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Abstract. A cryptographic watermarking scheme embeds message into a pro-
gram while preserving its functionality. Essential security of the watermarking
schemes requires that no one could remove the marking message of a marked pro-
gram without substantially changing its functionality. In practical applications, it
is common to mark a program with multiple different messages, e.g. in the secret-
leaker tracing scenarios. Thus, it is usually required that the watermarking scheme
should be secure against the “collusion attacks”, where the adversary can obtain
multiple watermarked programs embedded with different messages for the same
functionality. However, current works in this area have not formally considered
this requirement.
In this paper, we formally address the problem and give new security definition
for watermarking schemes that captures the collusion attacks. Then we explore
the existence of watermarking schemes secure under our new security definition:

– On the negative side, we observe that all current watermarking schemes ei-
ther do not support multi-message embedding inherently or are vulnerable
to the collusion attacks.

– On the positive side, we construct watermarking scheme secure against the
collusion attacks for pseudorandom function (PRF). This is achieved by
introducing a new message-embedding technique in the watermarking set-
tings and is built on a newly presented primitive, namely, private multi-
programmable PRF. Based on our watermarking scheme for PRF, we also
construct watermarking schemes for various other cryptographic functional-
ities.
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1 Introduction

A watermarking scheme allows one to embed some information into a program4 with-
out significantly changing its functionality. There are many natural applications of wa-
termarking schemes, most notably, it can be used for the ownership protection and for
the information leaker tracing. The formal definition of watermarking schemes for pro-
grams is first presented by Barak et al. in [BGI+01]. A number of properties are also
defined in it and subsequent works, including

– Unremovability: This is the essential security property for the watermarking scheme,
which requires that it is hard to remove the embedded information in a marked pro-
gram without destroying the program.

– Unforgeability: The unforgeability requires that anyone without the marking secret
key cannot generate marked programs that are not functionally similar to marked
programs he/she gets.

– Public Extraction: In a watermarking scheme supporting public extraction, the ex-
traction key can be made public to enable anyone to extract the embedded message
in a marked program.

– Message-Embedding: The message-embedding property allows one to embed a
given string (instead of merely a mark symbol) into the watermarked object.

– Decentralized Key Generation vs Centralized Key Generation: In a watermark-
ing scheme with centralized key generation, a user cannot generate the key (pair)
of original scheme by himself/herself, instead, users need to obtain their keys from
a “watermarking center” possessing the marking secret key in practice.

– Stateless vs Stateful: In a stateful watermarking scheme, the mark algorithm needs
to maintain a state. The state is shared with the extraction algorithm and is updated
each time when the mark algorithm is invoked.

Despite its natural concept and its wide applications, watermarking schemes for
programs secure against arbitrary removal strategies is not given until 2015. In two
concurrent works [NW15] and [CHV15] (which are merged into [CHN+16]), water-
marking schemes for the evaluation algorithm of pseudorandom functions (PRF) are
constructed from indistinguishability obfuscators. Both constructions can support pub-
lic extraction, but none of them is proved to have the standard unforgeability property:
in [NW15], the unforgeability is not considered; while in [CHV15], the construction is
only proved to have a relaxed unforgeability.

Then in [BLW17], based on their proposed private programmable PRF, which can
be instantiated from indistinguishability obfuscator, watermarkable PRF (PRF admit-
ting a watermarking scheme for its evaluation algorithm) with standard unforgeability
is constructed. Subsequently, in [KW17], based on a relaxed variant of the private pro-
grammable PRF, which is denoted as translucent puncturable PRF, watermarkable PRF
from the standard lattice assumptions are presented.

Beyond watermarkable PRF, watermarkable public key encryption (PKE) schemes
(PKE scheme admitting a watermarking scheme for its decryption algorithm) and wa-
termarkable signature schemes (signature scheme admitting a watermarking scheme

4 In this paper, we concentrate on watermarking schemes for programs and only consider those
with a provable security against arbitrary removal strategies.

2



for its sign algorithm) are also constructed. In [NW15, CHN+16], the authors show that
assuming the indistinguishability obfuscator exists, one can construct watermarkable
PKE schemes and watermarkable signature schemes from a watermarkable PRF that al-
lows one to generate a punctured marked key. However, watermarkable PKE/signature
schemes constructed in this way do not have the decentralized key generation property,
since the key generation algorithm in their construction needs to additionally take the
marking secret key as an input.

Recently, a very simple yet elegant construction of watermarking scheme for any
PKE schemes is constructed in [BKS17] (recall that in previous works, only water-
marking schemes for specifically constructed schemes are given). However, its mark
algorithm and extraction algorithm are stateful and its extraction algorithm has a run-
ning time linear to the number of times the mark algorithm has been invoked. Besides,
it does not support multiple-message-embedding inherently and do not support decen-
tralized key generation.

Collusion Resistance of Watermarking schemes. Generally, in practical applications,
it is usually required that unremovability of the watermarking schemes holds under
“collusion attacks”, where the attacker could access several copies embedded with dif-
ferent information of the same program. To demonstrate this, consider the following
scenario. A software development company wants to outsource the test of its recently
developed software to several different organizations. To prevent these organizations
from leaking the software, before sending a copy of the software to an organization, the
company will employ a watermarking scheme to embed the name of the target organi-
zation into the copy. Here, the used watermarking scheme should enable the company
to trace the software leaker even when a few target organizations collude.

Unfortunately, to the best of our knowledge, there is still no (provably) collusion
resistant watermarking scheme constructed in previous works. In particular, current
watermarking schemes either do not support multiple-message embedding inherently
[BKS17], or vulnerable to the collusion attacks [NW15, CHN+16, BLW17, KW17].

To see this, recall that in current watermarking schemes with message-embedding,
programs are marked by first puncturing the program at some inputs and then embed-
ding the message into these punctured inputs. To extract the embedded message from a
given circuit, one first recover (parts of) these punctured inputs, evaluate the circuit on
these recovered punctured input, and compute the message from the outputs. Security
of these watermarking schemes relies on the fact that the punctured inputs (either the
pattern of these inputs [NW15, CHV15] or the inputs themselves [BLW17, KW17]) are
hidden given only the marked circuits. Our observation is that for current watermarking
schemes with message embedding, if two circuits embedded with different messages
for the same functionality are given, then one can find (parts of) the hidden punctured
inputs and are able to modify or remove the marks.

To better explain this observation, we takes the watermarking scheme from [BLW17]
as an example. For simplicity of description, we simplify their construction here. Roughly
speaking, the watermarking scheme is for a private programmable PRF PF, which is a
punctured PRF that additionally has the “reprogrammability” and the “constraint pri-
vacy”, where the reprogrammability allows one to specify the output on the punctured
input when generating a punctured key and the constraint privacy requires the punc-
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tured key to hide its punctured input. The marking secret key here is a secret key K of
a normal PRF F and a random string z in the domain of PF. To embed a message m into
a key k of PF, the mark algorithm computes

(x, y1, y2) = F(K,PF(k, z))
ck ← Puncture(k, x, (y1, y2 ⊕ m))

and outputs a circuit C that evaluates PF with ck. Note that here C(·) and PF(k, ·) eval-
uates identically on all inputs except that C(x) = (y1, y2 ⊕ m). To extract the message
given a circuit C, the extraction algorithm first computes

(x, y1, y2) = F(K,C(z))
(y′1, y

′
2) = C(x)

then it outputs ⊥ if y′1 , y1 and outputs y′2 ⊕ y2 otherwise. Since the punctured input of
a marked circuit (i.e., the punctured key) is hidden, the adversary is unlikely to modify
the output of the marked circuit on the punctured input without significantly modifying
its functionality. Then, the unremovability follows.

Now, let C1 and C2 be two circuits that are generated by embedding two different
messages m1 and m2 respectively into the same secret key k. Obviously, the punctured
input x∗ of C1 and C2 are identical and C1(x∗) , C2(x∗). Thus, an adversary obtaining
the two circuits C1 and C2 can locate the punctured input x∗ and modify the value on it.
In particular, it can construct a circuit C̃ from C1 and C2 that

C̃(x) =
C1(x) ⊕ 1m if C1(x) , C2(x).

C1(x) otherwise.

where m is the output length of PF. The circuit C̃ differs with C1, C2 and PF(k, ·) on
merely one input and is not embedded with any message. Thus, the adversary succeeds
in launching the collusion attacks. One can use a similar idea to launch collusion attacks
to other current watermarking schemes supporting message-embedding, too.5

1.1 Our Results

In this paper, we explore the existence of watermarkable cryptographic primitives se-
cure against the collusion attacks and:

– We present the notion of collusion resistant watermarking scheme to capture the
collusion attacks. The collusion resistant watermarking scheme requires a stronger
unremovability (collusion resistant unremovability) that allows the adversary to ob-
tain circuits embedded with different messages for the same functionality.

– We give a construction of collusion resistant watermarkable PRF, which is the
first watermarkable cryptographic primitive secure against the collusion attacks.
To construct collusion resistant watermarkable PRF, we introduce a new message-
embedding technique in the watermarking setting, and propose a new primitive,
namely, private multi-programmable PRF, which may be of independent interest.

5 We remark that this will not affect the claimed security for current watermarking schemes, the
attacks only show that they are not applicable in scenarios that collusion attacks are available.
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– Based on our collusion resistant watermarkable PRF, we construct watermarkable
symmetric key encryption (SKE) scheme, watermarkable message authentication
code (MAC) scheme, watermarkable PKE scheme and watermarkable signature
scheme, all of which are secure against the collusion attacks. Besides, our wa-
termarkable PKE scheme is the first of its kind achieving the decentralized key
generation property and satisfying stateless and unforgeable simultaneously.

In summary, in Table 1, we compare the main features achieved by current watermark-
ing schemes and our watermarking schemes.

Table 1: The Comparison.
Decentralized Public Unforge- Message Stateless Collusion

Key Generation Extraction ability Embedding Resistant

[NW15]
PRF 3 3 7 3 3 7

PKE 7 3 7 3 3 7

SIG∗ 7 3 7 3 3 7

[CHV15] PRF 3 3 3† 7 3 -

[CHN+16]
PRF 3 3 7 3 3 7

PKE 7 3 7 3 3 7

SIG 7 3 7 3 3 7

[BLW17] PRF 7 7 3 3 3 7

[KW17] PRF 3 7 3 3 3 7

[BKS17]
PKE 7 7 3 7 7 -
PKE 7 3 3 7 7 -

Ours

PRF 3 7 3 3 3 3

SKE 3 7 3 3 3 3

MAC 3 7 3 3 3 3

PKE 3 7 3 3 3 3

SIG 7 7 3 3 3 3

∗: We use “SIG” to denote signature schemes.
†: The watermarking scheme in [CHV15] can only achieve a relaxed form of unforgeability.

1.2 Our Techniques

Next, we give a brief overview of how we achieve these results.

On Constructing Collusion Resistant Watermarkable PRF. The collusion attack for
the watermarkable PRF works in two steps: first, the attacker locates (parts of) the
“punctured inputs” by comparing the outputs of circuits embedded with different mes-
sages; then it removes or modifies the marked messages by modifying the value on
these located inputs. Since black-box extraction (i.e., the extraction algorithm regards
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the input circuit as a black-box oracle) is needed in current construction of watermark-
ing schemes against arbitrary removal strategies, circuits embedded with different mes-
sages will always evaluate differently on some inputs. Thus, it seems that the first step
will always work. However, we can still hope to prevent the attacker from succeeding
in the second step by embedding the message in a more robust manner.

In this work, we construct collusion resistant watermarkable PRF by introducing a
new robust message embedding method in the watermarking settings. In more detail,
our watermarking scheme is built on a variant of the private programmable PRF, which
allows one to puncture and reprogram on multiple inputs and is called private multi-
programmable PRF in this work. The marking secret key is also a secret key K of a
normal PRF F and a random string z in the domain of the private multi-programmable
PRF PF. To embed a message m ∈ [1,N] for some polynomial N into a key k of PF, the
mark algorithm computes a (N × t)-dimension matrix for a suitable polynomial t

({xi, j, yi, j}i∈[1,N], j∈[1,t]) = F(K,PF(k, z))

where each element in this matrix is an input/output pair of PF. Then it punctures and
reprograms the secret key k according to the first m rows of the matrix

ck ← Puncture(k, {xi, j, yi, j}i∈[1,m], j∈[1,t])

and outputs a circuit C that evaluates PF with ck. Also, here C(·) and PF(k, ·) evaluate
identically on all inputs except that C(xi, j) = yi, j for i ∈ [1, m], j ∈ [1, t]. To extract the
message given a circuit C, the extraction algorithm first recovers the matrix

({xi, j, yi, j}i∈[1,N], j∈[1,t]) = F(K,C(z))

then it computes the number of inputs that is “punctured” in C in each row

∀i ∈ [1,N], αi = ∥{ j | C(xi, j) = yi, j}∥

It outputs “unmarked” if α1 is small and it outputs i if αi − αi+1 is large.
Next, we show why the above construction idea can lead to the collusion resistant

unremovability. For simplicity, we consider an adversary that merely obtains 2 marked
circuits, say, C1 and C2, embedded with different messages, say, m1, m2 ∈ [1,N], for the
same key k of PF (w.l.o.g, we assume that m1 < m2). Let C̃ be the circuit submitted by the
adversary. Note that C̃ will differ with C1 and C2 on negligible fraction of inputs. Due
to the pseudorandomness of F, z is hidden to the adversary, so the adversary is not likely
to modify the output on z in C̃. Thus, we can safely assume that the same matrix is used
in the mark algorithm (to generate C1 and C2) and in the extraction algorithm (to extract
C̃). Now, denote the matrix asM = {xi, j, yi, j}i∈[1,N], j∈[1,t] and let αi = ∥{ j | C(xi, j) = yi, j}∥
be the internal variable used when extracting C̃. We next analyze the value of αi for
i ∈ [1,N].

Observe that although the adversary can find the set {xi, j}i∈[m1+1,m2], j∈[1,t], i.e. all in-
puts from the (m1 + 1)th to the m2th row of M, which are evaluated differently in C1
and C2, it is infeasible for the adversary to locate the row index of each input xi, j, i.e.
the ith row and the jth row are indistinguishable to the adversary for i, j ∈ [m1 + 1, m2].
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Therefore, the value of αi and α j for i, j ∈ [m1 + 1, m2] are not likely to differ too much.
Also, as all inputs in the ith row for i ≥ m2+1 are punctured in neither C1 nor C2 and are
totally hidden to the adversary, the adversary is not likely to find and puncture them in
C̃. Thus, the value of αi for i ∈ [m2 + 1,N] will be close to 0. Besides, assuming that all
inputs in the ith row for i ≤ m1 are also hidden to the adversary, since they are punctured
in both C1 and C2, the adversary is not likely to find and “unpuncture” them in C̃. Thus,
the value of αi for i ∈ [1, m1] will be close to t. Therefore, the extraction algorithm on
C̃ will output either m1 or m2, which implies that the adversary will fail. It remains to
show the hiding of the first m1 rows. This is hoped to come from the constraint privacy
of the underlying private multi-programmable PRF. However, constraint privacy that
is formally defined and proved in current works does not suit our proof (we will dis-
cuss this in Sec. 4). Fortunately, we find that the consistent privacy, which is discussed
informally in [BLW17], is applicable to our setting, and we can design a private multi-
programmable PRF with consistent privacy by adapting the private programmable PRF
in [BKM17].

This is the basic idea how we achieve security against collusion attacks. To con-
struct a full-fledged collusion resistant watermarkable PRF, we still need to tackle with
other problems, e.g. handling arbitrary polynomial collusion, dealing with marking or-
acle queries, proving unforgeability, etc. Note that our method for message-embedding
is somewhat similar to the techniques used in [BSW06] for constructing traitor tracing
schemes, which is a multi-receiver PKE scheme allowing tracing of secret key leakers.
However, we need to deal with different issues when constructing the scheme and con-
ducting the security proof. We will provide more details on how to define and construct
our private multi-programmable PRF in Sec. 4 and will give our main construction of
collusion resistant watermarkable PRF in Sec. 5.

On Constructing Collusion Resistant Watermarking Schemes for Advanced Crypto-
graphic Functionalities. It is worth noting that our constructed watermarking scheme
for PRF is also a collusion resistant watermarking scheme for the evaluation algorithm
of a puncturable PRF. This is useful when constructing advanced watermarkable cryp-
tographic primitives. More precisely, to construct advanced collusion resistant water-
markable cryptographic primitives from our collusion resistant watermarkable PRF,
we rely on the observation that one can construct a SKE scheme (MAC scheme, PKE
scheme or signature scheme) with decryption algorithm (resp. mac algorithm, decryp-
tion algorithm, or sign algorithm) that is “nothing more than a (puncturable) PRF eval-
uation”. The observation was first presented in [NW15, CHN+16] to construct the wa-
termarkable PKE scheme and the watermarkable signature scheme therein.

However, there is a subtle issue to complete the construction. More precisely, when
constructing watermarkable PKE schemes, the public key may leak information about
the secret key, which may help the adversary to remove or modify the mark of a marked
secret key. In [NW15, CHN+16], this problem is solved by generating the public key
from the marked secret key in the construction. But watermarking schemes constructed
in this manner no longer have the decentralized key generation property.6 In this pa-

6 Similar issue also occurs when constructing watermarkable signature schemes, but we do not
know how to solve it in the signature setting.
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per, we observe that if the underlying watermarkable (puncturable) PRF satisfies an
additional property, then the original public key, which is generated from an unmarked
secret key, is in fact computationally indistinguishable from a public key generated from
a marked secret key, i.e., it will not help the adversary to break the unremovability of
the watermarking scheme for the advanced primitive. The property is easy to obtain and
can be fulfilled by our constructed watermarkable (puncturable) PRF. So, we can con-
struct watermarking scheme for normal PKE schemes whose key generation algorithm
does not need to take a marking secret key as input, which preserves the decentralized
key generation property. We will provide more details on how to construct collusion
resistant watermarking schemes for advanced cryptographic primitives in Sec. 6.

1.3 Related Works

Additional Related Works on Watermarking Schemes. There are numerous works (see
[CMB+07] and references therein) attempting to use ad hoc techniques to watermark
a wide class of digital objects, e.g. images, audios, videos, etc., but these construc-
tions lack rigorous security analysis and are (potentially) vulnerable to some attacks. In
another line of research [NSS99, YF11, Nis13], watermarking schemes for the crypto-
graphic object (e.g the key, the signature etc.) are constructed and rigorously analyzed
under the assumption that the adversary will not change the format of the watermarked
objects. The work [HMW07] refined the definition for watermarking schemes, and
formally defined several properties, e.g. the unforgeability and the messge-embedding
property, for the first time. Although it focuses on watermarking schemes for perceptual
objects, the definition ideas can be adopted to the program watermarking cases.

Traitor Tracing Scheme. The notion of collusion resistant watermarking scheme is
somewhat similar to the notion of traitor tracing scheme, which was first presented in
[CFN94]. Traitor tracing schemes has been formally studied for a long time and there
are numerous works in this area (see e.g. [BSW06, BN08, BZ14, NWZ16] and ref-
erences therein for an overview of previous works). Especially, recently, in [NWZ16],
traitor tracing scheme supporting arbitrary information embedding is constructed. How-
ever, as these two notions have a few inherent differences, solutions to the traitor trac-
ing problem do not yield watermarking schemes directly. First, while the traitor tracing
scheme concentrates on tracing secret key leakers in an encryption scheme, the water-
marking scheme aims at marking general purpose programs. Another difference is that
in a traitor tracing scheme, secret keys of all users are functionally equivalent and are
issued by a center, while in a watermarking scheme, user can choose their keys all by
themselves and keys with different functionalities can be watermarked.

Private Constrained PRF The concept of private constrained PRF was first introduced
in [BLW17]. Then, in a series of works, private constrained PRF with different con-
straints are constructed from standard lattice assumptions [BKM17, CC17, BTVW17].
In [BLW17], the authors also presents a variant of the private constrained PRF, which
is called private programmable PRF and allows one to assign the outputs on the punc-
tured inputs. This could enable one to test whether an input is punctured in certain

8



cases, and can be used to construct watermarking schemes. Then, in [KW17], translu-
cent constrained PRF, another variant of private constrained PRF that allows one to test
whether an input is punctured directly, is defined and constructed from standard lattice
assumptions.

We remark that all current private constrained PRFs from standard assumption can
only achieve a weak single-key security, which only allows the adversary to obtain a
single constrained key. So, they are not suitable for our construction of watermarking
schemes with collusion resistant unremovability, where the adversary is expected to
obtain different constrained keys.

2 Preliminaries

Notations. Let a be a string, then we use a[i] to denote the ith character of a for an
integer i not exceeding the length of a, and use a[i : j] to denote the substring (a[i],
a[i + 1], . . . , a[ j]) of a for integers i ≤ j not exceeding the length of a. Let S be a finite

set, then we use ∥S∥ to denote the size of S, and use s
$← S to denote sampling an

element s uniformly from set S. Let n,m be two integers, we write FUNn,m to denote
the set of all functions from {0, 1}n to {0, 1}m. We write negl(·) to denote a negligible
function, and write poly(·) to denote a polynomial. For integers a ≤ b, we write [a,
b] to denote all integers that is not less than a and not greater than b. Following the
syntax in [BLW17], for a circuit family C indexed by a few, say m, constants, we write
C[c1, . . . , cm] to denote a circuit with constants c1, . . . , cm. We also follow the syntax in
[BLW17, KW17] to denote the circuit similarity.

Definition 2.1 ([BLW17]). Fix a circuit class C on n-bit inputs. For two circuits C,
C′ ∈ C and for a non-decreasing function f : N → N, we write C ∼ f C′ to denote that
the two circuits agree on all but an 1/ f (n) fraction of inputs. More formally, we define

C ∼ f C′ ⇐⇒ Pr
x

$←{0,1}n
[C(x) , C′(x)] ≤ 1/ f (n).

We also write C / f C′ to denote that C and C′ differ on at least a 1/ f (n) fraction of
inputs. More formally, we define

C / f C′ ⇐⇒ Pr
x

$←{0,1}n
[C(x) , C′(x)] ≥ 1/ f (n).

To prove the security of the watermarking scheme for the decryption algorithm
of the PKE scheme, we will use the Chernoff bound. There are various forms of the
Chernoff bound, here we use the one from [Goe15].

Lemma 2.1 (Chernoff Bounds). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E(X) =
∑n

i=1 pi.
Then

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ µ for all δ > 0;

Pr[X ≤ (1 − δ)µ] ≤ e−
δ2
2 µ for all 0 < δ < 1.

9



The Hypergeometric Distribution. In this work, we will also use the hypergeomet-
ric distribution to help analyse the success probability of the adversary in the proof of
Theorem 5.1. Here, we recall the notion and a few properties of the hypergeometric
distribution. Let N,K, n be natural numbers that K ≤ N and n ≤ N, then the hypergeo-
metric distributionH(K,N, n) is the number of “good” elements in n elements sampled
without replacement from a set of N elements with K good ones. Formally, the proba-
bility mass function of a random variable X following the hypergeometric distribution
H(K,N, n) is defined as

Pr[X = k] =

(
K
k

)(
N−K
n−k

)(
N
n

)
for max(0, n + K − N) ≤ k ≤ min(K, n), where we use

(
a
b

)
to denote the binomial

coefficient for natural numbers b ≤ a. We will use the tail bound of the hypergeometric
distribution in our proof, which is formally described as following.

Lemma 2.2 ([Chv79]). Let X be a random variable following the hypergeometric dis-
tributionH(K,N, n), and δ >= 0, then we have:

Pr[X ≤ K
N
· n − δ] ≤ e−2δ2/n

Pr[X ≥ K
N
· n + δ] ≤ e−2δ2/n

2.1 Cryptographic Primitives

Next, we recall a few cryptographic primitives that are employed in this work.

The Puncturable Pseudorandom Function with Key Injectivity. The notion of punc-
turable pseudorandom function was first formalized by Sahai and Waters in [SW14].
They also show that a PRF function constructed via the GGM-framework [GGM84a] is
a puncturable PRF. In this work, we will use a slightly stronger version of puncturable
PRF, namely, puncturable PRF with key injectivity, which can be defined as follows.7

Definition 2.2. A puncturable PRF family F = (KeyGen, Eval, Puncture, PunctureEval)
with key injectivity, key space K , input space {0, 1}n and output space {0, 1}m consists
of four algorithms: 8

7 Here, we follow the concept of “key injectivity” defined in [KW17], which requires that for
any different keys k1 and k2 and for any input x, Fk1 (x) , Fk2 (x). There are also some different
definition of of “key injectivity”. For instance, in [CHN+16], the “key injectivity” (we call it
“weak key injectivity” in this paper.) requires that for a randomly chosen k1, the probability
that there exists k2 , k1 and x that Fk1 (x) = Fk2 (x) is negligible; besides, in [FOR17], a
computational “key injectivity” that is similar to the notion of “collision resistance” is also
defined.

8 K , n,m will vary with the security parameter λ, but for simplicity of notation, we do not specify
this explicitly in this work.
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– KeyGen. On input the security parameter λ, the key generation algorithm outputs
the secret key k ∈ K .

– Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation algorithm
outputs a string y ∈ {0, 1}m.

– Puncture. On input a secret keys k ∈ K and a polynomial-size set S ⊆ {0, 1}n, the
puncture algorithm outputs a punctured key ck.

– PunctureEval. On input a punctured key ck and an input x ∈ {0, 1}n, the punctured
evaluation algorithm outputs an string y ∈ {0, 1}m ∪ {⊥}.

and satisfies the following conditions:

– Correctness. For any k ∈ K , any polynomial size set S ⊆ {0, 1}n, and any x ∈ {0,
1}n\S, let ck ← Puncture(k, S), then we have PunctureEval(ck, x) = Eval(k, x).

– Key Injectivity. For any k1, k2 ∈ K that k1 , k2, and any x ∈ {0, 1}n, we have
Eval(k1, x) , Eval(k2, x).

– Pseudorandomness. For all probabilistic polynomial-time (PPT) adversaryA,

| Pr[k ← KeyGen(1λ) : AOPR
k (·)(1λ) = 1]−Pr[ f

$← FUNn,m : AOR
f (·)(1λ) = 1] |= negl(λ)

where the oracle OPR
k (·) takes as input a string x ∈ {0, 1}n and returns Eval(k, x),

and the oracle OR
f (·) takes as input a string x ∈ {0, 1}n and returns f (x).

– Constrained Pseudorandomness. For any PPT adversary (A1,A2), we have

Pr



(S, σ)← A1(1λ);

k ← KeyGen(1λ);
ck ← Puncture(k, S);

b
$← {0, 1};

Y0 = {Eval(k, x)}x∈S;

Y1
$← ({0, 1}n)∥S∥;

: A2(σ, ck, S, Yb) = b


≤ 1/2 + negl(λ)

where S ⊆ {0, 1}n is a polynomial-size set, and σ is the state ofA1.

The translucent t-puncturable PRF constructed in [KW17] is also a t-puncturable
PRF with above defined key injectivity, but may be an overkill for our purpose. It also
has shortcomings such as computational correctness. So, in Appendix A, we also give a
much simpler construction of puncturable PRF satisfying Definition 2.2 from the LWE
assumption.

The Indistinguishability Obfuscator. The notion of indistinguishability obfuscator was
first proposed by Barak et al. in [BGI+01], and the indistinguishability obfuscator for
all polynomial-size circuits was first instantiated by Garg et al. in [GGH+13].

Definition 2.3 ([BGI+01, GGH+13]). A uniform PPT machine iO is called an indis-
tinguishability obfuscator for a circuit class {Cλ} if it satisfies the following conditions:

– Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ , and all inputs
x, we have that

Pr[C′ ← iO(C) : C′(x) = C(x)] = 1
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– indistinguishability. For any PPT adversaryA, for all security parameters λ ∈ N,
and all pairs of circuits C0,C1 ∈ Cλ that C0(x) = C1(x) for all inputs x, we have
that

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| ≤ negl(λ)

3 The Definition of Collusion Resistant Watermarkable PRF

In this section, we give the formal definition of the collusion resistant watermarkable
PRF, which is adapted from the secretly-extractable message-embedding watermark-
able PRF defined in current works [BLW17, KW17].

Definition 3.1 (Watermarkable Family of PRFs [KW17, adapted]). Let PRF =
(PRF.KeyGen, PRF.Eval) be a PRF family with key space K , input space {0, 1}n and
output space {0, 1}m. The watermarking scheme with message spaceM for PRF (more
accurately, the evaluation algorithm of PRF) consists of three algorithms:

– Setup. On input the security parameter λ, the setup algorithm outputs the water-
marking secret key msk.

– Mark. On input the watermarking secret key msk, a secret key k ∈ K of PRF, and
a message m ∈ M, the mark algorithm outputs a marked circuit C.

– Extract. On input the master secret key msk and a circuits C, the extraction algo-
rithm outputs a string m ∈ M ∪ {⊥}.

Definition 3.2 (Watermarking Correctness [KW17, adapted]). Correctness of the
watermarking scheme requires that for any k ∈ K and m ∈ M, let msk ← S etup(1λ),
C ← Mark(msk, k, m), we have:

– Functionality Preserving. C(·) ∼ f PRF.Eval(k, ·) where 1/ f (n) is negligible in the
security parameter.

– Extraction Correctness. Pr[Extract(msk,C) , m] = negl(λ).

Before defining the security of the collusion resistant watermarkable PRF, we first
define oracles the adversaries can query during the security experiments. Here, the
marking oracle is identical to the one defined in [KW17], while we redefine the chal-
lenge oracle to capture the scenario that the adversary could see multiple circuits em-
bedded with different messages for the same secret key.

– Marking Oracle OM
msk(·, ·). On input a message m ∈ M and a PRF key k ∈ K , the

oracle returns the circuit C ← Mark(msk, k, m).
– Challenge Oracle OC

msk(·). On input a set M of messages, the oracle first sample a
key k ← PRF.KeyGen(1λ). Then, for each mi ∈ M, it computes Ci ← Mark(msk, k,
mi). Finally, it returns the set C = {Ci}i∈[1,∥M∥].

Definition 3.3 (Collusion Resistant Unremovability). The watermarking scheme for
a PRF is collusion resistant unremovable if for all PPT and unremoving-admissible ad-
versariesA, Pr[ExptURA(λ) = 1] = negl(λ), where we define the experiment ExptUR
as follows:
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1. The challenger samples msk ← S etup(1λ).
2. The adversaryA is allowed to access the marking oracle, and can query it multiple

times.
3. The adversaryAmakes a query M to the challenge oracle and gets a set C of circuits

back.
4. The adversaryA is further allowed to access the marking oracle, and can query it

multiple times.
5. Finally the adversary submits a circuit C̃, and the experiment outputs 1 if and only

if Extract(msk, C̃) < M.

Here, an adversary A is unremoving-admissible if with all but negligible probability,
its submitted circuit C̃ satisfies that there exists circuit C ∈ C that C̃ ∼ f C for negligible
1/ f (n).

Definition 3.4 (δ-Unforgeability [KW17, adapted]). The watermarking scheme for a
PRF is δ-unforgeable if for all PPT and δ-unforging-admissible adversariesA, we have
Pr[ExptUFA(λ) = 1] = negl(λ), where we define the experiment ExptUR as follows:

1. The challenger samples msk ← S etup(1λ).
2. The adversaryA is allowed to access the marking oracle, and can query it multiple

times.
3. Finally the adversary submits a circuit C̃, and the experiment outputs 1 if and only

if Extract(msk, C̃) ,⊥.

Here, an adversary A is δ-unforging-admissible if with all but negligible probability,
its submitted circuit C̃ satisfies that C̃ / f Ci for all i ∈ [1,Q], where Q is the number of
queriesA made to the marking oracle, Ci is the output of the marking oracle on the ith
query, and 1/ f (n) > δ.

4 The Private Multi-Programmable PRF

In this section, we define and construct the main component for constructing collusion
resistant watermarkable PRF, namely, the private multi-programmable PRF, which is
a variant of the private programmable PRF defined in [BLW17]. As mentioned in Sec.
1.2, compared to the private programmable PRF, the private multi-programmable PRF
allows one to puncture and reprogram on multiple inputs and has a consistent privacy.
Besides, we also require it to have the “key-injectivity” property to enable “decentral-
ized PRF key generation” when constructing collusion resistant watermarkable PRF.

4.1 The Definition

Definition 4.1 (Private Multi-Programmable PRF). A private multi-programmable
PRF with key space K , input space {0, 1}n and output space {0, 1}m consists of four
algorithms:

– KeyGen. On input the security parameter λ, the key generation algorithm outputs
the secret key k.

13



– Eval. On input a secret key k and an input x ∈ {0, 1}n, the evaluation algorithm
outputs a string y ∈ {0, 1}m.

– Constrain. On input a secret keys k and a polynomial-size set S ⊆ {0, 1}n × {0, 1}m,
where for any distinct (x, y), (x′, y′) ∈ S we have x , x′9, the constrain algorithm
outputs a constrained key ck.

– ConstrainEval. On input a constrained key ck and an input x ∈ {0, 1}n, the con-
strained evaluation algorithm outputs an string y ∈ {0, 1}m.

Definition 4.2 (Correctness). Correctness of the private multi-programmable PRF re-
quires that for any k ∈ K , any x ∈ {0, 1}n, and any valid set S ⊆ {0, 1}n × {0, 1}m, let
ck ← Constrain(k, S), we have:

– If there exists y ∈ {0, 1}m that (x, y) ∈ S, then ConstrainEval(ck, x) = y.
– Otherwise, ConstrainEval(ck, x) = Eval(k, x).

Definition 4.3 (Key Injectivity). Key Injectivity of the private multi-programmable
PRF requires that for any k1, k2 ∈ K that k1 , k2, and any x ∈ {0, 1}n, we have
Eval(k1, x) , Eval(k2, x).

Definition 4.4 (Pseudorandomness). The private multi-programmable PRF is pseu-
dorandom if for all PPT adversaryA,

| Pr[k ← KeyGen(1λ) : AOPR
k (·)(1λ) = 1] − Pr[ f

$← FUNn,m : AOR(·)(1λ) = 1] |= negl(λ)

where the oracle OPR
k (·) takes as input a string x ∈ {0, 1}n and returns Eval(k, x), and

the oracle OR
f (·) takes as input a string x ∈ {0, 1}n and returns f (x).

Definition 4.5 (Selectively Constrained Pseudorandomness). We say a private multi-
programmable PRF is selectively constrained pseudorandom if for all PPT and constraining-
admissible adversaries A, Pr[ExptCPRFA(λ) = 1] ≤ 1/2 + negl(λ), where we define
the experiment ExptCPRF as follows:

1. The challenger samples k ← KeyGen(1λ) and b
$← {0, 1}. It also samples f

$←
FUNn,m.

2. The adversaryA is required to submit its challenge input x∗ ∈ {0, 1}n in the begin-
ning, and gets a string y∗ ∈ {0, 1}m back. If b = 0, y∗ = Eval(k, x) and if b = 1,
y∗ = f (x).

3. Then, the adversary is allowed to access the following two oracles:
– Constrain Oracle. On input a valid set S ⊆ {0, 1}n × {0, 1}m, the oracle returns

a constrained key ck ← Constrain(k, S).
– Evaluation Oracle. On input an input x ∈ {0, 1}n, the oracle returns an output

y = Eval(k, x).
4. Eventually,A outputs a bit b′ and the experiment outputs 1 iff b = b′.

Here, an adversaryA is constraining-admissible if for each set S submitted to the con-
strain oracle, there exists y ∈ {0, 1}m that (x∗, y) ∈ S and for each input x submitted to
the evaluation oracle, we have x∗ , x.

9 Here, we denote sets statisfying this condition as “valid sets”
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Definition 4.6 (Selectively Consistent Privacy). The private multi-programmable PRF
is selectively consistently private if for all PPT and privacy-admissible adversariesA,
| Pr[ExptPri0,A(λ) = 1] − Pr[ExptPri1,A(λ) = 1] |≤ negl(λ), where we define the
experiment ExptPrib as follows:

1. In the beginning of the experiment, the adversaryA first submits a list of 2Q poly-
nomial size sets (X1,0, X1,1, . . . , XQ,0, XQ,1) to the challenger (Q is a polynomial deter-
mined byA and is not preciously fixed in the experiment), where each Xi, j ⊆ {0, 1}n.

2. The challenger samples k ← KeyGen(1λ). It also samples f
$← FUNn,m.

3. Then the challenger generates Si, j = {(x, f (x)) | x ∈ Xi, j} for i ∈ [1,Q] and j ∈ {0,
1}, computes cki ← Constrain(k, Si,b), and returns (ck1, . . . ckQ) toA.

4. Then, the adversary is allowed to access the following oracle:
– Evaluation Oracle. On input an input x ∈ {0, 1}n, the oracle returns an output

y = Eval(k, x).
5. Eventually,A outputs a bit b′ which is also the output of the experiment.

Here, for any x ∈ {0, 1}n, i ∈ [1,Q] and j ∈ {0, 1}, we define dx,i, j = 1 if x ∈ Xi, j, and
dx,i, j = 0 otherwise. Then, an adversary A is privacy-admissible if (1) for any x ∈ {0,
1}n, and for any i, j ∈ [1,Q], dx,i,0 ⊕ dx,i,1 ⊕ dx, j,0 ⊕ dx, j,1 = 0; (2) for any x that has been
submitted to the evaluation oracle, and any i ∈ [1,Q], dx,i,0 = dx,i,1.

Remark 4.1. Recall that in previous private constrained PRFs, the privacy-admissibility
requires that (1) for any x ∈ {0, 1}n, and for any i, j ∈ [1,Q], dx,i,0 ∨ dx, j,0 = dx,i,1 ∨ dx, j,1;
(2) for any x that has been submitted to the evaluation oracle, and any i ∈ [1,Q], dx,i,0 =

dx,i,1. It immediately implies that when given multiple punctured keys, the punctured
inputs cannot be hidden (the indistinguishability still holds, but each punctured inputs
will appear in both side). More precisely, here we regard the case that b = 0 as the real
world case and the case that b = 1 as the ideal case. So to hide a real world punctured
input x (w.l.o.g. we assume dx,1,0 = 1), we need to establish the indistinguishability on
condition that dx,1,1 = . . . = dx,Q,1 = 0. This requirement contradicts previous privacy-
admissibility as for any i ∈ [1,Q], 1 = dx,1,0 ∨ dx,i,0 , dx,1,1 ∨ dx,i,1 = 0. In contrast,
the consistent privacy-admissibility does not suffer this problem. In particular, as long
as x is punctured in all punctured keys in the real world, for any i, j ∈ [1,Q], 0 =
dx,i,0 ⊕ dx, j,0 = dx,i,1 ⊕ dx, j,1 = 0, which satisfies the consistent privacy-admissibility.
For more discussion on these two types of privacy definition, we refer the readers to
[BLW17].

4.2 The Construction

In this section, we upgrade the private programmable PRF constructed in [BLW17] to
the multi-punctured-inputs setting.

Let PPRF = (PPRF.KeyGen, PPRF.Eval, PPRF.Puncture, PPRF.PunctureEval)
be a puncturable PRF with key injectivity property, key spaceK , input space {0, 1}n, and
output space {0, 1}m. Let iO be an indistinguishability obfuscator for all polynomial-size
circuits. Then, our private multi-programmable PRF MPRF with key space K , input
space {0, 1}n and output space {0, 1}m works as follows:
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– KeyGen. On input a security parameter λ, the key generation algorithm outputs
k ← PPRF.KeyGen(1λ).

– Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation algorithm
outputs y = PPRF.Eval(k, x).

– Constrain. On input a secret key k ∈ K and a polynomial size set S, the constrain
algorithm outputs the circuit C ← iO(C1[k, S]), where C1 is defined in Figure 1. 10

– ConstrainEval. On input a constrained secret key ck and an input x ∈ {0, 1}n, the
evaluation algorithm outputs y = ck(x).

Constant: a secret key k and a polynomial size set S.
Input: x ∈ {0, 1}n

1. If there eixsts y ∈ {0, 1}m that (x, y) ∈ S, outputs y.
2. Otherwise, outputs PPRF.Eval(k, x).

Fig. 1 The circuit C1.

Theorem 4.1. If PPRF is a secure puncturable PRF with key injectivity, and iO is a
secure indistinguishability obfuscator for all polynomial-size circuits, then MPRF is a
secure private multi-programmable PRF as defined in 4.1.

Proof. The correctness of MPRF comes from correctness of iO directly, and the key
injectivity and the pseudorandomness of MPRF come from the key injectivity and
the pseudonmess of PPRF respecitvely. It remains to prove the selectively constrained
pseudorandomness and the selective consistent privacy of MPRF.

Proof of selectively constrained pseudorandomness. To prove the selectively con-
strained pseudorandomness of MPRF, we define the following two games:

– Game 0. This is the real experiment ExptCPRF.
– Game 1. This is identical to Game 0 except that the challenger generates ck =

PPRF.Puncture(k, x∗) after A submits the challenge input x∗, and uses ck instead
of k to answer the evaluation oracle queries. Besides, it returns C ← iO(C2[ck, S])
whenA quries the constrain oracle with S, where C2 is defined in Figure 2.

Indistinguishability of Game 0 and Game 1 comes from the correctness of PPRF and
the indistinguishability of iO. In particular, first, as A is not allowed to submit x∗ in
an evaluation oracle query, by the correctness of the PPRF, the evaluation oracle is
answered identically in Game 0 and Game 1. Also, as for each S submitted to the con-
strain oracle, there exists y that (x∗, y) ∈ S, ck is not required to compute on x∗ in each
10 Note that the circuit C1, as well as all circuits appeared in the proof of Theorem 4.1, will be

padded to the same size.
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circuit C2[ck, S]. So, by the correctness of the PPRF, circuit C1[k, S] and C2[ck, S] are
identically evaluated. Thus, by the indistinguishability of iO, the views ofA in Game 0
and in Game 1 are computationally indistinguishable.

In Game 1, as the view ofA (apart from the challenge y∗) can be simulated with ck
(instead of k), by the constrained pseudorandomness of PPRF, the experiment outputs
1 with a probability of 1/2+negl(λ). That completes the proof of selectively constrained
pseudorandomness of MPRF.

Constant: a constrained secret key ck, and a polynomial size set S.
Input: x ∈ {0, 1}n

1. If there eixsts y ∈ {0, 1}m that (x, y) ∈ S, outputs y.
2. Otherwise, outputs PPRF.PunctureEval(ck, x).

Fig. 2 The circuit C2

Proof of selective consistent privacy. To prove the selective consistent privacy of
MPRF, we first define Lr = ∥{x | x ∈ {0, 1}n ∧ ∃i ∈ [1,Q]dx,i,0 , dx,i,1}∥, where Q
and dx,i, j is the variable in an experiment ExptPri launched by an adversary A with
internal randomness r. Let L be the maximum Lr for all r in the randomness space of
A. Since A could only submit 2Q polynomial size sets for a polynomial Q, L is also
polynomial in λ. Next we define Game 0 as the the real experiment ExptPri0, and de-
fine Game 1 as the the real experiment ExptPri1. Note that to sample and evaluate the
random function f , the challenger could employ the lazy sampling method, namely,
sample a uniform y ∈ {0, 1}m for each distinct x if needed. We also define the following
hybrid games for i ∈ [0, L].
Game Hi. In Game Hi, on input the 2Q challenge sets, the challenger first generates the
lexicographical order list D containing all x ∈ {0, 1}n that ∃ j ∈ [1,Q], dx, j,0 , dx, j,1. It
also generates the set Di containing the first i elements in D (D0 = ∅). Then it proceeds
identically as in the epxeriment ExptPri except generating the challenge constrained
keys. In particular, to generate a challenge constrained secret key ck j, the challenger
computes ck j ← iO(C3[k, S j,0, S j,1, Di]), where C3 is defined in Figure 3.

Obviously, the circuit C3[k, S j,0, S j,1, D0] is identically evaluated to the circuit C1[k, S j,0].
Also, as for any x < D and any j ∈ [1,Q], dx, j,0 = dx, j,1, the circuit C3[k, S j,0, S j,1, DL]
is identically evaluated to the circuit C1[k, S j,1]. Thus, by the indistinguishability of iO,
Game 0 is computationally indistinguishable from Game H0, and Game 1 is computa-
tionally indistinguishable from Game HL. It remains to argue the indistinguishability
between Game Hi and Game Hi+1 for i ∈ [0, L], and we prove this by defining the
following games.
•Game Hi,1. This is identical to Game Hi except that the challenger sets x̂ as the (i+1)th
element in D, computes ck ← PPRF.Puncture(k, x̂), ŷ = PPRF.Eval(k, x̂) and sam-
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Constant: a secret keys k, two polynomial size sets S0, S1, and a set Di.
Input: x ∈ {0, 1}n

1. If x ∈ Di, e = 1; else, e = 0.
2. If there eixsts y ∈ {0, 1}m that (x, y) ∈ Se, outputs y.
3. Otherwise, outputs PPRF.Eval(k, x).

Fig. 3 The circuit C3.

ples ŷ′ uniformly at random after sampling the secret key k and the random function
f . Then, to generate a challenge constrained secret key ck j, the challenger computes
ck j ← iO(C4[ck, ŷ, ŷ′, S′j,0, S

′
j,1, Di, x̂, dx̂, j,0]), where C4 is defined in Figure 4, S′j,0 is gen-

erated identically to S j,0 except that it will not include (x̂, ∗), and S′j,1 is also generated
identically to S j,1 except that it will not include (x̂, ∗). It also uses ck to answer the
evluation oracle, Note that, here we set the value of f (x̂) as ŷ implicitly.

By the condition 2 of the privacy-admissiblility ofA, it will not submit x̂ to the eval-
uation oracle. Also, by the correctness of PPRF, the circuit C4[ck, ŷ, ŷ′, S′j,0, S

′
j,1, Di, x̂, dx̂, j,0]

is identically evaluated to the circuit C3[k, S j,0, S j,1, Di]. Thus, indistinguishability be-
tween Game Hi and Game Hi,1 comes from the correctness of PPRF and the indistin-
guishability of iO directly.

Constant: a constrained secret key ck, two strings ŷ, ŷ′, two polynomial size sets
S0, S1, a set Di, a string x̂ and a bit d.
Input: x ∈ {0, 1}n

1. If x = x̂ and d = 1, outputs ŷ′.
2. If x = x̂ and d = 0, outputs ŷ.
3. If x ∈ Di, e = 1; else, e = 0.
4. If there eixsts y ∈ {0, 1}m that (x, y) ∈ Se, outputs y.
5. Otherwise, outputs PPRF.PunctureEval(ck, x).

Fig. 4 The circuit C4.

•Game Hi,2. This is identical to Game Hi,1 except that ŷ is sampled uniformly at random
from {0, 1}m.

Indistinguishability between Game Hi,1 and Game Hi,2 comes from the constrained
pseudorandomness of PPRF directly.
• Game Hi,3. This is identical to Game Hi,2 except that ŷ′ = PPRF.Eval(k, x̂).
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Indistinguishability between Game Hi,2 and Game Hi,3 comes from the constrained
pseudorandomness of PPRF directly.
•Game Hi,4. This is identical to Game Hi,3 except that when generating a challenge con-
strained secret key ck j, the challenger computes ck j ← iO(C5[k, ŷ, S j,0, S j,1, Di, x̂, dx̂, j,0]),
where the value of f (x̂) is set to be ŷ and C5 is defined in Figure 5. Besides, each eval-
uation oracle is answered with k.

By the condition 2 of the privacy-admissiblility ofA, it will not submit x̂ to the eval-
uation oracle. Also, by the correctness of PPRF, the circuit C5[k, ŷ, S j,0, S j,1, Di, x̂, dx̂, j,0])
is identically evaluated to the circuit C4[ck, ŷ, ŷ′, S′j,0, S

′
j,1, Di, x̂, dx̂, j,0]. Thus, indistin-

guishability between Game Hi,3 and Game Hi,4 comes from the correctness of PPRF
and the indistinguishability of iO directly.

Note that, by the condition 1 of the privacy-admissiblility of A, for any x ∈ {0, 1}n
if there exists j ∈ [1,Q] that dx, j,0 , dx, j,1, then for any j′ ∈ [1,Q], dx, j′,0 , dx, j′,1. Thus,
dx̂, j,0 , dx̂, j,1 for all j ∈ [1,Q], so the circuit C5[k, ŷ, S j,0, S j,1, Di, x̂, dx̂, j,0]) and the circuit
C3[k, S0, S1, Di+1] are identically evaluated. Thus, Game Hi,4 is indistinguishable from
Game Hi+1 by the indistinguishability of iO. That completes the proof.

Constant: a secret key k, a string ŷ, two polynomial size sets S0, S1, a set Di, a string
x̂ and a bit d.
Input: x ∈ {0, 1}n

1. If x = x̂ and d = 1, outputs PPRF.Eval(k, x̂).
2. If x = x̂ and d = 0, outputs ŷ.
3. If x ∈ Di, e = 1; else, e = 0.
4. If there eixsts y ∈ {0, 1}m that (x, y) ∈ Se, outputs y.
5. Otherwise, outputs PPRF.Eval(k, x).

Fig. 5 The circuit C5.

□

5 Collusion Resistant Watermarkable PRF from Private
Multi-Programmable PRF

In this section, we show how to obtain collusion resistant watermarkable PRF from
any private multi-programmable PRF via constructing a watermarking scheme for its
evaluation algorithm.

Let λ be the security parameter. Let N be a postive integer that is polynomial in
λ, t = (N + 1)2 · ω(log λ). Let δ be a positive real value and d = λ/δ = poly(λ). Let
MPRF = (MPRF.KeyGen,MPRF.Eval,MPRF.Constrain,MPRF.ConstrainEval) be
a secure private multi-programmable PRF with key space {0, 1}ℓ, input space {0, 1}n, and
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output space {0, 1}m, where n is polynomial in λ. Let F : K × ({0, 1}md) → {0, 1}Ntn+ℓ

be a secure PRF. Then, our watermarking scheme WM with message space [1,N] for
MPRF works as follows:

– Setup. On input a security parameter λ, the setup algorithm first samples K
$← K ,

and (z1, . . . , zd)
$← ({0, 1}n)d. Then it outputs msk = (K, z1, . . . , zd).

– Mark. On input a watermarking secret key msk = (K, z1, . . . , zd), a secret key k ∈
{0, 1}ℓ for MPRF and a message m ∈ [1,N], the mark algorithm first computes
w = (MPRF.Eval(k, z1), . . . ,MPRF.Eval(k, zd)), then it computes ({xi, j}i∈[1,N], j∈[1,t],
k′) = F(K,w). Next it generates the set S = {(xi, j,MPRF.Eval(k′, xi, j))}i∈[1,m], j∈[1,t],
and computes ck ← MPRF.Constrain(k, S). Finally, it outputs the circuit C(·) =
MPRF.ConstrainEval(ck, ·).

– Extract. On input a watermarking secret key msk = (K, z1, . . . , zd), and a circuit
C, the extraction algorithm first computes w = (C(z1), . . . ,C(zd)), then it computes
({xi, j}i∈[1,N], j∈[1,t], k′) = F(K,w). Next, for i ∈ [1,N], it computes αi = ∥{ j | C(xi, j) =
MPRF.Eval(k′, xi, j)}∥. It also sets α0 = t and αN+1 = 0. Then it finds the first i∗

satisfying αi∗ − αi∗+1 ≥ t
N+1 , and outputs ⊥ if i∗ = 0 and outputs i∗ otherwise. Note

that, by the pigeonhole principle, such i∗ always exists.

Remark 5.1. Since MPRF is in fact a puncturable PRF, WM is also a watermarking
scheme for the evaluation algorithm of a puncturable PRF. So, here we also construct
a collusion resistant watermarkable puncturable PRF, whose definition is similar to the
the definition of the collusion resistant watermarkable normal PRF defined in Sec. 3.
Note that unlike the puncturable marked PRF defined in [NW15], we need to neither
mark a punctured key nor puncture a marked key here.

Theorem 5.1. If MPRF is a secure private multi-programmable PRF as defined in Sec.
4.1, and F is a secure PRF, then WM is a secure watermarking scheme with collusion
resistant unremovability and δ-unforgeability for MPRF.

Proof. To prove that WM is a secure watermarking scheme for MPRF, we need to
prove that it has the functionality preserving, the extraction correctness, the collusion
resistant unremovability, and the δ-unforgeability.

Proof of Correctness. Functionality preserving of WM comes from the correctness
of MPRF and the fact that the set S used in the mark algorithm contains at most Nt
elements, which is negligible compared with the size of the input space (2n).

Next, we prove the extraction correctness of WM. Let ŵ, {x̂i, j}i∈[1,N], j∈[1,t], k̂′ be inter-
nal variables used when generating the marked circuit C by embedding a message m into
the secret key k, and w̌, {x̌i, j}i∈[1,N], j∈[1,t], ǩ′ be internal variables used when extracting C.
By the pseudorandomness of F, the probability that there exists i, j, h that x̂i, j = zh is
negligible. So, by the correctness of MPRF, ŵ = w̌ with all but negligible probability,
which indicates that k̂′ = ǩ′ and ∀i ∈ [1,N], j ∈ [1, t], x̂i, j = x̌i, j with all but negligible
probability. Again, by the pseudorandomness of F, the probability that ǩ′ = k, and the
probability that there exists i, j, i′, j′ that (i, j) , (i′, j′) but x̌i, j = x̌i′, j′ are also negli-
gible. So, by the correctness and the key injectivity of MPRF, α1 = . . . = αm = t and
αm+1 = . . . = αN+1 = 0 with all but negligible probability. In summary, the probability
that the output of the extraction algorithm is not m is negligible.
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Proof of Collusion Resistant Unremovability. To prove the unremovability of WM,
we define the following games between a challenger and a PPT unremoving-admissible
adversaryA:
• Game 0. This is the real experiment ExptUR. More precisely, the challenger proceeds
as follows.

1. The challenger samples K
$← K and (z1, . . . , zd)

$← ({0, 1}n)d.
2. Then, it answers marking oracle queries fromA, and each time on receiving a query

(k, m) ∈ {0, 1}ℓ×[1,N], it first computes w = (MPRF.Eval(k, z1), . . . ,MPRF.Eval(k,
zd)), computes v = ({xi, j}i∈[1,N], j∈[1,t], k′) = F(K,w), generates the set S = {(xi, j,
MPRF.Eval(k′, xi, j))}i∈[1,m], j∈[1,t], computes ck ← MPRF.Constrain(k, S) and re-
turns the circuit C(·) = MPRF.ConstrainEval(ck, ·).

3. Once A queries the marking oracle with a set M̂ = {m̂i}i∈[1,Q] for some polynomial
Q (w.l.o.g, we assume that the Q messages in M̂ are sorted, namely, m̂1 < m̂2 < . . . <

m̂Q), the challenger samples k̂
$← {0, 1}ℓ, computes ŵ = (MPRF.Eval(k̂, z1), . . . ,

MPRF.Eval(k̂, zd)), and computes v̂ = ({x̂i, j}i∈[1,N], j∈[1,t], k̂′) = F(K, ŵ). Then for h ∈
[1,Q], it generates the set Ŝh = {(x̂i, j,MPRF.Eval(k̂′, x̂i, j))}i∈[1,m̂h], j∈[1,t], computes
ĉkh ← MPRF.Constrain(k̂, Ŝh) and returns the circuit Ĉh(·) = MPRF.ConstrainEval(ĉkh,
·).

4. Then it answers marking oracle queried byA, just as in Phase 2.
5. Finally, on input a circuit C̃ from A, it computes w̌ = (C̃(z1), . . . , C̃(zd)) and

v̌ = ({x̌i, j}i∈[1,N], j∈[1,t], ǩ′) = F(K, w̌), and for i ∈ [1,N], it computes αi = ∥{ j |
C̃(x̌i, j) = MPRF.Eval(ǩ′, x̌i, j)}∥. It also sets α0 = t and αN+1 = 0 and finds the first
i∗ satisfying αi∗ − αi∗+1 ≥ t

N+1 . It outputs 1 iff i∗ < M̂.

• Game 1. This is identical to Game 0 except that the challenger uses a random function

f (·) $← FUNmd,Ntn+ℓ instead of the pseudorandom function F(K, ·) during the experi-
ment. Note that the challenger could compute f (·) via the lazy sampling. More precisely,
it maintains a table {(wi, vi)}i∈[1,T ] ⊂ {0, 1}md × {0, 1}Ntn+ℓ, where T is the current table
size. The challenger will search the table each time computing f (·) on an input w, and
set the result as vi if there exists (wi, vi) in the table that wi = w. Otherwise, it samples

a fresh v
$← {0, 1}Ntn+ℓ, stores (w, v) in the table and sets the result to be v.

Indistinguishability of Game 0 and Game 1 comes from the pseudorandomness of
F directly.
• Game 2. This is identical to Game 1 except that the way the challenger “computes”
f . More precisely, it maintains a table {(ki, vi)}i∈[1,T ] ⊆ {0, 1}ℓ × {0, 1}Ntn+ℓ, where T is
the current table size. When answering a mark oracle query (k, m), the challenger first
searches k in the table; it sets the result of f (·) to be vi if there exists (ki, vi) in the

table that ki = k; otherwise, it samples a fresh v
$← {0, 1}Ntn+ℓ, stores (k, v) in the table

and sets the result to be v. Also, when answering the challenge oracle, after sampling

the challenge key k̂
$← {0, 1}ℓ, the challenger searches k̂ in the table; it sets the result

of f (·) to be vi if there exists (ki, vi) in the table that ki = k; otherwise, it samples a

fresh v
$← {0, 1}Ntn+ℓ, stores (k̂, v) in the table and sets the result to be v. Besides, at

the beginning of Phase 5, assuming the current table is of size T , for i ∈ [1,T ], the
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challenger computes wi = (MPRF.Eval(ki, z1), . . . ,MPRF.Eval(ki, zd)). It aborts and
outputs “2” if there exists i, j ∈ [1,T ] that ki , k j and wi = w j (here, We call this event
as “Bad1”). Finally, when computing the function f (w̌) in Phase 5, the challenger sets

f (w̌) to be vi if there exists i ∈ [1,T ] that wi = w̌; otherwise, it samples v
$← {0, 1}Ntn+ℓ

and sets the result to be v.
Notice that Game 1 and Game 2 are identical if the event Bad1 does not occur in

Game 2. By the key injectivity of the MPRF, Pr[Bad1] = 0 in Game 2, thus the views
ofA in Game 1 and Game 2 are identically distributed.
• Game 3. This is identical to Game 2 except that after checking whether Bad1 occurs,
the challenger further checks if Bad2 occurs, where Bad2 occurs iff there exists i ∈ [1,
Q], j ∈ [1, d] that Ĉi(z j) , MPRF.Eval(k̂, z j). The experiment aborts and outputs 3 if
Bad2 occurs and proceeds identically to Game 2 otherwise.

Game 2 and Game 3 are identical as long as Bad2 does not occur. Note that in Game
2 and in Game 3, each z j is sampled uniformly and is independent from the generation of
these Ĉis. Also, each Ĉi(·) differs from MPRF.Eval(k̂, ·) on only a negligible fraction of
inputs. Thus, for every i ∈ [1,Q], j ∈ [1, d], Pr[Ĉi(z j) , MPRF.Eval(k̂, z j)] = negl(λ).
By the union bound, Pr[Bad2] = negl(λ) in Game 3.
• Game 4. This is identical to Game 3 except that the challenger further checks if Bad3
occurs after checking the occurrence of Bad2, where Bad3 occurs iff there exists j ∈ [1,
d] that C̃(z j) , MPRF.Eval(k̂, z j). The experiment aborts and outputs 4 if Bad3 occurs.
Besides, it also sets f (w̌) = v̂ = ({x̂i, j}i∈[1,N], j∈[1,t], k̂′) directly in Phase 5.

Game 3 and Game 4 are identical as long as Bad3 does not occur. Note that in Game
3 and in Game 4, each z j is sampled uniformly and is independent from the view ofA.
Also, by the unremoving-admissibility of A, with all but negligible probability, there
exists i that C̃(·) differs from Ĉi(·) on only a negligible fraction of inputs. Thus, with all
but negligible probability, ∃i, ∀ j, C̃(z j) = Ĉi(z j). Also, since Bad2 does not occur when
checking Bad3, for every i ∈ [1,Q], j ∈ [1, d], Ĉi(z j) = MPRF.Eval(k̂, z j). Therefore,
Pr[Bad3] = negl(λ) in Game 4.
• Game 5. This is identical to Game 4 except that when answering the challenge oracle,

the challenger samples a fresh v̂
$← {0, 1}Ntn+ℓ directly without searching k̂ in the table,

and it will not put the tuple (k̂, v̂) into the table, either.
Game 4 and Game 5 are identical unless A is able to submit k̂ to the mark oracle,

which occurs with only a negligible probability by the selectively constrained pseudo-
randomness of MPRF.
• Game 6. This is identical to Game 5 except that the challenger sets αi = ∥{ j | C̃(x̂i, j) =
ĈQ(x̂i, j)}∥ for i ∈ [1, m̂Q] in Phase 5.

By the correctness of MPRF, Game 5 and Game 6 are identical.
• Game 7. This is identical to Game 6 except that the challenger sets αi = 0 for i ∈
[m̂Q + 1,N] in Phase 5.

It is sufficient to argue that in Game 6, we also have αi = 0 for i ∈ [m̂Q + 1,N] with
all but negligible probability. First, by the unremoving-admissibility of A and the fact
that for all i ∈ [1,Q], Ĉi and MPRF.Eval(k̂, ·) differs on only polynomial inputs, with
all but negligible probability, C̃(·) differs from MPRF.Eval(k̂, ·) on only a negligible
fraction of inputs. Also, note that the value of x̂i, j for i > m̂Q is sampled uniformly and
is independent of the view of A. Thus, the probability that there exists i ∈ [m̂Q + 1,
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N], j ∈ [1, t] that C̃(x̂i, j) , MPRF.Eval(k̂, x̂i, j) is negligible. Moreover, as (k̂, k̂′) are
uniform over ({0, 1}ℓ)2, Pr[k̂ = k̂′] = negl(λ). So by the key injectivity of MPRF, the
probability that there exists i ∈ [m̂Q + 1,N], j ∈ [1, t] that C̃(x̂i, j) = MPRF.Eval(k̂′, x̂i, j)
is negligible, which implies that in Game 6 we also have αi = 0 for i ∈ [m̂Q + 1,N] with
all but negligible probability.
• Game 8. This is identical to Game 7 except that in Phase 3, the challenger use a

random function g
$← FUNn,m instead of the pseudorandom function MPRF.Eval(k̂′,

·), i.e. Ŝh = {(x̂i, j, g(x̂i, j))}i∈[1,m̂h], j∈[1,t] for h ∈ [1,Q].
As the secret key k̂′ has not been appeared explicitly in the view of A, indistin-

guishability between Game 7 and Game 8 comes from the pseudorandomness of MPRF
directly.
• Game 9. This is identical to Game 8 except that the challenger sets Ŝh = {(x̂i, j,
g(x̂i, j))}i∈[m̂1+1,m̂h], j∈[1,t] for h ∈ [1,Q]. Note that here Ŝh contains m̂1 · t less elements
compared to that in previous games.

Indistinguishability between Game 8 and Game 9 comes from the privacy of MPRF.
More precisely, let P8 and P9 be the probabilities that Game 8 and Game 9 output 1 re-
spectively, then if |P8 − P9| is not negligible, there exists an adversary B that can break
the privacy of MPRF, which works as follows:

1. In the beginning, the adversaryB samples {xi, j}i∈[1,N], j∈[1,t] and {zi}i∈[1,d] uniformly at
random from {0, 1}n and aborts if there are repeated values among them. Obviously,
with all but negligible probability, B will not abort.

2. Then B starts runningA and answers mark oracle queries made byA.
3. When the adversary makes a query M = (m1, . . . , mQ) to the challenge oracle, B

sets Xh,0 = {xi, j}i∈[1,mh], j∈[1,t], and Xh,1 = {xi, j}i∈[m1+1,mh], j∈[1,t], for h ∈ [1,Q]. Then it
submits (X1,0, X1,1, . . . , XQ,0, XQ,1) to its challenger. Next, it uses the returned con-
strained keys to generate the marked circuits and returns them back toA.

4. Then B continues to answers mark oracle queries made byA.
5. After the adversary A submits its challenge C̃, B first checks if Bad2 and Bad3

occurs. To help check these events, B needs to query each zi for i ∈ [1, d] to the
evaluation oracle. Then, it computes αi for i ∈ [1,N]. Note that here each αi can be
computed without referring to the random function g, which is implicitly set to be
the random function used by the challenger of B.

6. Finally, the adversary B finds the first i∗ that αi∗ − αi∗+1 ≥ t
N+1 and outputs 1 iff

i∗ < M.

Here B is privacy-admissible. To see this, we first define T1 = {xi, j}i∈[1,m1], j∈[1,t],
T2 = {xi, j}i∈[m1+1,mQ], j∈[1,t], and T3 = {0, 1}n − (T1 ∪ T2). Obviously, for any i, j ∈ [1, 3],
Ti ∩ T j = ∅. Then we check the two conditions for privacy-admissible. First, for any
x ∈ T1 and for any i, j ∈ [1,Q], dx,i,0 = dx, j,0 = 1 and dx,i,1 = dx, j,1 = 0 (recall that
dx,a,b = 1 iff x ∈ Xa,b for a ∈ [1,Q] and b ∈ {0, 1}); for any x ∈ T2 and for any i,
j ∈ [1,Q], dx,i,0 = dx,i,1 and dx, j,0 = dx, j,1; for any x ∈ T3 and for any i, j ∈ [1,Q],
dx,i,0 = dx, j,0 = dx,i,1 = dx, j,1 = 0. Thus, the first condition is satisfied. Then, for each zh

for h ∈ [1, d], zh ∈ T3, thus dzh,i,0 = dzh,i,1 = 0 for i ∈ [1,Q], i.e. the second condition is
satisfied.

Also, it is easy to check that if the bit b sampled by the challenger ofB is 0, the envi-
ronment simulated by B is statically indistinguishable from the environmentA faces in
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Game 8; and otherwise, the environment simulated by B is statically indistinguishable
from the environment A faces in Game 9. So, if |P8 − P9| is not negligible, then the
privacy-admissible adversary B can break the selective consistent privacy of MPRF.
• Game 10. This is identical to Game 9 except that the challenger further checks if
Bad4 occurs after checking the occurrence of Bad3, where Bad4 occurs iff there exists
i, i′ ∈ [1,N], j, j′ ∈ [1, t] that (i, j) , (i′, j′) but x̂i, j = x̂i′, j′ .

It is obvious that Pr[Bad4] ≤ (Nt)2/2n which is negligible. Thus, Game 9 and Game
10 are identical with all but negligible probability.

It remains to show that the probability that Game 10 outputs 1 is negligible. First,
we argue that in Game 10, α1 = . . . = αm̂1 = t with all but negligible probability. To see
this, note that by the unremoving-admissibility ofA, with all but negligible probability,
there exists h ∈ [1,Q] that C̃(·) differs from Ĉh(·) on only a negligible fraction of inputs.
Also, in Game 10, {x̂i, j}i∈[1,m̂1], j∈[1,t] is sampled uniformly and is independent of the view
of A. Thus, with all but negligible probability, we have C̃(x̂i, j) = Ĉh(x̂i, j) = ĈQ(x̂i, j)
for all i ∈ [1, m̂1], j ∈ [1, t]. Therefore, with all but negligible probability, in Game 10,
α1 = . . . = αm̂1 = t.

Then we argue that in Game 10, for any i ∈ [m̂1, m̂Q] that i < M̂, we have αi − αi+1 <
t

N+1 with all but negligible probability. First, fix any i ∈ [m̂1, m̂Q] − M̂, then it must lies
between two queried messages, i.e. there exists a ∈ [1,Q] that m̂a < i < m̂a+1. Let
Xa = {x̂i, j}i∈[m̂a+1,m̂a+1], and s = ∥Xa∥. Also, let r = ∥{x | x ∈ Xa ∧ C̃(x) = ĈQ(x)}∥.
As the exact partion of Xa is independent of the view of A, we need not divide Xa

untill the extraction phase. Thus, the value of αi and αi+1 are distributed according to
the distribution H(r, s, t) respectively, where the probability is taken over the random-
ness used when dividing Xa. Therefore, we have Pr[αi ≥ ( r

s +
1

2(N+1) )t] ≤ e−
t

2(N+1)2 and

Pr[αi+1 ≤ ( r
s −

1
2(N+1) )t] ≤ e−

t
2(N+1)2 , both of which are negligible. By the union bound,

we have with all but negligible probability, αi−αi+1 <
t

N+1 . Finally, by the union bound,
the probability that there exists i ∈ [m̂1, m̂Q] − M̂ that αi − αi+1 ≥ t

N+1 is negligible.
Now, with all but negligible probability, we have α0 = . . . = αm̂1 = t, αm̂Q+1 = . . . =

αN+1 = 0, and αi−αi+1 <
t

N+1 for i ∈ [m̂1, m̂Q]− M̂. So, with all but negligible probability,
the position i that αi −αi+1 ≥ t

N+1 must be in M̂, which implies that Game 10 will output
1 with only a negligible probability.

That completes the proof of collusion resistant unremovability.

Proof of Unforgeability. To prove the δ-unforgeability of WM, we define the following
games between a challenger and a PPT δ-unforging-admissible adversaryA.
•Game 0. This is the real experiment ExptUF. More precisely, the challenger proceeds
as follows.

1. The challenger samples K
$← K and (z1, . . . , zd)

$← ({0, 1}n)d, it also maintains a
table T, which is initialized as an empty set.

2. Then, it answers marking oracle queries fromA. More precisely, on the hth query,
on receiving (kh, mh) ∈ {0, 1}ℓ × [1,N], it first computes wh = (MPRF.Eval(kh, z1),
. . . ,MPRF.Eval(kh, zd)) and vh = ({xh,i, j}i∈[1,N], j∈[1,t], k′h) = F(K,wh), generates the
set Sh = {(xh,i, j,MPRF.Eval(k′h, xh,i, j))}i∈[1,mh], j∈[1,t] and the constrained key ckh ←
MPRF.Constrain(kh, Sh), returns the circuit Ch(·) = MPRF.ConstrainEval(ckh, ·),
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and puts (kh, vh,Ch) into the table T. Here, we define the number of marking oracle
queries made byA as Q.

3. Finally, on input a circuit C̃ from A, it computes w̌ = (C̃(z1), . . . , C̃(zd)) and
v̌ = ({x̌i, j}i∈[1,N], j∈[1,t], ǩ′) = F(K, w̌), and for i ∈ [1,N], it computes αi = ∥{ j |
C̃(x̌i, j) = MPRF.Eval(ǩ′, x̌i, j)}∥. It also sets α0 = t and αN+1 = 0 and finds the first
i∗ satisfying αi∗ − αi∗+1 ≥ t

N+1 . It outputs 1 iff i∗ , 0.

• Game 1. This is identical to Game 0 except that the challenger uses a random function

f (·) $← FUNmd,Ntn+ℓ instead of the pseudorandom function F(K, ·) during the experi-
ment. Indistinguishability of Game 0 and Game 1 comes from the pseudorandomness
of F directly.
• Game 2. This is identical to Game 1 except that the way the challenger “computes” f .
More precisely, when answering a mark oracle query (k, m), the challenger first searches
k in the table T; it sets the result of f (·) to be vi if there exists (ki, vi,Ci) ∈ T in the table

that ki = k; otherwise, it samples a fresh v
$← {0, 1}Ntn+ℓ and sets the result of f (·)

to be v. Besides, at the beginning of Phase 3, for i ∈ [1,Q], the challenger computes
wi = (MPRF.Eval(ki, z1), . . . ,MPRF.Eval(ki, zd)). It aborts and outputs “2” if there
exists i, j ∈ [1,Q] that ki , k j and wi = w j (here, We call this event as “Bad1”). Finally,
when computing the function f (w̌) in Phase 5, the challenger sets f (w̌) to be vi if there

exists i ∈ [1,Q] that wi = w̌; otherwise, it samples v
$← {0, 1}Ntn+ℓ and sets the result to

be v.
Notice that Game 1 and Game 2 are identical if the event Bad1 does not occur in

Game 2. By the key injectivity of the MPRF, Pr[Bad1] = 0 in Game 2, thus the views
ofA in Game 1 and Game 2 are identically distributed.
• Game 3. This is identical to Game 2 except that after checking whether Bad1 occurs,
the challenger further checks if Bad2 occurs, where Bad2 occurs iff there exists i ∈ [1,
Q] that wi = w̌. The experiment aborts and outputs 3 if Bad2 occurs and proceeds
identically to Game 2 otherwise.

Game 2 and Game 3 are identical as long as Bad2 does not occur. Note that in Game
2 and in Game 3, each z j is sampled uniformly and is independent of the view of A.
Also, by the δ-unforging-admissibility ofA and the fact that for all i ∈ [1,Q], Ci(·) and
MPRF.Eval(ki, ·) differ on only polynomial inputs, with all but negligible probability,
for all i ∈ [1,Q], C̃(·) differs from MPRF.Eval(ki, ·) on at least (δ − negl(λ)) · 2n inputs.
Thus, for any i ∈ [1,Q], Pr[wi = w̌] = Pr[∀ j ∈ [1, d] : C̃(z j) = MPRF.Eval(ki,
z j)] ≤ (1 − (δ − negl(λ)))d + negl(λ) ≤ e−λ/2 + negl(λ), which is negligible. Therefore,
by the union bound, the probability that there exists wi that w̌ = wi is also negligible.
• Game 4. This is identical to Game 3 except that in the extraction algorithm, the chal-

lenger use a random function g(·) $← FUNn,m instead of MPRF.Eval(ǩ′, ·).
Indistinguishability between Game 3 and Game 4 comes from the pseudorandom-

ness of MPRF directly since ǩ′ is sampled uniformly and is independent of the view of
A. Besides, in Game 4, as α1 = ∥{ j | C̃(x̌1, j) = g(x̌1, j)}∥, the probability that α1 , 0 is
negligible. Therefore, with only a negligible probability, the experiment will output 1
in Game 4. That completes the proof of δ-unforgeability.

□
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6 Collusion Resistant Watermarking Schemes for Other
Cryptographic Functionalities

In this section, we demonstrate the usefulness of our collusion resistant watermark-
able PRF via building more advanced collusion resistant watermarkable cryptographic
primitives from it. More precisely, the constructed advanced watermarkable crypto-
graphic primitives include the collusion resistant watermarkable SKE scheme, the collu-
sion resistant watermarkable MAC scheme, the collusion resistant watermarkable PKE
scheme, and the collusion resistant watermarkable signature scheme. The constructions
are all based on the observation that there exists a construction of the PKE scheme (sig-
nature scheme, SKE scheme, or MAC scheme) in [SW14] (resp. [SW14], [GGM84b],
or [GGM84b]) whose decryption algorithm (resp. sign algorithm, decryption algorithm,
or mac algorithm) is nothing more than a (puncturable) PRF evaluation, which was ini-
tially presented in [NW15, CHN+16] and was used to construct the watermarkable PKE
scheme and the watermarkable signature scheme therein. Here, as an example, we only
give a detailed description for how to construct watermarkable PKE schemes, and the
other three primitives, namely, the watermarkable signature scheme, the watermarkable
SKE scheme and the watermarkable MAC scheme can be constructed and proved in a
similar way.

Overview. Roughly speaking, the watermarking scheme for the decryption algorithm of
a PKE scheme constructed from the watermarkable puncturable PRF works as follows.
First, note that the secret key of the PKE scheme is just the secret key of the underlying
puncturable PRF. Then, to embed a message into the secret key, the mark algorithm
runs the mark algorithm for the underlying puncturable PRF to generate a circuit C,
and outputs a circuit C′ that C′(x1, x2) = C(x1) ⊕ x2. To extract the message, the ex-
traction algorithm first generates a circuit C′, that C′(x) = C(x, y) ⊕ y for a properly
chosen y11, then it inputs the circuit C′ into the extraction algorithm for the underly-
ing (puncturable) PRF and outputs the result. Security, including the correctness, the
collusion resistant unremovability and the unforgeability, of the watermarking scheme
for the decryption algorithm of the PKE scheme can be reduced to the security of the
watermarking scheme for the underlying (puncturable) PRF.

However, there is a subtle issue in the proof of the collusion resistant unremov-
ability. More precisely, to better describe the ability of the real-world attackers, in the
definition of the collusion resistant unremovability, the adversary should be addition-
ally given the public key of the challenge secret key. However, in the PKE scheme
constructed in [SW14], the public key is just an obfuscated program containing the
secret key, which may reveal additional information about the secret key and helps
the adversary to remove or modify the marked messages. In [NW15, CHN+16], this
problem is solved by setting the public key to be an obfuscated program containing
the marked secret key, but this will additionally involve the marking secret key in the
key generation algorithm of the PKE scheme, which prevents the users from generat-
ing public key/secret key pairs by themselves. Here, we give another approach to solve
this problem, which preserves the “decentralized key generation” property. To complete

11 We will describe how to choose y below.
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this approach, we additionally require that the underlying puncturable PRF has a new
property “dispersibility”, which is formally defined in Appendix B. Roughly, it requires
that the set D of inputs that are evaluated differently under the marked secret key and
the original secret key are not likely to intersect with a pre-defined small set. To see
how dispersibility helps, recall that in the public key of a PKE scheme constructed in
[SW14], which is an obfuscated program, the underlying puncturable PRF will only
evaluate on strings in the range of a PRG G, which is negligible compared to the input
space of the puncturable PRF. By the dispersibility, D and the range of G are disjoint
with high probability. So, with high probability, the program contained in the public key
works identically after the secret key of the puncturable PRF has been replaced with a
marked one in the program, and by the indistinguishability of the indistinguishability
obfuscator, the two public keys are computationally indistinguishable, which implies
that the public key that contains the original secret key will not help the adversary to
break the collusion resistant unremovability.

The Construction. Next, we give a detailed construction of the collusion resistant wa-
termarkable PKE scheme, whose security definition is formally given in Appendix C.1.

Let λ be the security parameter and δ be a positive real value that λ/δ = poly(λ).
Let PPRF = (PPRF.KeyGen, PPRF.Eval, PPRF.Puncture, PPRF.PunctureEval) be
a puncturable PRF with key space {0, 1}ℓ, input space {0, 1}n, and output space {0,
1}m. Let PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a PKE scheme that is con-
structed from PPRF under the framework in [SW14]. In particular, the secret key space
of PKE is {0, 1}ℓ, and the decryption algorithm of PKE is defined as PKE.Dec(k, c1,
c2) = PPRF.Eval(k, c1) ⊕ c2. Let F be a quasi-polynomial secure PRF, i.e. F remains
pseudorandomness for any probabilistic quasi-polynomial time adversary (this prop-
erty is easy to obtain as we have no additional requirement on F), with key space {0, 1}κ,
input space {0, 1}n and output space {0, 1}m. Let WM′ = (WM′.S etup,WM′.Mark,
WM′.Extract) be a watermarking scheme with message space M for the evaluation
algorithm of PPRF. Also, let G : {0, 1}n/2 → {0, 1}n and iO be the PRG and the in-
distinguishability obfuscator used in the construction of PKE respectively. Then the
watermarking scheme WM for the decryption algorithm of PKE works as follows.

– Setup. On input a security parameter λ, the setup algorithm samples K
$← {0, 1}κ,

runs msk′ ← WM′.S etup(1λ), and outputs msk = (msk′,K).
– Mark. On input a watermarking secret key msk = (msk′,K), a secret key k ∈ {0,

1}ℓ for PKE and a message m ∈ M, the mark algorithm first computes C′ ←
WM′.Mark(msk′, k, m) and outputs the circuit C that

C(x1, x2) = C′(x1) ⊕ x2.

– Extract. On input a watermarking secret key msk = (msk′,K), and a circuit C, the
extraction algorithm generates C′ that

C′(x) = C(x, FK(x)) ⊕ FK(x)

, and returns WM′.Extract(msk′,C′).
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Theorem 6.1. If WM′ is a secure watermarking scheme with collusion resistant unre-
movability, δ-unforgeability and dispersibility for the puncturable PRF PPRF and F is
a quasi-polynomial secure PRF, then WM is a secure watermarking scheme with col-
lusion resistant unremovability and 4

√
δ-unforgeability for the decryption algorithm of

the PKE scheme PKE.

We omit the proof here and put it into Appendix C.2.
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A Puncturable Pseudorandom Function with Key Injectivity

In this section, we give a construction of the puncturable pseudorandom function with
key injectivity, which is defined in Definition 2.2, from the LWE assumption. Our con-
struction is similar to the puncturable PRF with weak key injectivity from the LWE
assumption constructed in [CHN+16], but we refine the parameters to achieve the key
injectivity.12 For completeness, we describe the detailed construction here.

More precisely, our construction works in two steps. First, we prove that the GGM-
framework preserves the key injectivity.

Definition A.1 (Pseudorandom Generator with left-right-injectivity.). Let PRG :
{0, 1}k → {0, 1}2l be a pseudorandom generator. Let PRG0(·) = PRG(·)[1 : l] and
PRG1(·) = PRG(·)[l+1, 2l]. Then PRG is left-right-injective if both PRG0 and PRG1 are
injective, namely, for any k1, k2 ∈ {0, 1}k that k1 , k2, we have PRG0(k1) , PRG0(k2)
and PRG1(k1) , PRG1(k2).

Lemma A.1. Let PRG(1), . . . , PRG(t) be t pseudorandom generators that for i ∈ [1, t],
PRG(i) : {0, 1}li−1 → {0, 1}2li is left-right-injective and for i ∈ [0, t], li is polynomial
in the security parameter λ. Then the GGM tree-based construction of PRF that uses
PRG(i) at the ith level, namely, PRFK(x) = PRG(t)

x[t](PRG(t−1)
x[t−1](. . . PRG(1)

x1 (K))), is a se-
cure puncturable PRF with key injectivity with key space {0, 1}l0 , input space {0, 1}t and
output space {0, 1}lt .

Proof. As has been proved in previous works [GGM84a, BW13, KPTZ13, BGI14,
SW14], the constructed PRF function F is a puncturable PRF. It remains to show that
the puncturable PRF F is key injective. Now, for any K1,K2 ∈ {0, 1}l0 that K1 , K2 and
for any x ∈ {0, 1}t, we set K1,0 = K1, K2,0 = K2 and Ki, j = PRG j

x[ j](Ki, j−1) for i ∈ {1, 2}
and j ∈ [1, t]. Note that if K1, j−1 , K2, j−1, by the left-right-injectivity of the underlying
PRGs, we have K1, j , K2, j. Also, as K1 , K2, we can conclude that K1,t , K2,t. Finally,
by the definition of F, we have FK1 (x) = K1,t and FK2 (x) = K2,t, which implies that
FK1 (x) , FK2 (x). That completes the proof. □

Next, we construct a series of pseudorandom generators with “left-right-injectivity”
from the LWE assumption, which satisfy the requirement in Lemma A.1.
12 Recall that the difference between our “key injectivity” and their “weka key injectivity” is

somewhat similar to the difference between the “collision resistance” and the “target-collision
resistance”.
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Lemma A.2. Let λ be the security parameter, let t = O(λ), let qi = 2(t+1−i)λ for i ∈ [0,
t], let n0 = poly(λ) and ni = ni−1 · ((t+ 2− i)λ+ 1)/((t+ 1− i)λ− 1) for i ∈ [1, t], and let

Li = ni · (t + 1 − i)λ. Also, let Ai,0, Ai,1
$← Zni×ni−1

qi−1 for i ∈ [1, t]. Then PRG = (PRG(1),
. . . , PRG(t)) is a series of PRG with left-right-injectivity that satisfies the requirement in
Lemma A.1, where for i ∈ [1, t], PRG(i) : Zni−1

qi−1 → Z
2ni
qi (or alternatively, from {0, 1}Li−1 to

{0, 1}2Li ) is defined as follows:

PRG(i)
0 (x) = ⌊qi/qi−1 · Ai,0 · x⌉ mod qi

PRG(i)
1 (x) = ⌊qi/qi−1 · Ai,1 · x⌉ mod qi

Proof. Pseudorandomness of these PRGs follows directly from the learning with round-
ing assumption, which is first introduced in [BPR12] and is as hard as the LWE assump-
tion if the parameter is properly set. Also, as has been proved in [YAL+17], the map
from x to ⌊qi/qi−1 · Ai,b · x⌉ mod qi is injective with all but negligible probability over
the choice of Ai,b, for i ∈ [1, t] and b ∈ {0, 1}. It remains to show that Li is polynomial
in λ for all i ∈ [0, t]. First, L0 = n0 · (t + 1)λ = poly(λ) ·O(λ) · λ, which is polynomial in
λ. Then for i ∈ [1, t], let j = t + 1 − i, and we have

Li/Li−1 = (ni · (t + 1 − i) · λ)/(ni−1 · (t + 2 − i) · λ)
= ((( j + 1)λ + 1) · j)/(( jλ − 1) · ( j + 1))
= 1 + (2 j + 1)/(( j + 1)( jλ − 1))
≤ 1 + 2/( jλ − 1)

This implies that for i ∈ [1, t],

Li ≤ L0 ·
t∏

j=1

(1 + 2/( jλ − 1))

≤ L0 · (1 + 2/(λ − 1))t

≤ L0 · e2t/(λ−1)

= L0 · ec

for some constant c, i.e. Li is also polynomial in the security parameter λ. That com-
pletes the proof. □

Note that the PRGs (thus, the PRF) are not always left-right-injective ones (resp.
a key injective one), and it is only guaranteed that when randomly sampling the PRG
functions (resp. the PRF family), they fail to be left-right-injective ones (resp. a key
injective one) with only a negligible probability. In this paper, for the simplicity of
description, we omit the negligible fail probability, and assume that a family of punc-
turable PRF with key injectivity is always used.

B On the Dispersibility of Watermarkable PRF

In this section, we give a formal definition of the “dispersibility” property and show
that if the underlying normal PRF F satisfies an additional property, the watermarking
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scheme constructed in Sec. 5 has dispersibility. Formally, the “dispersibility” is defined
as follows.

Definition B.1 (Dispersibility.). Let WM = (WM.S etup,WM.Mark,WM.Extract) be
a watermarking scheme with message spaceM for the evaluation algorithm of a (punc-
turable) PRF with key space {0, 1}ℓ, input space {0, 1}n, and output space {0, 1}m. Let λ
be the security parameter. Then WM has dispersibility if for any S that ∥S ∥2n = negl(λ)
and any k ∈ K , we have

Pr[∃m ∈ M, {x ∈ {0, 1}n | C′(x) , Fk(x)} ∩ S , ∅] ≤ negl(λ)

where msk ← WM.S etup(1λ), C′ ← WM.Mark(msk, k, m), and the probability is taken
over the sample of the marking key msk.

Lemma B.1. Let WM be the watermarking scheme for a PRF function constructed in
Sec. 5. Let F be the underlying normal PRF (not the watermarked PRF). If F : K × {0,
1}md → {0, 1}Ntn+ℓ satisfies that for any input w ∈ {0, 1}md, and any v ∈ {0, 1}Ntn+ℓ,

Pr[K
$← K : F(K,w) = u] = 1/2Ntn+ℓ, then WM has dispersibility.

Proof. First, recall that in WM, fixing the secret key k and the marking secret key
msk = (K, z1, . . . , zd), then for any m ∈ M, {x ∈ {0, 1}n | C′(x) , Fk(x)} ⊆ X,
where C′ ← WM.Mark(msk, k, m), w = (MPRF.Eval(k, z1), . . . ,MPRF.Eval(k, zd)),
({xi}i∈[1,Nt], k′) = F(K,w) and X = {xi}i∈[1,Nt]. So it is sufficient to show that for any S
and any k, we have

Pr[X ∩ S , ∅] ≤ negl(λ) (1)

where the probability is taken over the sample of msk. Next, we fix z1 to zd, then it is
sufficient to prove that for any S, any k, and any (z1, . . . , zd), Equation (1) holds, where
the probability is taken over the sample of K. Note that now, by the additional property
for F, X is uniform in ({0, 1}n)Nt. So, for each i ∈ [1,Nt], Pr[xi ∈ S] ≤ negl(λ). Then, by
the union bound, Pr[X ∩ S , ∅] ≤ negl(λ). That completes the proof. □

We remark that the additional property for the normal PRF F required in Lemma
B.1 is easy to obtain, and there are many candidate constructions, e.g. the well-known
NaorReingold PRF [NR04].

C Omitted Details for The Construction of Collusion Resistant
Watermarkable PKE Schemes

C.1 The Definition

The collusion resistant watermarkable PKE scheme can be defined similarly to the defi-
nition of the collusion resistant watermarkable PRF, with the main difference that in the
challenge oracle, the adversary is further given the public key of the challenge secret
key.
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Definition C.1 (Watermarkable Family of PKE). Let PKE = (PKE.KeyGen, PKE.Enc,
PKE.Dec) be a PKE scheme with secret key space SK . The watermarking scheme with
message spaceM for PKE (more accurately, the decryption algorithm of PKE) con-
sists of three algorithms:

– Setup. On input the security parameter λ, the setup algorithm outputs the water-
marking secret key msk.

– Mark. On input the watermarking secret key msk, a secret key sk ∈ SK of PKE,
and a message m ∈ M, the mark algorithm outputs a marked circuit C.

– Extract. On input the master secret key msk and a circuits C, the extraction algo-
rithm outputs a string m ∈ M ∪ {⊥}.

Definition C.2 (Watermarking Correctness). Correctness of the watermarking scheme
requires that for any sk ∈ SK and m ∈ M, let msk ← S etup(1λ), C ← Mark(msk, sk,
m), we have:

– Functionality Preserving. C(·) ∼ f PKE.Dec(sk, ·) where 1/ f (n) is negligible in
the security parameter.

– Extraction Correctness. Pr[Extract(msk,C) , m] = negl(λ).

Before defining the security of the collusion resistant watermarkable PKE, we first
define oracles the adversaries can query during the security experiments. Recall that in
the challenge oracle, the adversary is further given the challenge public key.

– Marking Oracle OM
msk(·, ·). On input a message m ∈ M and a secret key sk ∈ SK ,

the oracle returns the circuit C ← Mark(msk, sk, m).
– Challenge Oracle OC

msk(·). On input a set M of messages, the oracle first generates
a key pair (sk, pk) ← PKE.KeyGen(1λ). Then, for each mi ∈ M, it computes Ci ←
Mark(msk, sk, mi). Finally, it returns the set C = {Ci}i∈[1,∥M∥] and the public key pk.

Definition C.3 (Collusion Resistant Unremovability). The watermarking scheme for
a PKE scheme is collusion resistant unremovable if for all PPT and unremoving-admissible
adversaries A, Pr[ExptURA(λ) = 1] = negl(λ), where we define the experiment
ExptUR as follows:

1. The challenger samples msk ← S etup(1λ).
2. The adversaryA is allowed to access the marking oracle, and can query it multiple

times.
3. The adversaryAmakes a query M to the challenge oracle and gets a set C of circuits

and a public key pk back.
4. The adversaryA is further allowed to access the marking oracle, and can query it

multiple times.
5. Finally the adversary submits a circuit C̃, and the experiment outputs 1 iff Extract(msk,

C̃) < M.

Here, an adversary A is unremoving-admissible if with all but negligible probability,
its submitted circuit C̃ satisfies that there exists circuit C ∈ C that C̃ ∼ f C for negligible
1/ f (n).
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Definition C.4 (δ-Unforgeability). The watermarking scheme for a PKE scheme is δ-
unforgeable if for all PPT and δ-unforging-admissible adversariesA, Pr[ExptUFA(λ) =
1] = negl(λ), where we define the experiment ExptUR as follows:

1. The challenger samples msk ← S etup(1λ).
2. The adversaryA is allowed to access the marking oracle, and can query it multiple

times.
3. Finally the adversary submits a circuit C̃, and the experiment outputs 1 iff Extract(msk,

C̃) ,⊥.

Here, an adversary A is δ-unforging-admissible if with all but negligible probability,
its submitted circuit C̃ satisfies that C̃ / f Ci for all i ∈ [1,Q], where Q is the number of
queiresA made to the marking oracle, Ci is the output of the marking oracle on the ith
query, and 1/ f (n) > δ.

C.2 The Proof for Theorem 6.1

Proof. The functionality-preserving and the extraction correctness of WM follows di-
rectly from the functionality-preserving and the extraction correctness of WM′ respec-
tively.

4
√
δ-Unforgeability. The 4

√
δ-unforgeability of WM can be reduced to the δ-unforgeability

of WM′. But before describing the reduction, we first prove an auxiliary lemma.

Lemma C.1. For any PPT 4
√
δ-unforging-admissible adversaryA, we have

Pr



msk′ ← WM′.KeyGen(1λ);

K
$← {0, 1}κ;

C̃ ← AOmsk′ (·,·)(1λ);
C̃′ is defined as :

C̃′(x) = C̃(x, FK(x)) ⊕ FK(x)

: ∃C′ ∈ C′,C′ ∼1/δ C̃′


≤ negl(λ)

Here, the oracle Omsk′ initializes two empty sets C′ and C in the beginning; and on
input a query (k, m) fromA, it computes C′ ← WM′.Mark(msk′, k,m), puts C′ into C′,
generates a circuit C that C(x1, x2) = C′(x1)⊕ x2, puts C into C and outputs C. We also
call two circuits C ∈ C and C′ ∈ C′ “paired circuits” if they are generated in the same
oracle query.

Proof. To prove Lemma C.1, first, we consider a mental game that FK(·) is replaced

with a random function f
$← FUNn,m, namely, considering the (exponential-size) circuit

C̆′ = C̃(x, f (x)) ⊕ f (x) instead of C̃′. Let C′ ∈ C′, C ∈ C be two paired circuits. Note
that for any x ∈ {0, 1}n, C̆′(x) = C′(x) iff C̃(x, f (x)) = C(x, f (x)). Then, let

ε =
∥{(x, y) ∈ {0, 1}n × {0, 1}m | C̃(x, y) , C(x, y)}∥

2n+m .
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Also, for x ∈ {0, 1}n, let

εx =
∥{y ∈ {0, 1}m | C̃(x, y) , C(x, y)}∥

2m .

Obviously, we have
∑

x∈{0,1}n εx = 2n · ε. Next, we define the set S = {x | εx ≥ ε/2}.
Thus, we have

2n · ε =
∑

x∈{0,1}n
εx

≤ (2n − ∥S∥) · ε
2
+ ∥S∥

≤ 2n · ε
2
+ ∥S∥

which implies that ∥S∥ ≥ 2n · ε2 . Now, let D be the random variable indicating the
number of inputs that are evaluated differently by C̆′ and C′, where the probability is
taken over the choice of f . Also, for x ∈ {0, 1}n, letDx be the random variable indicating
whether C̆′(x) , C′(x) (1 for not equal), where the probability is taken over the choice
of f , and let Ex be the random variable that being 1 with probability ε/2. Then, we have

Pr[D ≤ 2n−3ε2] = Pr[
∑

x∈{0,1}n
Dx ≤ 2n−3ε2]

≤ Pr[
∑
x∈S
Dx ≤ 2n−3ε2]

≤ Pr[
∑
x∈S
Ex ≤ 2n−3ε2]

≤ Pr[
∑

x∈[1,2n· ε2 ]

Ex ≤ 2n−3ε2]

≤ e−2n−5ε2

where the last inequality follows the chernoff bound as E(
∑

x∈[1,2n· ε2 ] Ex) = 2n−2 · ε2. As
A is unforging-admissible, ε ≥ 4

√
δ with all but negligible probability, and if ε ≥ 4

√
δ,

we have 2n−3ε2 ≥ 2n+1δ, which implies that

Pr[D ≤ 2n+1δ] ≤ Pr[D ≤ 2n−3ε2]

≤ e−2n−5ε2

≤ e−2n−1δ

which is negligible. Therefore, with all but negligible probability,D ≥ 2n+1δ. The above
analysis works for any C′ ∈ C′. So, by the union bound, we have with all but negligible
probability, C̆′ /1/(2δ) C′ for all C′ ∈ C′.

Next, we turn back to the circuit C̃′ and show that with all but negligible probability,
C′ /1/δ C̃′ for all C′ ∈ C′. Assume that in contrast with a non-negligible probability,
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there exists C′ ∈ C′ that C′ ∼1/δ C̃′, then we can construct an adversary B′ that breaks
the pseudorandomness of F.

In more detail, the adversary B′ generates msk′ ← WM′.S etup(1λ) and simulates
the oracle Omsk′(·, ·) forA with msk′ (The sets C and C′ are also defined as in the body
of Lemma C.1). Then, after A outputs a circuit C̃, B′ runs the following procedure for
each C′ ∈ C′.

1. B′ samples d = λ/δ random inputs {xi}i∈[1,d]
$← ({0, 1}n)d, queries each xi to its

oracle and obtains the set {yi}i∈[1,d].
2. It computes βC′ = ∥{i ∈ [1, d] | C̃(xi, yi) ⊕ yi , C′(xi)}∥.
3. It outputs 1 and aborts if βC′ <

3
2λ.

Finally, if B′ completes the repetition without aborting, it outputs 0.
Note that if B′ is answered with a random function f , it can perfectly simulate the

view of A in the mental game, and βC′ = ∥{i ∈ [1, d] | C̆′(xi) , C′(xi)}∥ for each
C′ ∈ C′. Since with all but negligible probability, C̆′ /1/(2δ) C′ for all C′ ∈ C′, Pr[βC′ ≤
3
2λ] ≤ e−λ/16 for each C′ ∈ C′ by the chernoff bound. Again, by the union bound, B′
outputs 1 with only a negligible probability in this case. In contrast, if B′ is answered
by the pseudorandom function with a key K, it can perfectly simulate the view ofA in
the game defined in the body of Lemma C.1, and βC′ = ∥{i ∈ [1, d] | C̃′(xi) , C′(xi)}∥
for each C′ ∈ C′. Since we assume that with a non-negligible probability, there exists
C′∗ ∈ C′ that C′∗ ∼1/δ C̃′, we have Pr[βC′∗ ≥ 3

2λ] ≤ e−λ/10 by the chernoff bound.
So, B′ will outputs 1 with a non-negligible probability in this case. Therefore, by the
pseudorandomness of F, with all but negligible probability, C′ /1/δ C̃′ for all C′ ∈ C′.
That completes the proof of Lemma C.1. □

Now, we are ready to show the reduction. More precisely, assuming A is a PPT
4
√
δ-unforging-admissible adversary that can break the 4

√
δ-unforgeability of WM,

then we construct a PPT δ-unforging-admissible adversaryB that breaks the δ-unforgeability
of WM′ as follows.

The adversary B evokes the adversary A, and answers A’s marking oracle queries
with his own marking oracle. In particular, on input a query (k, m) from A, B queries
(k, m) to its own marking oracle, and on receiving the response C′, it returns the circuit
C that C(x1, x2) = C′(x1) ⊕ x2 to A. In the end, after A outputs a circuit C̃, B samples

K
$← {0, 1}κ and returns

C̃′(x) = C̃(x, FK(x)) ⊕ FK(x)

back to its challenger.
Now, let msk′ be the marking secret key of the challenger ofB and msk = (msk′,K).

Note that WM.Extract(msk, C̃) = WM′.Extract(msk′, C̃′). Also, here B can perfectly
simulate the view of A in the unforgeability experiment, so A can submit a circuit
that WM.Extract(msk, C̃) ,⊥ with non-negligible probability. So, B can also submit
a circuit that WM′.Extract(msk′, C̃′) ,⊥ with non-negligible probability. Besides, by
Lemma C.1, with all but negligible probability, B is δ-unforging admissible. Therefore,
B is a PPT δ-unforging-admissible adversary that breaks the unforgeability of WM′.

That completes the proof of 4
√
δ-unforgeability.
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Collusion Resistant Unremovability. Next, we prove the unremovability of WM. First,
we define the following games:

• Game 0. This is the real experiment ExptUR for the watermarkable PKE scheme.

• Game 1. This is identical to Game 0, except the way the challenger answers the
challenge oracle. In particular, on input a set M to the challenge oracle, the challenger
first samples the challenge secret key k̂ and computes the marked keys Ĉi for i ∈ [1, ∥M∥]
as in Game 0, but then it computes the challenge public key p̂k from Ĉ1 instead of from
k̂, i.e. it computes p̂k ← iO(P[Ĉ1]), where P is defined in Figure 6.

Indistinguishability between Game 0 and Game 1 comes from the dispersibility of
WM′ and the indistinguishability of iO. First, by the dispersibility of WM′, with all
but negligible probability, the set {x ∈ {0, 1}n | Ĉ1(x) , Fk̂(·)} and the range of G,
which is at most 2n/2 and is negligible compared to 2n, are disjoint. Thus, with all but
negligible probability, Ĉ1(·) and Fk̂(·) works identically in the obfuscated program in
the public key of the PKE scheme. So, by the indistinguishability of iO, the adversary
can distinguish Game 0 and Game 1 with only a negligible probability.

Constant: a marked decryption circuit C.
Input: the randomness r ∈ {0, 1}n/2 and the message u ∈ {0, 1}m

1. Let t = G(r).
2. Output c = (t,C(t, 0m) ⊕ u)

Fig. 6 The circuit P.

Next, we will show that for any PPT unremoving-admissible adversary, the prob-
ability that it wins in Game 1 is negligible. We also first prove an auxiliary lemma.

37



Lemma C.2. For any PPT unremoving-admissible adversaryA = (A1,A2), we have

Pr



msk′ ← WM′.KeyGen(1λ);

K
$← {0, 1}κ;

({mi}i∈[1,Q], σ)← AOmsk′ (·,·)
1 (1λ);

k̂
$← {0, 1}ℓ;

for i ∈ [1,Q] :

Ĉ′i ← WM′.Mark(msk′, k̂, mi);

Ĉi is defined as :

Ĉi(x1, x2) = Ĉ′i(x1) ⊕ x2;

p̂k ← iO(P[Ĉ1]);

C̃ ← AOmsk′ (·,·)
2 (σ, {mi}i∈[1,Q], {Ĉi}i∈[1,Q], pk);

C̃′ is defined as :

C̃′(x) = C̃(x, FK(x)) ⊕ FK(x)

: ∃i ∈ [1,Q], Ĉ′i ∼1/negl(λ) C̃′



≥ 1−negl(λ)

where Q is a polynomial and σ is the state of A1. Here, on input a query (k, m) from
A, the oracle Omsk′ computes C′ ← WM′.Mark(msk′, k,m), generates a circuit C that
C(x1, x2) = C′(x1) ⊕ x2, and outputs C.

Proof. To prove Lemma C.2, we also first consider a mental game that FK(·) is replaced

with a random function f
$← FUNn,m, namely, considering the (exponential-size) circuit

C̆′ = C̃(x, f (x)) ⊕ f (x) instead of C̃′. Note that for any i ∈ [1,Q], x ∈ {0, 1}n, C̆′(x) =
Ĉ′i(x) iff C̃(x, f (x)) = Ĉi(x, f (x)). Then, for any i ∈ [1,Q] let

ε =
∥{(x, y) ∈ {0, 1}n × {0, 1}m | C̃(x, y) , Ĉi(x, y)}∥

2n+m

Also, for x ∈ {0, 1}n, let

εx =
∥{y ∈ {0, 1}m | C̃(x, y) , Ĉi(x, y)}∥

2m .

Again, we have
∑

x∈{0,1}n εx = 2n · ε. Next, for any function p in λ, we define the set
Sp = {x | εx ≥ pε}. Thus, we have

2n · ε =
∑

x∈{0,1}n
εx ≥ ∥Sp∥ · pε

which implies that ∥Sp∥ ≤ 2n/p. Now, let D be the random variable indicating the
number of inputs that are evaluated differently by C̆′ and Ĉ′i, where the probability is
taken over the choice of f . Also, for x ∈ {0, 1}n, letDx be the random variable indicating
whether C̆′(x) , Ĉ′i(x) (1 for not equal), where the probability is taken over the choice
of f . Next, we conisder two cases:
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– Case I: ε ≥ 1
2n . In this case, we set p = 1√

ε
, S = S1/

√
ε and Ex be the random

variable that being 1 with probability
√
ε. Then we have ∥S∥ ≤ 2n ·

√
ε and

Pr[D ≥ 3 · 2n ·
√
ε] = Pr[

∑
x∈{0,1}n

Dx ≥ 3 · 2n ·
√
ε]

≤ Pr[∥S∥ +
∑
x<S
Dx ≥ 3 · 2n ·

√
ε]

≤ Pr[2n ·
√
ε +
∑
x<S
Ex ≥ 3 · 2n ·

√
ε]

= Pr[
∑
x<S
Ex ≥ 2 · 2n ·

√
ε]

≤ Pr[
∑

x∈{0,1}n
Ex ≥ 2 · 2n ·

√
ε]

≤ e−2n·
√
ε/3

which is negligible (since 2n ·
√
ε/3 ≥ 2n/2/3), where the last inequality follows the

chernoff bound as E(
∑

x∈{0,1}n Ex) = 2n ·
√
ε.

– Case II: ε < 1
2n . In this case, we set p = 1

2n/2·ε , S = S1/(2n/2·ε) and Ex be the random
variable that being 1 with probability 1/2n/2. Then we have ∥S∥ ≤ 23n/2 · ε and

Pr[D ≥ 3 · 2n/2] = Pr[
∑

x∈{0,1}n
Dx ≥ 3 · 2n/2]

≤ Pr[∥S∥ +
∑
x<S
Dx ≥ 3 · 2n/2]

≤ Pr[23n/2 · ε +
∑
x<S
Ex ≥ 3 · 2n/2]

≤ Pr[2n/2 +
∑
x<S
Ex ≥ 3 · 2n/2]

= Pr[
∑
x<S
Ex ≥ 2 · 2n/2]

≤ Pr[
∑

x∈{0,1}n
Ex ≥ 2 · 2n/2]

≤ e−2n/2/3

which is negligible, where the inequality at the fourth line follows the fact ε ≤ 1/2n

and the last inequality follows the chernoff bound as E(
∑

x∈{0,1}n Ex) = 2n/2.

In general, let µ = max(
√
ε, 2−n/2), then we have Pr[D ≥ 3 · 2n · µ] ≤ negl(λ). By the

union bound, we have with all but negligible probability, for all i ∈ [1,Q], C̆′ ∼1/(3µ) Ĉ′i.
Next, we turn back to the circuit C̃′ and show that with all but negligible probability,

there exists i ∈ [1,Q] that C̃′ ∼1/negl(λ) Ĉ′i. Assume that in contrast with a non-negligible
probability, C̃′ /poly(λ) Ĉ′i for all i ∈ [1,Q], then we can construct an adversary B′ that
breaks the pseudorandomness of F. The adversary B′ works similarly to the adversary
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B′ constructed in the proof of the unforgeability of watermarkable PKE schemes. How-
ever, to detect whether there are 1/p fraction of inputs that are evaluated differently by
C̃′ and Ĉ′i for a polynomial p that is not apriori bounded, the adversary B′ for F need
to run in super-polynomial time. So we need F to have quasi-polynomial security.

In particular, B′ first run the experiment defined in the body of Lemma C.2 with
A and receives a circuit C̃ (but it does not sample the secret key K of F). Then, for
j ∈ [1,Q], assuming C̃ and Ĉ j evaluate differently on ε j fraction of inputs and define
µ j = max(√ε j, 2−n/2), B′ runs the following procedure:

1. B′ attempts to estimate ε j (and thus µ j) via running C̃ and Ĉ′ j on a large quasi-
polynomial number of inputs, it can give an estimate of ε j if ε j is not very small
and if the estimation fails it can safely assume that ε j is a small enough negligible
function.

2. It moves to the next repetition if ε j is not negligible; otherwise, it continues the
following procedure.

3. It samples d j = 1/ξ j random inputs {xi}i∈[1,d]
$← ({0, 1}n)d, where ξ j is a negligible

function that is inverse-quasi-polynomial and is super-polynomial larger than 3 ·µ j,
namely, 3 · µ j · λω(1) ≤ ξ j ≤ 1/λO(logc λ) for a proper positive constant c.

4. It queries each xi to its oracle and obtains the set {yi}i∈[1,d].
5. It outputs 0 and aborts if for for all i ∈ [1, d j], C̃(xi, yi) = Ĉ1(xi, yi).

Finally, if B′ completes the repetition without aborting, it outputs 1.
Note that if B′ is answered with a random function f , it can perfectly simulate

the view of A in the mental game, and for each j ∈ [1,Q] and i ∈ [1, d], C̃(xi, yi) =
C̆′(xi) ⊕ yi and Ĉ j(xi, yi) = Ĉ′ j(xi) ⊕ yi, i.e. C̃(xi, yi) , Ĉ j(xi, yi) iff C̆′(xi) , Ĉ′ j(xi).
Since the adversary A is unremoving-admissible, with all but negligible probability,
there exists j ∈ [1,Q] that Ĉ j ∼1/negl(λ) C̃, i.e. with all but negligible probability, there
exists repetition goes into the third step in the above repeated procedure. As with all
but negligible probability, for all j ∈ [1,Q], C̆′ ∼1/(3µ j) Ĉ′ j, by the union bound, in a
repetition that goes into the third step, the probability that there exists i ∈ [1, d j] that
C̆′(xi) , Ĉ′ j(xi) does not exceed 3µ j · d j = 3µ j/ξ j ≤ 1/λω(1), which is negligible.
So, B′ will output 0 with all but negligible probability in this case. In contrast, if B′
is answered by the pseudorandom function with a key K, it can perfectly simulate the
view of A in the game defined in the body of Lemma C.2, and for each j ∈ [1,Q],
i ∈ [1, d j], C̃(xi, yi) = C̃′(xi) ⊕ yi and Ĉ j(xi, yi) = Ĉ′ j(xi) ⊕ yi, i.e. C̃(xi, yi) , Ĉ j(xi, yi)
iff C̃′(xi) , Ĉ′ j(xi). As it is assumed that for all j ∈ [1,Q], C̃′ /1/p Ĉ′ j for some p,
for each j, (even the repetition goes into the third step,) the probability that there does
not exists i ∈ [1, d] that C̃′(xi) , Ĉ′ j(xi) is (1 − 1/p)1/ξ j ≤ e−1/(pξ j) ≤ e−λ

ω(1)
, which

is negligible. By the union bound, B′ will output 0 with only a negligible probability
in this case. Therefore, by the (quasi-polynomial)-pseudorandomness of F, with all but
negligible probability, there exists j ∈ [1,Q] that C̃′ ∼negl(λ) Ĉ′ j. That completes the
proof of Lemma C.2. □

Now we are ready to show that no PPT unremoving-admissible adversary can win
in Game 1 with a non-negligible probability. More precisely, assuming A is a PPT
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unremoving-admissible adversary that can win in Game 1 with a non-negligible prob-
ability, then we construct a PPT unremoving-admissible adversary B that breaks the
collusion resistant unremovability of WM′ as follows.

The adversary B evokes the adversary A, and answers A’s oracle queries with his
own oracle. In particular, on input a query (k, m) to the marking oracle fromA,B queries
(k, m) to its own marking oracle, and on receiving the response C′, it returns C(x1, x2) =
C′(x1)⊕x2 toA. Also, on input a query M to the challenge oracle fromA,B also queries
M to its own challenge oracle, and on receiving the response set {Ĉ′i }i∈[1,∥M∥], it returns a
set {Ĉi}i∈[1,∥M∥] as well as a public key p̂k ← iO(P[Ĉ1]), where Ĉi(x1, x2) = Ĉ′i(x1) ⊕ x2

for i ∈ [1, ∥M∥]. In the end, after A outputs a circuit C̃, B samples K
$← {0, 1}κ and

returns the circuit
C̃′(x) = C̃(x, FK(x)) ⊕ FK(x)

back to its challenger.
Now, let msk′ be the marking secret key of the challenger ofB and msk = (msk′,K).

Note that WM.Extract(msk, C̃) = WM′.Extract(msk′, C̃′). Also, here B can perfectly
simulate the view of A in the unremovability experiment, so A can submit a circuit
that WM.Extract(msk, C̃) < M with non-negligible probability. So, B can also submit
a circuit that WM′.Extract(msk′, C̃′) < M with non-negligible probability. Besides, by
Lemma C.2, with all but negligible probability, B is unremoving admissible. There-
fore, B is a PPT unremoving-admissible adversary that breaks the collusion resistant
unremovability of WM′.

That completes the proof of collusion resistant unremovability. □
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