, and generate a signature σ̃ on m using s̃k. This enables us to
generate a fresh signature σ̃ without being worried about the fuzziness of x′. Here, however, since

7 Of course, a key in the one-time pad encryption scheme should not be used more than once in a normal use!
8 Unlike the one-time encryption scheme, decryption is not considered in this primitive, and hence it would be more
appropriate to consider it as a (one-way) “encoding”, rather than “encryption”. This is also one of the reasons
why we call c a “sketch” (something that contains the information of the input s), not a “ciphertext”.

6

x'

���

�̃

��

�

∆��

Signm

���

��

�	

Step 2
�

Step 1

�

Step 3

Sketch

x Sketch

Fig. 2. An overview of our generic construction of a fuzzy signature scheme. The box “Sketch” indicates one of the
algorithms of a primitive that we call “linear sketch,” which is formalized in Section 4.3.

σ̃ is a valid signature only under ṽk, we have to somehow link it with the noisy signing key x′. This
is done by the linear sketch scheme.

More specifically, in the signing procedure, we additionally generate a “sketch” c̃ (via the algo-

rithm denoted by “Sketch” in Fig. 2) of the temporary signing key s̃k using the fuzzy data x′. (As

explained above, this works like a one-time pad encryption of s̃k generated by using x′ as a key.)

Then, we let a signature σ of the fuzzy signature scheme consist of (ṽk, σ̃, c̃).

Before seeing how we verify σ = (ṽk, σ̃, c̃), we explain how a verification key in our fuzzy
signature scheme is generated: In the key generation algorithm KGFS(x) (where x is also a fuzzy
data measured at the key generation), we generate a fresh key pair (vk, sk) of the underlying
signature scheme Σ, as well as a “sketch” c of the signing key sk using the noisy data x (in exactly

the same way we generate c̃ from x′ and s̃k), and put it as part of a verification key of our fuzzy
signature scheme. Hence, a verification key V K in our fuzzy signature scheme ΣFS consists of the
verification key vk of the underlying scheme Σ, and the sketch c generated from sk and x. Then,
in the verification algorithm VerFS(V K,m, σ) where V K = (vk, c) and σ = (ṽk, σ̃, c̃), we first check

the validity of σ̃ under ṽk (Step 1), then recover the “difference” ∆sk = s̃k − sk of the underlying
secret keys from c and c̃ via the DiffRec algorithm of the underling linear sketch scheme (Step 2),

and finally check whether the difference between vk and ṽk indeed corresponds to ∆sk (Step 3).
The explanation so far is exactly what we do in our generic construction in Section 5.

Requirements on the Underlying Signature Scheme. In order to realize Step 3 of the verification
algorithm of our generic construction, we require the underlying signature scheme Σ to satisfy the
property that given two verification keys (vk, ṽk) and a (candidate) difference ∆sk, one can verify

that the difference between the secret keys sk and s̃k (corresponding to vk and ṽk, respectively) is
indeed ∆sk. It turns out that such a property is satisfied if a signature scheme satisfies a certain
natural homomorphic property regarding verification/secret keys, which we formalize in Section 3.1.
This property is satisfied by many existing schemes, and in particular we will show that it is satisfied
by our variant of the Waters signature scheme [35] (MWS scheme) and the Schnorr signature scheme
[30].

The security9 of our generic construction of a fuzzy signature scheme is, with the help of the
properties of the underlying linear sketch scheme, reduced to our variant of the RKA security
(with respect to addition), Φadd-RKA∗ security, of the underlying signature scheme Σ. Roughly
speaking, this security notion requires that an adversary, who is initially given a verification vk
(corresponding to a secret key sk) and can obtain signatures computed under “shifted” signing keys

9 The security of a fuzzy signature scheme is defined similarly to that of the standard EUF-CMA security [12] of an
ordinary signature scheme. See Section 4.2 for the formal definition.

7

of the form sk+∆sk (where the “shift” values ∆sk can be chosen by the adversary) via the “RKA”-
signing oracle, cannot generate a successfully forced message/signature pair, even under a “shifted”
verification key vk′ corresponding to a shifted signing key of the form sk +∆sk′ (where again the
“shift” ∆sk′ can be chosen by the adversary). The formal definition is given in Section 3.2, where
we also explain the difference between this security notion and the popular RKA security definition
by Bellare, Cash, and Miller [2]. Roughly speaking, the reason why we require such “RKA” security
for the underlying signature scheme Σ, is because in a sequence of games in the security proof,
we change how the temporary key pair (ṽk, s̃k) is generated, in such a way that instead of picking

a fresh key pair, (1) we first pick a random shift ∆sk, (2) then compute s̃k = sk + ∆sk (where

sk is the secret key corresponding to vk in the verification key V K), and (3) finally compute ṽk

from s̃k. Then, the value σ̃ appearing in a fuzzy signature σ = (ṽk, σ̃, c̃) can be seen as a signature

generated by using the “shifted” key s̃k = sk +∆sk, which can be simulated without knowing sk
if one has access to the “RKA”-signing oracle. For the details of the security proof, see Section 5.3.

First Instantiation. Our first instantiation, denoted by ΣFS1 and given in Section 6, is constructed
for a specific fuzzy key setting in which fuzzy data is a uniformly distributed vector over a metric
space with the ℓ∞-distance.10 For this fuzzy key setting, we propose a concrete linear sketch scheme
based on the Chinese remainder theorem (CRT) and some form of linear coding and error correction
methods. We also propose a variant of the Waters signature scheme [35], which we call modified
Waters signature (MWS) scheme, that is compatible with the linear sketch scheme and furthermore
satisfies all the requirements required of the underlying signature scheme in our generic construction.
The resulting fuzzy signature scheme from these linear sketch and MWS schemes, is secure in the
standard model under the computational Diffie-Hellman (CDH) assumption in bilinear groups.

Second Instantiation. One drawback of our first instantiation is that it has to assume that fuzzy
data is distributed uniformly. Our second construction based on the Schnorr signature scheme [30],
denoted by ΣFS2 and given in Section 7, tries to overcome this drawback. Specifically, we consider
another specific fuzzy key setting in which fuzzy data is assumed to come from a distribution that
has high average min-entropy [8] given a part of the fuzzy data. (The exact specification of a fuzzy
key setting is given in Section 7.1.) For this fuzzy key setting, we propose a concrete linear sketch
scheme based on a universal hash family satisfying a natural linearity property. We use a version
of the leftover hash lemma [13, 8] to show that this scheme achieves the confidentiality notion
required of a linear sketch scheme. Our second construction of a fuzzy signature scheme is obtained
by combining this linear sketch scheme and the original Schnorr signature scheme [30] (which we
will show to be Φadd-RKA∗). The resulting fuzzy signature scheme is secure in the random oracle
model under the DL assumption. Although this construction relies on a random oracle, it assumes
a weaker requirement for the distribution of fuzzy data, more efficient, easier to implement, and
hence more practical, than our first construction.

1.4 Paper Organization

The rest of the paper is organized as follows:

– In Section 2, we review basic notation and standard definitions.
– In Section 3, we formalize the homomorphic property and our variant of RKA security, as well

some facts on them that are useful for our instantiations of a fuzzy signature scheme.

10 In practice, we have to consider the treatment of real numbers. We discuss how it is represented in at the beginning
of Section 6 and in Section 8.

8

– In Section 4, we provide the formal definition of fuzzy signature, together with the formalization
of a “fuzzy key setting” over which a fuzzy signature is defined. We also give a formalization of
linear sketch.

– In Section 5, we show a generic construction of a fuzzy signature scheme based on the com-
bination of a linear sketch scheme and a signature scheme with (the weaker version of) the
homomorphic property (defined in Section 3).

– In Section 6, we give our first instantiation of a fuzzy signature scheme based on the Waters
signature scheme [35].

– In Section 7, we give our second instantiation of a fuzzy signature scheme based on the Schnorr
signature scheme [30].

– In Section 8, we discuss the treatment of real numbers for our fuzzy signature schemes in
practical implementations.

– Finally, in Section 9, we discuss how a fuzzy signature scheme can be used to realize the
public biometric infrastructure (PBI). There, we also give a discussion about the requirement
on the fuzzy key settings for which our concrete instantiations are constructed, and several open
problems.

2 Preliminaries

In this section, we review the basic notation, the definitions of standard primitives, and existing
results that we use in this paper.

2.1 Basic Notation

N, Z, R, and R≥0 denote the sets of all natural numbers, all integers, all real numbers, and all
non-negative real numbers, respectively. If n ∈ N, then we define [n] := {1, . . . , n}. If a, b ∈ N,
then “GCD(a, b)” denotes the greatest common divisor of a and b. If a ∈ R, then “⌊a⌋” denotes the
maximum integer which does not exceed a (i.e. the rounding-down operation), and “⌊a⌉” denotes
the integer that is the nearest to a (i.e. the rounding operation). Throughout the paper, we use
the bold font to denote a vector (such as x and α). We extend the definition of “⌊·⌉” to allow it to
take a real vector a = (a1, a2, . . .) as input, by ⌊a⌉ := (⌊a1⌉, ⌊a2⌉, . . .).

“x← y” denotes that y is (deterministically) assigned to x. If S is a finite set, then “|S|” denotes
its size, and “x←R S” denotes that x is chosen uniformly at random from S. If Φ is a distribution
(over some set), then x ←R Φ denotes that x is chosen according to the distribution Φ. If x and
y are bit-strings, then |x| denotes the bit-length of x, and “(x||y)” denotes the concatenation of x
and y. “(P)PTA” denotes a (probabilistic) polynomial time algorithm.

If A is a probabilistic algorithm, then “y ←R A(x)” denote that A computes y by taking x
as input and using an internal randomness that is chosen uniformly at random, and if we need to
specify the used randomness (say r), we denote by “y ← A(x; r)” (in which case the computation
of A is deterministic, taking x and r as input). If furthermore O is a (possibly probabilistic)
algorithm or a function, then “AO” denotes that A has oracle access to O. Throughout the paper,
“k” denotes a security parameter. A function f(·) : N → [0, 1] is said to be negligible if for all
positive polynomials p(·) and all sufficiently large k, we have f(k) < 1/p(k).

2.2 Basic Definitions and Lemmas Related to Probability and Entropy

Definition 1. Let X be a distribution defined over a set X. The min-entropy of X , denoted by
H∞(X), is defined by

H∞(X) := − log2

(
max
x′∈X

Pr[X = x′]
)
.

9

Definition 2 ([8]). Let (X ,Y) be a joint distribution defined over the direct product of sets X×Y .
The average min-entropy of X given Y, denoted by H̃∞(X|Y), is defined by

H̃∞(X|Y) := − log2

(
E

y←RY

[
max
x′∈X

Pr[X = x′|Y = y]
])

.

Definition 3. Let X and X ′ be distributions defined over the same set X. The statistical distance
between X and X ′, denoted by SD(X ,X ′), is defined by

SD(X ,X ′) := 1

2

∑
z∈X

∣∣∣Pr[X = z]− Pr[X ′ = z]
∣∣∣.

We say that X and X ′ are statistically indistinguishable, if SD(X ,X ′) is negligible.

In this paper, we will use the following simple and yet useful lemma shown by Dodis and Yu
[9, Lemma 1].11

Lemma 1 (Adapted from [9, Lemma 1]). Let X be a finite set, and let UX be the uniform
distribution over X. For any (deterministic) real-valued function f : X → R≥0 and any distribution
X over the set X, we have

E[f(X)] ≤ |X| · 2−H∞(X) ·E[f(UX)].

From the above lemma we can derive the following lemma about the (in)distinguishability
between the uniform distribution versus a distribution with high min-entropy:

Lemma 2 (Corollary of Lemma 1). Let X be a finite set, and let UX be the uniform distribution
over X. For any computationally unbounded, probabilistic algorithm A : X → {0, 1} and any
distribution X over the set X, we have

Pr[A(X) = 1] ≤ |X| · 2−H∞(X) · Pr[A(UX) = 1],

where both of the probabilities are also taken over A’s internal randomness.

Proof of Lemma 2. Let A be any algorithm, and consider the function f(x) := Pr[A(x) = 1]
(where the probability is over A’s internal randomness). Then, f is a deterministic function that
maps x ∈ X to the range [0, 1]. Furthermore, by definition, we have Pr[A(X) = 1] = E[f(X)] and
Pr[A(UX) = 1] = E[f(UX)]. Hence, by Lemma 1, we obtain the lemma. ⊓⊔

2.3 Universal Hash Function Family and the Leftover Hash Lemma

Here, we first recall the definition of a universal hash function family, then its concrete construction,
and finally the leftover hash lemma [13, 8].

Definition 4. Let H = {hz : D → R}z∈Z be a family of hash functions, where Z denotes the seed
space of H. We say that H is a universal hash function family if for all x, x′ ∈ D such that x ̸= x′,
we have Prz←RZ [hz(x) = hz(x

′)] ≤ 1/|R|.

11 Dodis and Yu [9] stated the lemma for the case in which the set X is of the form {0, 1}m. However, it is straight-
forward to see that their proof carries over to the more general case stated here.

10

Concrete Universal Hash Family with Linearity. In this paper, we will use the following concrete
construction of a universal hash function family Hlin whose domain is Fpn and whose range is Fp,
where Fp is a finite field with prime order p and n ∈ N. Note that Fpn , when viewed as a vector
space, is isomorphic to the vector space (Fp)

n. Let ψ : (Fp)
n → Fpn be an isomorphism of the vector

spaces, and ψ−1 be its inverse, which are both efficiently computable in terms of log2(p
n).

Let the seed space be Z = Fpn , the domain be D = (Fp)
n, and the range be R = Fp. For each

z ∈ Z, define the function hz : D → R as follows: On input x ∈ (Fp)
n, hz(x) computes y ← ψ(x) ·z,

where the operation “·” is the multiplication in the extension field Fpn . Let (y1, . . . , yn) = ψ−1(y).
The output of hz(x) is y1 ∈ Fp. The family Hlin consists of the hash functions {hz}z∈Z .

It is well-known (see, e.g. [4]) that Hlin is a universal hash function family. Furthermore, for
every z ∈ Z, hz satisfies linearity, in the following sense:

∀x,x′ ∈ (Fp)
n and α, β ∈ Fp : α · hz(x) + β · hz(x′) = hz(α · x+ β · x′).

Leftover Hash Lemma. Roughly speaking, the leftover hash lemma [13] states that a universal hash
function family is a good (strong) randomness extractor. Here, we recall a version of the leftover
hash lemma shown by Dodis et al. [8] that allows leakage from the inputs to a universal hash
function.

Lemma 3. ([8]) Let H = {hz : D → R}z∈Z be a universal hash function family. Let UZ and UR be
the uniform distributions over Z and R, respectively. Furthermore, let (X ,Y) be a joint distribution,
where the support of X is contained in D. Then, when z is chosen uniformly as z ←R Z, it holds
that

SD
(
(z, hz(X),Y), (UZ , UR,Y)

)
≤ 1

2

√
2−H̃∞(X|Y) · |R|.

2.4 (Bilinear) Groups and Computational Problems

Discrete Logarithm Assumption. Let GGen be a PPTA, which we call a “group generator,” that
takes 1k as input and outputs a tuple G := (p,G, g), where G is a (description of) group with prime
order p such that |p| = Θ(k), and g is a generator of G.

Definition 5. We say that the discrete logarithm (DL) assumption holds with respect to GGen if
for all PPTAs A, AdvDLGGen,A(k) defined below is negligible:

AdvDLGGen,A(k) := Pr
[
G = (p,G, g)← GGen(1k); x←R Zp : A(G, gx) = x

]
.

Bilinear Groups and CDH Assumption. We say that BG = (p,G,GT , g, e) constitutes (symmetric)
bilinear groups if p is a prime, G and GT are cyclic groups with order p, g is a generator of G,
and e : G × G → GT is an efficiently (in |p|) computable mapping satisfying the following two
properties:

(Bilinearity :) For all g′ ∈ G and a, b ∈ Zp, it holds that e(g
′a, g′b) = e(g′, g′)ab

(Non-degeneracy :) For all generators g′ of G, e(g′, g′) ∈ GT is not the identity element of GT .

For convenience, we denote by BGGen an algorithm (referred to as a “bilinear group generator”)
that, on input 1k, outputs a description of bilinear groups BG = (p,G,GT , g, e) such that |p| = Θ(k).

Definition 6. We say that the computational Diffie-Hellman (CDH) assumption holds with respect
to BGGen if for all PPTAs A, AdvCDHBGGen,A(k) defined below is negligible:

AdvCDHBGGen,A(k) := Pr
[
BG = (p,G,GT , g, e)← BGGen(1k); a, b←R Zp : A(BG, ga, gb) = gab

]
.

11

2.5 Signature Schemes

Here, we review the standard definitions for (ordinary) signature schemes and some properties. We
also review the descriptions of the Waters signature scheme [35] and the Schnorr signature scheme
[30] on which the concrete constructions of our fuzzy signature schemes will be based.

Syntax and Correctness. We model a signature scheme Σ as a quadruple of the PPTAs (Setup,KG,
Sign,Ver) that are defined as follows:

Setup is the setup algorithm that takes 1k as input, and outputs a public parameter pp.

KG is the key generation algorithm that takes pp as input, and outputs a verification/signing key
pair (vk, sk).

Sign is the signing algorithm takes pp, sk, and a message m as input, and outputs a signature σ.

Ver is the (deterministic) verification algorithm that takes pp, vk, m, and σ as input, and outputs
either ⊤ or ⊥. Here, “⊤” (resp. “⊥”) indicates that σ is a valid (resp. invalid) signature of the
message m under the key vk.

We require for all k ∈ N, all pp output by Setup(1k), all (vk, sk) output by KG(pp), and all messages
m, we have Ver(pp, vk,m, Sign(pp, sk,m)) = ⊤.

Simple Key Generation Process. Here, we formalize the natural structural property of a signature
scheme that we call the simple key generation process property, which says that the key generation
algorithm KG first picks a secret key sk uniformly at random from the secret key space, and then
computes the corresponding verification key vk deterministically from sk. Looking ahead, both
of our concrete instantiations of fuzzy signature schemes are constructed from ordinary signature
schemes with this property.

Definition 7. Let Σ = (Setup,KG, Sign,Ver) be a signature scheme. We say that Σ has a simple
key generation process if each pp output by Setup specifies the secret key space Kpp, and there exists
a deterministic PTA KG′ such that the key generation algorithm KG(pp) can be written as follows:

KG(pp) :
[
sk ←R Kpp; vk ← KG′(pp, sk); Return (vk, sk).

]
. (1)

EUF-CMA Security. Here, we recall the definition of existential unforgeability against chosen message
attacks (EUF-CMA security) [12]. For a signature scheme Σ = (Setup,KG, Sign,Ver) and an adversary
A, consider the following EUF-CMA experiment ExptEUF-CMAΣ,A (k):

ExptEUF-CMAΣ,A (k) :
[
pp←R Setup(1

k); (vk, sk)←R KG(pp); Q ← ∅; (m′, σ′)←R AOSign(·)(pp, vk);

If m′ /∈ Q ∧ Ver(pp, vk,m′, σ′) = ⊤ then return 1 else return 0
]
,

where OSign is the signing oracle that takes a message m as input, updates the “used message list”
Q by Q ← Q∪ {m}, and returns a signature σ ←R Sign(pp, sk,m).

Definition 8. We say that a signature scheme Σ is EUF-CMA secure if for all PPTA adversaries
A, AdvEUF-CMAΣ,A (k) := Pr[ExptEUF-CMAΣ,A (k) = 1] is negligible.

12

SetupWat(1
k) :

BG := (p,G,GT , g, e)← BGGen(1k)
h, u′, u1, . . . , uℓ ←R G
pp← (BG, h, u′, (ui)i∈[ℓ])
Return pp.

KGWat(pp) :
sk ←R Zp

vk ← gsk

Return (vk, sk).

SignWat(pp, sk,m) :

Parse m as (m1∥ . . . ∥mℓ) ∈ {0, 1}ℓ.
r ←R Zp

σ1 ← hsk · (u′ ·
∏

i∈[ℓ] u
mi
i)r

σ2 ← gr

Return σ ← (σ1, σ2).

VerWat(pp, vk,m, σ) :
(σ1, σ2)← σ

Parse m as (m1∥ . . . ∥mℓ) ∈ {0, 1}ℓ.
If e(σ2, u

′ ·
∏

i∈[ℓ] u
mi
i) · e(vk, h) = e(σ1, g)

then return ⊤ else return ⊥.

SetupSch(1
k) :

G := (p,G, g)← GGen(1k)
Let H : {0, 1}∗ → Zp

be a hash function.
Return pp← (G, H).

KGSch(pp) :
sk ←R Zp

vk ← gsk

Return (vk, sk).

SignSch(pp, sk,m) :
r ←R Zp

R← gr

h← H(R∥m)
s← r + (sk) · h mod p
Return σ ← (h, s).

VerSch(pp, vk,m, σ) :
(h, s)← σ

R← gs · (vk)−h

If H(R∥m) = h then
return ⊤ else return ⊥.

Fig. 3. The Waters signature scheme ΣWat [35] (left) and the Schnorr signature scheme ΣSch [30] (right).

On “Weak” Distributions of Signing Keys. Let Σ = (Setup,KG, Sign,Ver) be a signature scheme
with a simple key generation process (as per Definition 7) with secret key space Kpp for a public
parameter pp, and thus there exists the algorithm KG′ such that KG can be written as in Eq. (1).

Let u : N→ N be any function. For an EUF-CMA adversary A attacking Σ, let Ãdv
EUF-CMA

Σ,A (k) be the
advantage of A in the experiment that is the same as ExptEUF-CMAΣ,A (k), except that a secret key sk is

chosen by sk ←R K̃pp (instead of sk ←R Kpp) where K̃pp denotes an arbitrary (non-empty) subset

of Kpp satisfying |Kpp|/|K̃pp| ≤ u(k).
We will use the following fact, which is obtained as a corollary of Lemma 1. For completeness,

we provide its formal proof in Appendix D.

Lemma 4 (Corollary of Lemma 1). Under the above setting, for any PPTA adversary A, it
holds that Ãdv

EUF-CMA

Σ,A (k) ≤ u(k) · AdvEUF-CMAΣ,A (k).

Waters Signature Scheme. Our first concrete instantiation of a fuzzy signature scheme given in
Section 6 is based on the Waters signature scheme [35], and thus we review it here. We consider
the version where the setup and the key generation for each user are separated so that the scheme
fits our syntax.

Let ℓ = ℓ(k) be a positive polynomial, and let BGGen be a bilinear group generator. Then, the
Waters signature scheme ΣWat for ℓ-bit messages, is constructed as in Fig. 3 (left). It was shown by
Waters [35] that ΣWat is EUF-CMA secure if the CDH assumption holds with respect to BGGen.

Schnorr Signature Scheme. Our second concrete instantiation of a fuzzy signature scheme given in
Section 7 is based on the Schnorr signature scheme [30] and thus we review it here.

Using a group generator GGen, the Schnorr signature scheme ΣSch = (SetupSch,KGSch, SignSch,
VerSch) is constructed as in Fig. 3 (right). It was formally shown by Pointcheval and Stern [24] that
ΣSch is EUF-CMA secure in the random oracle model where the used hash function H is modeled as
a random oracle, under the DL assumption with respect to GGen.

13

3 Special Definitions for (Ordinary) Signatures

In this section, we formalize somewhat less standard and yet natural and useful properties for
(ordinary) signature schemes with a simple key generation process, and also show some facts about
them that will be utilized in the later sections.

This section is organized as follows: In Section 3.1, we formalize certain homomorphic properties
regarding keys and signatures, and in Section 3.2, we introduce a variant of RKA security which
we call Φ-RKA∗ security. Finally, in Section 3.3, we show some useful facts about them.

3.1 Homomorphic Properties

For building our fuzzy signature schemes, we will utilize a signature scheme that has certain homo-
morphic properties regarding keys and signatures, and thus we formalize the properties here. We
define two versions, normal and weak. The weaker version only requires the first two requirements
out of the three, which is sufficient for our security proof for the generic construction for fuzzy
signatures given in Section 5 to go through. The benefit of considering the normal version will be
made clear in Section 3.3.

Definition 9. Let Σ = (Setup,KG, Sign,Ver) be a signature scheme with a simple key generation
process (i.e. there is a deterministic PTA KG′ in Definition 7). We say that Σ is homomorphic if
it satisfies the following three properties:

1. For all parameters pp output by Setup, the signing key space Kpp constitutes an abelian group
(Kpp,+).

2. There exists a deterministic PTA Mvk that takes a public parameter pp (output by Setup), a
verification key vk (output by KG(pp)), and a “shift” ∆sk ∈ Kpp as input, and outputs the
“shifted” verification key vk′.
We require for all pp output by Setup and all sk,∆sk ∈ Kpp, it holds that

KG′(pp, sk +∆sk) = Mvk(pp,KG
′(pp, sk),∆sk). (2)

3. There exists a deterministic PTA Msig that takes a public parameter pp (output by Setup), a
verification key vk (output by KG(pp)), a message m, a signature σ, and a “shift” ∆sk ∈ Kpp

as input, and outputs a “shifted” signature σ′.
We require for all pp output by Setup, all messages m, and all sk,∆sk ∈ Kpp, the following two
distributions are identical:{

σ′ ←R Sign(pp, sk +∆sk,m) : σ′
}
, and{

σ ←R Sign(pp, sk,m); σ′ ← Msig(pp,KG
′(pp, sk),m, σ,∆sk) : σ′

}
. (3)

Furthermore, we require for all pp output by Setup, all sk,∆sk ∈ Kpp, and all pairs (m,σ)
satisfying Ver(pp,KG′(pp, sk),m, σ) = ⊤, it holds that

Ver
(
pp,KG′(pp, sk +∆sk),m,Msig(pp,KG

′(pp, sk),m, σ,∆sk)
)
= ⊤. (4)

If Σ satisfies only the first two properties, then we say that Σ is weakly homomorphic.

Looking ahead, in Section 6.4, we will show a variant of the Waters signature scheme [35]
(that we call the modified Waters signature (MWS) scheme) that satisfies all of the above three
properties of the homomorphic property. Furthermore, we note that the Schnorr signature scheme
ΣSch (see Fig. 3 (right)) on which our second instantiation in Section 7 is based, satisfies the weak
homomorphic property. We will state this in a formal manner in Lemma 6 in Section 3.3.

14

3.2 RKA∗ Security

Here, we introduce an extension of the standard EUF-CMA security for signature schemes, which we
call RKA∗ security, that considers security against an adversary who may mount a kind of related-key
attacks (RKA).12 Like the popular definition of RKA security for signature schemes by Bellare,
Cash, and Miller [2], RKA∗ is defined with respect to a class of functions that captures an adversary’s
ability to modify signing keys. However, our definition has subtle differences from the definition of
[2]. The main difference is that in our definition, an adversary is allowed to modify the verification
key under which its forgery is verified, while we do not allow an adversary to use a message to be
used as its forgery if it has already been signed by the signing oracle. A more detailed explanation
on the differences between our definition and the existing RKA security definitions is given in
Appendix B.

Formally, let Σ = (Setup,KG, Sign,Ver) be a signature scheme which has a simple key generation
process, namely, there exists a deterministic PTA KG′ such that KG can be written as Eq. (1). Let
Φ be a class of functions both of whose domain and range are the secret space of Σ. For Σ, Φ, and
an adversary A, consider the following Φ-RKA∗ experiment ExptΦ-RKA

∗
Σ,A (k):

ExptΦ-RKA
∗

Σ,A (k) :
[
pp←R Setup(1

k); (vk, sk)←R KG(pp); Q ← ∅;

(ϕ′,m′, σ′)←R AOSign(·,·)(pp, vk); vk′ ← KG′(pp, ϕ′(sk));

If ϕ′ ∈ Φ ∧m′ /∈ Q ∧ Ver(pp, vk′,m′, σ′) = ⊤ then return 1 else return 0
]
,

where OSign is the RKA-signing oracle that takes (the description of) a function ϕ ∈ Φ and
a message m as input, updates the “used message list” Q by Q ← Q ∪ {m}, and returns a
signature σ ←R Sign(pp, ϕ(sk),m). We stress that in the final step of the experiment, the ad-
versary’s forged message/signature pair (m′, σ′) is verified under the “modified” verification key
vk′ = KG′(pp, ϕ′(sk)).

Definition 10. We say that a signature scheme Σ (with a simple key generation process) is Φ-RKA∗

secure if for all PPTA adversaries A, AdvΦ-RKA∗Σ,A (k) := Pr[ExptΦ-RKA
∗

Σ,A (k) = 1] is negligible.

Note that if we consider Φ to be consisting only of the identity function in the above definition,
then we recover the standard EUF-CMA security.

The Class of Functions. In this paper, we will treat RKA∗ security with respect to addition, which
is captured by the following simple functions (where K denotes the signing key space of a signature
scheme that we assume constitutes an abelian group):

Addition: Φadd := {ϕadda |a ∈ K}, where ϕadda (x) := x+ a.

3.3 Useful Facts

Here, we show some useful facts about the properties introduced in the previous subsections.

Sufficient Conditions for Φadd-RKA∗ Security. It turns out that any EUF-CMA secure signature scheme
that satisfies the three requirements of the homomorphic property (Definition 9) is automatically
Φadd-RKA∗ secure, and hence these are sufficient conditions for Φadd-RKA∗ security.

12 The asterisk (*) in the security notion indicates that the notion is different from the popular RKA-security definition
for signatures formalized by Bellare et al. [2].

15

Lemma 5. Any EUF-CMA secure signature scheme satisfying the homomorphic property (Defini-
tion 9) is Φadd-RKA∗ secure.

This proof is almost straightforward from the definition of the homomorphic property, and we
provide a proof sketch in Appendix E. It is based on a simple observation that the homomorphic
property allows us to simulate the RKA-signing oracle in the Φadd-RKA∗ security experiment by
only using the normal signing oracle (for the same signature scheme).

Weak Homomorphic Property and Φadd-RKA∗ Security of the Schnorr Signature Scheme. It is
straightforward to see that the Schnorr signature scheme ΣSch (Fig. 3 (right)) admits a sim-
ple key generation process, and is weakly homomorphic. Specifically, given a public parameter
pp = (G = (p,G, g),H), we can specify its signing key space to be Zp, and then the deterministic
PTA KG′ can be defined by KG′(pp, sk) := gsk where sk ∈ Zp. Furthermore, its signing key space
(given a public parameter pp) constitutes an abelian group (Zp,+). Therefore, we can talk about its
weak homomorphic property and Φadd-RKA∗ security. The following theorem formally states that
the Schnorr signature scheme satisfies these functionality/security properties.

Lemma 6. The Schnorr signature scheme ΣSch (Fig. 3 (right) in Section 2.5) satisfies the weak
homomorphic property in the sense of Definition 9. Furthermore, if the DL assumption holds with
respect to GGen, then ΣSch is Φadd-RKA∗ secure in the random oracle model where H is modeled as
a random oracle.

The weak homomorphic property should be fairly easy to see: For vk = gsk and ∆sk ∈ Zp, we
can just define Mvk(pp, vk,∆sk) := (vk) · g∆sk(= gsk+∆sk = KG′(pp, sk +∆sk)). The proof for the
Φadd-RKA∗ security can be shown very similarly to the proof of the EUF-CMA security of the Schnorr
scheme using the general forking lemma of Bellare and Neven [3], and its Φadd-weak-RKA security
shown by Morita et al. [19, 20], and thus we provide its proof in Appendix F.

4 Definitions for Fuzzy Signatures

In this section, we introduce the definitions for fuzzy signatures.

As mentioned in Section 1, to define fuzzy signatures, we need to first define some “setting”
that models a space to which fuzzy data (used as a signing key) belongs, a distribution from which
fuzzy data is sampled, etc. We therefore first formalize it as a fuzzy key setting in Section 4.1, and
then define a fuzzy signature scheme that is associated with a fuzzy key setting in Section 4.2.
Then, we also introduce a new tool that we call linear sketch, which is also associated with a fuzzy
key setting and will be used as one of the main building blocks in our generic construction of a
fuzzy signature scheme given in Section 5.

4.1 Fuzzy Key Setting

Consider a typical biometric authentication scheme: At the registration phase, a “fuzzy” biometric
feature x ∈ X (where X is some metric space) is measured and extracted from a user. Later at
the authentication phase, a biometric feature x′ ∈ X is measured and extracted from a (possibly
different) user, and this user is considered the user who generated the biometric data x and thus
authentic if x and x′ are sufficiently “close” according to the metric defined in the space X.

We abstract out and formalize this typical setting for “identifying fuzzy objects” as a fuzzy
key setting. Roughly, a fuzzy key setting specifies (1) the metric space to which fuzzy data (such
as biometric data) belongs (X in the above example), (2) the distribution of fuzzy data sampled

16

at the “registration phase” (x in the above example), and (3) the error distribution that models
“fuzziness” of the fuzzy data (the relationship between x and x′ in the above example).

We adopt what we call the “universal error model”, which assumes that for all objects U that
produce fuzzy data that we are interested in, if U produces a data x at the first measurement (say,
at the registration phase), and if the same object is measured next time, then the measured data x′

follows the distribution {e←R Φ;x
′ ← x+e : x′}. That is, the error distribution Φ is independent of

individual U . (We also assume that the metric space constitutes an abelian group so that addition
is well-defined.)

Formally, a fuzzy key setting F consists of ((d, X), t,X , Φ, ϵ), each of which is defined as follows:

(d, X): This is a metric space, where X is a space to which a possible fuzzy data x belongs, and
d : X2 → R is the corresponding distance function. We furthermore assume that X constitutes
an abelian group.

t: (∈ R) This is the threshold value, determined by a security parameter k. Based on t, the false
acceptance rate (FAR) and the false rejection rate (FRR) are determined. We require that FAR :=
Pr[x, x′ ←R X : d(x, x′) < t] is negligible in k.

X : This is a distribution of fuzzy data over X.

Φ: This is an error distribution (see the above explanation).

ϵ: (∈ [0, 1]) This is an error parameter that represents FRR. We require that for all x ∈ X, FRR :=
Pr[e←R Φ : d(x, x+ e) ≥ t] ≤ ϵ.

4.2 Fuzzy Signatures

A fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d, X), t,X , Φ, ϵ) consists of the four
algorithms (SetupFS,KGFS, SignFS,VerFS):

SetupFS: This is the setup algorithm that takes the description of the fuzzy key setting F and 1k

as input (where k determines the threshold value t of F), and outputs a public parameter pp.

KGFS: This is the key generation algorithm that takes pp and a fuzzy data x ∈ X as input, and
outputs a verification key vk.

SignFS: This is the signing algorithm that takes pp, a fuzzy data x′ ∈ X, and a message m as input,
and outputs a signature σ.

VerFS: This is the (deterministic) verification algorithm that takes pp, vk, m, and σ as input, and
outputs either ⊤ (“accept”) or ⊥ (“reject”).

δ-Correctness. Let δ ∈ [0, 1]. We say that a fuzzy signature scheme ΣFS = (SetupFS,KGFS, SignFS,
VerFS) for a fuzzy key setting F = (d, X), t,X , Φϵ) satisfies δ-correctness if it holds that

Pr
[
pp←R SetupFS(1

k); x←R X ; vk ←R KGFS(pp, x); e←R Φ;

σ ←R SignFS(pp, x+ e,m) : VerFS(pp, vk,m, σ) = ⊤
]
≥ 1− δ

for all k ∈ N and all messages m.13

13 The definition of correctness here is slightly weakened from the one we used in the earlier versions [32, 18], in which
we used the following definition: For all k ∈ N, all pp output by SetupFS(F , 1k), all x, x′ ∈ X such that d(x, x′) < t,
and all messages m, it holds that VerFS(pp,KGFS(pp, x),m, SignFS(pp, x

′,m)) = ⊤. Note that this definition implies
ϵ-correctness, because Pr[x ←R X ; e ←R Φ : d(x, x + e) < t] ≥ 1 − ϵ. Note also that as long as FRR is not zero, a
fuzzy signature scheme cannot satisfy 0-correctness.

17

EUF-CMA Security. For a fuzzy signature scheme, we consider EUF-CMA security in a similar manner
to that for an ordinary signature scheme, reflecting the universal error model of a fuzzy key setting.

Formally, for a fuzzy signature scheme ΣFS = (SetupFS,KGFS,SignFS,VerFS) for a fuzzy key
setting F = ((d, X), t,X , Φ, ϵ) and an adversary A, consider the following EUF-CMA experiment
ExptEUF-CMAΣFS,F ,A(k):

ExptEUF-CMAΣFS,F ,A(k) : [pp←R SetupFS(F , 1k); x←R X ; vk ←R KGFS(pp, x);

Q ← ∅; (m′, σ′)←R AOSignFS
(·)(pp, vk) :

If m′ /∈ Q ∧ VerFS(pp, vk,m
′, σ′) = ⊤ then return 1 else return 0],

where OSignFS is the signing oracle that takes a message m as input, and operates as follows: It
updates the “used message list” Q by Q ← Q ∪ {m}, samples e ←R Φ, computes a signature
σ ←R SignFS(pp, x+ e,m), and returns σ.

Definition 11. We say that a fuzzy signature scheme ΣFS is EUF-CMA secure if for all PPTA
adversaries A, AdvEUF-CMAΣFS,F ,A(k) := Pr[ExptEUF-CMAΣFS,F ,A(k) = 1] is negligible.

4.3 Linear Sketch

Here, we give the definition of a linear sketch scheme. The syntactical definition here is the one we
adopt in [18], and we introduce a new security requirement for a linear sketch scheme, which we call
weak simulatability, which is weaker than the security requirements that we introduced in our earlier
versions [32, 18], but is nonetheless sufficient for proving the security of our generic construction
of a fuzzy signature scheme in the next section. For completeness, we give the definitions in our
earlier versions, and discuss the differences between the definitions in Appendix C.

A linear sketch scheme is associated with a fuzzy key setting and an abelian group (in which
addition is well-defined), and is defined as follows:

Definition 12. Let F = ((d, X), t,X , Φ, ϵ) be a fuzzy key setting. We say that a tuple of PPTAs
S = (Setup, Sketch,DiffRec) is a linear sketch scheme for F , if it satisfies the following three
properties:

Syntax and Correctness: Each algorithm of S has the following interface:
– Setup is the “setup” algorithm that takes the description F of the fuzzy key setting and the

description Λ of an abelian group (K,+) as input, and outputs a public parameter pp (which
we assume contains the information of Λ).

– Sketch is the “sketching” algorithm that takes pp, an element s ∈ K, and a fuzzy data x ∈ X
as input, and outputs a “sketch” c.

– DiffRec is the (deterministic) “difference reconstruction” algorithm that takes pp and two
values c, c′ (supposedly output by Sketch) as input, and outputs the “difference” ∆s ∈ K.

We require that for all x, x′ ∈ X such that d(x, x′) < t, all pp output by Setup(F , Λ), and all
s,∆s ∈ K, it holds that

DiffRec
(
pp, Sketch(pp, s, x), Sketch(pp, s+∆s, x′)

)
= ∆s. (5)

Linearity: There exists a PPTA Mc satisfying the following: For all pp output by Setup(F , Λ), all
x, e ∈ X, and for all s,∆s ∈ K, the following two distributions are statistically indistinguishable
(in the security parameter k that is associated with t in F):{

c←R Sketch(pp, s, x); c
′ ←R Sketch(pp, s+∆s, x+ e) : (c, c′)

}
, and{

c←R Sketch(pp, s, x); c
′ ←R Mc(pp, c,∆s, e) : (c, c

′)
}

(6)

18

Weak Simulatability: 14 Let Λ = (K,+) be a (finite) abelian group. There exists a PPTA sim-
ulator Sim such that for all PPTA algorithms A, there exist a positive polynomial15 u and a
negligible function ϵ such that the following inequality holds (where k is the security parameter
k associated with t in F):

Pr[A(Dreal) = 1] ≤ u(k) · Pr[A(Dsim) = 1] + ϵ(k), (7)

where the distributions Dreal and Dsim are defined as follows:

Dreal :=
{
pp←R Setup(F , Λ); x←R X ; s←R K; c←R Sketch(pp, s, x) : (pp, s, c)

}
,

Dsim :=
{
pp←R Setup(F , Λ); s←R K; c←R Sim(pp) : (pp, s, c)

}
.

We remark that the definition of weak simulatability is strictly weaker than the simulatability
and the average-case indistinguishability that we used in our earlier versions [32] and [18]. In
particular, we only require it to hold for a computationally bounded adversary, and unlike a typical
simulation-based security notion we allow not only the additive simulation error (captured by ϵ(k))
but also the multiplicative simulation error that is captured by u(k) in Eq. (7). As mentioned above,
these relaxations are still sufficient to prove the security of our generic construction in the next
section.

5 Generic Construction

In this section, we show a generic construction of a fuzzy signature scheme. Our construction uses
an ordinary signature scheme (with the weak homomorphic property) and a linear sketch scheme
as building blocks. The fuzzy key setting for which the fuzzy signature scheme is constructed is the
one with which the underlying linear sketch scheme is associated.

We have already provided an overview of our generic construction in Section 1.3. Thus, we
directly proceeds to the construction in Section 5.1. We then provide the proof for correctness in
Section 5.2, and finally the proof for security in Section 5.3.

5.1 Description of the Construction

Let F = ((d,X), t,X , Φ, ϵ) be a fuzzy key setting, and let S = (Setupl, Sketch,DiffRec) be a linear
sketch for F . Let Σ = (Setups,KG, Sign,Ver) be a signature scheme with a simple key generation
process (i.e. there exists a deterministic PTA KG′). We assume that Σ is weakly homomorphic (as
per Definition 9), namely, its secret key space (given pp) is an abelian group (Kpp,+), and has the
additional algorithm Mvk. Using S and Σ, the generic construction of a fuzzy signature scheme ΣFS

= (SetupFS,KGFS, SignFS,VerFS) for the fuzzy key setting F is constructed as in Fig. 4.

5.2 Correctness

The correctness of the fuzzy signature scheme ΣFS is guaranteed as follows.

Theorem 1. If Σ and S satisfy correctness, then the fuzzy signature scheme ΣFS in Fig. 4 is
ϵ-correct.

14 The choice of the word “weak” in weak simulatability is because it is a weaker requirement than the simulatability
we used in [32] in several aspects. See the explanation given after the definition.

15 We call u a multiplicative simulation error.

19

SetupFS(F , 1k) :
pps ←R Setups(1

k)
Let Λ := (Kpps ,+).
ppl ←R Setupl(F , Λ)
Return pp← (pps, ppl).

KGFS(pp, x) :
(pps, ppl)← pp
sk ←R Kpps

vk ← KG′(pps, sk)
c←R Sketch(ppl, sk, x)
Return V K ← (vk, c).

SignFS(pp, x
′,m) :

(pps, ppl)← pp

s̃k ←R Kpps

ṽk ← KG′(pps, s̃k)

σ̃ ←R Sign(pps, s̃k,m)

c̃←R Sketch(ppl, s̃k, x
′)

Return σ ← (ṽk, σ̃, c̃).

VerFS(pp, V K,m, σ) :
(pps, ppl)← pp
(vk, c)← V K

(ṽk, σ̃, c̃)← σ

If Ver(pps, ṽk,m, σ̃) = ⊥
then return ⊥.

∆sk ← DiffRec(ppl, c, c̃)

If Mvk(pps, vk,∆sk) = ṽk
then return ⊤ else return ⊥.

Fig. 4. Our generic construction of a fuzzy signature scheme ΣFS for a fuzzy key setting F , based on a signature
scheme Σ with the weak homomorphic property and a linear sketch scheme S for F .

Proof of Theorem 1. Fix arbitrarily a message m. Let x, x′ ∈ X such that d(x, x′) < t. Also, let
pp = (pps, ppl) be a public parameter output by SetupFS(F , 1k), let V K = (vk = KG′(pps, sk), c)

be a verification key output by KGFS(pp, x), and let σ = (ṽk = KG′(pps, s̃k), σ̃, c̃) be a signature
output by SignFS(pp, x

′,m).
Recall that by the definition of the fuzzy key setting F , we have Pr[e←R Φ : d(x, x+ e) < t] ≥

1− ϵ. Hence, to prove the theorem, it is sufficient to show that if d(x, x′) < t, then it always holds
that VerFS(pp, V K,m, σ) = ⊤, which we do in the following.

Firstly, since σ̃ is a signature of the message m generated using the signing key s̃k, and ṽk is
the verification key corresponding to s̃k, we have Ver(pps, ṽk,m, σ̃) = ⊤ due to the correctness of

the underlying signature scheme Σ. Secondly, d(x, x′) < t implies DiffRec(ppl, c, c̃) = s̃k−sk due to
the correctness of the underlying linear sketch scheme S. Thirdly, due to the weak homomorphic
property of Σ, letting ∆sk := s̃k − sk, we have

Mvk(pps, vk,∆sk) = Mvk(pps,KG
′(pps, sk), ∆sk) = KG′(pps, sk +∆sk) = KG′(pps, s̃k) = ṽk.

The conditions seen so far are exactly those checked in the verification algorithm VerFS(pp, V K,m, σ),
and hence its output is guaranteed to be ⊤, as required. ⊓⊔

5.3 Security

The security of the fuzzy signature scheme ΣFS is guaranteed as follows.

Theorem 2. If Σ is Φadd-RKA∗ secure and S is a linear sketch scheme for F (in the sense of
Definition 12), then the fuzzy signature scheme ΣFS for F in Fig. 4 is EUF-CMA secure.

Our proof is via the sequence of games argument. We gradually change the original EUF-CMA security
experiment for an adversary A against our construction ΣFS by using the weak homomorphic
property of the underlying signature scheme Σ and the linearity property and weak simulatability
of the underlying linear sketch scheme S, so that A’s success probability in the original EUF-CMA
security experiment is not non-negligibly different from A’s success probability in the final game
(Game 5), and the latter is negligible due to the Φadd-RKA∗ security of Σ.

Proof of Theorem 2. Let A be an arbitrary PPTA adversary that attacks the EUF-CMA security of
ΣFS. Below, we consider a sequence of five games, where the first game is ExptEUF-CMAΣFS,F ,A(k) itself. For
i ∈ [5], let Si be the event that in Game i, A succeeds in outputting a successful forgery (m′, σ′)
satisfying VerFS(pp, V K,m

′, σ′) = ⊤ and m′ /∈ Q. Our goal is to show that AdvEUF-CMAΣFS,F ,A(k) = Pr[S1]
is negligible.

20

Game 1: This is the EUF-CMA experiment ExptEUF-CMAΣFS,F ,A(k). In this game, the public parameter pp
and the verification key V K are generated as follows:[

pps ←R Setups(1
k); ppl ←R Setupl(F , Λ := (Kpps ,+)); pp← (pps, ppl);

x←R X ; sk ←R Kpps ; vk ← KG′(pps, sk); c←R Sketch(ppl, sk, x); V K ← (vk, c)
]
.

Furthermore, the signing oracle OSignFS(m) generates a signature σ as follows:[
e←R Φ; s̃k ←R Kpps ; ṽk ← KG′(pps, s̃k);

σ̃ ←R Sign(pps, s̃k,m); c̃←R Sketch(ppl, s̃k, x+ e); σ ← (ṽk, σ̃, c̃)
]
.

Game 2: This game is the same as Game 1, except that in the signing oracle, s̃k is generated by
firstly picking a random “difference” ∆sk ∈ Kpps , and then setting s̃k ← sk +∆sk.
More specifically, in this game, the signing oracle OSignFS(m) generates a signature σ as follows:
(The difference from Game 1 is underlined.)[

e←R Φ; ∆sk ←R Kpps ; s̃k ← sk +∆sk; ṽk ← KG′(pps, s̃k);

σ̃ ←R Sign(pps, s̃k,m); c̃←R Sketch(ppl, s̃k, x+ e); σ ← (ṽk, σ̃, c̃)
]
.

Since the distribution of s̃k in Game 2 and that in Game 1 are identical, we have Pr[S2] = Pr[S1].

Game 3: This game is the same as Game 2, except that in the signing oracle, ṽk is generated by
using vk and ∆sk via Mvk.
More specifically, in this game, the signing oracle OSignFS(m) generates a signature σ as follows:
(The difference from Game 2 is underlined.)[

e←R Φ; ∆sk ←R Kpps ; s̃k ← sk +∆sk; ṽk ← Mvk(pps, vk,∆sk);

σ̃ ←R Sign(pps, s̃k,m); c̃←R Sketch(ppl, s̃k, x+ e); σ ← (ṽk, σ̃, c̃)
]
.

By the property of Mvk (Eq. (2)), the distribution of ṽk in Game 3 and that in Game 2 are
identical, and thus we have Pr[S3] = Pr[S2].

Game 4: This game is the same as Game 3, except that in the signing oracle, c̃ is generated by
using c, e, and ∆sk, via the auxiliary algorithm Mc of the linear sketch scheme S.
More specifically, in this game, the signing oracle OSignFS(m) generates a signature σ as follows:
(The difference from Game 3 is underlined.)[

e←R Φ; ∆sk ←R Kpps ; s̃k ← sk +∆sk; ṽk ← Mvk(pps, vk,∆sk);

σ̃ ←R Sign(pps, s̃k,m); c̃←R Mc(ppl, c,∆sk, e); σ ← (ṽk, σ̃, c̃)
]
. (8)

By the linearity of the linear sketch scheme S, the distribution of c̃ generated in the signing
oracle in Game 4 and that in Game 3 are statistically indistinguishable. We can apply this
statistical indistinguishability query-by-query, to conclude that A’s view in Game 4 and that in
Game 3 are statistically indistinguishable.16 This guarantees that |Pr[S4]−Pr[S3]| is negligible.

16 If the statistical distance between the distributions considered in the linearity property (Eg. (6)) is a negligible
value ϵlin and the adversary A makes q = q(k) signing queries (where q is some polynomial), the difference
|Pr[S4]− Pr[S3]| is at most q · ϵlin, which is still negligible.

21

Game 5: This game is the same as Game 4, except that the sketch c contained in V K is generated
by the simulator Sim (without using x ∈ X or sk ∈ Kpps), whose existence is guaranteed by the
weak simulatability of the linear sketch scheme S.
More specifically, in this game, the public parameter pp and the verification key V K are gener-
ated as follows: (The difference from Game 4 is underlined.)[

pps ←R Setups(1
k); ppl ←R Setupl(F , Λ := (Kpps ,+)); pp← (pps, ppl);

sk ←R Kpps ; vk ← KG′(pps, sk); c←R Sim(ppl); V K ← (vk, c)
]
. (9)

(We no longer pick x ∈ X , because it is not used in Game 5.)

Now, we show that due to the weak simulatability of the linear sketch scheme S, there exists a
polynomial u = u(k) and a negligible function ϵ = ϵ(k) such that Pr[S4] ≤ u · Pr[S5] + ϵ holds.
To see this, let pps ←R Setups(1

k), and let Λ = (Kpps ,+) be the abelian group that describes
the secret key space of Σ. Then, consider the PPTA adversary B′ that has pps hardwired, takes
as input a tuple (ppl, sk, c) that is generated by either

Dreal =
{
ppl ←R Setupl(F , Λ); x←R X ; sk ←R Kpps ; c←R Sketch(ppl, sk, x) : (ppl, sk, c)

}
or Dsim =

{
ppl ←R Setupl(F , Λ); sk ←R Kpps ; c←R Sim(ppl) : (ppl, sk, c)

}
,

simulates Game 4 forA by using these values17, and outputs 1 if and only ifA succeeds in forging
a signature. Then, it is straightforward to see that if the input (ppl, sk, c) to B′ comes from the
distribution Dreal (resp. Dsim), then B′ simulates Game 4 (resp. Game 5) in which pps is the one
hardwired in B′, perfectly for A. Consequently, we have Epps←RSetups(1

k)[Pr[B′(Dreal) = 1]] =
Pr[S4] (resp. Epps←RSetups(1

k)[Pr[B′(Dsim) = 1]] = Pr[S5]). Also, by the weak simulatability of
S, we have Pr[B′(Dreal) = 1] ≤ u · Pr[B′(Dsim) = 1] + ϵ. Hence, by the linearity of expectation,
we obtain Pr[S4] ≤ u · Pr[S5] + ϵ.

Putting everything together, we can upperbound A’s EUF-CMA advantage as follows:

AdvEUF-CMAΣFS,F ,A(k) = Pr[S1]

≤
∑
i∈[3]

∣∣∣Pr[Si]− Pr[Si+1]
∣∣∣+ Pr[S4]

≤
∑
i∈[3]

∣∣∣Pr[Si]− Pr[Si+1]
∣∣∣+ u(k) · Pr[S5] + ϵ(k),

≤ u(k) · Pr[S5] + ϵ′(k),

where u(k) is a polynomial and ϵ(k) is a negligible function that are both due to the weak sim-
ulatability of the linear sketch scheme S as seen above, and ϵ′ is another negligible function such
that ϵ′ = ϵ+ |Pr[S3]− Pr[S4]|. (Recall that Pr[S1] = Pr[S2] = Pr[S3].)

Hence, in order to complete the proof, it is sufficient to show that Pr[S5] is negligible. We show
this by relying on the Φadd-RKA∗ security of the underlying signature scheme Σ. Specifically, using
A as a building block, we construct the following PPTA adversary B that attacks the Φadd-RKA∗

security of the underlying signature scheme Σ:

17 That is, B′ runs A on input the public parameter pp = (pps, ppl) and the verification key V K = (vk =
KG′(pps, sk), c), and answers A’s signing queries as in Eq. (8).

22

BOSign(·,·)(pps, vk) : Let Λ := (Kpps ,+). B first generates ppl ←R Setupl(F , Λ) and sets pp ←
(pps, ppl). Next, B computes c ←R Simave(ppl), and then sets V K ← (vk, c). Then, B runs
A(pp, V K).
For each signing query m from A, B responds as follows:
1. Pick e←R Φ and ∆sk ←R Kpps .
2. Submit (ϕadd∆sk,m) to its own RKA-signing oracle OSign, and receive the result σ̃. (Note that

by definition, σ̃ is computed by σ̃ ←R Sign(pps, sk+∆sk,m), where sk is the original signing
key corresponding to vk that B received.)

3. Compute ṽk ← Mvk(pps, vk,∆sk) and c̃←R Mc(ppl, c,∆sk, e).

4. Return σ = (ṽk, σ̃, c̃) to A as the result of the signing query.

When A outputs (m′, σ′ = (ṽk
′
, σ̃′, c̃′)) and terminates, B computes ∆sk′ ← DiffRec(ppl, c, c̃

′),
and terminates with output (ϕadd∆sk′ ,m

′, σ̃′).

The above completes the description of B. It is not hard to see that B perfectly simulates Game 5
for A. In particular, B generates pp and V K = (vk, c) in exactly the same way as Game 5 (Eg. (9)).
Furthermore, since B can ask a RKA-signing query of the form (ϕadd∆sk,m) in the Φadd-RKA∗ experi-
ment and is given a signature σ̃ computed by using the “shifted” secret key sk+∆sk, we can view
sk+∆sk as s̃k generated for answering each signing query in Game 5 (exactly as in Eq. (8)). Note
also that the “used messages list” Q by A and that of B are identical.

We finally show that whenever A succeeds in outputting a successful forgery (m′, σ′ = (ṽk
′
,

σ′, c̃′)) such that VerFS(pp, V K,m
′, σ′) = ⊤, B also succeeds in outputting a successful forgery

(ϕadd∆sk′ ,m
′, σ̂′), such that

Ver(pps,KG
′(pps, sk +∆sk′),m′, σ̂′) = ⊤ where ∆sk′ = DiffRec(ppl, c, c̃

′). (10)

To see this, note that VerFS(pp, V K,m
′, σ′) = ⊤ implies Ver(pps, ṽk

′
,m′, σ̃′) = ⊤, DiffRec(ppl, c, c̃′) =

∆sk′, and Mvk(pps, vk,∆sk
′) = ṽk

′
. The last condition implies ṽk

′
= KG′(pps, sk + ∆sk′) due to

the weak homomorphic property of Σ. Thus, if A’s output (m′, σ′) satisfies the condition of vi-
olating the EUF-CMA security of ΣFS, B’s output (ϕadd∆sk′ ,m

′, σ̃′) satisfies the condition of violating

the Φadd-RKA∗ security of the underlying signature scheme Σ. Hence, we have AdvΦ
add-RKA∗

Σ,B (k) =

Pr[S5]. Since Σ is assumed to be Φadd-RKA∗ secure and B is a PPTA, we can conclude that Pr[S5]
is negligible.

At this point, we have shown that AdvEUF-CMAΣFS,F ,A(k) is upperbounded to be negligible. This com-
pletes the proof of Theorem 2. ⊓⊔

6 First Instantiation

This and next sections give the concrete instantiations of our generic construction of a fuzzy signa-
ture scheme given in Section 5. In this section, we give our first instantiation based on the Waters
signature scheme [35] that uses bilinear groups and the security is proven in the standard model.
One strong requirement of this instantiation is that it needs to assume that the fuzzy data is
distributed uniformly. (This requirement is relaxed in our second instantiation given in the next
section.)

The rest of this section is organized as follows. Since we treat real numbers in our instantiations
(in this and next sections), below we first clarify how we treat real numbers. Then in Section 6.1, we
first specify a concrete fuzzy key setting F1 for which our first instantiation is constructed. Next, in
Section 6.2, we provide some mathematical preliminaries. Armed with them, in Sections 6.3 and 6.4,

23

Fig. 5. An illustration of multiplication of a real number x = m
2γ

and an n-bit integer a.

we show the concrete linear sketch scheme SCRT for F1 and the signature scheme ΣMWS, respectively,
which are used to instantiate the building blocks of our generic construction. The final description
of the first instantiation of our fuzzy signature scheme, ΣFS1, is given in Section 6.5.

On the Treatment of Real Numbers. In this and next sections, we use real numbers to represent
and process fuzzy data. We assume that a suitable representation with sufficient accuracy is chosen
to encode the real numbers whenever they need to be treated by the considered algorithms.

Concretely, we assume that the significand of all real numbers is expressed in an a-priori fixed
length (in bits) λ, where λ is some natural number that is a polynomial of a security parameter
k. That is, a real number is expressed in the form m

2γ where m is a λ-bit integer that represents
the significand and γ ∈ Z is the exponent. Furthermore, if real numbers are involved in some
arithmetic operations such as addition and multiplication, then the rounding-down operation is
naturally applied to the significand of the resulting number, so that the result is always expressed
in the above form (i.e. its significand is expressed with λ bits). We stress that this setting is natural,
taking computer implementations into account.

For example, if we multiply a real number x = m
2γ (where m is a λ-bit integer and γ ∈ Z) with

an n-bit integer a, then the resulting number x · a is treated as⌊m · a
2n

⌋
· 2−(γ−n). (11)

That is, its significand is a λ-bit integer ⌊m·a2n ⌋ and its exponent is γ − n. This might not look
straightforward at first glance, but note that the significand ⌊m·a2n ⌋ is the result of the multiplication
m·a rounded down to have a λ-bit precision (the denominator 2n is due to the fact that a is an n-bit
integer). The exponent is correspondingly “shifted” to take into account that a is an n-bit integer.
See Fig. 5 for an illustration for the calculation of x · a. (Such multiplication of a real number in
[0, 1) with an integer appears in our concrete instantiations of linear sketch schemes in Sections 6.3
and 7.2 (and thus in the final descriptions of our concrete fuzzy signature schemes that appear in
Sections 6.5 and 7.3.).)

6.1 Specific Fuzzy Key Setting

Here, we specify a concrete fuzzy key setting F1 = ((d, X), t,X , Φ, ϵ) for which our first fuzzy
signature scheme ΣFS1 is constructed.

24

Metric space (d, X): We define the space X by X := [0, 1)n ⊂ Rn, where n is a parameter
specified by the context (e.g. an object from which we measure fuzzy data). We use the L∞-
distance as the distance function d : X × X → R. Namely, for x = (x1, . . . , xn) ∈ X and
x′ = (x′1, . . . , x

′
n) ∈ X, we define d(x,x′) := ∥x−x′∥∞ := maxi∈[n] |xi−x′i|. Note that X forms

an abelian group with respect to coordinate-wise addition (modulo 1).

Threshold t: For a security parameter k, we define the threshold t ∈ R so that

k = ⌊−n log2(2t)⌋. (12)

Looking ahead, this guarantees that the algorithm “WGen” that we will introduce in the next
subsection, is a PTA in k.

Furthermore, we require that n = O(log2 k), so that 2
n can be considered to be upperbounded by

some polynomial of k. Looking ahead, this property is used in showing the weak simulatability
of the linear sketch scheme SCRT.
We do not directly show that FAR is negligible here, because it is indirectly implied by the
EUF-CMA security of our proposed fuzzy signature scheme.

Distribution X : The uniform distribution over a “discretized” version of X = [0, 1)n. Specifically,
let λ ∈ N be the natural number that denotes the representation length of a real number
as introduced at the beginning of this section. We require that each coordinate xi of a data
x = (x1, . . . , xn) ∈ X is distributed as {j ←R Z2λ : j

2λ
}.

Furthermore, we require λ to be sufficiently large (at least k/n).

Error distribution Φ and Error parameter ϵ: Φ is any efficiently samplable (according to k)
distribution over X such that FRR ≤ ϵ for all x ∈ X.

6.2 Mathematical Preliminaries

Group Isomorphism Based on Chinese Remainder Theorem. Let n ∈ N. Let w1, . . . , wn ∈ N be
positive integers with the same bit length (i.e. ⌈log2w1⌉ = · · · = ⌈log2wn⌉), such that

∀i ∈ [n] : wi ≤
1

2t
, and ∀i ̸= j ∈ [n] : GCD(wi, wj) = 1, (13)

and W =
∏

i∈[n]wi = Θ(2k), where k is defined as in Eq. (12). Note that Eqs. (12) and (13) imply

that we have wi ≤ 2k/n for all i ∈ [n].

We assume that there exists a deterministic algorithm WGen that on input (t, n) outputs w =
(w1, . . . , wn) satisfying the above.

For vectors v = (v1, . . . , vn) ∈ Nn and w = (w1, . . . wn) ∈ Nn, we define

v mod w := (v1 mod w1, . . . , vn mod wn). (14)

For vectors v1,v2 ∈ Nn, we define the equivalence relation “∼” by

v1 ∼ v2
def⇐⇒ v1 mod w = v2 mod w,

and let Zn
w := Zn/ ∼ be the quotient set of Zn by ∼. Note that (Zn

w,+) constitutes an abelian
group, where the addition is modulo w as defined in Eq. (14).

Consider the following system of equations: given v,w ∈ Nn, find V such that V mod wi =
vi (i ∈ [n]). According to the Chinese remainder theorem (CRT), the solution V is determined
uniquely modulo W . Thus, for a fixed w ∈ Nn, we can define a mapping CRTw : Zn

w → ZW such

25

that CRTw(v) = V ∈ ZW . Note that this mapping is a bijection, and we denote by CRT−1w the
“inverse” procedure of CRTw.

Note that CRTw satisfies the following homomorphism: For all v1,v2 ∈ Zn
w, it holds that

CRTw(v1 + v2) = CRTw(v1) + CRTw(v2) modW.

Since CRTw is bijective between Zn
w and ZW , CRTw is an isomorphism.

Coding and Error Correction. Let w = (w1, . . . , wn) ∈ Nn be the n-dimensional vector satisfying
the requirements in Eq. (13). Similarly to Zn

w, we define Rn
w := Rn/ ∼ be the quotient set of

real vector space Rn by the equivalence relation ∼, where for a real number y ∈ R, we define
r = y mod wi by the number such that ∃n ∈ Z : y = nwi + r and 0 ≤ r < wi.

Let Ew : Rn → Rn
w be the following function:

Ew(x) := (w1x1, . . . , wnxn) ∈ Rn
w,

where x = (x1, . . . , xn) ∈ Rn. Note that it holds that

Ew(x+ e) = Ew(x) + Ew(e) (mod w). (15)

Therefore, Ew can be viewed as a kind of linear coding.
Let Cw : Rn

w → Zn
w be the following function:

Cw

(
(y1, . . . , yn)

)
:=

(
⌊y1 + 0.5⌋, . . . , ⌊yn + 0, 5⌋

)
. (16)

We note that the round-down operation ⌊yi+0.5⌋ in Cw can be regarded as a kind of error correction.
Specifically, by the conditions in Eq. (13), the following properties are satisfied: For any x,x′ ∈ X,
if ∥x− x′∥∞ < t, then we have∥∥∥ Ew(x)− Ew(x

′)
∥∥∥
∞
< t ·max

i∈[n]
{wi} ≤ 0.5.

Therefore, for such x,x′, it always holds that

Cw

(
Ew(x)− Ew(x

′)
)
= 0. (17)

Additionally, for any x ∈ Rn and s ∈ Zn
w, the following holds:

Cw(x+ s) = Cw(x) + s (mod w). (18)

6.3 Concrete Linear Sketch

Let F1 = ((d, X), t,X , Φ, ϵ) be the fuzzy key setting defined in Section 6.1, and letw = (w1, . . . , wn) =
WGen(t, n), where n is the dimension of X, and let W =

∏
i∈[n]wi. Let CRTw, CRT

−1
w , Ew, and Cw

be the functions defined in Section 6.2. Using these objects, we consider the linear sketch scheme
SCRT = (Setup,Sketch,DiffRec) for F1 and the additive group (ZW ,+) (=: Λ), as described in Fig. 6
(left). In the right of the figure, we also describe the auxiliary algorithm Mc that is used to show
the linearity of SCRT, and the simulator Sim that is used to show its weak simulatability.

The setup algorithm Setup in this linear sketch scheme actually does nothing, and the main
algorithms Sketch and DiffRec as well as the auxiliary algorithm Mc are all deterministic. Further-
more, recall that we assume that the decimal part of each coordinate wixi in the computation of
Ew(·) is rounded-down so that its precision is the same as xi. Concretely, since the significand of
each xi is expressed in λ bits and wi is a (⌈k/n⌉)-bit natural number, the decimal part of each wixi
is truncated to ℓ′ := λ − ⌈k/n⌉ bits. Correspondingly, the simulator also picks an element in Rn

w,
such that the integer part of each of its coordinates is sampled uniformly from Zwi , and its decimal
part is distributed uniformly in { j

2ℓ′
|j ∈ Z2ℓ

′}.

26

Setup(F1, Λ = (ZW ,+)) :
Return pp← Λ.

Sketch(pp, s ∈ ZW ,x ∈ [0, 1)n) :
c← (CRT−1

w (s) + Ew(x)) mod w
Return c.

DiffRec(pp, c, c′) :
∆s← Cw(c′ − c)
∆s← CRTw(∆s)
Return ∆s.

Mc(pp, c,∆s, e) :
c′ ← (c+ CRT−1

w (∆s) + Ew(e)) mod w
Return c′.

Sim(pp) :
cin ←R Zn

w

j ←R (Z2ℓ
′)n

cde ← 2−ℓ′ · j
c← cin + cde
Return c.

Fig. 6. The linear sketch scheme SCRT = (Setup, Sketch,DiffRec) for the fuzzy key setting F1 (left), and the auxiliary
algorithms Mc for showing linearity and the simulator Sim for showing weak simulatability (right). In the figure, all
addition are done in Rn

w, and ℓ′ = λ− k/n.

Remark on Hypothetical Recovering Attacks and Why They Do Not Work.
Let s ∈ ZW and s = (s1, . . . , sn) := CRT−1w (s) ∈ Zw. Let ci = si + wi · xi mod wi be the i-th
coordinate of a sketch c output from Sketch(pp, s,x), where x = (x1, . . . , xn) ←R X and thus
each wi is of the form xi =

j
2λ

for some λ-bit integer j. Notice that in our linear sketch scheme
SCRT, if it were not for the rounding-down operation after multiplication of wi and xi, it holds that
2λ · ci = 2λ · si + wi · j mod wi = 2λ · si mod wi. Hence, if furthermore GCD(2λ, wi) = 1, we can
recover si from ci by computing si = (2λ · ci) · (2λ)−1 mod wi, from which we can also recover xi.
(Yamada and Yasuda [37] pointed out recovering attacks of this kind.)

Similarly, notice that the “decimal” part c
(i)
de of ci is dependent only on wi and xi. Hence,

if it were not for the rounding-down operation after multiplication of wi and xi, c
(i)
de would be

wi · xi mod 1 = wi·j
2λ

mod 1. This would in turn imply 2λ · c(i)de = wi · j mod 2λ. If furthermore

GCD(2λ, wi) = 1, then we can calculate (2λ · c(i)de) · (wi)
−1 = j mod 2λ. Hence, j (and hence xi) could

be recovered from c
(i)
de as well.

However, such recovering attacks mentioned above do not apply to our proposed linear sketch
scheme SCRT due to the rounding-down operation. As explained in the “On the Treatment of Real
Numbers” paragraph, since each wi is a k/n-bit integer, each x

′
i = wi ·xi results in ⌊ wi·j

2k/n
⌋·2−(λ−k/n).

Thus, the i-th coordinate ci of c, and its decimal part c
(i)
de , are actually of the following forms:

ci = si +
⌊wi · j
2k/n

⌋
· 2−(λ−k/n) mod wi and c

(i)
de =

⌊wi · j
2k/n

⌋
· 2−(λ−k/n) mod 1,

for which the above mentioned methods for calculating xi =
j
2λ

from ci (in case GCD(2λ, wi) = 1)
are not applicable. In fact, the weak simulatability of SCRT that we show in Lemma 7 below implies
that if x is distributed as required in the fuzzy key setting F1 (specified in Section 6.1) and s is
chosen uniformly, then recovering fuzzy data x or the input s from c is not possible (except for a
negligible probability).

The following lemma guarantees that our construction SCRT satisfies all the requirements.

Lemma 7. The linear sketch scheme SCRT in Fig. 6 (left) satisfies Definition 12.

Proof of Lemma 7. We firstly show correctness, then linearity, and finally weak simulatability.

Correctness. The correctness of SCRT follows from the properties of the functions CRTw, Ew, and
Cw. Specifically, let x,x

′ ∈ X be such that d(x,x′) = ∥x−x′∥∞ < t. Let pp be a public parameter
output by Setup, let s,∆s ∈ ZW , and let s = CRT−1w (s) and∆s = CRT−1w (∆s). Furthermore, let c =

27

Sketch(pp, s,x) = (s+Ew(x)) mod w and c′ = Sketch(pp, s+∆s,x′) = (s+∆s+Ew(x
′)) mod w.

Then, we have

Cw(c
′ − c) = Cw

(
s+∆s+ Ew(x

′)− (s+ Ew(x))
)

(∗)
= ∆s+ Cw

(
Ew(x

′)− Ew(x)
)

(†)
= ∆s,

where (*) is due to Eq. (18) (we omit to write “ mod w”), and (†) is due to Eq. (17) and ∥x−x′∥∞ <
t. Thus,

DiffRec(pp, c, c′) = DiffRec
(
pp, Sketch(pp, s,x), Sketch(pp, s+∆s,x′)

)
= CRTw

(
Cw(c

′ − c)
)
= CRTw(∆s) = ∆s,

which shows that the correctness condition (Eq. (5)) is satisfied.

Linearity. We consider the auxiliary algorithm Mc as described in Fig. 6 (right-top). To see that
Mc satisfies the required property, let x, e ∈ Rn

w and s,∆s ∈ ZW , and let s = CRT−1w (s) and
∆s = CRT−1w (∆s). Then, note that Sketch(pp, s,x) = (s + Ew(x)) mod w and CRT−1w (s +∆s) =
(s+∆s) mod w. Thus, it holds that

Mc

(
pp,Sketch(pp, s,x),∆s, e

)
=

(
s+ Ew(x) +∆s+ Ew(e)

)
mod w

(∗)
=

(
s+∆s+ Ew(x+ e)

)
mod w = Sketch(pp, s+∆s,x+ e),

where (*) is due to the linearity of Ew (Eq. (15)). This equation implies that the two distributions
in Eq. (6) are identical, and hence the linearity is satisfied.

Weak Simulatability. We consider the simulator Sim as described in Fig. 6 (right-bottom). Let Dreal

and Dsim be the distributions for the weak simulatability of SCRT, which are defined as follows:

Dreal :=
{

x←R X ; s←R ZW ; c← CRT−1w (s) + Ew(x) : (s, c)
}

=
{

j ←R (Z2λ)
n; x← 2−λ · j; s←R ZW ; c← CRT−1w (s) + Ew(x) : (s, c)

}
,

Dsim :=
{
s←R ZW ; c←R Sim(pp) : (s, c)

}
=

{
s←R ZW ; cin ←R Zn

w; j ←R (Z2ℓ
′)n; cde ← 2−ℓ

′ · j; c← cin + cde : (s, c)
}
,

where pp = Λ = (ZW ,+) and ℓ′ = λ − k/n. We will show that for any (even computationally
unbounded) algorithm A, the following inequality holds:

Pr[A(Dreal) = 1] ≤ 2n · Pr[A(Dsim) = 1]. (19)

Recall that we are requiring that n = O(log2 k), equivalently 2n is smaller than some polynomial
of k, and hence Eq. (19) implies weak simulatability.

Instead of directly showing Eq. (19) for any algorithm A, we first slightly simplify the setting.
Specifically, consider the following two distributions D′real and D′sim:

D′real :=
{

j ←R (Z2λ)
n; x←R 2

−λ · j; x′ ← Ew(x) : x
′
}

D′sim :=
{

x′in ←R Zn
w; j ←R (Z2ℓ

′)n; x′de ← 2−ℓ
′ · j; x′ ← x′in + x′de : x

′
}
.

28

We now show that for any algorithm A considered for weak simulatability, there exists a corre-
sponding algorithm B (with almost the same running time as A) such that Pr[A(Dreal) = 1] =
Pr[B(D′real) = 1] and Pr[A(Dsim) = 1] = Pr[B(D′sim) = 1]. Specifically, B takes x′ ∈ Rn

w as input,
picks s ∈ ZW uniformly at random, sets c← CRT−1w (s)+x′, and outputs A(s, c). If x′ that is input
to B is sampled from D′real, then the pair (s, c) that B inputs to A is distributed identically to
Dreal, while if x

′ is sampled from D′sim, then (s, c) is distributed identically to Dsim. (In particular,
the “integer part” of c is uniformly distributed over Zn

w, even if CRT−1w (s) is added.) Clearly, this
B satisfies Pr[B(D′real) = 1] = Pr[A(Dreal) = 1] and Pr[B(D′sim) = 1] = Pr[A(Dsim) = 1].

Hence, in order to show Eq. (19) for any algorithm A, it is sufficient to show the following
inequality for any algorithm B:

Pr[B(D′real) = 1] ≤ 2n · Pr[B(D′sim) = 1]. (20)

Furthermore, notice that D′sim is nothing but the uniform distribution over the set Zn
w × {

j

2ℓ′
|j ∈

Z2ℓ
′}n, whose size is

∏
i∈[n](wi · 2ℓ

′
). Hence, by applying Lemma 2, we obtain

Pr[B(D′real) = 1] ≤
∏
i∈[n]

(wi · 2ℓ
′
) · 2−H∞(D′

real) · Pr[B(D′sim) = 1]. (21)

To complete the proof, we will show

2−H∞(D′
real) ≤

∏
i∈[n]

(1

wi · 2ℓ′
+

1

2λ

)
. (22)

Before showing the above, note that Eq. (22) implies that
∏

i∈[n](wi · 2ℓ
′
) · 2−H∞(D′

real) (appearing
in the right hand side of Eq. (21)) is upperbounded as follows:∏

i∈[n]

(wi · 2ℓ
′
) ·

∏
i∈[n]

(
1

wi · 2ℓ′
+

1

2λ
) ≤

∏
i∈[n]

(1 + 2k/n+ℓ′−λ) = 2n,

where the inequality uses wi ≤ 2k/n, and the equality uses ℓ′ = λ − k/n. Thus, if indeed we can
show Eq. (22), then by combining it with Eq. (21), we can obtain Eq. (20).

Hence, it remains to show Eq. (22). For each i ∈ [n], let D′(i)real be the distribution of the i-th

coordinate in D′real. Recall that each wi is a k/n-bit integer, each xi ∈ [0, 1) is of the form j
2λ

where

j ←R Z2λ , and x′i is a multiplication of wi and xi. Recall also that ℓ′ = λ − k/n. Hence, D′(i)real is
distributed as follows (see also Eq. (11)):

D′(i)real =
{
j ←R Z2λ ; xi ← 2−λ · j : ⌊wi · xi · 2ℓ

′⌋ · 2−ℓ′
}
=

{
j ←R Z2λ : ⌊wi · j · 2ℓ

′−λ⌋ · 2−ℓ′
}
.

We can thus calculate 2−H∞(D′
real) as follows:

2−H∞(D′
real) =

∏
i∈[n]

2−H∞(D′(i)
real) =

∏
i∈[n]

(
max
z∈Rwi

Pr
x′
i←RD′(i)

real

[x′i = z]
)

=
∏
i∈[n]

(
max
z∈Rwi

Pr
j←RZ2λ

[
⌊wi · j · 2ℓ

′−λ⌋ · 2−ℓ′ = z
])

=
∏
i∈[n]

(
max
z∈Rwi

Pr
j←RZ2λ

[
z · 2ℓ′ ≤ wi · j · 2ℓ

′−λ < z · 2ℓ′ + 1
])

=
∏
i∈[n]

(
max
z∈Rwi

Pr
j←RZ2λ

[z · 2λ
wi

≤ j < z · 2λ

wi
+

2λ

wi · 2ℓ′
])

. (23)

29

Now, for each z ∈ Rwi , let az be the number of integers that belong to the interval [z·2
λ

wi
, (z·2

ℓ′+1)·2λ
wi·2ℓ′

).

By definition, the probability appearing in Eq. (23) is az
2λ
. Furthermore, the number of integers that

belong to an interval [l, r) is at most r − l + 1, and thus we have az ≤ 2λ

wi·2ℓ′
+ 1. (Note that the

right hand side is independent of z.) Using this, we can upperbound 2−H∞(D′
real) as follows:

2−H∞(D′
real) =

∏
i∈[n]

(
max
z∈Rwi

az
2λ

)
≤

∏
i∈[n]

(1

wi · 2ℓ′
+

1

2λ

)
,

which is exactly Eq. (22), as required. This completes the proof that SCRT satisfies weak simulata-
bility, and the entire proof of Lemma 7. ⊓⊔

6.4 Modified Waters Signature Scheme

Here, we show a variant of the Waters signature scheme [35], which we call the modified Waters
signature (MWS) scheme ΣMWS.

Specific Bilinear Group Generator BGGenMWS. In the MWS scheme, we use a (slightly) non-standard
way for specifying bilinear groups, namely, the order p of (symmetric) bilinear groups is generated
based on an integer W =

∏
i∈[n]wi, where w = (w1, . . . , wn) ∈ Nn satisfies the conditions in

Eq. (13), so that p is the smallest prime satisfying W |p − 1. More concretely, we consider the
following algorithm PGen for choosing the order p based on W :

PGen(W): On input W ∈ N, for i = 1, 2, . . . check if p = iW + 1 is a prime and return p if this is
the case. Otherwise, increment i← i+ 1 and go to the next iteration.

According to the prime number theorem, the density of primes among the natural numbers
that are less than N is roughly 1/ lnN , and thus, for i’s that are exponentially smaller than W ,
the probability that iW + 1 is a prime can be roughly estimated as 1/ lnW . Therefore, by using
the above algorithm PGen, one can find a prime p satisfying W |p− 1 by performing the primality
testing for O(lnW) = O(k) times on average (recall that W = Θ(2k)). Furthermore, if PGen(W)
outputs p, then it is guaranteed that p/W = O(k). (This fact is used for security.)

Let BGGenMWS denote an algorithm that, given 1k, runs w ← WGen(t, n) where t and n are
the parameters from the fuzzy data setting F corresponding the security parameter k, computes
W ←

∏
i∈[n]wi, p ← PGen(W), and outputs a description of bilinear groups BG = (p,G,GT , g, e),

where G and GT are cyclic groups with order p and e : G×G→ GT is a bilinear map.

Construction. Using BGGenMWS and the algorithms in the original Waters signature scheme ΣWat =
(SetupWat,KGWat, SignWat,VerWat) in Fig. 3 (left), the MWS scheme ΣMWS = (SetupMWS,KGMWS, SignMWS,
VerMWS) is constructed as in Fig. 7 (left). Note that the component ppWat in a public parameter pp
(generated by SetupMWS) is distributed identically to that generated in the original Waters scheme
ΣWat in which the bilinear group generator BGGenMWS is used. Therefore, ΣMWS can be viewed as the
original Waters scheme ΣWat, except that

1. we specify how to generate the parameter of bilinear groups by BGGenMWS, and

2. we use a secret key sk′ (for the Waters scheme) of the form sk′ = zsk mod p, thereby we change
the signing key space from Zp to ZW .

30

SetupMWS(1
k) :

BG = (p,G,GT , g, e)←R BGGenMWS(1
k)

h, u′, u1, . . . , uℓ ←R G
ppWat ← (BG, h, u′, (ui)i∈[ℓ])
Let z ∈ Z∗

p be an element of order W .
Return pp← (ppWat, z).

KGMWS(pp) :
sk ←R ZW

vk ← gz
sk

Return (vk, sk).

SignMWS(pp, sk,m) :

sk′ ← zsk mod p
Return SignWat(ppWat, sk

′,m).

VerMWS(pp, vk,m, σ) :
Return VerWat(ppWat, vk,m, σ).

KG′(pp, sk) :

vk ← gz
sk

Return vk.

Mvk(pp, vk,∆sk) :

vk′ ← (vk)z
∆sk

Return vk′.

Msig(pp, vk,m, σ,∆sk) :

σ′
1 ← σz∆sk

1

σ′
2 ← σz∆sk

2

Return σ′ ← (σ′
1, σ

′
2).

Fig. 7. The modified Waters signature (MWS) scheme ΣMWS (left), and the auxiliary algorithms (KG′,Mvk,Msig) for
showing the homomorphic property (right). Note that the signing algorithm SignMWS (resp. the verification algorithm
VerMWS) of the MWS scheme ΣMWS uses the signing algorithm SignWat (resp. the verification algorithm VerWat) of the
original Waters scheme ΣWat (described in Fig. 3 (left)) as a subroutine.

Because of these changes, it is immediate to see that the MWS scheme inherits the perfect correct-
ness of the Waters signature scheme.

In the following, we show that ΣMWS satisfies EUF-CMA security (based on the CDH assumption
with respect to BGGenMWS) and the homomorphic property (Definition 9). These properties, com-
bined with Lemma 5, imply that ΣMWS satisfies Φ

add-RKA∗ security, and thus satisfies the assumption
required in Theorem 2. (One might suspect the plausibility of the CDH assumption with respect
to BGGenMWS due to our specific choice of the order p. We discuss it in Appendix G.)

Lemma 8. If the CDH assumption holds with respect to BGGenMWS, then the MWS scheme ΣMWS is
EUF-CMA secure.

Let pp = (ppWat, z) be a public parameter output by SetupMWS, let D
(1)
pp = {sk ←R ZW ; sk′ ←

zsk mod p : sk′} and D(2)
pp = {sk′ ←R Zp : sk′}. Note that the support of D

(1)
pp is a strict subset of

that of D
(2)
pp .

Now, let A be any PPTA adversary that attacks the EUF-CMA security of the MWS scheme ΣMWS.
Let Expt1 be the original EUF-CMA experiment, i.e. ExptEUF-CMAΣMWS,A (k), and let Expt2 be the experiment
that is defined in the same manner as Expt1, except that sk

′ is sampled according to the distribution

D
(2)
pp . For both i ∈ {1, 2}, let Advi be the advantage of A (i.e. the probability of A outputting a

successful forgery) in Expti. Then, by Lemma 4, we have Adv1 ≤ (p/W) · Adv2 = O(k) · Adv2. Fur-
thermore, it is straightforward to see that succeeding in forging in Expt2 is as difficult as succeeding
in breaking the EUF-CMA security of the original Waters scheme ΣWat (in which the bilinear group
generator BGGenMWS is used), and thus Adv2 is negligible if ΣWat is EUF-CMA secure.

Finally, due to Waters [35], if the CDH assumption holds with respect to BGGenMWS, then the
Waters scheme ΣWat (in which BGGenMWS is used,) is EUF-CMA secure. Hence, Adv2 is negligible.
Combining all the explanations proves the lemma. ⊓⊔

Lemma 9. The MWS scheme ΣMWS is homomorphic (as per Definition 9).

Proof of Lemma 9. Consider the algorithms (KG′,Mvk,Msig) that are described in Fig. 7 (right).
KG′ is the algorithm for showing that this scheme has a simple key generation process. That is,

31

using this algorithm, KGMWS can be rewritten with the process in Eq. (1). The secret key space is
ZW , and (ZW ,+) constitutes an abelian group, as required.

Next, it should be easy to see that Mvk satisfies the requirement in Eq. (2). Indeed, let pp =
(ppWat, z) be a public parameter, and let sk,∆sk ∈ ZW . Then, it holds that

Mvk(pp,KG
′(pp, sk),∆sk) = (gz

sk
)z

∆sk
= gz

sk+∆sk
= KG′(pp, sk +∆sk),

which is exactly Eq. (2).
Finally, we observe that Msig satisfies the requirements in Eq. (3). Let pp = (ppWat, z) and

sk,∆sk ∈ ZW as above, and m = (m1∥ . . . ∥mℓ) ∈ {0, 1}ℓ be a message to be signed. Let (σ1, σ2)
be a signature on the message m that is generated by SignMWS(pp, sk,m; r), where r ∈ Zp is a

randomness. By definition, σ1 and σ2 are of the form σ1 = hz
sk · (u′ ·

∏
i∈[ℓ] u

mi
i)r and σ2 = gr,

respectively. Thus, if σ′ = (σ′1, σ
′
2) is output by Msig(pp, vk,m, σ,∆sk), then it holds that

σ′1 = σz
∆sk

1 = hz
sk+∆sk · (u′ ·

∏
i∈[ℓ]

umi
i)r·z

∆sk
,

σ′2 = σz
∆sk

2 = gr·z
∆sk

.

This implies σ′ = (σ′1, σ
′
2) = SignMWS(pp, sk + ∆sk,m; r · z∆sk). Note that for any ∆sk ∈ ZW ,

if r ←R Zp, then ((r · z∆sk) mod p) is uniformly distributed in Zp. This implies that the distri-
butions considered in Eq. (3) are identical. Furthermore, by the property of the MWS scheme
(which is inherited from the original Waters scheme [35]), any signature σ′ = (σ′1, σ

′
2) satisfying

VerMWS(pp, vk,m, σ
′) = ⊤ must satisfy the property that there exists r′ ∈ Zp such that SignMWS(pp,

sk,m; r′) = σ′. Putting everything together implies that for any sk,∆sk ∈ ZW , any message
m ∈ {0, 1}ℓ, and any signature σ such that VerMWS(pp, vk,m, σ) = ⊤, if vk = KG′(pp, sk), vk′ =
Mvk(pp, vk,∆sk) and σ′ = Msig(pp, vk,m, σ,∆sk), then it holds that VerMWS(pp, vk

′,m, σ′) = ⊤.
Therefore, the requirement regarding Eq. (4) is satisfied as well. This completes the proof of
Lemma 9. ⊓⊔

6.5 Full Description

Here, we give the full description of our first instantiation of a fuzzy signature scheme, by instan-
tiating the underlying linear sketch and signature schemes in the generic construction, with the
concrete linear sketch scheme SCRT (given in Section 6.3) and the MWS scheme ΣMWS (given in
Section 6.4), respectively.

Let ℓ = ℓ(k) be a positive polynomial that denotes the length of messages. Let F1 = ((d, X), t,X , Φ, ϵ)
be the fuzzy key setting defined in Section 6.1, where t (and n) are determined according to the
security parameter k. let w = (w1, . . . , wn) = WGen(t, n), where n is the dimension of X, and
let W =

∏
i∈[n]wi. Let CRTw, CRT

−1
w , Ew, and Cw be the functions defined in Section 6.2. Let

BGGenMWS be the bilinear group generator defined in Section 6.4. Then, using these ingredients, our
first proposed fuzzy signature scheme ΣFS1 = (SetupFS1,KGFS1, SignFS1,VerFS1) for the fuzzy key
setting F1 is constructed as in Fig. 8.18

The following theorem guarantees the correctness and security of our scheme ΣFS1, which is
obtained as a corollary of the combination of Theorems 1 and 2, and Lemmas 5, 7, 8, and 9.

Theorem 3. The fuzzy signature scheme ΣFS1 for the fuzzy key setting F1 in Fig. 8 is ϵ-correct.
Furthermore, if the CDH assumption holds with respect to BGGenMWS, then ΣFS1 is EUF-CMA secure.

18 In Fig. 8, the operations involving “Roundℓ” enclosed by a box in KGFS1 and SignFS1 are those for concerning
practical treatment of real numbers explained in Section 8. The reader who has not read there is expected to
ignore them.

32

SetupFS1(F1, 1
k) :

Let BG := (p,G,GT , g, e)← BGGenMWS(1
k)

h, u′, u1, . . . , uℓ ←R G
Let z be an element of Z∗

p of order W .
Let Λ := (ZW ,+).
Return pp← (BG, h, u′, (ui)i∈[ℓ], z, Λ).

KGFS1(pp,x) :
sk ←R ZW

vk ← gz
sk

c← (CRT−1
w (sk) + Ew(x)) mod w

c← Roundℓ(c)
(†)

Return V K ← (vk, c).

SignFS1(pp,x
′,m) :

Parse m as (m1∥ . . . ∥mℓ) ∈ {0, 1}ℓ.
s̃k ←R ZW

ṽk ← gz
s̃k

r ←R Zp

σ̃1 ← hzs̃k · (u′ ·
∏

i∈[ℓ] u
mi
i)r

σ̃2 ← gr

c̃← (CRT−1
w (s̃k) + Ew(x′)) mod w

c̃← Roundℓ(c̃)
(†)

Return σ ← (ṽk, σ̃1, σ̃2, c̃).

VerFS1(pp, V K,m, σ) :
(vk, c)← V K

(ṽk, σ̃1, σ̃2, c̃)← σ

Parse m as (m1∥ . . . ∥mℓ) ∈ {0, 1}ℓ.
If e(σ̃2, u

′ ·
∏

i∈[ℓ] u
mi
i) · e(ṽk, h)

̸= e(σ̃1, g) then return ⊥.
∆s← Cw(c̃− c)
∆sk ← CRTw(∆s)

If (vk)z
∆sk

= ṽk then return ⊤
else return ⊥.

Fig. 8. Our first instantiation of a fuzzy signature scheme ΣFS1.
(†) The steps involving “Roundℓ” enclosed by a box

in KGFS1 and SignFS1 are those at which we perform the “rounding” operation of the decimal part, which we will
explain in Section 8. (The reader who has not read there is expected to ignore them.)

7 Second Instantiation

In this section, we propose our second instantiation of a fuzzy signature scheme, based on the
Schnorr signature scheme. The strong requirement for our first instantiation proposed in Section 6
is that the fuzzy data is assumed to be distributed uniformly. This strong requirement is relaxed
in our second instantiation.

The rest of this section is organized as follows. In Section 7.1, we specify a concrete fuzzy
key setting F2 for which our second instantiation is constructed. Next, in Section 7.2, we show
the concrete linear sketch scheme SHash for F2. Combining this linear sketch scheme SHash and
the Schnorr signature scheme ΣSch (Fig. 3 (right)), we obtain our second instantiation of a fuzzy
signature scheme ΣFS2. The description of this fuzzy signature scheme ΣFS2 is given in Section 7.3.

In this section, we treat real numbers in the same way as in Section 6.

7.1 Specific Fuzzy Key Setting

Here, we specify a concrete fuzzy key setting F2 = ((d, X), t,X , Φ, ϵ) for which our linear sketch
scheme SHash and our Schnorr-based fuzzy signature scheme ΣFS2 are constructed.

Metric space (d, X): The space X is defined by X := [0, 1)n ⊂ Rn, where n ∈ N is a parameter
specified by the context (e.g. an object from which we measure fuzzy data) and a security
parameter k. The distance function d : X × X → R is the L∞-distance. Namely, for x =
(x1, . . . , xn) ∈ X and x′ = (x′1, . . . , x

′
n) ∈ X, we define d(x,x′) := ∥x−x′∥∞ := maxi∈[n] |xi−x′i|.

Note that X forms an abelian group with respect to coordinate-wise addition (modulo 1).

Threshold t: For a security parameter k, we require the threshold t ∈ R to satisfy

k ≤ ⌊−n log2(2t)⌋. (24)

For notational convenience, let T := 1/(2t).

33

Distribution X : An efficiently samplable distribution over a “discretized” version of X = [0, 1)n.
That is, letting λ ∈ N denote the length of the significand of a real number, if x = (x1, . . . , xn)
is sampled from X , then each xi is of the form m

2λ
, where m is a λ-bit integer. (See the “On the

Treatment of Real Numbers” paragraph at the beginning of Section 6.) We require T ≤ λ.
Furthermore, we require that X satisfy the assumption on the average min-entropy that we
state later.

Error distribution Φ and Error parameter ϵ: Φ is any efficiently samplable (according to k)
distribution over X such that FRR ≤ ϵ for all x ∈ X.

Here, before going into the actual requirement on the distribution X , we quickly highlight the
difference between the fuzzy key setting F2 and F1 (where the latter is the one for which we
constructed our first concrete fuzzy signature scheme in Section 6): The only difference between F2

and F1, other than X , is in the threshold t. Here, we need a more strict threshold for t, so that we
can use the leftover hash lemma, as we will see in the proof of Lemma 10.

The Requirement on the Distribution of Fuzzy Data X . Let X ′ be the “scaled-up” version of X ,
namely, X ′ is the distribution obtained by multiplying the value T = 1/(2t) to the outcome of
the distribution X , where the rounding-down operation is performed for each coordinate of X ′ as
explained at the “On the Treatment of Real Numbers” paragraph in the beginning of Section 6.
Since X is a distribution over [0, 1)n, X ′ is a distribution over [0, T)n. Now, let us divide X ′ into the
“integer” part X ′in and the “decimal” part X ′de. Namely, let x′ = (x′1, . . . , x

′
n) be a vector produced

from X ′. Then, X ′in is the distribution of the n-dimensional vector whose i-th element is the integer
part of x′i. Similarly, X ′de is the distribution of the n-dimensional vector whose i-th element is the
decimal part of x′i. Note that each coordinate of the integer part X ′in is represented by log2 T bits,
and thus each coordinate of the decimal part X ′de will have (λ − log2 T)-bit precision, so that the
significand of the entire x′i is expressed in λ bits. Note also that the joint distribution (X ′in,X ′de)
contains the same information as X ′ (and hence as X).

The requirement we impose on the distribution X is that we have

H̃∞(X ′in|X ′de) ≥ log2 p+ ω(log2 k),

where p is the order of the field over which we consider the universal hash family Hlin. We note
that H̃∞(X ′in|X ′de) = H̃∞(X ′|X ′de). Looking ahead, p will also be the order of the group over which
the Schnorr scheme is constructed, and thus we typically set |p| = ⌈log2 p⌉ = Θ(k).

We would like to emphasize that our requirement on the distribution X in F2 is arguably much
more natural and relaxed than requiring that X is the uniform distribution over (the discretized
version of) X (as is required of F1). Specifically, in order for the above requirement for X to be
satisfied, it is necessary that X ′de does not leak much about X ′in. Intuitively, when fuzzy data x is
sampled from an object according to some distribution, the upper part of (in the representation of
the significand of) x should be dominant for identifying the object. On the other hand, the lower
part of x should be dominated by noise caused at the measurement of x. Since we are adopting
the universal error model in which the measurement error captured by the error distribution Φ is
independent of individual objects producing fuzzy data, the lower-part of x contains information
that is less dependent on the original object. In our requirement for the fuzzy data distribution X ,
the distribution of the upper (resp. lower) part of fuzzy data corresponds to X ′in (resp. X ′de), and thus
requiring that X ′de does not leak much information about X ′in, is arguably a natural requirement.

7.2 Concrete Linear Sketch

Let F2 = ((d, X), t,X , Φ, ϵ) be the fuzzy key setting as defined above. Let Fp be a finite field
with prime order p satisfying p ≥ T = 1/(2t). Here, we identify Fp with Zp, and thus we freely

34

Setup(F2, Λ = (Zp,+)) :
z ←R Fpn

pp← (Λ, z)
Return pp.

Sketch(pp, s,x) : (where s ∈ Zp and x ∈ [0, 1)n)
α←R h

−1
z (s)

c← α+ T · x (†)

Return c.

DiffRec(pp, c, c′) :

∆c← c′ − c (†)

∆s← hz(⌊∆c⌉)
Return ∆.

Mc(pp, c,∆s, e) :
∆α←R h

−1
z (∆s)

c′ ← (c+∆α+ T · e) (†)

Return c′.

Sim(pp) :
x←R X
s′ ←R Zp

c← Sketch(pp, s′,x)
Return c.

Fig. 9. The linear sketch scheme SHash = (Setup, Sketch,DiffRec) for the fuzzy key setting F2 (left), and the auxiliary
algorithm Mc for showing linearity and the simulator Sim for showing weak simulatability (right). (†) The operation
“+” (resp. “−”) in (Rp)

n are the coordinate-wise addition (resp. subtraction) in Rp.

interpret an element in the former set as an element in the latter set, and vice versa. Let Hlin =
{ hz : (Fp)

n → Fp}z∈Fpn
be the universal hash function family with linearity, which is described in

Section 2.3. For each z ∈ Fpn and s ∈ Fp, we define “h−1z (s)” as the set of preimages of s under
hz. That is, h

−1
z (s) := {α ∈ (Fp)

n|hz(α) = s}. Hence, the notation “α←R h
−1
z (s)” means that we

choose a vector α uniformly from the set h−1z (s) (which can be performed efficiently in terms of
log2(p

n)). Furthermore, recall that T = 1/(2t).
Then, using these ingredients, our linear sketch scheme SHash = (Setup,Sketch,DiffRec) for

F2 and the additive group (Zp,+) (=: Λ) is constructed as described in Fig. 9 (left), where for
convenience, we also give the description of the auxiliary algorithm Mc used for showing its linearity
and that of the simulator Sim for showing its weak simulatability (right).

We remind the reader that we are treating real numbers as explained in the “On the Treatment
of Real Numbers” paragraph at the beginning of Section 6. We remark that as in our first linear
sketch scheme SCRT proposed in Section 6.3, if it the rounding-down operation were not performed
after multiplication T · x in the computation of Sketch(pp, s,x), then a hypothetical recovering
attack (that recovers x and s from a sketch c) could work [37]. However, due to our treatment of
real numbers, if x is distributed as required in the fuzzy key setting F2 (specified in Section 7.1),
then recovering x or s is not possible.

The following lemma guarantees that our construction SHash satisfies all the requirements.

Lemma 10. The linear sketch scheme SHash in Fig. 9 (left) satisfies Definition 12.

Proof of Lemma 10. Roughly speaking, the correctness follows from the linearity of the universal
hash family Hlin and a simple algebra; The linearity property of S follows from the linearity of
Hlin; The weak simulatability follows from the leftover hash lemma together with the requirement
on the average min-entropy satisfied by the distribution X of fuzzy data in the fuzzy key setting
F2 specified in Section 7.1.

Below, we first show correctness, then linearity, and finally weak simulatability.19

Correctness. Fix pp = (Λ = (Zp,+), z), x,x′ ∈ X such that d(x,x) = ∥x − x′∥∞ < t, and
s,∆s ∈ Fp. Recall that T = 1/(2t). Note that ∥x−x′∥∞ < t implies ∥T ·(x−x′)∥∞ < 1/2, and hence
⌊T · (x−x′)⌉ = 0. Now, suppose c and c′ are output by Sketch(pp, s, x) and Sketch(pp, s+∆s, x′),

19 In fact, the construction shown here satisfies average-case indistinguishability that we defined in [18]. See Ap-
pendix C for its definition.

35

respectively. Then, by the definition of Sketch, it holds that c = α+T ·x for some α ∈ h−1z (s) and
c′ = α′ + T · x′ for some α′ ∈ h−1z (s+∆s). Therefore,

DiffRec(pp, c, c′) = hz(⌊c′ − c⌉)
= hz(⌊(α′ + T · x′)− (α+ T · x)⌉)
= hz(α

′ −α+ ⌊T · (x′ − x)⌉)
(∗)
= hz(α

′ −α)

(∗∗)
= hz(α

′)− hz(α)

= (s+∆s)− s = ∆s,

where the equality (*) is due to ⌊T · (x− x′)⌉ = 0, and the equality (**) is due to the linearity of
Hlin. This shows that Eq. (5) is satisfied, and thus SHash satisfies correctness.

Linearity. We use the auxiliary algorithm Mc in Fig. 9 (right-top). Fix pp = (Λ = (Zp,+), z), x, e ∈
X, and s,∆s ∈ Fp. For showing linearity, it is sufficient to show that the following distributions D1

and D2 are equivalent:

D1 :=
{

c←R Sketch(pp, s,x); c′ ←R Sketch(pp, s+∆s,x+ e) : (c, c′)
}

=
{

α←R h
−1
z (s); c← α+ T · x; α′ ←R h

−1
z (s+∆s);

c′ ← α′ + T · (x+ e) : (c, c′)
}
,

D2 :=
{

c←R Sketch(pp, s,x); c′ ←R Mc(pp, c,∆s, e) : (c, c
′)
}

=
{

α←R h
−1
z (s); c← α+ T · x; ∆α←R h

−1
z (∆s);

c′ ← c+∆α+ T · e : (c, c′)
}

=
{

α←R h
−1
z (s); c← α+ T · x; ∆α←R h

−1
z (∆s);

c′ ← α+∆α+ T · (x+ e) : (c, c′)
}
.

To this end, focusing on the difference between the above D1 and D2, and also on how c′ is generated,
it is sufficient to show that the following two distributions D′1 and D′2 are equivalent:

D′1 :=
{

α←R h
−1
z (s); α′ ←R h

−1
z (s+∆s) : (α,α′)

}
,

D′2 :=
{

α←R h
−1
z (s); ∆α←R h

−1
z (∆s); α′ ← α+∆α : (α,α′)

}
.

Here, D′1 is the uniform distribution over the direct product (h−1z (s)) × (h−1z (s + ∆s)). We show
that D′2 is also the uniform distribution over the same set. Indeed, by the linearity of Hlin, for
any s′, s′′ ∈ Fp, the set h−1z (s′) and the set h−1z (s′′) have the same size, and the second element
α′ produced from D′2 belongs to the set h−1z (s + ∆s). This means that for each fixed element
α̃ ∈ h−1z (s), the distribution D′ = {∆α ←R h

−1
z (∆s) : α̃ + ∆α} yields the uniform distribution

over h−1z (s +∆s). This in turn means that D′2 is the uniform distribution over the direct product
(h−1z (s)) × (h−1z (s + ∆s)). Hence, we can conclude that the original distributions D1 and D2 are
equivalent, and thus SHash satisfies linearity.

36

Weak Simulatability. We use the simulator Sim in Fig. 9 (right-bottom). We will show that the
statistical distance between the following two distributions Dreal and Dsim is negligibly small:

Dreal :=
{
pp←R Setup(F2, Λ); x←R X ; s←R Fp; c←R Sketch(pp, s,x) : (pp, s, c)

}
=

{
z ←R Z; x←R X ; s←R Fp; α←R h

−1
z (s); c← α+ T · x : (z, s, c)

}
,

Dsim :=
{
pp←R Setup(F2, Λ); s←R Fp; c←R Sim(pp) : (pp, s, c)

}
=

{
z ←R Z; x←R X ; s, s′ ←R Fp; α←R h

−1
z (s′); c← α+ T · x : (z, s, c)

}
,

where Z = Fpn is the seed space of Hlin. Note that this implies weak simulatability, because for all
(even computationally unbounded) algorithms A, it holds that Pr[A(Dreal) = 1] ≤ Pr[A(Dsim) =
1] + SD(Dreal,Dsim),20 and thus shows that SHash satisfies weak simulatability.

Firstly, note that for every z ∈ Z, the distribution {s ←R Fp; α ←R h
−1
z (s) : (s,α)} and the

distribution {α←R (Fp)
n; s← hz(α) : (s,α)} are equivalent. Hence, the above distributions Dreal

and Dsim are respectively equivalent to the following distributions D′real and D′sim:

D′real :=
{
z ←R Z; x←R X ; α←R (Fp)

n; c← α+ T · x : (z, hz(α), c)
}
,

D′sim :=
{
z ←R Z; x←R X ; α←R (Fp)

n; c← α+ T · x; s←R Fp : (z, s, c)
}
.

Clearly we have SD(Dreal,Dsim) = SD(D′real,D′sim).

Now, we define the joint distribution (A,C) as follows:

(A,C) :=
{

x←R X ; α←R (Fp)
n; c← α+ T · x : (α, c)

}
.

We can think of this joint distribution as the distribution specifying that for the “input” α for
a hash function hz and “leakage” c (about the input α). Hence, if we can show that H̃∞(A|C)
is “sufficiently large”, then we can apply the leftover hash lemma (Lemma 3) to upperbound
SD(D′real,D′sim) = SD(Dreal,Dsim) to be “small”, leading to the desired conclusion that SHash
satisfies weak simulatability. To this end, we show that H̃∞(A|C) = H̃∞(X ′in|X ′de) holds, where X ′in
and X ′de are respectively the “integer” part and the “decimal” part of the “scaled-up” version X ′
of the original distribution X of fuzzy data that we introduced in Section 7.1.

Note that the distribution X ′in (resp. X ′de) is over (Fp)
n (resp. [0, 1)n). Furthermore, by defi-

nition, all the information on X ′ can be expressed as the joint distribution (X ′in,X ′de). Using the
distributions X ′in and X ′de, and dividing the “integer” part and “decimal” part of C into Cin and
Cde in the same manner as X ′in and X ′de, we can equivalently rewrite the joint distribution (A,C)
as the joint distribution (A,Cin, Cde) in the following way:

(A,Cin, Cde) :=
{

(x′in,x
′
de)←R (X ′in,X ′de); α←R (Fp)

n; cin ← α+ x′in; cde ← x′de :

(α, cin, cde)
}
,

20 Hence, it in fact achieves weak simulatability with the optimal multiplicative simulation error u(k) = 1, while in
order for the security proof of our generic construction to go through, it is sufficient for u to be some polynomial
of k.

37

By focusing on the relation among x′in, cin, and α, we can further equivalently rewrite the joint
distribution (A,Cin, Cde) as follows:

(A,Cin, Cde) =
{
x′de ←R X ′de; x′in ←R (X ′in|X ′de = x′de); cin ←R (Fp)

n; α← cin−x′in; cde ← x′de :

(α, cin, cde)
}
,

where (X ′in|X ′de = x′de) denotes the distribution X ′in conditioned on X ′de = x′de. Note that guess-
ing α = cin − x′in given (cin, c = x′de), is equivalent to guessing x′in given x′de. Hence, we have

H̃∞(A|Cin, Cout) = H̃∞(X ′in|X ′de). Furthermore, since H̃∞(A|C) = H̃∞(A|Cin, Cde) holds by defi-

nition, we can conclude that H̃∞(A|C) = H̃∞(X ′in|X ′de).
Recall that we are requiring H̃∞(X ′in|X ′de) ≥ log2 p+ω(log2 k). Thus, by the leftover hash lemma

(Lemma 3), we have

SD(Dreal,Dsim) = SD(D′real,D′sim) ≤ 1

2

√
2−H̃∞(A|C) · |Zp| =

1

2

√
2−H̃∞(X ′

in|X ′
de) · p

≤ 1

2

√
2− log2 p−ω(log2 k) · p = k−ω(1),

which is negligible, as required. This completes the proof that SHash satisfies weak simulatability,
and the entire proof of Lemma 10. ⊓⊔

7.3 Full Description

Here, we give the full description of our second instantiation of a fuzzy signature scheme, by
instantiating the underlying linear sketch and signature schemes in the generic construction, with
the concrete linear sketch scheme SHash (given in Section 7.2) and the Schnorr signature scheme
ΣSch (described in Fig. 3 (right)), respectively.

Let F2 = ((d,X), t,X , Φ, ϵ) be the fuzzy key setting that we specified in Section 7.1, and suppose
the dimension of the fuzzy data space is n. Let GGen be a group generator (which we assume to
produce a description of a group whose order is p). Let Hlin = {hz : (Fp)

n → Fp}z∈Fpn
be the

universal hash family with linearity introduced in Section 2.3. (As in previous sections, we identify
Fp with Zp.) Let H : {0, 1}∗ → Zp be a cryptographic hash function which will be modeled as a
random oracle. Using these building blocks, our second proposed fuzzy signature scheme ΣFS2 =
(SetupFS2,KGFS2, SignFS2,VerFS2) for the fuzzy key setting F2 is constructed as in Fig. 10.21

The following theorem guarantees the correctness and security of our second scheme ΣFS2, which
is obtained as a corollary of the combination of Theorems 1 and 2, and Lemmas 6 and 10.

Theorem 4. The fuzzy signature scheme ΣFS2 for the fuzzy key setting F2 in Fig. 10 is ϵ-correct.
Furthermore, if the DL assumption holds with respect to GGen, then ΣFS2 is EUF-CMA secure in the
random oracle model where H is modeled as a random oracle.

Although our second instantiation ΣFS2 can be shown to be secure only in the random oracle
model due to the reliance on the Schnorr scheme, it has several practical advantages compared to
our first instantiation ΣFS2 given in Section 6. Specifically, ΣFS2 does not require bilinear maps, and
the public parameter size can be much shorter than that in ΣFS1. More importantly, ΣFS2 works
for the fuzzy key setting in which fuzzy data cannot be assumed to be distributed uniformly over
the data space (which was required in ΣFS1), but that only its average min-entropy (given some
parts of the fuzzy data) is sufficiently high.

21 In Fig. 10, the operations involving “Roundℓ” enclosed by a box in KGFS2 and SignFS2 are those for concerning
practical treatment of real numbers explained in Section 8. The reader who has not read there is expected to
ignore them.

38

SetupFS2(F2, 1
k) :

G := (p,G, g)← GGen(1k)
Let H : {0, 1}∗ → Zp

be a hash function.
z ←R Fpn

Return pp← (G, z,H).

KGFS2(pp,x) :
(G, z,H)← pp
sk ←R Zp

vk ← gsk

α←R h
−1
z (sk)

c← α+ T · x (†)

c← Roundℓ(c)
(‡)

Return V K ← (vk, c).

SignFS2(pp,x
′,m) :

(G, z,H)← pp

s̃k ←R Zp

ṽk ← gs̃k

r ←R Zp

R← gr

h̃← H(R∥m)

s̃← r + (s̃k) · h̃ mod p

α′ ←R h
−1
z (s̃k)

c̃← α′ + T · x′ (†)

c̃← Roundℓ(c̃)
(‡)

σ ← (ṽk, h̃, s̃, c̃).
Return σ.

VerFS2(pp, V K,m, σ) :
(G, z,H)← pp
(vk, c)← V K

(ṽk, h̃, s̃, c̃)← σ

R← gs̃ · (ṽk)−h̃

If H(R∥m) ̸= h̃ then return ⊥.
∆c← c̃− c (†)

∆sk ← hs(⌊∆c⌉)
If vk · g∆sk = ṽk then

return ⊤ else return ⊥.

Fig. 10. Our second instantiation of a fuzzy signature scheme ΣFS2.
(†) The operation “+” (resp. “−”) in (Rp)

n

are the coordinate-wise addition (resp. subtraction) in Rp.
(‡) The operations involving “Roundℓ” enclosed by a box

in KGFS2 and SignFS2 are those for concerning practical treatment of decimal numbers explained in Section 8. (The
reader who has not read there is expected to ignore them.)

8 On the Treatment of Real Numbers in Implementations

In this section, we revisit and discuss the treatment of real numbers in our proposed fuzzy signature
schemes.

Let us quickly remind the reader: As mentioned at the “On the Treatment of Real Numbers”
paragraph at the beginning of Section 6, in Sections 6 and 7, we adopt the natural setting in which all
real numbers are expressed so that it has a significand of an a-priori fixed length λ. Treatments of real
numbers are especially relevant to our concrete linear sketch schemes SCRT proposed in Section 6.3
and SHash proposed in Section 7.2, where we showed in Lemmas 7 and 10 that our schemes SCRT
and SHash satisfy the requirements of a linear sketch scheme in Definition 12, respectively. These
results in turn enable us to derive Theorems 3 and 4 that guarantee the security of our concrete
fuzzy signature schemes ΣFS1 in Section 6.5 (Fig. 8) and ΣFS2 in Section 7.3 (Fig. 10).

However, naively using data with a-priori fixed-size format for real numbers, is not always
desirable from the viewpoint of efficiency, because it directly affects the space/communication
complexity. During the computation, we should use as precise values as possible for them, while
from the viewpoint of the space/communication complexity, the representation size of them should
be minimized.

Hence, motivated by this practical consideration, here we consider the “truncated” versions of
our concrete fuzzy signature schemes in which the decimal part of the real numbers in the vectors
c and c̃ appearing in our concrete fuzzy signature schemes ΣFS1 and ΣFS2 are explicitly truncated
(i.e. rounded-down) to some length, and discuss its effects on the correctness and security of each
scheme. Fortunately, in our fuzzy signature schemes, truncating the decimal part of c and c̃ affects
the correctness of the schemes, but not the security of them, as we will see in the following.

Σ̂FS1: Truncated Version of Our First Instantiation. For a natural number ℓ ≤ ℓ′ = λ − k/n, let
Roundℓ be the operation that takes an n-dimensional vector of real numbers as input, and outputs
an n-dimensional vector such that the decimal part of each element of the vector is rounded-down
to an ℓ-bit value. Then, consider the fuzzy signature schemes ΣFS1 in Fig. 8 in which the operation
Roundℓ enclosed in the boxes is executed in KGFS1 and SignFS1. To differentiate this truncated
version from the original one ΣFS1, we simply call the former the truncated scheme and denote it

39

by Σ̂FS1. We remark that in general, to make the calculation error as small as possible, the variables
appearing during calculations should be treated as accurate as possible, and thus the “rounding”
operations should be applied only to the very last of the values that are stored/transmitted. The
operation “Roundℓ” in KGFS1 and SignFS1 is used with this principle.

We first note that the truncated scheme Σ̂FS1 is as secure as the original scheme ΣFS1 (regardless

of the value ℓ). Specially, if there exists an adversary A against the truncated scheme Σ̂FS1, we
can straightforwardly convert it into another adversary B that attacks the security of the original
scheme. The adversary B running in the security experiment for the original scheme ΣFS1 can easily
simulate the security experiment for Σ̂FS1, and a forgery for the truncated scheme is a forgery for
the original scheme.

Hence, all we need to see is what effect the truncation causes on correctness. The following
theorem formally shows that if the error distribution Φ has some natural property, then the effect
of the truncation on correctness is moderate.

Theorem 5. Let F1 be the fuzzy key setting considered for our first instantiation ΣFS1. Assume
that the error distribution Φ in F1 satisfies the additional property that there exists a constant c
such that Pr[e ←R Φ : ∥Ew(e)∥∞ < 0.5 − δ] ≥ 1 − ϵ − c · δ holds for all δ ∈ [0, 0.5). Then, the

truncated scheme Σ̂FS1 is (2c · 2−ℓ + ϵ)-correct.

Recall that the fuzzy key setting F1 for our first instantiation ΣFS1 originally requires that Pr[e←R

Φ : ∥e∥∞ < t] ≥ 1 − ϵ, which implies Pr[e ←R Φ : ∥Ew(e)∥∞ < 0.5] ≥ 1 − ϵ. Note that this
corresponds to the case that δ = 0 in the assumption on the error distribution Φ. We can interpret
the additional assumption on Φ as the requirement that the probability distribution of Φ has
monotonically non-increasing tails. Such a condition is satisfied by most natural error distributions,
such as the Gaussian distribution and the uniform distribution.

Proof of Theorem 5. Suppose x is a fuzzy data that is used to generate a verification key V K =
(vk = gz

sk
, c = CRT−1w (sk)+Ew(x)), and x′ = x+e is a fuzzy data used for generating a signature

σ = (ṽk = gz
s̃k
, σ̃1, σ̃2, c̃ = CRT−1w (s̃k) + Ew(x + e)) of some message m, where e ←R Φ. Let c′ =

Roundℓ(c) = CRT−1w (sk) + Roundℓ(Ew(x)) and c̃′ = Roundℓ(c̃
′) = CRT−1w (s̃k) + Roundℓ(Ew(x+ e)).

Let V K ′ = (vk, c′) and σ′ = (ṽk, σ̃1, σ̃2, c̃
′). (Note that V K ′ and σ′ are the “truncated” versions of

V K and σ, respectively.)
Now, consider the verification of (m,σ′) under the verification key V K ′. Note that due to our

design of ΣFS1, VerFS1(pp, V K
′,m, σ′) = ⊤ occurs as long as Cw(c̃

′ − c′) = CRT−1(s̃k − sk) holds,
which is in turn implied by the condition ∥Roundℓ(Ew(x + e)) − Roundℓ(Ew(x))∥∞ < 0.5. We can
upperbound the left hand side of this condition as follows:∥∥∥Roundℓ(Ew(x+ e))− Roundℓ(Ew(x))

∥∥∥
∞

≤
∥∥∥Roundℓ(Ew(x) + e)− Ew(x+ e)

∥∥∥
∞

+
∥∥∥Ew(x+ e)− Ew(x)

∥∥∥
∞

+
∥∥∥Ew(x)− Roundℓ(Ew(x))

∥∥∥
∞

≤ 2 · 2−ℓ +
∥∥∥Ew(e)

∥∥∥
∞
,

where the first inequality is due to the triangle inequality, and in the second inequality we used
∥Roundℓ(y)− y)∥∞ ≤ 2−ℓ holds for any y ∈ Rn

w (because Roundℓ(y) just truncates all but ℓ bits of
the decimal part of y), and Ew(x + e) = Ew(x) + Ew(e) which is due to the linearity of Ew (see
Eq. (15)).

40

Hence, if ∥E(e)∥∞ < 0.5− 2 · 2−ℓ holds, we have VerFS1(pp, V K
′,m, σ′) = ⊤. Due to the given

condition on Φ, it occurs with probability at least 1− ϵ− c · (2 · 2−ℓ) when e←R Φ. Hence, we can

conclude that the truncated scheme Σ̂FS1 is (2c · 2−ℓ + ϵ)-correct. ⊓⊔

Σ̂FS2: Truncated Version of Our Second Instantiation. Let ℓ ≤ λ − log2 T be a natural number.
Similarly to the above, consider the fuzzy signature scheme ΣFS2 in Fig. 10 in which the operation
Roundℓ enclosed in the boxes is executed in KGFS2 and SignFS2. We call it the truncated scheme

and denote it by Σ̂FS2.
Then, as is the case with Σ̂FS1, the truncated scheme Σ̂FS2 is as secure as our original second

instantiation ΣFS2.
Furthermore, with essentially the same way as in Σ̂FS1, we can prove the following theorem for

Σ̂FS2. (Since the proof is essentially the same as that of Theorem 5, we omit it.)

Theorem 6. Let F2 be the fuzzy key setting considered for our second instantiation ΣFS2. Assume
that the error distribution Φ in F2 satisfies the additional property that there exists a constant c
such that Pr[e←R Φ : ∥T ·e∥∞ < 0.5−δ] ≥ 1− ϵ−c ·δ holds for all δ ∈ [0, 0.5). Then, the truncated

scheme Σ̂FS2 is (2c · 2−ℓ + ϵ)-correct.

Relaxing the Requirement on Fuzzy Data by Truncation. Finally, we remark that the truncation for
the second scheme also enables us to weaken the requirement on the distribution X of fuzzy data.
Specifically, let X ′ be the scaled-up version of X (by T), and let X ′in and X ′de be the integer and
decimal part of X ′, respectively. Then, in order to carry out the security proof for the truncated
version Σ̂FS2, we only need to require H̃∞(X ′in|Roundℓ(X ′de)) ≥ log2 p + ω(log2 k). Note that this

is a strict relaxation compared to requiring H̃∞(X ′in|X ′de) ≥ log2 p + ω(log2 k). This is because

H̃∞(X ′in|Roundℓ(X ′de)) ≥ H̃∞(X ′in|X ′de) holds, which is in turn because Roundℓ(X ′de) is a (strict)

part of X ′de, and thus H̃∞(X ′in|Roundℓ(X ′de)) ≥ H̃∞(X ′in|X ′de) holds.22

9 Towards Public Biometric Infrastructure

As one of the promising applications of our fuzzy signature schemes, we discuss how it can be used
to realize a biometric-based PKI that we call the public biometric infrastructure (PBI).

The PBI is a biometric-based PKI that allows to use biometric data itself as a private key.
Since it does not require a helper string to extract a private key, it does not require users to
carry a dedicated device that stores it. Like the PKI, it provides the following functionalities: (1)
registration, (2) digital signature, (3) authentication, and (4) cryptographic communication. At
the time of registration, a user presents his/her biometric data x, from which the public key pk is
generated. A certificate authority (CA) issues a public key certificate to ensure the link between pk
and the user’s identify (in the same way as the PKI). It must be sufficiently hard to restore x or
estimate any “acceptable” biometric feature (i.e. biometric feature x̃ that is sufficiently close to x)
from pk. This requirement is often referred to as irreversibility [14, 31]. Note that the irreversibility
is clearly included in the unforgeability, since the adversary who obtains x or x̃ can forge a signature
σ for any message m. Since our fuzzy signature schemes are proved to be secure, it also satisfies
the irreversibility.

It is well-known that a digital signature scheme can be used to realize authentication and
cryptographic communication, as standardized in [15]. Firstly, a challenge-response authentication

22 Note that the definition of average min-entropy implies that H̃∞(A|B,C) ≤ H̃∞(A|B) holds for any joint distri-
bution (A,B,C).

41

protocol can be constructed based on a digital signature scheme (refer to [29] for details). Secondly,
an authenticated key exchange (AKE) protocol can also be constructed based on a digital signa-
ture scheme and the Diffie-Hellman key exchange protocol. In the same way, we can construct an
authentication protocol and a cryptographic communication protocol in the PBI using our fuzzy
signature schemes.

On the Plausibility of Our Requirement on the Distribution of Fuzzy Data. For the security proofs
to go through, our first concrete fuzzy signature scheme (given in Section 6) requires that the fuzzy
data is uniformly distributed, and our second scheme (given in Section 7) requires that the average
min-entropy in the presence of leakage (where the leakage is the “decimal” part of the “scaled-up
version” of fuzzy data, H̃∞(X ′in|X ′de) in our notation).

A natural question would be whether practical fuzzy key settings can satisfy our requirements.
The requirement that fuzzy data is uniformly distributed, is somewhat a strong assumption, and
may not be suitable for biometrics-based applications, and hence we focus on the latter requirement.

In the biometric setting, which is one of the main motivations for considering fuzzy signature
schemes (and thus is one of the most important settings that should be captured by the formalization
of a fuzzy data setting), a well-known approach to measure the biometric entropy is discrimination
entropy proposed by Daugman [6]. He considered a distribution of a Hamming distance m between
two iriscodes (well-known iris features [7]) that are extracted from two different irises, and showed
that it can be quite well approximated using the binomial distribution B(n, p), where n = 249 and
p = 0.5. He referred to the parameter n (= 249) as a discrimination entropy. The probability that
two different iriscodes exactly match can be approximated to be 2−249. This is a positive news for
us, and for the future of related research.

However, of course, that the probability of two different iriscodes matching is approximated
as 2−249, does not necessarily mean that using iriscode x as fuzzy data gives us 249-bit security.
Especially, in our case, we need to take into account the leakage (information leaked from the
“decimal” part X ′de), when the data is cast into our setting. We have to choose the threshold t by
taking into account various other things, such as FAR and FRR. (Note that an adversary does not
have to estimate the original iriscode x, but only has to estimate an iriscode x̃ that is sufficiently
close to x.) Therefore, it seems not so easy to use the results from [6, 7] just as it is.

If a single biometric feature does not have enough entropy, then one of the promising solutions
to the problem would be to combine multiple biometric features. For example, Murakami et al.
[21] recently showed that by combining four finger-vein features, FAR = 2−133 (resp. FAR = 2−87)
can be achieved in the case when FRR = 0.055 (resp. FRR = 0.0053). Also, a multibiometric sensor
that simultaneously acquires multiple biometrics (e.g. iris and face [5]; fingerprint and finger-vein
[26]) has also been widely developed. Thus, we believe that using multiple biometrics is a promising
direction for increasing entropy without affecting usability (which is also an important factor in
practice).

It is also important to note that (an approximation of) H̃∞(X ′in|X ′de) could be experimentally
estimated by using real fuzzy data (in a similar manner done in [21]). This is an important feature
in order for fuzzy signature schemes (and security systems based on them) to be used in practice.

Open Problems. It would be important to tackle the problem of whether we can realize the fuzzy
key setting required in our work by some practical biometric settings/systems. It is also worth
tackling whether further relaxing the requirement than our specific fuzzy key setting is possible.
In particular, for our second scheme, we used the leftover hash lemma to guarantee the weak
simulatability of the linear sketch scheme, but it achieves the optimal simulation error u = 1 and is
stronger than what is required for our proof to go through. Can we use other tools (e.g. the more

42

recent version of the leftover hash lemma by Barak et al. [1]) to further weaken the requirement on
the average min-entropy?

It is also an interesting open problem to consider constructing fuzzy signature schemes over
fuzzy key settings that are different from ours. For example, can we construct a fuzzy signature
scheme with other types of metric spaces (e.g. Euclid distance, Hamming distance, edit distance,
etc.)? It would also be worth clarifying whether we can construct more fuzzy signature schemes
based on other existing signature schemes.

Acknowledgement. The authors would like to thank the anonymous reviewers of ACNS 2015 and
ACNS 2016 for their invaluable comments and suggestions.

References

1. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and Y. Yu. Leftover hash lemma,
revisited. CRYPTO 2011, LNCS 6841, pp. 1–20, 2011.

2. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key attacks and tampering. ASIACRYPT
2011, LNCS 7073, pp. 486–503, 2011.

3. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. CCS
2006, pp. 390–399, 2006.

4. M. Cheraghchi. Capacity achieving codes from randomness condensers, 2011.
http://arxiv.org/pdf/0901.1866v2.pdf. Preliminary version appeared in ISIT 2009.

5. R. Connaughton, K.W. Bowyer, and P.J. Flynn. Fusion of face and iris biometrics. In M.J. Burge and K.W.
Bowyer, editors, Handbook of Iris Recognition, chapter 12, pp. 219–237. Springer, 2013.

6. J. Daugman. The importance of being random: Statistical principles of iris recognition. Pattern Recognition,
36(2):279–291, 2003.

7. J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology,
14(1):21-30, 2004.

8. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. SIAM J. Comput., 38(1):97-139, 2008.

9. Y. Dodis and Y. Yu. Overcoming weak expectations. TCC 2013, LNCS 7785, pp. 1-22, 2013.
10. C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told about public key infrastructure.

Computer Security Journal, 16(1):1-7, 2000.
11. L. Fan, J. Zheng, and J. Yang. A biometric identity based signature in the standard model. IC-NIDC 2009, pp.

552-556, 2009.
12. S. Goldwasser, S. Micali, and R.L. Rivest, A digital signature scheme secure against adaptive chosen-message

attacks. SIAM J. Computing, 17(2):281-308, 1988.
13. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudorandom generator from any one-way

function. SIAM J. Computing, 28(4):1364-1396, 1999.
14. ISO/IEC JTC 1/SC 27 24745. Biometric information protection, 2011.
15. ISO/IEC JTC 1/SC 27 9798-3. Mechanisms using digital signature techniques, 1998.
16. J.-G. Jo, J.-W. Seo, and H.-W. Lee. Biometric digital signature key generation and cryptography communication

based on fingerprint. FAW 2007, LNCS 4613, pp. 38-49, 2007.
17. T. Kwon, H. H. Lee, and J. Lee. A practical method for generating digital signatures using biometrics. IEICE

transactions, E90-B(6):1381-1389, 2007.
18. T. Matsuda, K. Takahashi, T. Murakami, and G. Hanaoka. Fuzzy signatures: Relaxing the requirements and a

new construction. ACNS 2016, LNCS 9696, pp. 97-116, 2016.
19. H. Morita, J.C.N. Schuldt, T. Matsuda, G. Hanaoka, and T. Iwata. On the security of the Schnorr signature

scheme and DSA against related-key attacks. ICISC 2015, LNCS 9558, pp. 20-35, 2016.
20. H. Morita, J.C.N. Schuldt, T. Matsuda, G. Hanaoka, and T. Iwata. On the security of the Schnorr signatures,

DSA, and ElGamal Signatures against related-key attacks. IEICE Transactions, E100-A(1):73-90, 2017.
21. T. Murakami, T. Ohki, and K. Takahashi. Optimal sequential fusion for multibiometric cryptosystems. Infor-

mation Fusion. 32:93-108, 2016.
22. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions. Science 297(5589):2026-2030,

2002.
23. S.C. Pohlig and M.E. Hellman. An improved algorithm for computing logarithms over gf(p) and its cryptographic

significance (corresp.). IEEE Transactions on Information Theory, 24(1):106-110, 1978.

43

24. D. Pointcheval and J. Stern. Security proofs for signature schemes. EUROCRYPT 1996, LNCS 1992, pp. 387-398,
1996.

25. J.M. Pollard. Monte carlo methods for index computation (mod p). Mathematics of Computation, 32(143):918-
924, 1978.

26. R. Raghavendra, K.B. Raja, J. Surbiryala, and C. Busch. A low-cost multimodal biometric sensor to capture
finger vein and fingerprint. IJCB 2014, pp. 1-7, 2014.

27. A. Ross, K. Nandakumar, and A.K. Jain. Handbook of Multibiometrics. Springer, 2006.
28. W.J. Scheirer, B. Bishop, and T.E. Boult. Beyond pki: The biocryptographic key infrastructure. WIFS 2010, pp.

1-6, 2010.
29. B. Schneier. Applied cryptography. John Wiley & Sons, 1995.
30. C.P. Schnorr. Efficient signature generation for smart cards. CRYPTO 1989, LNCS 435, pp. 239-252, 1990.
31. K. Simoens, B. Yang, X. Zhou, F. Beato, C. Busch, E. Newton, and B. Preneel. Criteria towards metrics for

benchmarking template protection algorithms. ICB 2012, pp 498-505, 2012.
32. K. Takahashi, T. Matsuda, T. Murakami, G. Hanaoka, and M. Nishigaki. A signature scheme with a fuzzy private

key. ACNS 2015. LNCS 9092, pp. 105-126, 2015.
33. C. Wang, W. Chen, and Y. Liu. A fuzzy identity based signature scheme. EBISS 2009, pp. 1-5, 2009.
34. C. Wang and J.-H. Kim. Two constructions of fuzzy identity based signature. BMEI 2009, pp. 1-5, 2009.
35. B. Waters. Efficient identity-based encryption without random oracles. EUROCRYPT 2005, LNCS 3494, pp.

114-127, 2005.
36. Q. Wu. Fuzzy biometric identity-based signature in the standard model. Journal of Computational Information

Systems, 8(20):8405-8412, 2012.
37. S. Yamada and M. Yasuda. Personal Communication. 2017.
38. P. Yang, Z. Cao, and X. Dong. Fuzzy identity based signature with applications to biometric authentication.

Computers & Electrical Engineering 37(4):532-540, 2011.

A More on the Limitations of Fuzzy-Extractor-Based Approaches

The right of Fig. 1 shows an example of a digital signature system using a fuzzy extractor. Assume
that the client generates a signature on a message, and the server verifies it. At the time of reg-
istration, a signing key sk and a helper string P are generated from a noisy string (e.g. biometric
feature) x, and a verification key vk corresponding to sk is generated and stored in a server-side
DB. At the time of signing, the client generates a signature σ on a message m using P and another
noisy string x′, and sends σ to the server. The server verifies whether σ is a valid signature on
m under vk. If x′ is close to x, it outputs “⊤” (valid). Otherwise, it outputs “⊥” (invalid). The
important point here is that the helper string P has to be stored in some place so that the client
can retrieve it at the time of signing.

There are three possible models for storing the helper string: Store-on-Token (SOT), Store-on-
Client (SOC), and Store-on-Server (SOS). In the SOT, the helper string is stored in a hardware
token (e.g. smart card, USB token). Since this model requires each user to possess a token, it reduces
usability. In the SOC, the helper string is stored in a client device. Although this model can be
applied to the applications where each user has his/her own client device, it cannot be employed
if the client device is shared by general public (e.g. bank ATM, POS, and kiosk terminal). In the
SOS, the helper string is stored in a server-side DB, and the client queries for the helper string to
the server at the time of signing. However, it cannot be used in an offline environment (i.e. a user
generates a signature, which is sent to the server later, offline).

To sum up, the SOT reduces usability, and the SOC/SOS limit the client environment. Although
a digital signature scheme using biometrics is proposed in [16, 17] and an extended version of the
PKI based on biometrics is discussed in [28], all of them require additional data like the helper
string and suffer from this kind of problem.

B Differences among RKA∗ Security and Existing RKA Security Definitions

As mentioned earlier, our definition of RKA∗ security has subtle differences with the popular def-
inition of RKA security for signature schemes by Bellare, Cash, and Miller [2]. Specifically, an

44

adversary in the RKA security experiment of [2] has to come up with a forgery pair (m′, σ′) that is
under the original verification key vk, while an adversary in our definition is allowed to additionally
output a function ϕ′, and is considered successful if (m′, σ′) is a valid forgery under the “related”
verification key vk′ = KG′(pp, ϕ′(sk)). In this aspect, our definition is less restrictive than that of
[2]. On the other hand, in the RKA security experiment of [2], a message m used as a signing query
(ϕ,m) is included into the “used message list” Q only if ϕ(sk) = sk, while in our definition, any
message used as a signing query is included in Q. Since the message m′ used as a forgery needs
to satisfy m′ /∈ Q, in this aspect our adversary is more restrictive than that of [2]. Because of the
differences, there seem to be no obvious implications from one notion to another in both directions.

Recently, Morita et al. [19, 20] defined the so-called Φ-weak-RKA security, which is defined in
the same manner as the RKA security definition of [2], except that an adversary has to forge a
new message that has not been signed by the signing oracle (like in our definition). However, their
definition does not allow an adversary to modify the verification key. Therefore, our definition of
Φ-RKA∗ security is strictly stronger than the Φ-weak RKA security of [19, 20] (for the same function
class Φ).

C Our Previous Definitions of Linear Sketch

In this section, we review the definition of a linear sketch scheme that we introduced in ACNS’15
[32] and in ACNS’16 [18] for self-containment, and discuss the difference with the one we give in
Section 4.3.

C.1 ACNS’15 Version

Definition 13. Let F = ((d, X), t,X , Φ, ϵ) be a fuzzy key setting. In [32], a linear sketch scheme
S for F was defined as a pair of deterministic PTAs (Sketch,DiffRec) that satisfies the following
three properties:

Syntax and Correctness: Sketch is the “sketching” algorithm that takes the description Λ of
an abelian group (K,+), an element s ∈ K, and a fuzzy data x ∈ X as input, and outputs a
“sketch” c; DiffRec is the “difference reconstruction” algorithm that takes Λ and two values c, c′

(supposedly output by Sketch) as input, and outputs the “difference” ∆sk ∈ K.
It is required that for all x, x′ ∈ X such that d(x, x′) < t, and for all s,∆s ∈ K, it holds that

DiffRec
(
Λ, Sketch(Λ, s, x),Sketch(Λ, s+∆s, x′)

)
= ∆s.

Linearity: There exists a deterministic PTA Mc satisfying the following: For all x, e ∈ X,23 and
for all s,∆s ∈ K, it holds that

Sketch(Λ, s+∆s, x+ e) = Mc(Λ, Sketch(Λ, s, x),∆s, e).

Simulatability: There exists a PPTA Sim such that for all s ∈ K, the following two distributions
are statistically indistinguishable (in the security parameter k that is associated with t ∈ F):

{x←R X ; c← Sketch(Λ, s, x) : c} and {c←R Sim(Λ) : c}.
23 In the original version [32], x and e were quantified as “for all x, e ∈ X such that d(x, x + e) < t”. However, the

“such that d(x, x+ e) < t” condition should not be there, and the definition here reflects this correction.

45

Difference with Definition 12. The differences between the definition recalled above (ACNS’15
version) and Definition 12 in Section 4.3 are as follows:

1. Definition 12 introduces a setup algorithm that produces a public parameter used by all algo-
rithms.

2. Definition 12 allows the sketching algorithm Sketch, and the auxiliary algorithm Mc, to be
probabilistic (as opposed to being deterministic required in the ACNS’15 version).

3. Definition 12 relaxes the linearity property to a weaker “distributional” variant, while in the
ACNS’15 version it is defined like a correctness property that needs to be satisfied without any
failure.

4. Definition 12 relaxes the simulatability property (which captures confidentiality of sketches
produced by Sketch) of the ACNS’15 version, so that
– (1) the simulatability is required only for the case the elemnet s ∈ K is chosen uniformly at

random,
– (2) the indistinguishability of the output of Sketch and that of Sim is required to hold only

against computationally bounded distinguishers, and
– (3) most importantly, the “multiplicative” simulation error is allowed in Definition 12, which

is captured by p. (In contrast, only the case of optimal simulation error p = 1 is allowed in
the ACNS’15 version.)

C.2 ACNS’16 Version

Definition 14. Let F = ((d, X), t,X , Φ, ϵ) be a fuzzy key setting. In [18], a linear sketch scheme
S for F was defined as a tuple of PPTAs S = (Setup, Sketch,DiffRec) that satisfies the following
three properties:

Syntax and Correctness: Same as in Definition 12.
Linearity: Same as in Definition 12.
Average-Case Indistinguishability: 24 For all (finite) abelian groups Λ = (K,+), the following

two distributions are statistically indistinguishable (in the security parameter k that is associated
with t in F):{

pp←R Setup(F , Λ); x←R X ; s←R K; c←R Sketch(pp, s, x) : (pp, s, c)
}
, and{

pp←R Setup(F , Λ); x←R X ; s, s′ ←R K; c←R Sketch(pp, s, x) : (pp, s
′, c)

}
(25)

Difference with Definition 12. We note that average-case indistinguishability implies weak simu-
latability. Specifically, we can define the following canonical simulator Sim(pp):

Sim(pp): Let Λ = (K,+) be an abelian group specified in pp. Sim picks x ←R X and s′ ←R K.
Then, Sim computes c←R Sketch(pp, x, s

′), and outputs c.

It is straightforward to see that if a linear sketch scheme satisfies average-case indistinguishability,
then the linear sketch with the simulator Sim defined above satisfies weak simulatability, because
the “simulated” distribution Dsim = { pp ←R Setup(F , Λ); s ←R K; c ←R Sim(pp) : (pp, s, c)} is
equivalent to the second distribution in Eq. (25) (where the roles of s and s′ are swapped). Also,
the real distribution Dreal considered in weak simulatability is equivalent to the first distribution in
Eq. (25). Hence, by the average-case indistinguishability, SD(Dreal,Dsim) is negligible, which means

24 The word “average-case” in the name of average-case indistinguishability is due to the property that its definition
guarantees that the element s in a sketch c is hidden only when it is chosen randomly from K.

46

that there exists a negligible function ϵ = ϵ(k) such that for all (even computationally unbounded)
algorithms A, it holds that Pr[A(Dreal) = 1] ≤ Pr[A(Dsim) = 1] + ϵ. In fact, this is stronger than
what is required for showing weak simulatability, because it shows the case in which the optimal
multiplicative simulation error u = 1 is achieved, while it is sufficient that u is any polynomial for
showing weak simulatability. The construction of the simulator shown here is used in our second
concrete linear sketch scheme in Section 7.2.

D Proof of Lemma 4

Fix the security parameter k ∈ N and a PPTA adversary A. For each pp (output by Setup(1k)), let

Advpp be Adv
EUF-CMA
Σ,A (k) in which the public parameter is fixed as pp. We define Ãdvpp similarly. Note

that by definition, Epp←RSetup(1k)[Advpp] = AdvEUF-CMAΣ,A (k) and Epp←RSetup(1k)[Ãdvpp] = Ãdv
EUF-CMA

Σ,A (k)
hold.

Next, for each pp, we define the function fpp that takes a secret key sk ∈ Kpp as input, and
outputsA’s success probability in forging a signature in ExptEUF-CMAΣ,A (k) in which the public parameter
and the secret key are fixed as pp and sk, respectively. Then, by definition, we have E[fpp(UKpp)] =

Advpp and E[fpp(UK̃pp
)] = Ãdvpp, where UKpp (resp. UK̃pp

) is the uniform distribution over Kpp

(resp. K̃pp).
Now, by using Lemma 1, we obtain

E
[
fpp(UK̃pp

)
]
≤ |Kpp| · 2

−H∞(UK̃pp
) ·E

[
fpp(UKpp)

]
=
|Kpp|
|K̃pp|

·E
[
fpp(UKpp)

]
≤ u(k) ·E

[
fpp(UKpp)

]
.

Hence, we obtain Ãdvpp ≤ u(k) · Advpp, from which we obtain Ãdv
EUF-CMA

Σ,A (k) ≤ u(k) · AdvEUF-CMAΣ,A (k).
⊓⊔

E Proof Sketch of Lemma 5

For any PPTA adversary A that attacks the Φadd-RKA∗ security of a signature scheme satisfying the
homomorphic property (as per Definition 9), one can immediately construct another adversary B
that attacks the EUF-CMA security of the same signature scheme, in a fairly straightforward manner,
using the algorithms Msig and Mvk that are guaranteed to exist due to the homomorphic property.

Specifically, when the EUF-CMA security experiment begins, B receives (pp, vk) as input from the
experiment, then inputs them to A, and starts simulating the Φadd-RKA∗ experiment for A. For a
RKA-signing query (ϕadd∆sk,m) from A, B firstly submits m to its own signing oracle and obtains
a signature σ̂, and then computes σ ← Msig(pp, vk,m, σ̂,∆sk), which is distributed identically to
a signature generated by using a secret key sk + ∆sk due to the property of Msig. Furthermore,
when A finally outputs a forgery (ϕadd∆sk′ ,m

′, σ′), B can compute σ̂′ ← Msig(pp, vk
′,m′, σ′,−∆sk′)

where vk′ = Mvk(pp, vk,∆sk
′) = KG′(pp, sk +∆sk). Due to the property of Msig and Mvk, σ̂

′ is a
valid signature on the message m′ under the verification key vk, whenever (m′, σ′) is a valid forgery
pair under the verification key vk′. Therefore, B’s EUF-CMA advantage is exactly the same as the
Φadd-RKA∗ advantage of A.

Hence, if a signature scheme with the homomorphic property is EUF-CMA secure, it is Φadd-RKA∗

secure as well. ⊓⊔

47

F Proof of Lemma 6

We first recall the general forking lemma shown by Bellare and Neven [3], which will be used in
the proof of Lemma 6.

Lemma 11 (General Forking Lemma [3]). Let S be a finite set with |S| ≥ 2, Q > 0 be an
integer, and IG be a probabilistic algorithm, called an instance generator, that outputs a string X
(called an instance). Let F be a probabilistic algorithm that takes an instance (output by IG) and Q
values h1, . . . , hQ ∈ S as input, and outputs a pair (J, V), where J is an integer between 0 and Q,
and V is any string.

For such an algorithm F , we consider the corresponding “forking” algorithm ForkF that takes
an instance X (output by IG) as input, and runs as follows:

ForkF (X):
1. Pick a randomness rF for F uniformly at random.
2. h1, . . . , hQ ←R S.
3. (J, V)← F(X,h1, . . . , hQ; rF).
4. If J = 0 then return (0,⊥,⊥).
5. h′J , . . . , h

′
Q ←R S.

6. (J ′, V ′)← F(X,h1, . . . , hJ−1, h′J , . . . , h′Q; rF).
7. If J = J ′ and hJ ̸= h′J then return (1, V, V ′) else return (0,⊥,⊥).

Let accF and frkF be the probabilities defined as follows:

accF := Pr[X ←R IG; h1, . . . , hQ ←R S; (J, V)←R F(X,h1, . . . , hQ) : J ≥ 1],

frkF := Pr[X ←R IG; (b, V, V ′)←R ForkF (X) : b = 1].

Then, it holds that

accF ≤
Q

|S|
+

√
Q · frkF . (26)

Now, we are ready to proceed to the proof of Lemma 6.

Proof of Lemma 6. First of all, note that for a public parameter pp = (G = (G, p, g),H), a key pair
(vk, sk) = (y = gx, x), and a “shift” ∆sk = ∆x, it holds that KG′(pp, sk+∆sk) = gx+∆sk = y ·g∆x.
Hence, we can define Mvk(pp, vk,∆sk) := (vk) · g∆sk, which clearly shows that ΣSch satisfies the
weak homomorphic property.

Then, we go on to the proof of Φadd-RKA∗ security. Let A be any PPTA adversary that attacks
the Φadd-RKA∗ security of the Schnorr signature scheme ΣSch in the random oracle model, and
makes in total q = q(k) > 0 queries (where q is the total number of RKA-signing and hash
queries). Without loss of generality, and for simplicity, we assume that when A finally outputs
(ϕadda∗ ,m∗, σ∗ = (h∗, s∗)) at the end of the Φaff-RKA∗ experiment,25

(1) m∗ is different from any of messages that A has used as its RKA-signing queries, and
(2) at some point A makes a hash query of the form (R∗∥m∗), where R∗ = gs

∗−a∗·h∗ · y−h∗
(=

gs
∗ · (gx+a∗)−h

∗
) and y = vk(= gx) is a verification that A receives at the beginning of the

Φadd-RKA∗ experiment.26

25 In this proof, we use the asterisk (*) for representing the values regarding A’s final output (i.e. the forgery).
26 Note that these conditions are indeed without loss of generality, because for any PPTA adversary A that does not

respect these conditions, we can always consider a “wrapper” algorithm A′ that satisfies them and has exactly the
same Φadd-RKA∗ advantage as A.

48

For such A, we will show that there exists a PPTA B for solving the DL problem with respect
to GGen, whose running time is almost twice that of A, such that

AdvΦ
add-RKA∗

ΣSch,A (k) ≤ q(q + 1)

p
+

√
q · AdvDLGGen,B(k), (27)

which is sufficient for proving Lemma 6, because due to our assumption that the DL assumption
holds with respect to GGen and p = Θ(2k), the right hand side is negligible in k, and thus so is A’s
Φadd-RKA∗ advantage.

We will use the general forking lemma (Lemma 11) for showing the above inequality, and thus
we specify the set S, the number Q, the instance generator IG, and the algorithm F , as follows:
Let IG be the “instance generator” that runs G := (G, p, g)← GGen(1k), picks x←R Zp, computes
y ← gx, and outputs X = (G, y). We specify the set S to be Zp, and the number Q to be q. Let F be
an algorithm whose randomness rF consists of a randomness rA for A and q values s1, . . . , sq ∈ Zp,
which takes X = (G, y = gx) and h1, . . . , hq ∈ Zp as input, and internally runs A as follows:

F(X = (G, y), h1, . . . , hq; rF = (rA, s1, . . . , sq)): F sets pp ← G (H is modeled as a random oracle
for A and thus is not included in pp here), and sets vk ← y. F also prepares a list LH which is
initially empty. Then, F runs A(pp, vk; rA).
For A’s i-th query (where i ∈ [q]), F responds as follows:
– If the i-th query is a hash query of the form (Ri∥mi), then F checks if there is an entry of

the form (mi, Ri, h, ∗) for some h ∈ Zp in the list LH (where * is any value). If this is the
case, then F returns h to A. Otherwise, F adds an entry of the form (mi, Ri, hi,⊥) into LH

(where hi is the value that appears in F ’s input), and returns hi to A.
– If the i-th query is a RKA-signing query of the form (ϕaddai ,mi), then F first computes
Ri ← gsi−ai·hi · y−hi(= gsi · (gx+ai)−hi). If there is already an entry of the form (mi, Ri, ∗, ∗)
in the list LH , then F gives up, and terminates with output (0,⊥). (In this case, we say
that F fails to answer A’s RKA-signing query.) Otherwise, F adds an entry of the form
(mi, Ri, hi, si) into LH (where hi is the value that appears in F ’s input, and si is the value
that appears in F ’s randomness rF), and then returns a signature σi = (hi, si) to A.

When A terminates with output (ϕadda∗ ,m∗, σ∗ = (h∗, s∗)), F proceeds as follows. Let R∗ =
gs

∗−a∗·h∗ · y−h∗
= gs

∗ · (gx+a∗)−h
∗
. F finds an entry of the form (m∗, R∗, h, ∗) for some h ∈ Zp in

the list LH , where it is guaranteed that h is equal to one of h1, . . . , hq, because by our assumption
A must have made a hash query of the form (R∗∥m∗), which must have been answered with
one of h1, . . . , hq. Let J ∈ [q] be the index such that h = hJ found in this process. (Therefore,
(m∗, R∗, h) = (mJ , RJ , hJ).) If h∗ = hJ , then F sets V ← (a∗, h∗, s∗) and terminates with
output (J, V). (Note that this case corresponds to the case that H(R∗∥m∗) = h∗ occurs, and
hence σ∗ = (h∗, s∗) is a valid signature for m∗ under the “shifted verification key” vk∗ = gx+a∗

in the experiment simulated by F .) Otherwise (i.e. h∗ ̸= hJ), F terminates with output (0,⊥).

The above completes the description of F . Note that the interface of F matches that of the algorithm
F considered in the general forking lemma (Lemma 11).

We argue that when F receives an instanceX (output from IG) and random elements h1, . . . , hq ∈
Zp as input, and uniformly chosen values rF = (rA, s1, . . . , sq) as its randomness, the probability
that F fails to answer A’s RKA signing queries is upperbounded by q2/p. This is because the
value Ri = gsi−ai·hi · y−hi computed by F when answering A’s RKA-signing query is information-
theoretically hidden from A’s view at the point A makes the query (because si and hi are hidden
from A’s view at the point the query is made), and thus for one particular RKA-signing query, the
probability that an entry of the form (mi, Ri, ∗, ∗) has already been defined in the list LH (and
thus F fails to answer it) is at most q/p. Since A makes at most q queries, the union bound tells us

49

that the probability that F fails to answer A’s RKA-signing queries is at most q2/p. Furthermore,
note that unless F fails to answer A’s RKA-signing queries, F perfectly simulates the Φadd-RKA

experiment (in the random oracle model) for A. Therefore, the probability that A outputs a suc-
cessful forgery (ϕadda∗ ,m∗, σ∗ = (h∗, s∗)), and correspondingly F outputs (J, V = (a∗, h∗, s∗)) such

that J ≥ 1 and h∗ = hJ , namely accF , is at least AdvΦ
add-RKA∗

ΣSch,A (k) − q2/p. Recall that by the gen-
eral forking lemma (Eq. (26)), we have accF ≤ q

p +
√
q · frkF . Consequently, we have the following

inequality:

AdvΦ
add-RKA∗

ΣSch,A (k) ≤ q(q + 1)

p
+

√
q · frkF . (28)

Next, we relate frkF with the advantage of another algorithm B for solving the DL problem.
B receives an instance (G = (G, p, g), y = gx) of the problem, and tries to compute x = logg y as
follows:

B(G, y): B sets X ← (G, y) and executes the “forking algorithm” ForkF (X) corresponding to F
that we described above. Let (b, V, V ′) be the output of ForkF . If b = 0, then B gives up and
aborts. Otherwise (i.e. b = 1), let V = (a∗, h∗, s∗) and V ′ = (a′∗, h′∗, s′∗). We have h∗ ̸= h′∗ by
the definition of ForkF , and we also have R∗ = gs

∗−a∗·h∗ · y−h∗
= gs

′∗−a′∗·h′∗ · y−h′∗
due to our

design of F .27 B now computes

x← (s∗ − a∗ · h∗)− (s′∗ − a′∗ · h′∗)
h′∗ − h∗

mod p,

and terminates with output x.

The above completes the description of B. Note that the running time of B is essentially the same
as that of ForkF . Since ForkF runs F twice, and F in turn runs A once, the running time of B is
almost twice that of A. Furthermore, whenever ForkF outputs (b, V, V ′) such that b = 1, B succeeds
in computing the discrete logarithm x such that y = gx. Therefore, we have AdvDLGGen,B(k) = frkF .
Combining this equality with Eq. (28), we obtain Eq. (27), as required. This completes the proof
of Lemma 6. ⊓⊔

G On the Plausibility of the CDH Assumption with Respect to BGGenMWS

For the security of the MWS scheme ΣMWS constructed in Section 6.4, we need to assume that
the CDH assumption holds with respect to BGGenMWS. One might suspect the plausibility of this
assumption because of our specific choice of the order p. However, to the best of our knowledge,
there is no effective attack on the discrete logarithm assumption in the groups G and GT , let alone
the CDH assumption.

Actually, the discrete logarithm problem for the multiplicative group (Z∗p, ·) could be easy be-
cause W |p − 1 and W =

∏
i∈[n]wi, and thus we can apply the Pohlig-Hellman algorithm [23] to

reduce an instance of the discrete logarithm problem in Z∗p to instances of the discrete logarithm
problems in Zwi . However, it does not mean that the Pohlig-Hellman algorithm is applicable to the
discrete logarithm problem in G or GT , whose order is a prime.

Note that a verification/signing key pair (vk, sk) of the MWS scheme ΣMWS is of the following

form (vk, sk) = (gz
sk
, sk), where sk ←R ZW , and z and W are in a public parameter pp. In fact,

due to the existence of the bilinear map e : G×G → GT , a variant of Pollard’ ρ-algorithm [25] is

27 Note that if b = 1 holds, then there is an index J ′ ∈ [q] such that the first execution and the second execution of
F in ForkF have run identically up until the point A makes the J ′-th query. Furthermore, A’s J ′-th query in both
of the executions is a hash query of the form (R∗∥m∗), and hence R∗ = RJ′(= R′∗ = gs

′∗−a′∗·h′∗
· y−h′∗

) holds.

50

applicable, and one can recover sk from vk (and pp) with O(
√
W) steps. However, this is exponential

time in a security parameter k. (Recall thatW = Θ(2k).) This also does not contradict the EUF-CMA
security of the MWS scheme shown in Lemma 8.

51

