
CAPA:
The Spirit of Beaver against Physical Attacks

Oscar Reparaz1,2, Lauren De Meyer1, Begül Bilgin1, Victor Arribas1, Svetla
Nikova1, Ventzislav Nikov3, and Nigel Smart1,4

1 KU Leuven, imec - COSIC, Belgium
firstname.lastname@esat.kuleuven.be

2 Square, Inc., USA
3 NXP Semiconductors, Belgium

4 University of Bristol, UK

Abstract. In this paper we introduce CAPA: a combined countermeasure
against physical attacks. Our countermeasure provides security against
higher-order SCA, multiple-shot DFA and combined attacks, scales to
arbitrary protection order and is suitable for implementation in embedded
hardware and software. The methodology is based on an attack model
which we call tile-probe-and-fault, which is an extension (in both attack
surface and capabilities) of prior work such as the wire-probe model.
The tile-probe-and-fault leads one to naturally look (by analogy) at
actively secure multi-party computation protocols such as SPDZ. We
detail several proof-of-concept designs using the CAPA methodology: a
hardware implementation of the KATAN and AES block ciphers, as well
as a software bitsliced AES S-box implementation. We program a second-
order secure version of the KATAN design into a Spartan-6 FPGA and
perform a side-channel evaluation. No leakage is detected with up to 18
million traces. We also deploy a second-order secure software AES S-box
implementation into an ARM Cortex-M4. Neither first- nor second-order
leakage is detected with up to 200 000 traces. Both our implementations
can detect faults within a strong adversarial model with arbitrarily high
probability.

Keywords: MPC, masking, SCA, DFA, countermeasure, threshold implementa-
tion, AES, KATAN, leakage, physical attacks, side-channel, SCA

1 Introduction

Side-channel analysis attacks (SCA) [44] are cheap and scalable methods to
extract secrets, such as cryptographic keys or passwords, from embedded elec-
tronic devices. They exploit unintended signals (such as the instantaneous power
consumption [45] or the electromagnetic radiation [26]) stemming from a cryp-
tographic implementation. In the last twenty years, plenty of countermeasures
to mitigate the impact of side-channel information have been developed. Mask-
ing [15, 29] is an established solution that stands out as a provably secure yet
practically useful countermeasure.

Fault analysis (FA) is another relevant attack vector for embedded cryptogra-
phy. The basic principle is to disturb the cryptographic computation somehow
(for example, by under-powering the cryptographic device, or by careful illumina-
tion of certain areas in the silicon die). The result of a faulty computation can
reveal a wealth of secret information: in the case of RSA or AES, a single faulty
ciphertext suffices to recover the whole secret key [10, 51]. Countermeasures are
essentially based on adding some redundancy to the computation (in space or
time). In contrast to masking, the countermeasures for fault analysis are mostly
heuristic and lack a formal background.

However, there is a tension between side-channel countermeasures and fault
analysis countermeasures. On the one hand, fault analysis countermeasures require
redundancy, which can give out more leakage information to an adversary. On
the other hand, a device that implements first-order masking offers an adversary
double the attack surface to insert a fault in the computation. It should be
mentioned that a duality relation between probing and fault attacks was pointed
out in [25]. There is clearly a need for a combined countermeasure that tackles
both problems simultaneously.

In this work we introduce a new attack model to capture this combined attack
surface which we call the tile-probe-and-fault model. This model naturally extends
the wire-probe model of [37]. In the wire-probe model individual wires of a circuit
may be targetted for probing. The goal is then to protect against a certain fixed
set of wire-probes. In our model, inspired by modern processor designs, we allow
whole areas (or tiles) to be probed, and in addition we add the possibility of the
attacker inducing faults on such tiles.

Protection against attacks in the wire-probe model is usually done via masking;
which is in many cases the extension of ideas from passively secure secret sharing
based Multi-Party Computation (MPC) to the side-channel domain. It is then
natural to look at actively secure MPC protocols for the extension to fault
attacks. The most successful modern actively secure MPC protocols are in the
SPDZ family [23]. These use a pre-processing or preparation phase to produce
so called Beaver triples, named after Beaver [6]. These auxiliary data values,
which will be explained later, are prepared either before a computation, or in a
just-in-time manner, so as to enable an efficient protocol to be executed. This
use of prepared Beaver triples also explains, partially, the naming of our system,
CAPA (a Combined countermeasure Against Physical Attacks), since Capa is
also the beaver spirit in Lakota mythology. In this mythology, Capa is the lord
of domesticity, labour and preparation.

1.1 Previous Work

Fault Attack Models and Countermeasures: Faults models typically describe the
characterization of an attacker’s ability. That is, the fault model is constructed as
a combination of the following: the precision of the fault location and time, the
number of affected bits which highly depends on the architecture, the effect of the
fault (flip/set/reset/random) and its duration (transient/permanent). Moreover,

2

the fault can target the clock or power line, storage units, combinational or
control logic.

When it comes to countermeasures, one distinguishes between protection of
the device itself by using, for example, active or passive shields and protection of
the algorithm. No countermeasure provides perfect security at a finite cost; it is
the designer’s responsibility to strive for a balance between high-level (algorithmic)
countermeasures and low-level ones that work at the circuit level and complement
each other. In this paper, we discuss the former.

One algorithmic technique is to replicate the calculation m times in either
time or space and only complete if all executions return the same result [57].
This countermeasure has the important caveat that there are conceptually simple
attacks, such as m identical fault injections in each execution, that break the
implementation with probability one.

A second method is to use an error correcting or detecting code [49, 42, 8,
41, 40, 38, 39, 13, 12, 35]. This means one performs all calculations on both data
and checksum. A drawback is that error correcting/detecting codes only work in
environments in which errors are randomly generated, as opposed to maliciously
generated. Thus, a skilled attacker may be able to carefully craft a fault that
results in a valid codeword and is thus not detected. A detailed cost comparison
between error detection codes and doubling is given in [47].

Another approach is that of infective computation [27, 46], where any fault
injected will affect the ciphertext in a way that no secret information can be
extracted from it. This method ensures the ciphertext can always be returned
without the need for integrity checks. While infective methods are very efficient,
the schemes proposed so far have all been broken [5].

Side-Channel Attack Models and Countermeasures: A side-channel adversary
typically uses the noisy leakage model [58], where side-channel analysis (SCA)
attacks are bounded by the statistical moment of the attack due to a limited
number of traces and noisy leakages. Given enough noise and an independent
leakage assumption of each wire, this model, when limited to the tth-order
statistical moment, is shown to be comparable to the t-probing model introduced
in [37], where an attacker is allowed to probe, receive and combine the noiseless
information about t wires within a time period [24]. Finally, it has been shown
in [4] that a (semi-)parallel hardware implementation is secure in the tth-order
bounded moment model if its complete serialization is secure at the t-probing
model.

While the countermeasures against fault attacks are limited to resist only a
small subset of the real-world adversaries and attack models, protection against
side-channel attacks stands on much more rigorous grounds and generally scales
well with the attacker’s powers. A traditional solution is to use masking schemes [9,
32, 37, 54, 59–61] to implement a function in a manner in which higher-order SCA
is needed to extract any secret information, i.e. the attacker must exploit the
joint leakage of several intermediate values. Masking schemes are analogues of the
passively secure threshold MPC protocols based on secret sharing. One can thus
justify their defence by appealing to the standard MPC literature. In MPC, a

3

number of parties can evaluate a function on shared data, even in the presence of
adversaries amongst the computing parties. The maximum number of dishonest
parties which can be tolerated is called the threshold. In an embedded scenario,
the basic idea is that different parts of a chip simulate the parties in an MPC
protocol.

Combining Faults and Side-Channels Models and Countermeasures. The im-
portance of combined countermeasures becomes more aparent as attacks such
as [2] show the feasibility of combined attacks. Being a relatively new threat,
combined adversarial models lack a joint description and are typically limited to
the combination of a certain side-channel model and a fault model independently.

A natural countermeasure against combined attacks is found in leakage
resilient schemes [48]. Typical leakage resilient schemes rely on a relatively simple
and easy to protect key derivation function in order to update the key that is
used by the cryptographic algorithm within short periods. That is, a leakage
resilient scheme acts as a specific “mode of operation”. Thus, it cannot be a
drop-in replacement for a standard primitive such as the AES block cipher. The
aforementioned period can be as short as one encryption per key in order to
eliminate fault attacks completely. However, the synchronization burden this
countermeasure brings, makes it difficult to integrate with deployed protocols.

There are a couple of alternative countermeasures proposed for embedded
systems in recent years. In private circuits II [16, 36], the authors use redundancy
on top of a circuit that already resists SCA (private circuits I [37]) to add
protection against FA. In ParTI [64], threshold implementations (TI) are combined
with concurrent error detection techniques. ParTI naturally inherits the drawbacks
of using an error correction/detection code. Moreover, the detectable faults are
limited in hamming weight due to the choice of the code. Finally, in [65], infective
computation is combined with error-preserving computation to obtain a side-
channel and fault resistant scheme. However, combined attacks are not taken
into account.

Given the above introduction, it is clear that both combined attack models
and countermeasures are not mature enough to cover a significant part of the
attack surface.

Actively Secure MPC. Modern MPC protocols obtain active security, i.e. security
against malicious parties which can actively deviate from the protocol. By
mapping such protocols to the on-chip side-channel countermeasures, we would
be able to protect against an eavesdropping adversary that inserts faults into a
subset of the simulated parties. An example of a practical attack that fits this
model is the combined attack of Amiel et al. [2]. We place defences against faults
on the same theoretical basis as defences against side-channels.

To obtain maliciously secure MPC protocols in the secret-sharing model, there
are a number of approaches. The traditional approach is to use Verifiable Secret
Sharing (VSS), which works in the information theoretic model and requires that
only up to t < n/3 parties can be corrupt. The modern approach, adopted by
protocols such as BODZ, SPDZ, Tiny-OT, MASCOT etc. [7, 23, 43, 53], is to work

4

in a full threshold setting (i.e. all but one party can be corrupted) and attach
information theoretic MACs to each data item. This approach turns out to be
very efficient in the MPC setting, apart from its usage of public-key primitives.
The computational efficiency of the use of information theoretic MACs and the
active adversarial model of SPDZ lead us to adopt this philosophy.

1.2 Our Contributions

Our contributions are threefold. We first introduce the tile-probe-and-fault model,
a new adversary model for physical attacks on embedded systems. We then use
the analogy between masking and MPC to provide a methodology, which we
call CAPA, to protect against such a tile-probe-and-fault attacker. Finally, we
illustrate the scheme with implementations and experiments.

Tile-probe-and-fault model. We introduce a new adversary model that expands
on the wire-probe model and brings it closer to real-world processor designs. Our
model is set in an architecture that mimics the actively secure MPC setting that
inspires our countermeasures (see Figure 1). Instead of individual wires at the
foundation of the model, we visualize a separation of the chip (integrated circuit)
into areas or tiles, consisting of not only many wires, but also complete blocks
of combinational and sequential logic. Such tiled designs are inherent in many
modern processor architectures, where the tiles correspond to “cores” and the
wires correspond to the on-chip interconnect. This can easily be related to a
standard MPC architecture where each tile behaves like a separate party. The
main difference between our architecture and the MPC setting is that in the latter,
parties are assumed to be connected by a complete network of authenticated
channels. In our architecture, we know exactly how the wires are connected in
the circuit.

The tile architecture satisfies the independent leakage assumption [24] amongst
tiles. That is, leakage is local and thus observing the behaviour of a tile by means
of probing, faulting or observing its side-channel leakage, does not give unintended
information about another tile through, for example, coupling.

As the name implies, the adversary in our model exploits side-channels and
introduces faults. We stress that our goal is to detect faults as opposed to tolerate
or correct them. That is, if an adversary interjects a fault, we want our system
to abort without revealing any of the underlying secrets.

CAPA Methodology. We introduce CAPA, a countermeasure against the tile-
probe-and-fault-attacker, which inherits theoretical aspects of the MPC protocol
SPDZ [23]. Like SPDZ, CAPA computes on shared values, along with corre-
sponding shared MAC tags. The former prevents the adversary from learning
sensitive values, while the latter allows for detection of any faults introduced.
The methodology is scalable and suitable for implementation in hardware and
software.

5

”Party”	2

”Party”	"

”Party”	1

…

Fig. 1. Partition of the integrated circuit area into tiles, implementing MPC “parties”.

Experimental Results. We provide examples of CAPA designs in hardware of the
KATAN and AES block ciphers and a software bitsliced implementation of the
AES S-box. We confirm our theoretical claims with a side-channel evaluation
of hardware and software implementations of various cryptographic primitives
using the CAPA methodology. We program a second order secure hardware
implementation of KATAN onto a Spartan-6 FPGA and perform a non-specific
leakage detection test, which does not show evidence of first or second order
leakage with up to 18 million traces. Furthermore, we deploy a second order
secure implementation of the AES S-box on an ARM Cortex-M4 and take
electromagnetic measurements. Neither first nor second order leakage is detected
with up to 200 000 traces. Finally, using toy parameters, we verify our claimed
fault detection probability for the AES S-box software implementation.

2 The Tile-Probe-and-Fault Model

In this section we outline the underlying security model which we assume in this
work.

Tile Architecture. Consider a partition of the chip in a number of tiles Ti, with
wires running between each pair of tiles as shown in Figure 1. We call the set
of all tiles T . Each tile Ti ∈ T possesses its own combinational logic, control
logic (or program code) and pseudo-random number generator needed for the
calculations of one share. In the abstract setting, we consider each tile as the set
composed of all input and intermediate values on the wires and memory elements
of those blocks. A probe-and-fault attacker may obtain, for a given subset of tiles,
all the internal information at given time intervals on this set of tiles. He may
also inject faults (known or random) into each tile in this set.

6

In our model, each sensitive variable is split into d shares through secret sharing.
Without loss of generality, we use Boolean sharing in this paper.

We define each tile such that it stores and manipulates at most one share of
each variable in the system. Any wire running from one tile to another carries
only blinded versions of a sensitive variables’ share used by Ti. We make minimal
assumptions on the security of these wires. Instead, we include all the information
on the unidirectional wires in Figure 1 in the tile on the receiving and not the
sending end. We thus assume only one tile is affected by an integrity failure of a
wire. We assume that shared calculations are performed in parallel without loss
of generalization. The redundancy of intermediate variables and logic makes the
tiles completely independent apart from the communication through wires.

Probes. Throughout this work, we assume a strong dp-probing adversary where
we give an attacker information about all intermediate values possessed by dp
specified tiles, i.e. ∪i∈i1,...,idpTi. The attacker obtains all the intermediate values

on the tile (such as internal wire and register values) with probability one and
obtains these values from the start of the computation until the end. Note that
this is stronger than both the standard dp-probing adversary which gives access
to only dp intermediate values within a certain amount of time [37] and ε-probing
adversary where the information about dp intermediate values is gained with
certain probability. Our dp-probing model is more generic and covers realistic
scenarios including an attacker with a limited number of EM probes which enable
observation of multiple intermediate values simultaneously within close proximity
on the chip.

Faults. We also consider two types of fault models. Firstly, a df -faulting adversary
which can induce known-value faults in any number of intermediate bits/values
within df tiles, i.e. from the set ∪i∈i1,...,idf Ti. These faults can have the nature of

either flipping the intermediate values with a pre-calculated (adversarially known)
offset or setting the intermediate values to a known fixed value. In particular,
the faults are not limited in hamming weight. One can relate this type of faults
with, for example, very accurate laser injections.

Secondly, we consider an ε-faulting adversary which inserts a random-value
fault in all variables that each party holds. This is a somehow new MPC model,
and essentially means that all parties are randomly corrupted. The ε-adversary
may inject the random-value fault according to some distribution (for example,
flip each bit with certain probability), but he cannot set all intermediates to a
known fixed value. This adversary is different from the df -faulting adversary.
One can relate the ε-faulting adversary to a certain class of non-localised EM
attacks.

Time periods. We assume a notion of time periods; where the period length is at
least one clock cycle. We require that a df -fault to an adversarially chosen value
cannot be preceded by a probe within the same time period. Thus adversarial
faults can only depend on values from previous time periods. This time restric-
tion is justified by practical experimental constraints; where the time period

7

is naturally upper bounded by the time it takes to set up such a specific laser
injection.

Adversarial Models. Given the aforementioned definitions, we consider on the one
hand an active adversary A1 with both dp-probing and df -faulting capabilities
simultaneously. We define P1 the set of up to dp tiles that can be probed and F1

the set of up to df tiles that can be faulted by A1. Since each tile potentially
sees a different share of a variable and we use a d-sharing for each variable, we
constrain the attack surface (the sets) as follows:

(F1 ∪ P1) ⊆ ∪d−1
j=1Tij

The constraint implies that at least one share remains unaccessed/honest and
thus |F1∪P1| ≤ d−1. Within those d−1 tiles, the adversary can probe and fault
infinitely many wires, including the wires arriving at each tile. The adversary’s
df -faulting capabilities are limited in time by our definition of time periods,
which implies that any df -fault cannot be preceded by another probe within the
same time period.

We also consider an active adversary A2 that has dp-probing and ε-faulting
capabilities simultaneously. In this case, the constraint on the set of probed tiles
P2 remains the same:

P2 ⊆ ∪d−1
j=1Tij

but the set of faulted tiles is no longer constrained:

F2 ⊆ T
Moreover, as ε-faults do not require the same set-up time as df -faults, they are
not limited in time. Note that, ε-faults do not correspond to a standard adversary
model in the MPC literature; thus this part of our model is very much an aspect
of our side-channel and fault analysis focus. A rough equivalent model in the
MPC literature would be for an honest-but-curious adversary who is able to
replace the share or MAC values of honest players with values selected from a
given random distribution. Whilst such an attack makes sense in the hardware
model we consider, in the traditional MPC literature this model is of no interest
due to the supposed isolated nature of computing parties.

As our constructions are based on MPC protocols which are statically secure
we make the same assumptions in our tile-probe-and-fault model, i.e. the selection
of tiles attacked must be fixed beforehand and cannot depend on information
gathered during computation. This notion is applicable in our hardware situation
because of the experimental difficulty of setting up probes and lasers that target
specific parts on the chip. We thus assume that both adversaries A1 and A2 are
static.

3 The CAPA Design

The CAPA methodology consists of two stages. A preprocessing step generates
auxiliary data, which is used to perform the actual cryptographic operation in

8

the evaluation step. We first present some notation, then the building blocks for
the main evaluation, and finally the preprocessing components.

Notation. Although generalization to any finite field holds, in this paper we
work over a field Fq with characteristic 2, for example GF (2k) for a given k, as
this is sufficient for application to most symmetric ciphers. We use · and + to
describe multiplication and addition in Fq respectively. We use upper case letters
for constants. The lower case letters x, y, z are reserved for the variables used
only in the evaluation stage (e.g. sensitive variables) whereas a, b, c, . . . represent
auxiliary variables generated from randomness in the preprocessing stage. The
kronecker delta function is denoted by δi,j . We use L(.) to denote an additively
homomorphic function and A(.) = C + L(.) with C some constant.

Information Theoretic MAC Tags and the MAC Key α. We represent a value
a ∈ Fq (similarly x ∈ Fq) as a pair 〈a〉 = (a, τa) of data and tag shares in the
masked domain. The data shares a = (a1, . . . , ad) satisfy

∑
ai = a. For each

a ∈ Fq, there exists a corresponding MAC tag τa computed as τa = α · a, where
α is a MAC key, which is secret-shared amongst the tiles as α =

∑
αi.

Analogously to the data, the MAC tag is shared τa = (τa1 , . . . , τ
a
d), such that

it satisfies
∑
τai = τa, but the MAC key itself does not carry a tag. Depending

on a security parameter m, there can be m independent MAC keys α[j] ∈ Fq for
j ∈ {1, . . . ,m}. In that case, α as well as τa are in Fmq and the tag shares satisfy∑
τai [j] = τa[j] = α[j] · a, ∀j ∈ {1, . . . ,m}. Further we assume m = 1 unless

otherwise mentioned.

3.1 Evaluation Stage

We let each tile Ti hold the ith share of each sensitive and auxilary variable
(xi, . . ., ai, . . .) and the MAC key share αi. We first describe operations that do
not require communication between tiles.

Addition. To compute the addition (z, τ z) of (x, τx) and (y, τy), each tile
performs local addition of their data shares zi = xi + yi and their tag shares
τzi = τxi + τyi . When one operand is public (for example, a cipher constant
C ∈ Fq), the sum can be computed locally as zi = xi + C · δi,1 for value shares
and τzi = τxi + C · αi for tag shares.

Multiplication by a Public Constant. Given a public constant C ∈ Fq, the
multiplication (z, τ z) of (x, τx) and C is obtained locally by setting zi = C · xi
and τzi = C · τxi .

The following operations, on the other hand, require auxiliary data generated in
a preprocessing stage and also communication between the tiles.

9

Multiplication. Multiplication of (x, τx) and (y, τy) requires as auxiliary data
a Beaver triple (〈a〉, 〈b〉, 〈c〉), which satisfies c = a · b, for random a and b. The
multiplication itself is performed in four steps.

– Step A. In the blinding step, each tile Ti computes locally a randomized
version of its share of the secret: εi = xi + ai and ηi = yi + bi.

– Step B. In the partial unmasking step, each tile Ti broadcasts its own shares
εi and ηi to other tiles, such that each tile can construct and store locally the
values ε =

∑
εi and η =

∑
ηi. The value ε (resp. η) is the partial unmasking

of (ε, τ ε) (resp. (η, τη)), i.e. the value ε (resp. η) is unmasked but its tag τ ε

(τη) remains shared. These values are blinded versions of the secrets x and y
and can therefore be made public.

– Step C. In the MAC-tag checking step, the tiles check whether the tags τ ε

(τη) are consistent with the public values ε and η, using a method which we
will explain later in this section.

– Step D. In the Beaver computation step, each tile locally computes

zi = ci + ε · bi + η · ai + ε · η · δi,1
τzi = τ ci + ε · τ bi + η · τai + ε · η · αi.

It can be seen easily that the sharing (z, τ z) corresponds to z = x · y unless
faults occurred. Step B and C are the only steps that require communication
among tiles. Step A and D are completely local.

Squaring. Squaring is a linear operation over GF(2). Hence, the output shares of
a squaring operation can be computed locally using the input shares. However,
obtaining the corresponding tag shares is non-trivial. To square (x, τx) into
(z, τ z), we therefore require an auxiliary tuple (〈a〉, 〈b〉) such that b = a2. The
procedure to obtain (z, τ z) mimics that of multiplication with some modifications:
there is only one partially unmasked value ε = x + a, whose tag needs to be
checked, and each tile calculates zi = bi + ε2 · δi,1 and τzi = τ bi + ε2 · αi.

Following the same spirit, we can also perform the following operations.

Affine Transformation. Provided that we have access to a tuple (〈a〉, 〈b〉) such
that b = A(a), we can compute (z, τ z) satisfying z = A(x), where L(x) is an
additively homomorphic function over the finite field, by computing the output
sharing as zi = bi + L(ε) · δi,1 and τzi = τ bi + L(ε) · αi.

Multiplication following Linear Transformations. The technique used for the
above additively homomorphic operations can be generalized even further to
compute z = L1(x) ·L2(y) in shared form, where L1 and L2 are additively homo-
morphic functions. A trivial methodology would require two tuples (〈ai〉, 〈bi〉)
with bi = Li(ai) for i ∈ {1, 2}, plus a standard Beaver triple (i.e. requiring
seven pre-processed data items). We see that we can do the same operation with
five pre-processed items (〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉), such that c = L1(a), d = L2(b)

10

and e = L1(a) · L2(b). The tiles partially unmask x + a (resp. y + b) to
obtain ε (resp. η) and verify them. Each tile computes its value share and
tag share of z as zi = ei + L1(ε) · di + L2(η) · ci + L1(ε) · L2(η) · δi,1 and
τzi = τei + L1(ε) · τdi + L2(η) · τ ci + L1(ε) · L2(η) · αi, respectively. We refer to
(〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉) as a quintuple and provide in Appendix A.1 more details
for verification.

Checking the MAC Tag of Partially Unmasked Values. Consider a public
value ε = x+a, calculated in the partial unmasking step of the Beaver multiplica-
tion operation. Recall that we obtain its MAC-tag shares as follows: τεi = τai + τxi .
During the MAC-tag checking step of the Beaver operation, the authenticity
of τε corresponding to ε is tested. As ε is public, each tile can calculate and
broadcast the value ε · αi + τεi . For a correct tag, we expect

∑
τεi = α · ε, thus

each tile computes
∑

(ε · αi + τεi) and proceeds if the result is zero.

3.2 Preprocessing Stage

The auxiliary data (〈a〉, 〈b〉, . . .) required in the Beaver evaluations, is generated
in a preprocessing stage. This preparation corresponds to the offline phase in
SPDZ . However, CAPA’s preprocessing stage is lighter and does not require a
public key calculation due to the differences in adversary model. As in SPDZ , this
stage is completely independent from the sensitive data of the main evaluation.
Below, we describe the generation of a Beaver triple used in multiplication. This
can trivially be generalized to tuples and quintuples.

Auxiliary Data Generation. To generate a triple (〈a〉, 〈b〉, 〈c〉) satisfying c = a · b,
we draw random shares a = (a1, . . . , ad) and b = (b1, . . . , bd) and use a passively
secure shared multiplier to compute c s.t. c = a · b. We then use another such
multiplication with the shared MAC key α to generate tag shares τa, τ b, τ c.
We note that the shares ai, bi are randomly generated by tile Ti. There are thus
d separate PRNG’s on d distinct tiles.

Passively Secure Shared Multiplier. For a secure implementation of a shared
multiplication, no subset of d − 1 tiles should have access to all shares of any
variable. This concept, which is used in the context of secure implementations
against SCA on hardware, is precisely called d − 1th-order non-completeness
in [9, 55]. In the last decade, there has been significant improvement on passively
secure shared multipliers that can be used in both hardware and software [9, 30,
32, 54, 59]. In principle, CAPA can use any such multiplier as long as the tile
structure still holds.

A close inspection of existing multipliers show that they require the calculation
of the cross products aibj . In order to make these multipliers compatible with
the CAPA tile architecture, we define tiles Ti,j which receive ai from Ti and bj
from Tj where i 6= j in order to handle the pair (ai, bj) to be used during tuple,
triple and quintuple generation. This implies d(d − 1) smaller tiles used only

11

during auxiliary data generation in addition to d tiles used for both auxiliary
data generation and evaluation. The output wires from Ti,j are only connected
to Ti and carry randomized information.

3.3 Relation Verification of Auxiliary Data.

The information theoretic MAC tags provide security against faults induced in the
evaluation stage. To detect faults in the preprocessing stage, we perform a relation
verification of the auxiliary data. This relation verification step ensures that the
generated triple is functionally correct (i.e. c = a · b) by sacrificing another triple.
That is, we take as input two triples (〈a〉, 〈b〉, 〈c〉) and (〈d〉, 〈e〉, 〈f〉), that should
satisfy the same relation, in this example c = a · b and f = d · e. The following
Beaver computation holds if and only if both relations are satisfied:

– Draw a random r1 ∈ Fq
– Use triple (〈d〉, 〈e〉, 〈f〉) to calculate the multiplication of r1 · 〈a〉 and 〈b〉

using a constant multiplication with r1, followed by the Beaver equation for
multiplication described above. The result 〈c̃〉 is a shared representation of
c̃ = r1 · a · b.

– For each share i, calculate the difference with the shares and tags of r1 · c:
∆i = r1 · ci + c̃i and τ∆i = r1 · τ ci + τ c̃i .

– Unmask the resulting differences ∆ and τ∆.

– If a difference is nonzero, reject (〈a〉, 〈b〉, 〈c〉) as a valid triple.

– Pick another r2 ∈ Fq such that r2 6= r1 and repeat a second time.

Note that this relation verification ensures that the second triple is functionally
correct too. However, it is burnt (or “sacrificed”) in this process in order to
ensure that the first triple can be used securely further on. Note that this relation
verification or “sacrificing” step is mandatory in each Beaver-like operation.

Why We Need Randomization. This sacrificing step involves two values r1 and r2.
We present the following attack to illustrate why this randomization is needed.
Again, we elaborate on triples, but the same can be said for tuples and quintuples.
As the security does not rely on the secrecy of r1 and r2, we assume for simplicity
that they are known to the attacker. We only stress that they are different:
r1 6= r2.

Consider two triples (〈a〉, 〈b〉, 〈c′〉) and (〈d〉, 〈e〉, 〈f ′〉) at the input of the
sacrificing stage. We assume that the adversary has introduced an additive
difference into one share of c′ and f ′ such that c′ = a · b+∆c and f ′ = d · e+∆f .

This fault is injected before the MAC tag calculation, so that τ c
′

and τf
′

are
valid tags for the faulted values c′ and f ′ respectively. In particular, this means
we have τ c

′
= τ c + α ·∆c and τf

′
= τf + α ·∆f .

12

The sacrificing step calculates the following four differences (for rj = r1 and
r2) and only succeeds if all are zero.

∆j =

d∑
i=1

(
rj · c′i + f ′

i + ε · ei + η · di
)

+ ε · η

= rj ·∆c +∆f
?
= 0

τ∆j =

d∑
i=1

(
rj · τ c

′
i + τf

′

i + ε · τei + η · τdi + ε · η · αi
)

= rj · α ·∆c + α ·∆f
?
= 0

Without randomization (i.e. r1 = r2 = 1), the attacker only has to match the
differences ∆f = ∆c to pass verification. With a random r1, the attacker can
fix ∆f = r1 ·∆c to automatically force ∆1 and τ∆1 to zero. Even if he does not
know r1, he has probability as high as 2−k to guess it correctly.

Only thanks to the repetition of the relation verification with r2, the adversary
is detected with a probability 1− 2−km. Assuming he fixed ∆f = r1 ·∆c, it is
impossible to also achieve ∆f = r2 ·∆c. Even if the attacker manages to force
∆2 to zero with an additive injection (since he knows all components r2, ∆c

and ∆f), he cannot get rid of the difference τ∆2 = r2 · α ·∆c + α ·∆f without
knowing the MAC key. Since α remains secret, the attacker only has a success
probability of 2−km to succeed.

4 Discussion

4.1 Security Claims

With both described adversaries A1 and A2, our design CAPA claims security
against the following types of attacks as well as a combined attack of the two

1. Side-Channel Analysis (i.e. a d− 1-probing adversary).
2. Fault Attacks (i.e. an adversary introducing known faults into d− 1 tiles or

random faults everywhere).

Side-channel Analysis. One can check that no union of d− 1 tiles ∪j∈j1,...,jd−1
Tj

has all the shares of a sensitive value. Very briefly, we can reason to this d− 1th-
order non-completeness as follows. All computations are local with the exception
of the unmasking of public values such as ε. However, the broadcasting of all
shares of ε does not break non-completeness since ε = x+ a is not sensitive itself
but rather a blinded version of a sensitive value x, using a random a that is
shared across all tiles. Unmasking the public value ε therefore gives each tile Ti
only one share ε+ ai of a new sharing of the secret x:

x = (a1, . . . , ai−1, ε+ ai, ai+1, . . . , ad)

In this sharing, no union of d − 1 shares suffices to recover the secret. Our
architecture thus provides non-completeness for all sensitive values. As a result,

13

our d-share implementation is secure against d− 1-probing attacks. Any number
of probes following the adversaries’ restrictions leak no sensitive data. Our model
is related to the wire-probe model, but with wires replaced by entire tiles. We
can thus at least claim security against d− 1th order SCA.

Fault Attacks. A fault is only undetected if both value and MAC tag shares are
modified such that they are consistent. Since this requires knowledge of the MAC
key α ∈ GF (2km), the adversary cannot forge a valid tag for a faulty value. His
best option is to guess the MAC key. We can therefore claim an error detection
probability (EDP) of 1− 1

2km
. The EDP does not depend on the number of faulty

bits (or the hamming weight of the injected fault).

Combined Attacks. In a combined attack, an adversary with df -faulting capabili-
ties can mount an attack where he uses the knowledge obtained from probing
some wires ∈ P1 to carefully forge the faults. In SPDZ, commitments are used to
avoid the so called “rushing adversary”. CAPA does not need commitments as
the timing limitation on A1 ensures a df -fault cannot be preceded by a probe in
the same clock cycle. As a result, we inherit the security claims of SPDZ and the
claimed EDP is not affected by probing or SCA. Also, the injection of a fault
in CAPA does not change the side-channel security. Performing a side-channel
attack on a perturbed execution does not reveal any additional information
because CAPA does not allow injected faults to propagate through a calculation
into a difference that depends on sensitive information.

What Does Our MAC Security Mean? We stress that CAPA provides significantly
higher security than existing approaches. An adversary that injects errors in up
to df tiles cannot succeed with more than the claimed detection probability. This
means that our design can stand d′f � df shots if they affect at most df tiles.
This is the case even if those df tiles leak their entire state; hence our resistance
against combined attacks. The underlying reason for this is that to forge values,
an attacker needs to know the MAC key, but since this is also shared, the attacker
does not gain any information on the MAC key and their best strategy is to
insert a random fault, which is detected with probability 1− 2−km.

How Much Do Tags Leak? The tag shares τai form a Boolean masking of a
variable τa. This variable τa itself is an information theoretic MAC tag of the
underlying value a and can be seen as a multiplicative share of a. We therefore
require the MAC key to change for each execution. Hence MAC tags are expected
to leak very little information.

Forbidding the All-0s MAC Key. If the MAC key size mk is small, we should
forbid the all-0 MAC key. This ensures that tags are injective: if an attacker
changes a value share, he must change the tag share; otherwise the attack will be
detected with probability one. We only pay with a slight decrease in the claimed
detection probability. By excluding 1 of the 2km MAC key possibilities, we reduce
the fault detection probability to 1− 2−κ, where κ = log2(2km − 1).

14

4.2 Attacks

The Glitch Power Supply or Clock Attack. The solution presented in this paper
critically depends on the fact that there is no single point where an attacker
can insert a fault that affects all d tiles deterministically. An attacker may try
to glitch the chip clock line that is shared among all tiles. In this case, the
attacker could try to carefully insert a glitch so that writing to the abort register
is skipped or a test instruction is skipped. Since all tiles share the same clock,
the attacker can bypass in this way the tag verification step. Similar comments
apply, for example, to glitches in the power line. The bottom line is that one
should design the hardware architecture accordingly, that is, deploy low-level
circuit countermeasures that detect or avoid this attack vector.

Skipping Instructions. In software, when each tile is a separate processor (with
its own program counter, program memory and RAM memory), skipping one
instruction in up to d − 1 shares would be detected. The unaffected tiles will
detect this misbehavior when checking partially unmasked values.

Selective Failure Attack. We point out a specific attack that targets any counter-
measure against a probing and faulting adversary. In a selective failure attack
(also known as safe-error attack in the embedded security community [67]), the
attacker perturbs the implementation in a way that the output is only affected
if a sensitive variable has a certain value. The attacker learns partial secret
information by merely observing whether or not the computation succeeds (i.e.
doesn’t abort). Consider for example a shared multiplication of a variable x and
a secret y and call the resulting product z = xy. The adversary faults one of the
inputs with an additive nonzero difference such that the multiplication is actually
performed on x′ = x+∆ instead of x. Such an additive fault can be achieved
by affecting only one share/tile. The multiplication results in the faulty product
z′ = z +∆ · y. The injected fault has propagated into a difference that depends
on sensitive data (y). As a result, the success or failure of any integrity check
following this multiplication depends on y. In particular, if nothing happens (all
checks pass), the attacker learns that y must be 0.

Among existing countermeasures against combined attacks, none provide
protection against this kind of selective failure attack as they cannot detect the
initial fault ∆. The attacker can always target the wire running from the last
integrity check on x to the multiplication with y. We believe CAPA is currently
unique in preventing this type of attack. One can verify that the MAC-tag
checking step in a Beaver operation successfully prevents ∆ from propagating to
the output. This integrity check only passes if all tiles have a correct copy of the
public value ε. Any faults injected after this check have a limited impact as the
calculation finishes locally. That is, once the correct public values are established
between the tiles, the shares of the multiplication output z are calculated without
further communication among tiles. The adversary is thus unable to elicit a fault
that depends on sensitive data.

15

PACA. We claim security against the passive and active combined attack (PACA)
on masked AES described in [2] because CAPA does not output faulty ciphertexts.
A second attack in this work uses another type of safe errors (or ineffective faults)
which are impossible to detect. The attacker fixes a specific wire to the value zero
(this requires the df -faulting capability) and collects power traces of the executions
that succeed. This means the attacker only collects traces of encryptions in which
that specific wire/share was already zero. The key is then extracted using d− 1th-
order SCA on the remaining d− 1 shares. This safe error attack however falls
outside our model since the adversary gets access (either by fault or SCA) to all
d shares and thus (F1 ∪ P1) = T .

Advanced Attacks. In our description we are assuming that during the broadcast
phase there are no “races” between tiles: each tile sets its share to be broadcasted
at clock cycle t and captures other tiles’ share in the same clock cycle t. We are
implicitly assuming that tiles cannot do much work between these two events. If
this assumption is violated (for example, using advanced circuit editing tools),
a powerful adversary could bypass any verification. This is why in the original
SPDZ protocol there are commitments prior to broadcasting operations; if this
kind of attack is a concern one could adapt the same principles of commitments
to CAPA. This is a very strong adversarial model that we consider out of scope
for this paper.

4.3 Differences with SPDZ

Offline Phase. In SPDZ, the auxiliary data is generated using a somewhat
homomorphic encryption scheme. The mapping onto a chip environment thus
seems prohibitive due to the need for this expensive public-key machinery to
obtain full threshold and the large storage required. We avoid this by generating
the Beaver triples using shared multipliers. Furthermore, to avoid the large
storage requirement, we produce the auxiliary data on the fly whenever required.

MAC Tag Checking. SPDZ delays the tag checking of public values until the very
end of the encryption by using commitments. For this, each party keeps track
of publicly opened values. This is to avoid a slowdown of the computation and
because in the MPC setting, local memory is cheaper than communication costs.
In an embedded scenario the situation is opposite so we check the opened values
on the fly at the cost of additional dedicated circuit. In hardware, we “simulate”
the broadcast channel by wiring between all tiles. Each tile keeps a local copy of
those broadcasted values.

Adversary. Although MPC considers mainly the “synchronous” communication
model, the SPDZ adversary model also includes the so-called “rushing” adversary,
which first collects all inputs from the other parties and only then decides
what to send in reply. In our embedded setting, as already pointed out, the
“rushing” adversary is impossible. Due to the nature of the implementation, the
computational environment and storage is very much restricted. On the other

16

hand, communication channels are very efficient and can be assumed to be
automatically synchronous with all tiles progressing in-step in the computation.

4.4 Cost Analysis and Scalability

The computation as described in §3.1 scales nicely with the masking order d and
the security parameter m. For any fixed number of shares d, the circuit area
scales linearly in m (see for example Table 2). Storage increases with a factor
(m+ 1)d compared to a plain implementation. We note that our implementations
run in almost the same amount of cycles as that of a plain implementation. There
is almost no loss in throughput and only negligible in latency. In software as well,
the timing scales linearly if tiles run in parallel.

Table 1. Overview of the number of Fq multiplications (.), Fq additions (+) and linear
operations in GF (2) (L(.)) required to calculate all building blocks with d shares and
m tags

Public Values Output calculation MAC check

Value Tags

· + L(.) · + · + · +

Add. d dm
Add. with C 1 dm dm
Multip. d dm
Multip. with C d 2d+ 2(d− 1)d 2d 2d+ 1 3dm 3dm 2dm 4dm+ 2(d− 1)dm
Square/Affine d+ (d− 1)d d 1 dm dm dm 2dm+ (d− 1)dm
L1(x) · L2(y) d 2d+ 2(d− 1)d d+ d 2d 2d+ 1 3dm 3dm 2dm 4dm+ 2(d− 1)dm

This efficiency does not come for free. The complexity is shifted to the
preprocessing stage; indeed the generation of auxiliary triples is the most expensive
part of the implementation. There is a trade-off to be made here between the
online and offline complexity. The more auxiliary data we prepare “offline”, the
more efficient the online computation.

Complexity for Passive Attacker Scenario. It is remarkable that if active attackers
are ruled out, and only SCA is a concern, then the complexity of the principal
computation is linear in d. This may seem like a significant improvement over
previous masking schemes which have quadratic complexity on the security
order [19, 37, 60]. However, this complexity is again pushed into the preprocessing
stage. Nevertheless, this can be interesting especially for software implementations
in platforms where a large amount of RAM is available to store the auxiliary
data generated in §3.2. The same comments apply to FPGAs with plenty of
BlockRAM.

4.5 Optimization of Preprocessing

As hinted in §4.4, it may be beneficial to store the output of the preprocessing
stage §3.2 in a table for later usage. One could optimize this process by recycling

17

auxiliary data (sample elements with replacement from the table). Of course,
this would void the provable security claims; but if performed with care (with
appropriate table shuffling and table elements refresh), this can give rise to an
implementation that is secure in practice.

5 Implementation

CAPA is tailored to be used in embedded systems. In this section, we first
emphasize concepts that need special attention in any implementation. Then,
we elaborate on specific hardware and software implementations of KATAN-
32 [14] and AES [1] which cover operations in different fields, possibility of
bitsliced implementations, hardware and software specific timing and memory
optimizations, and performance results.

Having d Copies of Unmasked Values/calculations. The most natural example of
an unmasked calculation is that of the control unit. Each tile should have its own
control logic to avoid single points of attack (for example in the round counter).

It is also important that each tile keeps its local copy of all public values. In
particular, the differences ε · α+ τε during the MAC-tag checking phase and ∆
and τ∆ during the relation verification of auxiliary data are all unmasked by
each tile. The same holds for ε and η during Beaver operations, as well as any
computation on these values such as ε · η, L1(ε), etc. Finally, each tile keeps its
copy of the abort status.

Synchronization. In order to avoid leaking information on the sensitive data, all
intermediate values to be (partially) unmasked, such as εi = xi + ai, need to be
synchronized using memory elements before being released to other tiles.

Passively Secure Shared Multiplier. During the auxiliary data generation step,
CAPA uses a passively secure shared multiplication with higher-order non-
completeness. Literature provides us with a broad spectrum of multipliers to
choose from [54, 32, 59, 30, 9]. However, in order to minimize the randomness
requirement of the offline phase, our implementation uses the DOM-dep multiplier
from [32].

5.1 Hardware Implementation

Timing optimizations. We optimize the calculations in the online phase such that
they introduce minimum penalty on the number of clock cycles. We achieve this
by providing a spatial separation between tiles, all of which perform their part
of the same operations simultaneously using their own dedicated combinational
circuit. This naturally causes a significant area increase compared to the use of
the same combinational circuit by each tile consecutively.

In addition, we start the MAC-tag checking and computation of a Beaver
operation in the same cycle. This is possible since the Beaver computation can

18

be computed without the knowledge of the authenticity of the input. Note that,
the MAC-tag checking requires two cycles due to the synchronization of ε ·α+ τε

through a register. That implies that the MAC-tag check finishes one cycle
later than its corresponding Beaver computation. In order to avoid doubling the
latency of each Beaver calculation, we perform the second cycle of the tag check
in parallel with the first cycle of the next operation (see Figure 2 for an example
of the AES S-box).

Auxiliary data generation. Instead of using a single module to generate the
auxiliary data prior to encryption and storing them in for example block RAM,
we use several auxiliary data generation modules for convenience. The timing of
these modules is arranged such that they provide the required amount of data in
every clock cycle of encryption.

Library. For synthesis, we use Synopsis Design Compiler Version I-2013.12 using
the NanGate 45nm Open Cell library [52] for ease of future comparisons. We
choose the compile option - exact map to prevent optimization across tiles. The
area results are provided in 2-input NAND-gate equivalents (GE).

KATAN-32. This shift register based block cipher, which gets 80-bits of key
and a 32-bit plaintext input, is designed for efficient hardware implementations.
It performs 254 cycles consisting of four two-input AND and XOR operations.
Hence, its natural shared data representation is in the field Fq = GF(2). We
implement this cipher using different MAC-tag key sizes α ∈ Fm2 .

Timing. Our implementation is round based, as in [14] with three AND-XOR
Beaver operations and one constant AND-XOR calculated in parallel. Each
Beaver AND-XOR operation requires two cycles due to synchronization of εi and
ηi in registers. It is implemented in a pipelined fashion which increases latency
of the whole computation only by one clock cycle.

Area. Table 2 summarizes the area of our KATAN implementations. The first
column shows the results of a shared implementation with d = 3 shares without
tags (m = 0). The second two columns hold the results for 1 or 8 MAC keys α[j].
Naturally, compared to a shared implementation without MAC tags, the state
registers grow with a factor m + 1 as the MAC-key size increases. In the last
column, we extrapolate the area results, including the combinational logic, for
any m. Note that the state array includes the non-linear Beaver multiplication.

Randomness. Each Beaver multiplication in GF(2) (AND operations) requires
one triple, and each triple needs 2d random bits for generating a and b. A
3-share masked DOM multiplication over GF(2) requires 3 bits of randomness.
In general, a d-share DOM multiplication requires

(
d
2

)
units of randomness. The

construction of one triple requires 1 + 3m masked multiplications: one to obtain
the multiplication c of a and b; and 3m to obtain the m tags τa,τ b and τ c.

19

Table 2. Area (GE) of 3-share KATAN-32 implementations with m MAC keys α[j] ∈ Fq

No tags m = 1 m = 8 Any m

- Evaluation 3 560 7 139 32 368 ≈ 3 560 + 3 580m
* State Array 1 363 2 812 12 890 ≈ 1 363 + 1 450m
* Key Schedule 2 197 4 327 19 478 ≈ 2 197 + 2 130m

- Preprocessing 638 1 468 7 124 ≈ 638 + 830m
* Two triple generation 428 952 4 694 ≈ 428 + 524m
* Relation verification 210 516 2 430 ≈ 210 + 306m

Total 5 971 12 083 55 254 ≈ 5 971 + 6 112m

Due to the relation verification through the sacrificing of another triple, the
randomness must be doubled. Hence, the total required number of random bits

per round of KATAN (three Beaver multiplications) is 3 ·2 ·(2d+(1+3m)d(d−1)
2)).

AES. We choose to work in GF(28) with m = 1 for AES, i.e. the MAC-key,
data and the MAC-tag shares αi, ai and τai are ∈ GF(28). The ShiftRows and
MixColumns operations are linear in GF(28), hence are straightforward. Here,
we mainly describe the S-box calculation.

Design choices. The AES S-box consists of an inversion in GF(28), followed by
an affine transformation over bits. The combination of the two operations can be
expressed by the following polynomial in GF(28) [22]:

S-box(x) = 0x63 + 0x8F · x127 + 0xB5 · x191 + 0x01 · x223 + 0xF4 · x239

+ 0x25 · x247 + 0xF9 · x251 + 0x09 · x253 + 0x05 · x254 (1)

We distinguish two methodologies for the S-box implementation. We either
evaluate this polynomial alltogether or we do the inversion, followed by the
affine transformation separately. Initial estimations reveal the former method is
more expensive than the latter. Following further cost estimations on different
multiplication chains [20, 60], we decide to use the one from [33] which is also
depicted in Figure 5 in Appendix.

The Affine Transform. Since A(x) is linear over GF(2), we can use the Beaver
operation described in §3.1 to evaluate the polynomial at once, using auxiliary
affine tuples (〈a〉, 〈b〉) such that b = A(a) .

Multiplication Chain. A typical implementation of the proposed multiplication
chain uses three types of operations: x2, x5 and x · y. The squaring and mul-
tiplication can be done as described in §3.1. Given an input 〈x〉 and a triple
(〈a〉, 〈b〉, 〈c〉) such that b = a4 and c = a5, we can calculate exponentiation
to the power five using the generalized multiplication of §3.1 with linear input
transformations L1(x) = x4 and L2(x) = x. This way, we obtain the inversion
output in 5 cycles, using 2 squaring tuples, 3 exponentiation triples and 1 multi-
plication triple. We optimize the chain further by merging the squares and the

20

multiplication. That is, let y = x125, then x254 = x4 · y2. We can use quintuples
(〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉) from §3.1 such that c = a4, d = b2 and e = c · d = a4 · b2
to perform this operation in one cycle. As a result, an inversion in GF(28) costs
only 4 cycles, using 3 exponentiation triples and 1 quintuple. Combined with the
affine stage, we obtain the S-box output in 5 cycles (see Figure 2). This approach
does not only decrease the number of cycles but also the amount of required
randomness.

x S(x)

verification verification

verification verification
x5 x5 x5

x4 · y2 A(x)

= register

https://drive.google.com/file/d/
0B19mBnPrtz4hQllQMVNTeTBpSGM/
view?usp=sharing

verification

Fig. 2. AES S-box pipeline

Timing. We use a serialized AES implementation, based on that in [31]. The
S-box is implemented as a five stage pipeline. One round of the cipher requires 21
clock cycles and the complete encryption of one plaintext takes 226 clock cycles.
Given that the unprotected serialised implementation of [50] also requires 226
cycles, the timing performance is very good.

Area. Table 3 presents the area for the different blocks that make up our AES
implementation. The results correspond to a d = 3 share and m = 1 byte MAC
implementation. We can see a significant difference between the preprocessing
and evaluation stages, i. e. the efficient calculation phase comes at the cost of
expensive resource generation machinery.

Randomness. Table 4 summarizes the required number of random bytes for the
generation of the triples/tuples for the AES S-box as a function of the number
of MAC keys m and the number of shares d. Recall that the S-box needs three
exponentiation triples, one quintuple and one affine tuple per cycle (doubled for
the sacrificing). Each of these uses d initial bytes of randomness per input for the
shares of a (and b). Furthermore, recall that each masked multiplication requires(
d
2

)
bytes or randomness. That is, for d = 3 and m = 1, we need 156 bytes of

randomness per S-box evaluation.

5.2 Software

As a proof-of-concept we implement the AES S-box based on CAPA with com-
putations over GF(2).

21

Table 3. Areas for AES implementation with d = 3 and m = 1 in (GE)

Evaluation Preprocessing

GE GE

S-box 28 234 Quintuples 53 212
* Beaver x5 (x3) 5 875 * Generation 32 241
* Beaver x4y2 7 427 * Sacrificing 20 971
* Beaver Affine 2 344 Triples (x3) 34 954

State array 7 466 * Generation 21 112
* MixColumns 1 584 * Sacrificing 13 842

Key array 4 835 Affine tuples 14 657
Others 1 839 * Generation 10 444

* Sacrificing 4 213

Total 42 374 Total 172 731

TOTAL 215 105

Table 4. The number of randomness in bytes for the initial sharing, shared multiplication
and the sacrifice required for AES S-box

Initial sharing Shared mult. Total

Exp. triple d 1 + 3m 2(d+ (1 + 3m)
d(d−1)

2)

Quintuple 2d 1 + 5m 2(2d+ (1 + 5m)
d(d−1)

2)

Affine tuple d 2m 2(d+ 2m
d(d−1)

2)

Total 12d+ 2(4 + 16m)
d(d−1)

2

Model fit. CAPA is a suitable technique for software implementations if we
map different tiles to different processors. We do place some constraints on
the underlying hardware architecture; namely each processor should have an
independent memory bank. Otherwise a single affected tile (processor) could
compromise the security of the whole system by for example dumping the entire
memory contents (including all shares for sensitive variables).

This model therefore does not perfectly fit commercial off-the-shelf multi-core
architectures, but we think isolated memory regions is a reasonable assumption.
While we do not have access to such architecture, as a proof of concept we emulate
the proposed multi-processor architecture by time-sharing a 32-bit single-core
ARM Cortex-M4 processor. This proof-of-concept does not provide resistance
against attacks such as the memory dump example above.

AES S-box implementation. We base our bitsliced software implementation on
the principles of gate-level masking and we use the depth-16 AES S-box circuit by
Boyar et al. [11]. Our high-level implementation processes 32 blocks simultaneously.
As the AES circuit boils down to a series of XOR and AND operations over pairs
of value and tag shares, we redefine these elementary operations in the same way
as previous works [3, §4]. We note that this technique is independent from the
concrete design, and one could apply the same principles to different ciphers.

We create a prototype implementation in C99. This is an unoptimized imple-
mentation meant for functionality and security testing. We compile with gcc-arm

4.8.4. The 32 parallel SubBytes operations are performed in 2.52 million cycles

22

(15ms) at 168MHz with m = 8 MAC tags and d = 3 shares. The implementation
holds 41 intermediate variables in the stack (but this can be optimized); each
takes d · w bytes for value shares and m · d · w bytes for tag shares (w = 4 is
number of bytes per word).

6 Evaluation

6.1 DPA: hardware

We program one of our designs onto a Xilinx Spartan-6 FPGA. Our platform is
a Sakura-G board specifically designed for side-channel evaluation. To minimize
platform noise, our design is splitted into two different FPGAs: a control FPGA
handles I/O with the host computer and supplies data in masked representation
to the crypto FPGA. The crypto FPGA implements both the preprocessing and
evaluation as in §5.1.

As a proof of concept, we implement KATAN with d = 3 shares and m = 2
MAC keys. The parameter m = 2 is insufficient in practice, but serves for our
proof-of-concept purpose. The design is clocked at 3, 072 MHz, we sample power
traces of 2500 time samples each at 500 MS/s. Each trace comprises the first 14
rounds of KATAN. Exemplary traces are shown in Figure 3, top.

po
w

er
 c

on
su

m
pt

io
n

-20

0

20

40

t v
al

ue

0 500 1000 1500 2000 2500
time [samples]

-20

0

20

40

t v
al

ue

-5

0

5

t v
al

ue

po
w

er
 c

on
su

m
pt

io
n

0

5

t v
al

ue

-5

0

5

t v
al

ue

-5

0 500 1000 1500 2000 2500
time [samples]

-5

0

5

t v
al

ue

Fig. 3. Non-specific leakage detection on the first 14 rounds of KATAN hardware
implementation. Left column: masks off. Right column: masks on. Rows (top to bottom):
one exemplary power trace, first-order t-test; second-order t-test; third-order t-test.

We perform a non-specific leakage detection test [17, 18, 21, 28] on the input
plaintext following the standard methodology [63]: first, we test the design without
masks to verify that our setup is indeed sound and able to detect leakage. Then
we switch on masks and corroborate that the design does not leak. In Figure 3,
left column, we plot the results of a univariate t-test at first, second and third

23

order when the masks are off. As expected, the design presents severe leakage
(the t-statistic crosses the threshold C = ±5. In the right column, we repeat
the procedure with masks on. No univariate leakage is detected with up to 18
million traces, since the t-statistic does not surpass the threshold C. (Eventually
we expect to detect leakage in the third order since our implementation handles
3 shares. However, due to platform noise, third-order leakage is not yet visible.)

6.2 DPA: software

Our processor is an STM32F407 32-bit ARM Cortex-M4 running the implemen-
tation from §5.2. We take EM measurements with an electromagnetic probe on
top of a decoupling capacitor. This platform is very low noise: a DPA attack on
the unprotected byte-oriented AES implementation succeeds with only 15 traces.
Each trace is slightly above 500 000 time samples long and covers the entire
execution of SubBytes. An exemplary trace is depicted at the top of Figure 4.

We follow the same procedure as in §6.1. First, we perform a non-specific
leakage detection test with the masking PRNG turned off. The results of the
first-, second- and third-order leakage tests are shown on the left side of Figure 4.
Severe leakage is detected, which confirms that the setup is sound. When we
plug in the mask PRNG, no leakage is detected with up to 200 000 traces (the
statistic does not surpass the threshold C = ±5). This serves to confirm that the
implementation effectively masks all intermediates, and that DPA is not possible
on this implementation.

50

100

150

200

E
M

 fi
el

d

-50

0

50

t v
al

ue

-60

-40

-20

0

t v
al

ue

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
time [samples] 10 5

-40
-20

0
20
40

t v
al

ue

50

100

150

200

E
M

 fi
el

d

-5

0

5

t v
al

ue

-5

0

5

t v
al

ue

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
time [samples] 10 5

-5

0

5

t v
al

ue

Fig. 4. Non-specific leakage detection on SubBytes. Left column: masks off. Right
column: masks on. Rows (top to bottom): one exemplary EM trace, first-order t-test;
second-order t-test; third-order t-test. SPA features within an electromagnetic trace are
better visible in the cross-correlation matrix shown in Figure 6.

24

6.3 Fault analysis

Detection probability. For the purposes of validating our theoretical security
claims, we scale down our software AES SubBytes implementation, reducing the
MAC key size to m = 2 and scaling down words to bits (k = 1). Note that this
parameter choice lowers the detection probability; the point of using these toy
parameters is only to verify more comfortably that the detection probability
works as expected. It is easier to verify that the detection probability is 1− 2−2

rather than 1− 2−40. This concrete parameter choice is naturally not to be used
in a practical deployment.

When barring the all zeroes key, we expect the attacker to succeed with
probability at most 1

2mk−1
= 1

22−1 = 33%. The instrumented implementation
conditionally inserts faults in value and/or tag shares. We repeat the SubBytes
execution 1000 times, each iteration with a fresh MAC key. Faults are inserted
in a random location during execution of the S-box.

We verify that single faults on only values or only tags are detected uncondi-
tionally when we bar the all-0s key. When a single-bit offset (fault) is inserted in a
single tile in both the value and tag share, it is indeed detected in approximately
66% of the iterations. Inserting a single-bit offset in value share and a random-bit
offset in tag share is a worse attack strategy and is detected in around 83% of
the experiments. The same results hold when faults are inserted in up to d− 1
tiles. When the value and tag shares in d tiles are modified and fixed to a known
value, the fault escapes detection with probability one, as expected.

7 Conclusion

In this paper, we introduced the first adversary model that jointly considers
side-channels and faults in a unified and formal way. The tile-probe-and-fault
security model extends the more traditional wire-probe model and accounts for a
more realistic and comprehensive adversarial behavior. Within this model, we
developped the methodology CAPA: a new combined countermeasure against
physical attacks. CAPA provides security against higher-order DPA, multiple-
shot DFA and combined attacks. CAPA scales to arbitrary security orders and
borrows concepts from SPDZ, an MPC protocol. We showed the feasibility of
implementing CAPA in embedded hardware and software by providing proto-
type implementations of established block ciphers. We hope CAPA provides an
interesting addition to the embedded designer’s toolbox, and stimulates further
research on combined countermeasures grounded on more formal principles.

8 Acknowledgements

This work was supported in part by the Research Council KU Leuven: C16/15/058
and OT/13/071, by the NIST Research Grant 60NANB15D346, by ERC Ad-
vanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific

25

(SSC Pacific) under contract No. N66001-15-C-4070, and by EPSRC via grants
EP/M012824 and EP/N021940/1.

Oscar Reparaz and Begül Bilgin are postdoctoral fellows of the Fund for
Scientific Research - Flanders (FWO) and Lauren De Meyer is funded by a PhD
fellowship of the FWO.

References

1. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

2. F. Amiel, K. Villegas, B. Feix, and L. Marcel. Passive and active combined attacks:
Combining fault attacks and side channel analysis. In L. Breveglieri, S. Gueron,
I. Koren, D. Naccache, and J. Seifert, editors, FDTC 2007, pages 92–102. IEEE
Computer Society, 2007.

3. J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede. DPA, bitslicing and
masking at 1 GHz. In Güneysu and Handschuh [34], pages 599–619.

4. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and P. Strub. Parallel
implementations of masking schemes and the bounded moment leakage model. In
J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 535–566, 2017.

5. A. Battistello and C. Giraud. Fault analysis of infective AES computations. In
W. Fischer and J. Schmidt, editors, FDTC 2013, pages 101–107. IEEE Computer
Society, 2013.

6. D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Heidelberg, Aug. 1995.

7. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption
and multiparty computation. In Paterson [56], pages 169–188.

8. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Trans. Computers, 52(4):492–505, 2003.

9. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order threshold
implementations. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 326–343. Springer, Heidelberg, Dec. 2014.

10. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating
errors in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001.

11. J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with
applications to cryptology. Journal of Cryptology, 26(2):280–312, Apr. 2013.

12. J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi. Orthogonal direct
sum masking - A smartcard friendly computation paradigm in a code, with builtin
protection against side-channel and fault attacks. In D. Naccache and D. Sauveron,
editors, WISTP 2014. Proceedings, volume 8501 of LNCS, pages 40–56. Springer,
2014.

13. J. Bringer, H. Chabanne, and T. Le. Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptographic Engineering, 2(2):129–141, 2012.

14. C. D. Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN - a
family of small and efficient hardware-oriented block ciphers. In C. Clavier and
K. Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 272–288. Springer,
Heidelberg, Sept. 2009.

26

15. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Wiener [66], pages 398–412.

16. T. D. Cnudde and S. Nikova. More efficient private circuits II through threshold
implementations. In FDTC 2016, pages 114–124. IEEE Computer Society, 2016.

17. J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi.
Test Vector Leakage Assessment (TVLA) methodology in practice. International
Cryptographic Module Conference, 2013.

18. J. Coron, D. Naccache, and P. C. Kocher. Statistics and secret leakage. ACM
Trans. Embedded Comput. Syst., 3(3):492–508, 2004.

19. J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–458.
Springer, Heidelberg, May 2014.

20. J.-S. Coron, A. Greuet, E. Prouff, and R. Zeitoun. Faster evaluation of SBoxes
via common shares. In B. Gierlichs and A. Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 498–514. Springer, Heidelberg, Aug. 2016.

21. J.-S. Coron, P. C. Kocher, and D. Naccache. Statistics and secret leakage. In
Y. Frankel, editor, FC 2000, volume 1962 of LNCS, pages 157–173. Springer,
Heidelberg, Feb. 2001.

22. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In I. Visconti
and R. D. Prisco, editors, SCN 12, volume 7485 of LNCS, pages 241–263. Springer,
Heidelberg, Sept. 2012.

23. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [62], pages
643–662.

24. A. Duc, S. Faust, and F.-X. Standaert. Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 401–429. Springer,
Heidelberg, Apr. 2015.

25. B. M. Gammel and S. Mangard. On the duality of probing and fault attacks. J.
Electronic Testing, 26(4):483–493, 2010.

26. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In Çetin Kaya. Koç, D. Naccache, and C. Paar, editors, CHES 2001, volume 2162
of LNCS, pages 251–261. Springer, Heidelberg, May 2001.

27. B. Gierlichs, J.-M. Schmidt, and M. Tunstall. Infective computation and dummy
rounds: Fault protection for block ciphers without check-before-output. In A. Hevia
and G. Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS, pages 305–321.
Springer, Heidelberg, Oct. 2012.

28. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. NIST non-invasive attack testing workshop, 2011.

29. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of
LNCS, pages 158–172. Springer, Heidelberg, Aug. 1999.

30. H. Groß and S. Mangard. Reconciling d+1masking in hardware and software. IACR
Cryptology ePrint Archive, 2017:103, 2017.

31. H. Groß, S. Mangard, and T. Korak. Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology ePrint
Archive, 2016:486, 2016.

32. H. Groß, S. Mangard, and T. Korak. An efficient side-channel protected AES
implementation with arbitrary protection order. In H. Handschuh, editor, Topics

27

in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume 10159
of LNCS, pages 95–112. Springer, 2017.

33. V. Grosso, E. Prouff, and F.-X. Standaert. Efficient masked S-boxes processing - A
step forward -. In D. Pointcheval and D. Vergnaud, editors, AFRICACRYPT 14,
volume 8469 of LNCS, pages 251–266. Springer, Heidelberg, May 2014.

34. T. Güneysu and H. Handschuh, editors. CHES 2015, volume 9293 of LNCS. Springer,
Heidelberg, Sept. 2015.

35. X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri. Security analysis of concurrent
error detection against differential fault analysis. J. Cryptographic Engineering,
5(3):153–169, 2015.

36. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In S. Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 308–327. Springer, Heidelberg, May / June 2006.

37. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, Heidelberg, Aug. 2003.

38. N. Joshi, K. Wu, and R. Karri. Concurrent error detection schemes for involution
ciphers. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of
LNCS, pages 400–412. Springer, Heidelberg, Aug. 2004.

39. M. Joye, P. Manet, and J. Rigaud. Strengthening hardware AES implementations
against fault attacks. IET Information Security, 1(3):106–110, 2007.

40. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Differential fault analysis attack
resistant architectures for the advanced encryption standard. In J. Quisquater,
P. Paradinas, Y. Deswarte, and A. A. E. Kalam, editors, CARDIS 2004, 22-27
August 2004, Toulouse, France, volume 153 of IFIP, pages 177–192. Kluwer/Springer,
2004.

41. R. Karri, G. Kuznetsov, and M. Gössel. Parity-based concurrent error detection of
substitution-permutation network block ciphers. In C. D. Walter, Çetin Kaya. Koç,
and C. Paar, editors, CHES 2003, volume 2779 of LNCS, pages 113–124. Springer,
Heidelberg, Sept. 2003.

42. R. Karri, K. Wu, P. Mishra, and Y. Kim. Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. on
CAD of Integrated Circuits and Systems, 21(12):1509–1517, 2002.

43. M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages 830–842. ACM Press,
Oct. 2016.

44. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS,
pages 104–113. Springer, Heidelberg, Aug. 1996.

45. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Wiener [66],
pages 388–397.

46. V. Lomné, T. Roche, and A. Thillard. On the need of randomness in fault attack
countermeasures - application to AES. In G. Bertoni and B. Gierlichs, editors,
FDTC 2012, pages 85–94. IEEE Computer Society, 2012.

47. T. Malkin, F. Standaert, and M. Yung. A comparative cost/security analysis of fault
attack countermeasures. In L. Breveglieri, I. Koren, D. Naccache, and J. Seifert,
editors, FDTC 2006, volume 4236 of LNCS, pages 159–172. Springer, 2006.

28

48. M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni. Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In D. J.
Bernstein and T. Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages
279–296. Springer, Heidelberg, May 2010.

49. S. Mitra and E. J. McCluskey. Which concurrent error detection scheme to choose ?
In Proceedings IEEE International Test Conference 2000, Atlantic City, NJ, USA,
October 2000, pages 985–994. IEEE Computer Society, 2000.

50. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits:
A very compact and a threshold implementation of AES. In Paterson [56], pages
69–88.

51. D. Mukhopadhyay. An improved fault based attack of the advanced encryption
standard. In B. Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages
421–434. Springer, Heidelberg, June 2009.

52. NANGATE. The NanGate 45nm Open Cell Library. Available at
http://www.nangate.com.

53. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In Safavi-Naini and Canetti [62],
pages 681–700.

54. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, ICICS
06, volume 4307 of LNCS, pages 529–545. Springer, Heidelberg, Dec. 2006.

55. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. In P. J. Lee and J. H. Cheon, editors,
ICISC 08, volume 5461 of LNCS, pages 218–234. Springer, Heidelberg, Dec. 2009.

56. K. G. Paterson, editor. EUROCRYPT 2011, volume 6632 of LNCS. Springer,
Heidelberg, May 2011.

57. S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay. A biased
fault attack on the time redundancy countermeasure for AES. In S. Mangard and
A. Y. Poschmann, editors, COSADE 2015. Revised Selected Papers, volume 9064
of LNCS, pages 189–203. Springer, 2015.

58. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 142–159. Springer, Heidelberg, May 2013.

59. O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating
masking schemes. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 764–783. Springer, Heidelberg, Aug. 2015.

60. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In
S. Mangard and F.-X. Standaert, editors, CHES 2010, volume 6225 of LNCS, pages
413–427. Springer, Heidelberg, Aug. 2010.

61. T. Roche and E. Prouff. Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptographic
Engineering, 2(2):111–127, 2012.

62. R. Safavi-Naini and R. Canetti, editors. CRYPTO 2012, volume 7417 of LNCS.
Springer, Heidelberg, Aug. 2012.

63. T. Schneider and A. Moradi. Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In Güneysu and Handschuh [34], pages 495–513.

64. T. Schneider, A. Moradi, and T. Güneysu. ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 302–332.
Springer, Heidelberg, Aug. 2016.

29

65. O. Seker, T. Eisenbarth, and R. Steinwandt. Extending glitch-free multiparty
protocols to resist fault injection attacks. IACR Cryptology ePrint Archive, 2017:269,
2017.

66. M. J. Wiener, editor. CRYPTO’99, volume 1666 of LNCS. Springer, Heidelberg,
Aug. 1999.

67. S. Yen and M. Joye. Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000.

30

A Supplementary materials

A.1 Proof

Proof. Beaver operation for a multiplication with linear input transformations.

d∑
i=1

zi =
d∑
i=1

(
ei + L1(ε) · di + L2(η) · ci

)
+ L1(ε) · L2(η)

=
d∑
i=1

ei + L1(ε) ·
d∑
i=1

di + L2(η) ·
d∑
i=1

ci + L1(ε) · L2(η)

= L1(a) · L2(b) + L1(x + a) · L2(b) + L2(y + b) · L1(a) + L1(x + a) · L2(y + b)

= L1(a) · L2(b) + L1(x) · L2(b) + L1(a) · L2(b) + L1(a) · L2(y) + L1(a) · L2(b)

+ L1(x) · L2(y) + L1(x) · L2(b) + L1(a) · L2(y) + L1(a) · L2(b)

= L1(x) · L2(y)

d∑
i=1

τ
z
i =

d∑
i=1

(
τ
e
i + L1(ε) · τdi + L2(η) · τci + L1(ε) · L2(η) · αi

)

=
d∑
i=1

τ
e
i + L1(ε) ·

d∑
i=1

τ
d
i + L2(η) ·

d∑
i=1

τ
c
i + L1(ε) · L2(η) ·

d∑
i=1

αi

= α · e + L1(ε) · α · d + L2(η) · α · c + L1(ε) · L2(η) · α

= α ·
(
e + L1(ε) · d + L2(η · c + L1(ε) · L2(η)

)
= α · L1(x) · L2(y)

A.2 Figures

x

x5 x25 x125

x127 x254

x2

Fig. 5. Multiplication chain from [33]

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

550

Fig. 6. Cross-correlation for SW implementation, d = 3, SubBytes. One can identify
the 34 AND gates in the SubBytes circuit of Boyar et al. [11].

31

