
Rhythmic Keccak:
SCA Security and Low Latency in HW

Victor Arribas1, Begül Bilgin1, George Petrides2,
Svetla Nikova1 and Vincent Rijmen1

1 KU Leuven, imec-COSIC, Belgium, name.surname@esat.kuleuven.be
2 Vrije Universiteit Brussel, Belgium, george.petrides@vub.be

Abstract. Glitches entail a great issue when securing a cryptographic implementation
in hardware. Several masking schemes have been proposed in the literature that
provide security even in the presence of glitches. The key property that allows this
protection was introduced in threshold implementations as non-completeness. We
address crucial points to ensure the right compliance of this property especially for
low-latency implementations. Specifically, we first discuss the existence of a flaw
in DSD 2017 implementation of Keccak by Gross et al. in violation of the non-
completeness property and propose a solution. We perform a side-channel evaluation
on the first-order and second-order implementations of the proposed design where
no leakage is detected with up to 55 million traces. Then, we present a method to
ensure a non-complete scheme of an unrolled implementation applicable to any order
of security or algebraic degree of the shared function. By using this method we design
a two-rounds unrolled first-order Keccak-f [200] implementation that completes an
encryption in 20.61ns, the fastest implementation in the literature to this date.
Keywords: Glitch · non-completeness · threshold implementation · consolidated
masking scheme · domain-oriented masking

1 Introduction
Physical attacks are a serious threat to cryptographic implementations, capable of retrieving
important information such as the secret key. In particular, Side-Channel Attacks (SCA),
which are based on observing the behavior of the device without making any changes on it
or its working conditions, are used frequently due to their relatively low cost and difficulty
to be detected. In this paper, we use Differential Power Analysis (DPA) in particular,
which exploits the relation between the intermediate values produced internally during the
calculations and the instantaneous power consumption of the cryptographic device [KJJ99].
However, our observations can be generalized to other forms of SCA, such as the ones
exploiting the electromagnetic emanation of the device [GMO01].

Different countermeasures have been proposed that aim to make the power consumption
of a cryptographic device independent of the intermediate values. Here, we focus on
Threshold Implementation (TI) [NRR06, NRS08, NRS11] and Domain Oriented Masking
(DOM) [GMK16], which are based on secret sharing schemes and techniques from Multi-
Party Computation (MPC). Moreover, they have the advantage of providing theoretical
security on hardware if implemented according to the non-completeness property defined
in [NRR06, BGN+14a], if fed with enough entropy and if the device works under the
independent leakage assumption as described in [DFS15]. There are several papers in
the literature applying these countermeasures on the Keccak permutations: Bertoni et
al. [BDPA10a] and Bilgin et al. [BDN+14] with first-order resistant implementations and
more recent work by Gross et al. [GSM17] that proposes higher-order countermeasures.

mailto:name.surname@esat.kuleuven.be
mailto: george.petrides@vub.be

2 Rhythmic Keccak:SCA Security and Low Latency in HW

Our contribution In this paper, we first briefly summarize Keccak sponge function,
and TI and DOM schemes (Sect. 2). Then, we analyze the recently published higher-order
DOM Keccak implementations [GSM17] and point out a flaw that can possibly lead
to successful attacks. We describe how careful tracing of the non-completeness property
can be done to fix this flaw for any order. We show the different behavior between the
original design and our proposal for first- and second-order implementations using TVLA
with 55 million of traces (Sect. 3). Finally, we discuss how TI can be used for unrolled
implementations without breaking the non-completeness property for the first time in
literature. We present a low latency Keccak implementation that performs an encryption
in 20.61ns making it the fastest implementation published to this date (Sect. 4).

2 Preliminaries

2.1 Keccak Permutations

Keccak is a family of sponge functions using the permutations Keccak-f [b] where b ∈
{25, 50, 100, 200, 400, 800, 1600} defines different state sizes [BDPA10b]. Keccak [BDPA10b]
is the NIST SHA-3 standard [Rom14]. Among other properties, Keccak stands out due
to its high performance when implemented in hardware and its great area/speed trade-offs.
The security claims of these variants follow the Matryoshka principle, i.e. analysis on of
small sizes can easily be linked to bigger sizes. Benefiting from this property, we work on
Keccak-f [200], which is suitable for lightweight architectures and note that the concepts
presented in this paper can naturally be extended to other choices of b. Moreover, since we
simply work on Keccak-f this work also covers Ketje [BDP+16a] and Keyak [BDP+16b]
authenticated encryptions.

Keccak-f operates on a three-dimensional state S, where the bit in the coordinate
(x, y, z) is denoted by S[x, y, z]. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with (1)

θ : S [x, y, z] ← S [x, y, z]⊕
4⊕

y′=0

S
[
x− 1, y′, z

]
⊕

4⊕
y′=0

S
[
x+ 1, y′, z − 1

]
,

ρ : S [x, y, z] ← S [x, y, z − (t+ 1)(t+ 2)/2] ,

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=
(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : S [x, y] ← S
[
x′, y′

]
, with

(
x
y

)
=
(

0 1
2 3

)(
x′

y′

)
,

χ : S [x] ← S [x]⊕ (S [x+ 1]⊕ 1)S [x+ 2] ,

ι : S ← S ⊕ RC[ir], where RC[ir] is the round counter in cycle ir.

Keccak-f [200] computes 18 rounds. Notice that we abuse the notation to focus on
specific coordinates. Moreover, addition and subtraction in the coordinates are modular.
For convenience, we provide visualizations of these steps in App. A.1 (Fig. 8) for Keccak-
f [200].

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 3

2.2 Masking Schemes
Different forms of masking schemes have been shown to provide provable security against
side-channel analysis attacks given independent leakage and uniform input assumption.
They are based on secret sharing where each sensitive, i.e. key dependent, data x is divided
into s pieces (x = (x1, . . . , xs)) such that x = x1 ⊥ . . . ⊥ xs. Throughout this paper,
we consider Boolean masking where ⊥ is field addition denoted by ⊕ and full threshold
sharing where all s shares need to be combined to derive x. The exact value of s is chosen
depending on the desired security level which is specified further for different flavors of
masking below.

Each function f(x) = y of the cryptographic algorithm is calculated in a shared manner
where fi(x) = yi. Masking is correct if

⊕
yi = y.

d-Probing Model. It has been shown in [DFS15] that if a masked circuit achieves
security under the d-probing model [ISW03] where each calculation is treated separately,
independent of the timing of the circuit, then it also provides security against dth-order
side-channel analysis attacks under independent leakage assumption. Similar to [RBN+15,
FGP+17], we assume that an adversary probing a wire has information about all the
intermediate values starting from the registers to the probed point of calculation. Note
that this probing model is used specifically on hardware where glitches might occur in
the circuit. As a result a d-probing adversary would acquire the knowledge of all the
intermediate values used in all d probed wires.

2.2.1 Threshold Implementation (TI)

This masking method, which is introduced by Nikova et al. [NRR06] for first-order security
and extended by Bilgin et al. [BGN+14a] for higher-order security, is used widely on
hardware since, unlike many masking schemes, it provides security under the non-ideal
gate assumption. That is, the gates can glitch depending on prior inputs of that cycle
before stabilizing without giving an advantage to an attacker. Below we repeat the
non-completeness definition for completeness.
Definition 1 (Non-completeness [BGN+14a]). The shared circuit f of f is dth-order
non-complete if any combination of up to d component functions fi is independent of at
least one input share.

The lower bounds of number of input and output shares required to calculate a function
of algebraic degree t such that it satisfies the above non-completeness property are given
in [BGN+14a] as follows:

sin ≥ td+ 1, (2)

sout ≥
(
sinmin

t

)
.

This bound has then been used for a variety of algorithms and security orders [BNN+12,
BGN+14b, BNN+14, BGN+15, BDN+14, CBR+15].

We provide the sharings of an AND/XOR gate (z = a⊕bc) where (d, sin, sout) = (1, 3, 3)
and (d, sin, sout) = (2, 5, 10) in Eqns (3) and (9) (in App. A.2) respectively together with a
graphical representation in Fig. 9 (in App. A.2). We refer to a sharing with sin = sout = s
as an s-sharing.

z1 = a1 ⊕ b1c1 ⊕ b1c2 ⊕ b2c1,

z2 = a2 ⊕ b2c2 ⊕ b2c3 ⊕ b3c2, (3)
z3 = a3 ⊕ b3c3 ⊕ b1c3 ⊕ b3c1.

4 Rhythmic Keccak:SCA Security and Low Latency in HW

In order to satisfy the non-completeness property, the compression from sout to sin
shares must follow a synchronization layer such as registers. The first-order case becomes
advantageous since sout = sin and this intermediate synchronization layer is not necessary
enabling a one cycle implementation. If a sharing dissatisfies the non-completeness property,
we call it a complete sharing.

Another property introduced by TI is a uniform sharing. Since we only use permutations
in this paper, we provide a simplified definition below.

Definition 2 (Uniform Sharing [BGN+14a]). The s-sharing of an n-bit permutation
f(x) = y is uniform if its sharing f(x) = y (after compression) is an ns-bit permutation.

If this property is satisfied for each step of a cryptographic algorithm, the algorithm
provides univariate security without the need of additional randomness. It has been shown
in [RBN+15] that uniformity condition is not enough for multi-variate security in the
higher-order case. The authors show that it is possible to achieve higher-order multi-variate
security for TI by inserting fresh randomness to each sout output shares just before the
compression. This refreshing naturally provides a uniform sharing.

2.2.2 Domain Oriented Masking (DOM)

In [GMK16], Gross et al. introduced dth-order secure DOM-indep multiplier which uses
sin = d+ 1 input shares and d(d+ 1)/2 units of randomness. DOM multiplier assumes sin
domains.

The sharing structure of DOM-indep multiplier uses d+ 1 input shares for hardware
and is a follow up of Reparaz et al. [RBN+15] which provides security given only the
independence of the shared input variables. The difference between DOM-indep as opposed
to [RBN+15] multiplier is the significant randomness optimization, from (d + 1)2 to
d(d+ 1)/2. This optimized shared multiplier has been used in [GSM17] to provide very
small implementations of Keccak with higher-order security claim. We provide a DOM-
indep AND gate (z = ab) where (d, sin, sout) = (1, 2, 4) and (d, sin, sout) = (2, 3, 9) in
Eqn. 4 below and in Eqn. 10 in appendix. The parenthesis [.] and (.) represent the
mandatory and optional synchronizations respectively and r refers to the randomness used
for refreshing.

z1 = (a1b1)⊕ [a1b2 ⊕ r],
z2 = [a2b1 ⊕ r]⊕ (a2b2). (4)

In [GMK16] a second multiplier called DOM-dep multiplier is also introduced. DOM-
dep has the advantage of not relying on the independently shared inputs assumption of
other d+ 1 share schemes DOM-indep and [RBN+15] while using less randomness. For
details of DOM-dep multiplier and randomness reductions of DOM, we refer to the original
paper. Here, we only focus on DOM-indep multiplier which was used in [GSM17] and the
non-completeness property. Therefore, we refer to DOM-indep as DOM for brevity.

3 Round-Based Implementations
Keccak is implemented for a variety of platforms and constraints. The smallest round-
based implementation claiming security against side-channel analysis attacks is the work
from Gross et al. [GSM17] which uses DOM. In this section, we first show an exploitable
weakness of that round based implementation based on the failure of non-completeness
property. We then verify the observability of our claims on an FPGA using t-test based
leakage detection. Finally, we discuss how a sharing using sin ≥ d+ 1 shares should be

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 5

implemented such that it satisfies the non-completeness property and the restrictions of
such an implementation. Note that our analysis covers round-based implementations of
any order but does not cover the serialized architectures presented in [GSM17].

3.1 Analysis of DOM-Keccak

A traditional round-based implementation of Keccak receives the input of θ from a register;
θ, ρ, π, χ and ι operations are calculated within the same clock cycle and the output of ι
is written to a register. When we consider a shared implementation the χ-refreshing needs
to be separated from χ-compression by registers to achieve non-completeness marking the
end of the cycle. The difference between these two architectures are depicted in Figure 1
where the blue marks correspond to the masked version. The χ-compression is included in
the ι block.

Figure 1: Plain and secure(blue) Keccak round-based implementation

The implementation in [GSM17] uses the sharing in Eqn. (5) of χ up to the synchro-
nization register for first order. The randomness r is taken from another (independent)
part of the state. The synchronization is performed only on the cross-domain shares S′

2[x]
and S′

3[x] by using a register triggered on the negative edge of the clock while triggering the
state register in the positive edge (double clocking). Analyzing each linear and nonlinear
step individually as is done in [GSM17], shows that the non-completeness property is
satisfied in each separate step. However, the non-completeness of any implementation
should be verified from register to register since the glitchy behavior can accumulate.

S′
1[x] ← S1[x]⊕ (S1[x+ 1]⊕ 1)S1[x+ 2],
S′

2[x] ← S1[x+ 1]S2[x+ 2]⊕r,
S′

3[x] ← S2[x+ 1]S1[x+ 2]⊕r, (5)
S′

4[x] ← S2[x]⊕ (S2[x+ 1]⊕ 1)S2[x+ 2].

When we analyzed one round of the aforementioned implementation, we noticed that
the non-completeness property from register to register is not satisfied for 112 output bits
of the round output invalidating a condition for security. Below we trace back the input
shares used to calculate a specific bit of the state particularizing Eqn. (1) for first-order
secure implementation. A graphical representation is also provided in Fig. 10 in App. A.3.1.
We use Sfi to refer to the output of f for share Si:

6 Rhythmic Keccak:SCA Security and Low Latency in HW

Tracing back output bit Sχ [4, 1, 0] of the χ permutation:
χ−1 : Sχ3 [4, 1, 0] ← Sπ2 [0, 1, 0]Sπ1 [1, 1, 0]⊕r

π−1 : Sπ2 [0, 1, 0] ← Sρ2 [3, 0, 0]
Sπ1 [1, 1, 0] ← Sρ1 [4, 1, 0]

ρ−1 : Sρ2 [3, 0, 0] ← Sθ2 [3, 0, 4]

Sρ1 [4, 1, 0] ← Sθ1 [4, 1, 4]

θ−1
1 : Sθ2 [3, 0, 4] ← S2 [3, 0, 4]⊕

4⊕
y′=0

S2
[
2, y′, 4

]
⊕

4⊕
y′=0

S2
[
4, y′, 3

]
Sθ1 [4, 1, 4] ← S1 [4, 1, 4]⊕

4⊕
y′=0

S1
[
3, y′, 4

]
⊕

4∑
y′=0

S1
[
0, y′, 3

]

From these expressions it can be derived that the output bit Sχ3 [4, 1, 0] of the non-linear
layer depends, among others, on the input bits S1 [3, 0, 4] and S2 [3, 0, 4]. This means that
all shares of [3, 0, 4] are used and hence, non-completeness fails. Note that similar complete
output bits can also be found for higher-order implementations. We provide a second-order
example in App. A.3.1.

3.1.1 Evaluation

To illustrate the problem presented above we implement a first-order DOM-Keccak and
test on FPGA. Our masked round-based implementation follows the structure depicted in
Fig. 1. Note that we do not use negative-edge triggering for the cross-domain shares for
ease of analysis leading to a two cycle per round implementation. Moreover, we always
use fresh randomness to ensure that a possible problem in the second order is not caused
by the degradation on the uniformity.

Platform. To evaluate our design, we deploy it into a Spartan-6 Xilinx FPGA on a
Sakura-G board, which is specifically designed for side-channel evaluation. To reduce the
noise during the evaluation we split the implementation into two different FPGAs: a control
FPGA handles I/O with the host computer and supplies data in masked representation
to the crypto FPGA. Crypto FPGA holds a PRNG, which generates the randomness for
refreshing, and our masked Keccak designs. In order to get the cleanest possible traces,
we clock the PRNG in the negative edge to avoid extra noise and use a very slow 3 MHz
clock so that we are sure there is no overlap in the power consumption. The design is
synthesized using the Xilinx tools with the property KEEP HIERARCHY set to yes, in order
to avoid optimizations among the different blocks what would compromise the security of
the design. We sample at 1.0GS/s with 2000 points per frame over two rounds and a half.

TVLA. We use non-specific test vector leakage assessment (TVLA) method described
in [CMG+13] to detect leakage. Note that this t-test based leakage detection method is
not used to mount an attack and retrieve the key. From a theoretical point of view, the
presence of leakage is a necessary, but not sufficient condition for an attack to succeed.
However, not observing leakage gives confidence to designer. We choose our confidence
level to be 99.9995% which corresponds to absolute t-values being greater than 4.5 for
failure.

Two different tests are performed, namely, Fix vs. Random with masks off and
with masks on. In both cases the idea is to compare the power consumption of the

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 7

Figure 2: TVLA on first-order DOM-Keccak implementation. Left: Masks off. Right:
masks on

Keccak-f given to different states, the first one, chosen at random and fixed through
all the encryptions and the second one, randomly chosen as well, that changes for every
encryption. The test determines whether it is possible to distinguish between one another
and hence, find potentially exploitable leakage depending on the state. When masks are
off leakage is expected, since the countermeasures are switched off. On the other hand,
when masks are on we expect no first-order leakage for a first-order implementation. We
ensure that the initial sharing is done properly and focus our analysis only on the first two
rounds of the cipher to validate our claims. All designs analyzed in this work are done
under this same conditions.

Figure 2 shows results of TVLA for 20 thousand traces when masks are off and 55 million
traces when masks are on for a DOM-Keccak implementation. In this case, although the
leakage is reduced greatly, we see that the t-score goes over 4.5 for a significant number of
sample points during both first and second rounds. We emphesize that we make no claims
on this observation leading to a successful attack. Our goal is to make leakage assessment
comparison between this implementation and our proposal which is presented in the next
section.

3.2 Non-Complete Round-Based Architecture
The question that naturally arises after this analysis is the root of the non-completeness
failure. Clearly, it is important to take into account the effect of the linear layers in
combination with the non-linear layer within a cycle, since χ and the linear operations
including θ are secure individually. A detailed observation shows the following.

Order of operations. The order of linear and non-linear operations within a round is
important. If the round structure of a cryptographic algorithm follows the traditional
SPN approach where the linear operation follows the non-linear operation within a round,

8 Rhythmic Keccak:SCA Security and Low Latency in HW

Figure 3: One round structure of the naive fix

Figure 4: One round structure of our design

we would not observe this failure of non-completeness if the non-linear operation is non-
complete. For higher orders, one still needs to ensure composibility, which is not the
objective of this paper’s discussion.

Linear transformations. The structure of Keccak linear operations, in particular θ
which shuffles and combines several state bits, causes the non-completeness to fail when χ
is applied later. Operations ρ and π being simple wirings do not combine several bits and
hence do not cause any problem.

Naive fix. Following above observations, one can clearly see that it suffices to introduce a
register between the linear operations and χ to secure the design. However, this new layer
of registers increases the number of cycles required per round. When combined with the
register needed just right after the refreshing layer, the cycle count becomes three times
bigger than the plain implementation of Keccak-f [200] without a significant increase in
maximum frequency. Fig. 3 illustrates this architecture. However, the main goal tried
to achieve with a parallel implementation is a low-latency design, compared to a serial
implementation that would have a higher latency but smaller area.

Our design. In order to reduce the latency, we remove the registers that come after
step χ and use the state registers instead to keep the security conditions. This way the
compression layer comes right after the state registers and before starting the next round
computations. In this case we need two clock cycles to perform one round and hence 36
cycles for Keccak-f [200]. Figure 4 presents this structure, with which the implementation
is fulfilling non-completeness. Note that it is possible to re-use some part of the state
register for synchronization after the linear layer with a careful selection of reused registers.
This would reduce the area by approximately 2800GE. Here, we use two separate registers
for clear analysis of the target difference.

3.2.1 Evaluation

Here we present the results for our non-complete Keccak (NC-Keccak) for both first-
and second-order implementations, which follow the structure defined in Fig. 4. We kept

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 9

exactly the same setup as in Section 3.1.1 for comparability. In the case of the first-order
secure implementation no first-order leakage appears, while in the second-order neither
first- nor second-order leakage appear up to 55 million traces. Fig. 5 presents these results.

Figure 5: T-test on first (left) and second-order (right) NC-Keccak implementations over
55M traces.

3.3 Performance Analysis
To synthesize our designs we use Synopsys Design Compiler Version I-2013.12 with NanGate
45nm Open Cell Library. The synthesis is done by using the -compile command and
setting the flag -exact_map to avoid any optimization that could affect the security. The
option -no_autoungroup is set by default when using -compile. This way it keeps the
hierarchy of the design so that no optimizations in between modules can happen. Table 1
shows the results for this section’s implementations. Note that the number of random bits
presented is for each round, i.e., for every two clock cycles, and can be reduced significantly
using the ideas from [BDN+14, GSM17, Dae17] which is not the goal of this paper.

Table 1: Synthesis results for the different designs

AREA(kGE) Max.Freq.

DESIGN χ θ State Total Rand. Cycles (MHz)

Plain 542.63 638.4 1 333 2 759 - 18 1 136
DOM-Keccak 1st 9 881* 1 600 2 667 17 105 200 36 1 087
NC-Keccak 1st 2 613 1 600 5 334* 17 493 200 36 1 300
NC-Keccak 2nd 6 200 2 400 12 001* 35 223 600 36 1 205

* This number includes the registers layer needed before the compression

10 Rhythmic Keccak:SCA Security and Low Latency in HW

4 Speeding Up Keccak Implementations
Our goal in this section is to push the limits of low-latency masked Keccak implementation
using standard CMOS-like cells. Clearly, it is very challenging to provide a secure unrolled
implementation of Keccak that calculates more than one round in one clock cycle using
a sin = d+ 1 share masking scheme. However, due to increased number of shares TI can
become advantageous in this setting. In what follows, we first discuss how to implement
multiple layers of nonlinear functions generically. Then, we propose a method to halve the
latency of a Keccak implementation using TI and analyze the difficulties found in the
process. We conclude this section with our security analysis and synthesis results which
shows the fastest secure hardware implementation published to this date.

4.1 Unrolling Quadratic Round Functions
Let Ri be a quadratic round function, similar to that of Keccak permutations. And let
us initially target two rounds, F = Ri ◦ Ri+1. That is, we need to share and calculate
not a quadratic, but a quartic function. According to Eqn. (2), a first-order resistant
implementation of a quartic function requires sin ≥ 5 shares given the algebraic normal
form (ANF) of this function. However, for Keccak and many other schemes alike gathering
and using the ANF of two rounds F is not trivial due to the high diffusion of state bits.
Specifically for Keccak-f [200], it can be seen that a single output bit of F depends on
almost all input bits. Due to this difficulty and to avoid a case by case analysis for each
target algorithm, we opt to develop a generic method.

For additional simplicity, let’s assume Ri is composed of a series of AND gates. The
dependency for a particular output is provided in Fig. 6. It is clear that if we implement the
first layer using 3 shares which is the minimum number of shares proposed for first-order
security in Eqn. (2), the first layer would indeed be secure. However the second layer which
uses the first layer’s output can not satisfy non-completeness, i.e. every output share of F
would depend on all input shares of F .

Figure 6: Quartic operation composed of two quadratic operations

We would like to achieve first-order security even at the last round of unrolled imple-
mentation. With our method, we suggest to crawl backward until the first round of F and
decide how-many shares we need. That is, we observe that first-order non-completeness
of a quadratic function in the second layer implies combination of any two shares being
independent of the secret in the input of the second layer. This implies any two share
of the output of the first layer being independent of the input which is the definition of
second-order non-completeness. Hence, if we implement the first and second layers such
that they satisfy second- and first-order non-completeness respectively, F would satisfy
first-order non-completeness. This observation is naturally applicable to higher degree
functions and easily extendable to more rounds.

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 11

There is still one challenge remaining: the second-order non-complete layer will increase
the number of shares, hence the first order non-complete layer should be compatible to
work with increased number of shares with embedded compression layer to keep the number
of shares at the output of F as low as possible. We call a sharing where sin > sout a
compression sharing.

4.2 First Attempt for Keccak
We build the second order secure sharing for Ri with sin = 5 and sout = 10. Eqn. (6)
shows the output dependencies on the input shares for an AND gate. Every combination
of two outputs is independent of at least one input share.

S′
1 = f1(S1, S2) S′

6 = f6(S1, S3)
S′

2 = f2(S2, S3) S′
7 = f7(S3, S5)

S′
3 = f3(S3, S4) S′

8 = f8(S5, S2) (6)
S′

4 = f4(S4, S5) S′
9 = f9(S2, S4)

S′
5 = f5(S5, S1) S′

10 = f10(S4, S1)

Note that due to the linear layer of Keccak-f, the AND gates in Ri+1 depends more
than the output of two AND gates. Hence, not every first-order non-complete sharing of
Ri+1leads to a non-complete F . Moreover, even though many direct 10→ 10 sharings of
Ri+1 satisfying the above restriction can be derived following a simple procedure (every
output share will combine three of the previous pairs where at most two of the initial input
shares can be repeated), we would like to have a compression sharing to avoid increase of
number of shares.

For a target of 10 → 5 compression sharing, we need to be more careful since more
pairs are combined. Eqn. (7) illustrates the input-output dependency of a possible sharing
for Ri+1.

S′′
1 = f1(S′

1, S
′
2, S

′
3, S

′
6, S

′
9, S

′
10) (Missing input S5)

S′′
2 = f2(S′

1, S
′
2, S

′
5, S

′
6, S

′
7, S

′
8) (Missing input S4)

S′′
3 = f3(S′

1, S
′
4, S

′
5, S

′
8, S

′
9, S

′
10) (Missing input S3) (7)

S′′
4 = f4(S′

3, S
′
4, S

′
5, S

′
6, S

′
7, S

′
10) (Missing input S2)

S′′
5 = f5(S′

2, S
′
3, S

′
4, S

′
7, S

′
8, S

′
9) (Missing input S1)

4.3 Our Design
The greatest area contributor of a Keccak parallel implementation, is the χ step. The
number of gates in the non-linear operation scales with the number of input shares as
follows:

• Number of AND gates =
(
sin
2

)
+ sin

• Number of XOR gates =
(
sin
2

)
+ sin

• Number of NOT gates = sin

The area overhead of increasing the number of shares to 10 is significant, so we decided
to look for another sharing for the first layer that produces less outputs. One possible

12 Rhythmic Keccak:SCA Security and Low Latency in HW

option is the 6 → 7 sharing proposed in [BGN+14a]. Our further investigations lead to
6→ 6 sharing schemes that we can use for both layers, which are shown in Eqn. (8).

S′
1 = f1(S1, S2, S3) S′′

1 = f1(S′
4, S

′
5, S

′
6) (Missing input S1)

S′
2 = f2(S1, S4, S5) S′′

2 = f2(S′
2, S

′
3, S

′
5) (Missing input S2)

S′
3 = f3(S1, S4, S6) S′′

3 = f3(S′
2, S

′
3, S

′
4) (Missing input S3) (8)

S′
4 = f4(S2, S5, S6) S′′

4 = f4(S′
1, S

′
4, S

′
5) (Missing input S4)

S′
5 = f5(S3, S5, S6) S′′

5 = f5(S′
1, S

′
3, S

′
6) (Missing input S5)

S′
6 = f6(S2, S3, S4) S′′

6 = f6(S′
1, S

′
2, S

′
6) (Missing input S6)

With this sharing we are able to reduce the area considerably without failing non-
completeness.

4.3.1 Performance Analysis

The implementation is done in parallel by concatenating two rounds, i.e. the round which
is depicted with a box in Fig. 1 is repeated twice before synchronization. We present the
results for the two sharing schemes mentioned above in Table 2 for comparison.

Table 2: Results for the different double round sharings which require 9 cycles and no
extra randomness for refreshing

AREA(kGE) Max.Freq.

DESIGN χ1 χ2 θ1 θ2 State Total (MHz)

5→ 10→ 5 13 533 59 893 4 280 9 747 6 700 99 347 395.25
6→ 6→ 6 22 400 22 160 5 662 5 662 8 033 70 120 436.7

The first non-linear operation in 5→ 10→ 5 sharing is a bit cheaper than the one using
6→ 6→ 6. However, the second non-linear operation of 5→ 10→ 5 is significantly more
expensive due to the greater number of inputs as expected. In the 6→ 6→ 6 scheme the
state register is a bit bigger since there is one more share to store. All things considered,
the area reduction of our design compared to a first attempt is clear.

Given the results, is possible to see that the time needed for a single encryption is
20.61ns. Therefore we can affirm this is the fastest round based Keccak implementation
published to this date.

4.3.2 Evaluation

We evaluate the optimized design using the 6→ 6→ 6 sharing. The test is done under
the conditions already presented in Section 3.1.1. Since this implementation is much faster
than the previous ones, the analysis covers 10 rounds of the cipher.

The results are presented in Fig. 7 for masks off and masks on. It is possible to
appreciate that the countermeasures indeed prevent leakage from appearing in the first-
order. Moreover, we observe no leakage in the second or in the third order t-test using
55 million measurements. We attribute this to the noise introduced by the large number
of shares used.

5 Conclusions
In this work we presented, on the one hand, a flaw in previous round based Keccak secure
implementations on hardware and how to address this issue. We propose this solution

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 13

Figure 7: T-test on first order d + 1 Keccak implementation. Left: Masks off. Right:
DOM-Keccak masks on

for Keccak permutations, but it is also applicable to other algorithms that concatenate
several linear and non-linear operations. On the other hand, we introduced a method to
speed up masked hardware implementations. Thus, by applying this method, the fastest
Keccak implementation is presented.

References
[BDN+14] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Assche.

Efficient and first-order DPA resistant implementations of keccak. in CARDIS,
volume 8419 of LNCS pp 187-199, June 2014.

[BDP+16a] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. Caesar
submission: Ketje v2, September 2016.

[BDP+16b] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. Caesar
submission: Keyak v2, September 2016.

[BDPA10a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Building power anal-
ysis resistant implementations of keccak. Second SHA-3 candidate conference,
August 2010.

[BDPA10b] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak reference.
http://http://keccak.noekeon.org/, January 2010.

[BGN+14a] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order
threshold implementations. In ASIACRYPT, volume 8874 of LNCS, pages
326-343. Springer, 2014.

14 Rhythmic Keccak:SCA Security and Low Latency in HW

[BGN+14b] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A more efficient
aes threshold implementation. In D. Pointcheval and Damien Vergnaud,
editors, Progress in Cryptology-AFRICACRYPT 2014, volume 8469 of Lecture
Notes in Computer Science, pages 267–284. Springer International Publishing,
2014.

[BGN+15] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Trade-offs for
threshold implementations illustrated on AES. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 34(7):1188–1200, July
2015.

[BNN+12] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. StÃĳtz. Threshold im-
plementations of all 3 × 3 and 4 × 4 s-boxes. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems-
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 76–91.
Springer Berlin Heidelberg, 2012.

[BNN+14] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup. Thresh-
old implementations of small s-boxes. Cryptography and Communications,
pages 1–31, 2014.

[CBR+15] T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov, and S. Nikova. Higher-order
threshold implementation of the AES s-box. In Naofumi Homma and Marcel
Medwed, editors, Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November 4-6,
2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 259–272. Springer, 2015.

[CMG+13] J. Cooper, E. De Mulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi.
Test vector leakage assessment (TVLA) methodology in practice. Interna-
tional Cryptographic Module Conference, 2013. http://icmc-2013.org/wp/
wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf.

[Dae17] J. Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
137–153. Springer, 2017.

[DFS15] A. Duc, S. Faust, and F.-X. Standaert. Making Masking Security Proofs
Concrete, pages 401–429. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

[FGP+17] S. Faust, V. Grosso, S. Merino Del Pozo, C. Paglialonga, and F.-X. Standaert.
Composable masking schemes in the presence of physical defaults and the
robust probing model. Cryptology ePrint Archive, Report 2017/711, 2017.
http://eprint.iacr.org/2017/711.

[GMK16] H. Gross, S. Mangard, and T. Korak. Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. Cryptology
ePrint Archive, Report 2016/486, 2016. http://eprint.iacr.org/2016/
486.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin K. Koç, David Naccache, and Christof

http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://eprint.iacr.org/2017/711
http://eprint.iacr.org/2016/486
http://eprint.iacr.org/2016/486

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 15

Paar, editors, Cryptographic Hardware and Embedded Systems-CHES 2001,
volume 2162 of LNCS, pages 251–261. Springer Berlin Heidelberg, 2001.

[GSM17] H. Gross, D. Schaffenrath, and S. Mangard. Higher-order side-channel pro-
tected implementations of keccak. In 2017 Euromicro Conference on Digital
System Design (DSD), pages 205–212, Aug 2017.

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware
against Probing Attacks, pages 463–481. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[KJJ99] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages
388–397, 1999.

[NRR06] S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In ICICS, volume 4307 of LNCS, pages
529-545. Springer, 2006.

[NRS08] S. Nikova, V. Rijmen, and M. Schlaffer. Secure hardware implementation of
non-linear functions in the presence of glitches. In ICISC, volume 5461 of
LNCS, pages 218-234. Springer, 2008.

[NRS11] S. Nikova, V. Rijmen, and M. Schlaffer. Secure hardware implementation of
non-linear functions in the presence of glitches. J. Cryptology, 24(2):292-321,
2011.

[RBN+15] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consoli-
dating Masking Schemes, pages 764–783. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[Rom14] C. H. Romine. SHA-3 standard: Permutation-based hash and extendable
output functions. 2014.

16 Rhythmic Keccak:SCA Security and Low Latency in HW

A Appendix

A.1 Keccak Round Steps

� step

⇢ stepx

y z z

✓ step

⇡ step ◆ step

Figure 8: Keccak-f [200] state and steps [BDPA10b].

A.2 Second-order Masking

A.2.1 Threshold Implementation (TI)

z1 = a1 ⊕ b1c1 ⊕ b1c5 ⊕ b5c1 z2 = a2 ⊕ b2c2 ⊕ b1c2 ⊕ b2c1

z3 = a3 ⊕ b3c3 ⊕ b1c3 ⊕ b3c1 z4 = a4 ⊕ b4c4 ⊕ b1c4 ⊕ b4c1

z5 = a5 ⊕ b5c5 ⊕ b2c5 ⊕ b5c2 z6 = b2c3 ⊕ b3c2 (9)
z7 = b2c4 ⊕ b4c2 z8 = b3c4 ⊕ b4c3

z9 = b3c5 ⊕ b5c3 z10 = b4c5 ⊕ b5c4

A.2.2 Domain Oriented Masking (DOM)

z1 = (a1b1)⊕ [a1b2 ⊕ r1]⊕ [a1b3 ⊕ r2],
z2 = [a2b1 ⊕ r1]⊕ (a2b2)⊕ [a2b3 ⊕ r3], (10)
z3 = [a3b1 ⊕ r2]⊕ [a3b2 ⊕ r3]⊕ (a3b3).

A.3 Non-completeness Failure in Round-Based DOM Implementation

A.3.1 First Order.

Fig. 10 presents graphically what is demonstrated in Eqn.6 numerically:

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 17

Figure 9: First- and second-order threshold implementation with randomness.

A.3.2 Second Order.

First bit

χ−1 : Sχ2 [0, 0, 7] → Sπ2 [0, 0, 7]⊕ Sπ2 [1, 0, 7]Sπ2 [2, 0, 7]

π−1 : Sπ2 [0, 0, 7] → Sρ2 [0, 0, 7]
Sπ2 [1, 0, 7] → Sρ2 [1, 1, 7]
Sπ2 [2, 0, 7] → Sρ2 [2, 2, 7]

ρ−1 : Sρ2 [0, 0, 7] → Sθ2 [0, 0, 7]

Sρ2 [1, 1, 7] → Sθ2 [1, 1, 3]

Sρ2 [2, 2, 7] → Sθ2 [2, 2, 4]

θ−1
1 : Sθ2 [0, 0, 7] → S2 [0, 0, 7]⊕

4⊕
y′=0

S2
[
4, y′, 7

]
⊕

4⊕
y′=0

S2
[
1, y′, 6

]
Sθ2 [1, 1, 3] → S2 [1, 1, 3]⊕

4⊕
y′=0

S2
[
0, y′, 3

]
⊕

4∑
y′=0

S2
[
2, y′, 2

]
Sθ2 [2, 2, 4] → S2 [2, 2, 4]⊕

4⊕
y′=0

S2
[
1, y′, 4

]
⊕

4∑
y′=0

S2
[
3, y′, 3

]

18 Rhythmic Keccak:SCA Security and Low Latency in HW

✓ step ⇢ step

⇡ step � step

S1 S2 S1 S2

S1 S2 S3

Figure 10: Tracing back output bit Cχ [4, 1, 0].

Second bit
χ−1 : Sχ6 [2, 0, 5] → Sπ1 [4, 0, 5]Sπ3 [3, 0, 5]

π−1 : Sπ1 [4, 0, 5] → Sρ1 [4, 4, 5]
Sπ3 [3, 0, 5] → Sρ3 [3, 3, 5]

ρ−1 : Sρ1 [4, 4, 5] → Sθ1 [4, 4, 7]

Sρ3 [3, 3, 5] → Sθ3 [3, 3, 0]

θ−1
1 : Sθ1 [4, 4, 7] → S1 [4, 4, 7]⊕

4⊕
y′=0

S1
[
3, y′, 7

]
⊕

4⊕
y′=0

S1
[
0, y′, 6

]
Sθ3 [3, 3, 0] → S3 [3, 3, 0]⊕

4⊕
y′=0

S3
[
2, y′, 0

]
⊕

4∑
y′=0

S3
[
4, y′, 7

]

	Introduction
	Preliminaries
	Keccak Permutations
	Masking Schemes

	Round-Based Implementations
	Analysis of DOM-Keccak
	Non-Complete Round-Based Architecture
	Performance Analysis

	Speeding Up Keccak Implementations
	Unrolling Quadratic Round Functions
	First Attempt for Keccak
	Our Design

	Conclusions
	Appendix
	Keccak Round Steps
	Second-order Masking
	Non-completeness Failure in Round-Based DOM Implementation

