Faster Cryptographic Hash Function From Supersingular Isogeny Graphs

Javad Doliskani, Geovandro C. C. F. Pereira and Paulo S. L. M. Barreto

Abstract

We propose a variant of the CGL hash [5] that is significantly faster than the original algorithm, and prove that it is preimage and collision resistant. For $n=\log p$ where p is the characteristic of the finite field, the performance ratio between CGL and the new proposal is $(2 n+104.8) /(1.8 \log n+12.6)$. Assuming the best quantum preimage attack on the hash has complexity $O\left(p^{\frac{1}{4}}\right)$, we attain a concrete speed-up for a 256-bit quantum preimage security level by a factor 70.35 . For a 384 -bit quantum preimage security level, the speed-up is by a factor 100.36 .

Keywords. Cryptographic hash functions, Supersingular elliptic curves, Isogeny graphs, Expander graphs.

2010 Mathematics Subject Classification. 94A60, 14K02, 11 Y 16.

1 Introduction

A provably secure hash function is a hash function in which finding collisions is efficiently reducible from a computationally hard problem. The first proposals for provably secure hash functions were based on number theoretic problems such as integer factorization and discrete logarithm which are widely believed to be hard. The Very Smooth Hash (VSH) proposed by Contini et al. [9] is a provably secure hash algorithm based on an assumption related to integer factorization. The idea behind VSH is similar to the one appeared in the earlier work of Chaum [6] on undeniable signatures. A variant of VSH, called VSH-DL, is based on a problem related to discrete logarithm. VSH is very fast and can be used in schemes like the Cramer-Shoup signature [11] to improve the performance without sacrificing any security.

Security of the schemes based on these classical number theoretic problems, however, is threatened by the emergence of quantum computers. A quantum computer can perform the Fourier Transform on an exponential number of amplitudes

[^0]in polynomial time [8, 25]. This leads to polynomial time quantum algorithms for phase estimation and order-finding, and consequently factoring and discrete logarithm [28,30].

Modern provably secure hash functions are based on less standard assumptions but are believed to resist quantum attacks. Inspired by Ajtai's seminal work [1] on average-case to worst-case reduction of standard lattice problems, Micciancio [22] proposed an efficient hash function whose security is based on certain approximation problems on ideal lattices. A more efficient variant of Micciancio's hash function, called SWIFFT, was latter proposed by Lyubashevsky et al. [19,20]. SWIFFT is very efficient, with performance comparable to SHA-256 and has good statistical properties. It, however, cannot be used as a pseudorandom function since it preserves addition [20, §4.3].

A class of provably secure hash functions are based on expander graphs. An expander graph is, informally, a graph with low degree and high connectivity. The use of expander graphs for hashing started with the works of Zémor and Tillich [$34,39,40$] on particular expander graphs called Cayley graphs. In 2009, Charles et al. [5] proposed an expander hash, called CGL, which is based on the isogeny graph of supersingular elliptic curves over finite fields. Supersingular isogeny graphs are excellent expander graphs with asymptotically optimal expansion constant [27]. The security of CGL is based on the hardness of computing isogenies of large degree between supersingular elliptic curves. Since the introduction of CGL, supersingular isogeny problems have attracted considerable attention in cryptography, and the best known attacks on them have exponential complexity. The main drawback of CGL is efficiency. For a finite field of characteristic p, the algorithm requires roughly $2 \log p$ modular multiplications per bit of the input. This makes CGL far less efficient than other provably secure hash algorithms.

Our contributions. We exploit primes of the form $p=2^{n} f \pm 1$, where $f>0$ is a small integer, as the characteristic of the finite field. Instead of consuming a bit of the input at a time, we use a block of length $n \approx \log p$ bits at once to generate the kernel of a cyclic smooth isogeny of degree 2^{n}. The isogeny is then computed very efficiently to get the next curve in the graph. We show that this does not sacrifice any security and reduces the complexity of the original CGL hash from $2 \log p+104.8$ to $1.8 \log \log p+12.6$ modular multiplications per bit of the input.

Organization of the paper. In Section 2 we review some background on elliptic curves, isogenies and the CGL hash. Our new hash algorithm and the proofs of its preimage and collision resistance are given in Section 3. In Section 4 we perform a detailed operation count on CGL and the new hash algorithm, and compare the runtime complexities.

2 Preliminaries

Let \mathbb{F}_{q} be a finite field of q elements where $q=p^{n}$ for some prime $p>3$ and integer $n \geq 1$. An elliptic curve E / \mathbb{F}_{q} is an abelian variety of genus 1 , that is a nonsingular projective curve of genus 1 which is also an abelian group. A morphism $E_{1} \rightarrow E_{2}$ of elliptic curves that preserves the group structure is called an isogeny. An isogeny from an elliptic curve E to itself is called an endomorphism. The set of all such endomorphisms, denoted by $\operatorname{End}(E)$, form a ring under addition and composition.

Any isogeny $\phi: E_{1} \rightarrow E_{2}$ induces an inclusion $\phi^{*}: K\left(E_{2}\right) \hookrightarrow K\left(E_{1}\right)$ of function fields. We say that ϕ is separable if ϕ^{*} is separable. Also the degree of ϕ, denoted by $\operatorname{deg}(\phi)$, is defined to be the degree of ϕ^{*}. We will call an isogeny of degree m an m-isogeny. For a separable isogeny ϕ we have $\operatorname{deg}(\phi)=|\operatorname{ker} \phi|$ [36]. For any integer m, the multiplication-by- m endomorphism $[m]: E \rightarrow E$ is separable. The kernel of $[m]$, denoted by $E[m]$, is the m-torsion subgroup of E. It can be shown that $E[m] \cong \mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z} / m \mathbb{Z}$ for any m such that $p \nmid m$. We have $E[p]=0$ or $\mathbb{Z} / p \mathbb{Z}$. The curve E is called ordinary if $E[p]=\mathbb{Z} / p \mathbb{Z}$, and supersingular otherwise. This is equivalent to saying that $\operatorname{End}(E)$ is an order in an imaginary quadratic extension or a quaternion algebra over $\mathbb{Q}[29, \S \mathrm{~V} .3]$.

Two curves E_{1} / \mathbb{F}_{q} and E_{2} / \mathbb{F}_{q} are called isogenous if there exists an isogeny between them. For any isogeny $\phi: E_{1} \rightarrow E_{2}$ there exists an isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ such that $\phi \circ \hat{\phi}=[m]$ where $m=\operatorname{deg}(\phi)$. Therefore, being isogenous is an equivalence relation between curves defined over \mathbb{F}_{q}. Two isogenous curves are either ordinary or supersingular. This means the isogeny classes of ordinary and supersingular curves are disjoint. As a consequence of Tate's isogeny theorem [33], E_{1} and E_{2} are \mathbb{F}_{q}-isogenous if and only if $\left|E_{1}(K)\right|=\left|E_{2}(K)\right|$ for any finite extension K / \mathbb{F}_{q}. This implies that all curves in the same isogeny class have the same number of \mathbb{F}_{q}-rational points.

2.1 Isogeny graphs

It can be shown that every supersingular elliptic curve can be defined over $\mathbb{F}_{p^{2}}$, that is its j-invariant is in $\mathbb{F}_{p^{2}}$. Since our focus in this paper will only be on supersingular curves, we assume from now on that $\mathbb{F}_{q}=\mathbb{F}_{p^{2}}$. For a prime $\ell \neq p$, the set of isomorphism classes of elliptic curves over \mathbb{F}_{q} and the degree- ℓ isogenies between them form a graph called the graph of ℓ-isogenies. The graph consists of ordinary and supersingular components that, according to above remarks, are disconnected. The ordinary components, which we will not discuss here, are called isogeny volcanoes [31].

There is only one supersingular component in the isogeny graph, which we
denote by G_{ℓ} [18]. The nodes in G_{ℓ} are usually represented by the j-invariants. In this paper, we interchangeably use curves and j-invariants to refer to the vertices of G_{ℓ}. For $p=3$ we have $\left|G_{\ell}\right|=1$ and for $p \geq 5$ we have $\left|G_{\ell}\right| \approx[p / 12]$. We consider the edges of G_{ℓ} to be isomorphism classes of ℓ-isogenies, where isogenies $\phi, \psi: E_{1} \rightarrow E_{2}$ are isomorphic if there is an automorphism α of E_{2} such that $\psi=\alpha \phi$. Another way to look at the edges in G_{ℓ} is through the modular polynomial $\Phi_{\ell}(x, y) \in \mathbb{Z}[x, y][37, \S 69]$. The modular polynomial is symmetric in the sense that $\Phi_{\ell}(x, y)=\Phi_{\ell}(y, x)$, and is of degree $\ell+1$ in both x, y. It is well known that there is an ℓ-isogeny between two curves E_{1}, E_{2} with j-invariants j_{1}, j_{2} if and only if $\Phi_{\ell}\left(j_{1}, j_{2}\right)=0$. Therefore, the neighbors of each $E \in G_{\ell}$ are exactly the curves with j-invariants a root of the univariate polynomial $\Phi_{\ell}(x, j(E))$. Since all the j-invariant are in \mathbb{F}_{q}, we see that G_{ℓ} is an $(\ell+1)$-regular graph.

2.2 Computational problems

In this subsection, we review the hard problems [5] that the security of our hash will be based on. Let n, which is the main security parameter, be a positive integer and let p be a prime of size $\approx n$ bits. For a prime $\ell \neq p$, denote by G_{ℓ} the graph of supersingular elliptic curves over \mathbb{F}_{q}.

Problem 2.1. Find curves $E_{1}, E_{2} \in G_{\ell}$ and two distinct isogenies $\phi_{1}, \phi_{2}: E_{1} \rightarrow$ E_{2} of degrees $\ell^{r n}$ and $\ell^{s n}$ for some integers $r, s>0$.

By distinct isogenies we mean distinct edges in the graph G_{ℓ}, that is isogenies in different isomorphism classes. In particular, composing an isogeny with an automorphism of either E_{1} or E_{2} does not produce another isogeny.

Problem 2.2. Given a curve $E \in G_{\ell}$, find an endomorphism $\phi \in \operatorname{End}(E) \backslash \mathbb{Z}$ of degree $\ell^{r n}$ for some integer $r>0$. By ϕ not being in \mathbb{Z} we mean when $r n$ is even, ϕ is not $\psi \circ\left[\ell^{r n / 2}\right]$ for some automorphism ψ of E.

As noted in [5], if an endomorphism $\phi \in \operatorname{End}(E)$ is given in the factored form $\phi=\phi_{k n} \circ \phi_{k n-1} \circ \cdots \circ \phi_{1}$ where each ϕ_{i} has degree ℓ, then an efficient solution to Problem 2.1 can be found by setting $E_{1}=E$ and $E_{2}=E_{s n}$ where $E_{s n}$ is a curve in the cycle. More precisely, $\psi_{1}=\phi_{s n} \circ \cdots \circ \phi_{1}$ and $\psi_{2}=\hat{\phi}_{k n} \circ \cdots \circ \hat{\phi}_{s n+1}$ are two distinct isogenies of degrees $\ell^{s n}$ and $\ell^{(k-s) n}$ from E_{1} to E_{2}. Note that since we assume that ℓ is small, isogenies of degree ℓ can be computed efficiently. So it suffices to only have a cycle of vertices $E \rightarrow E_{2} \rightarrow \cdots \rightarrow E_{k n-1} \rightarrow E$ to construct ψ_{1} and ψ_{2}.

Problem 2.3. Given curves $E_{1}, E_{2} \in G_{\ell}$, find an isogeny $\phi: E_{1} \rightarrow E_{2}$ of degree $\ell^{r n}$ for some integer $r>0$.

Problem 2.1 can be reduced to Problem 2.3 by taking a random walk of length $r n$ from a curve E_{1} to a curve E_{2} in G_{ℓ}, and using the solver for Problem 2.3 to find another path $E_{1} \rightarrow E_{2}$ of length $s n$. These two paths will be distinct with high probability. Using the same strategy, Problem 2.2 can be reduced to Problem 2.3.

Attacks. Problem 2.3 is known as the Supersingular Isogeny Problem, and was first introduced in [17]. As noted in [5], a variation of the Pollard-rho attack would give an algorithm of complexity $O\left(\sqrt{p} \log ^{2} p\right)$ for this problem.

Another attack is known as the claw finding attack. The claw finding problem is as follows. Given functions $f: X \rightarrow Y$ and $g: Z \rightarrow Y$, find $(x, y) \in X \times Z$ such that $f(x)=g(z)$. A naive algorithm can solve this in time $O(|X|+|Z|)$. Therefore, setting X and Z to be all the isogenies of length $n / 2$ starting from E_{1} and E_{2}, respectively, we get an attack of complexity $O(\sqrt{p})$ on Problem 2.3. Using a quantum computer, the claw finding problem can be solved in time $O(\sqrt[3]{|X||Z|})$ which is optimal for black-box claw algorithm [32,41]. This gives a quantum attack of complexity $O(\sqrt[3]{p})$.

The best known attack on Problem 2.3 is due to Biasse et al. [4]. Given curves E_{1}, E_{2} over \mathbb{F}_{q}, the idea is to generate random isogenies $E \rightarrow E_{1}^{\prime}$ and $E_{2} \rightarrow E_{2}^{\prime}$ until E_{1}^{\prime} and E_{2}^{\prime} are both defined over \mathbb{F}_{p}. Using Grover's algorithm, this can be done in $O\left(p^{1 / 4}\right)$ quantum operations. Computing an isogeny between E_{1}^{\prime} and E_{2}^{\prime} can then be done in subexponential time. The total complexity of the algorithm is thus $O\left(p^{1 / 4}\right)$.

Another computational problem related to supersingular isogeny graphs is the endomorphism ring problem which is: given $E \in G_{\ell}$, compute the endomorphism ring $\operatorname{End}(E)$. In a recent work by Petit and Lauter [26], it is shown that the endomorphism ring problem is polynomially equivalent to Problem 2.3 under some plausible heuristic assumptions. Petit and Lauter also give an algorithm that can efficiently compute an endomorphism for a special j-invariant in the isogeny graph. This leads to a backdoor attack on the CGL hash which can easily be detected if a collision is produced. Later, Eisentraeger et al. [16] showed that the endomorphism ring problem reduces to Problem 2.3 if in addition to a chain of ℓ-isogenies, the representation of the ℓ-power isogeny by a left ideal in a maximal order is given.

Note that if we consider Problem 2.3 in the ordinary isogeny graph, then there is a subexponential quantum attack due to Childs et al. [7]. In contrast to supersingular curve, the ideal classes of the endomorphism ring of an ordinary curve form
an abelian group. This allows the application of the abelian hidden shift algorithm to find the ideal corresponding to an isogeny.

2.3 The CGL hash

In this subsection, we review the original hash construction proposed in [5]. Let us first recall some definitions. For a family of hash functions $\mathcal{H}=\left\{h:\{0,1\}^{L(n)} \rightarrow\right.$ $S\}$, where $L(n)=\operatorname{poly}(n)$, we always assume that

- $2^{L(n)}>|S|$, and
- any $h \in \mathcal{H}$ is efficiently computable.

A hash function is called collision resistant if it is computationally infeasible to find two messages that hash to the same value. More formally,

Definition 2.4. A family of hash functions $\mathcal{H}=\left\{h:\{0,1\}^{L(n)} \rightarrow S\right\}$ is said to be collision resistant if for any nonuniform PPT algorithm \mathcal{A}

$$
\operatorname{Pr}\left[x \neq y \wedge h(x)=h(y) \mid h \leftarrow \mathcal{U}(\mathcal{H}),(x, y) \leftarrow \mathcal{A}\left(h, 1^{n}\right)\right] \leq \operatorname{negl}(n)
$$

A hash function h is called provable collision resistant if there exists a computational hard problem that is polynomially reducible to any algorithm that can find collisions in h. A hash function is called preimage resistant if given an output y of the hash, it is computationally infeasible to find a message that hashes to y.

Definition 2.5. A family of hash functions $\mathcal{H}=\left\{h:\{0,1\}^{L(n)} \rightarrow S\right\}$ is said to be preimage resistant if for any nonuniform PPT algorithm \mathcal{A}
$\operatorname{Pr}\left[z=h(y) \mid h \leftarrow \mathcal{U}(\mathcal{H}), z \leftarrow \mathcal{U}\left(h\left(\{0,1\}^{L(n)}\right)\right), y \leftarrow \mathcal{A}\left(h, h(x), 1^{n}\right)\right] \leq \operatorname{negl}(n)$.
Similarly, a hash function h is called provable preimage resistant if there exists a computational hard problem that is polynomially reducible to any algorithm that can find preimages of h.

Let $G_{\ell}=G_{\ell}\left(\mathbb{F}_{q}\right)$ be the graph of ℓ-isogenies over \mathbb{F}_{q}. For simplicity we only consider the case $\ell=2$, i.e., the graph of 2 -isogenies. The whole scheme can be easily generalized for a any prime ℓ. Let $E \in G_{\ell}$ be a fixed starting curve. Since G_{ℓ} is 3-regular, there are three isogenies from E to the neighboring curves. One of these isogenies is ignored once and for all. Given an n-bit message $M=$ $b_{1} b_{2} \ldots b_{n}$, the process starts by choosing an isogeny from E according to the bit b_{1} to arrive at a curve E_{1}. If we don't allow backtracking, then there are two isogenies out of E_{1}, one of which can be chosen according to b_{2}. Continuing the same process, the message M determines a unique path of length n in G_{ℓ}. Note
that it is required to make a convention for the ordering of the isogenies at each curve so that the hash is well defined. That is, the same output is produced for the same messages.

The output of the hash is the j-invariant of the curve at the end of the path. The j-invariants are of the form $a x+b$ where x is a generator of the extension $\mathbb{F}_{q} / \mathbb{F}_{p}$. As suggested in [5], the output of the hash can be represented in $\log p$ bits by applying a linear congruential operator to the resulting j-invariant.

From this scheme, we see that selecting a different starting curve $E \in G_{\ell}$ gives a different hash function. This way, we get a family of hash functions $\mathcal{H}=$ $\left\{h_{j}\right\}_{j \in G_{\ell}}$ indexed by the supersingular j-invariants. Assume the hashes accept inputs of length a multiple of n. Then the above hash family is provable collision and preimage resistant.

Theorem 2.6 ([5, Theorem 1]). If there is an efficient algorithm for finding collisions in the hash family $\mathcal{H}=\left\{h_{j}\right\}_{j \in G_{\ell}}$, then there is an efficient algorithm for Problem 2.1 and Problem 2.2.

Theorem 2.7 ([5, Theorem 2]). If there is an efficient algorithm for finding preimages in the hash family $\mathcal{H}=\left\{h_{j}\right\}_{j \in G_{\ell}}$, then there is an efficient algorithm for Problem 2.3.

3 The new hash algorithm

In this section, we propose a new hash algorithm based on supersingular isogeny graphs G_{ℓ}. For simplicity, we assume $\ell=2$, but the scheme can easily be generalized for any prime $\ell \geq 2$. Let $p=2^{n} f \pm 1$ where f is small. Then we can assume that the curves in G_{ℓ} have order $(p \mp 1)^{2}=\left(2^{n} f\right)^{2}$. This follows from the fact that a the group of \mathbb{F}_{q}-rational points on a supersingular elliptic curve over \mathbb{F}_{q} is of the form $(\mathbb{Z} /(p \mp 1) \mathbb{Z})^{2}$. From this group structure we see that for each $E \in G_{\ell}$, the whole 2^{n}-torsion subgroup $E\left[2^{n}\right]$ is contained in $E\left(\mathbb{F}_{q}\right)$. Let $P, Q \in E\left[2^{n}\right]$ denote a set of generators of the 2^{n}-torsion. Given any n-bit message m, we obtain a hash of m as follows.

First, we compute $R=P+m Q$ which determines a cyclic subgroup $H=$ $\langle R\rangle \subset E$ of order 2^{n}. Then we compute an isogeny $E \rightarrow E^{\prime}$ with kernel H, which is also of degree 2^{n}, and return the j-invariant of E^{\prime} as the hash. This way, taking E as the starting vertex, we have mapped an n-bit message to a vertex $E^{\prime} \in G_{\ell}$.

```
Algorithm \(1 h(E, m)\)
Input: An \(n\)-bit message \(m\), a supersingular curve \(E \in G_{\ell}\) as the starting vertex
Output: A supersingular curve \(E^{\prime} \in G_{\ell}\)
    Obtain generators \(P, Q\) of \(E\left[2^{n}\right]\)
    Compute \(R=P+m Q\)
    Compute an isogeny \(\phi: E \rightarrow E^{\prime}\) with kernel \(\langle R\rangle\)
    return \(E^{\prime}\)
```

The function $h(E, m)$ computed using Algorithm 1 is a compression function: it accepts a j-invariant and message m, and returns a j-invariant. Therefore, we can apply the Merkle-Damgård construction [12,21] to hash messages of arbitrary length using h.

Remark 3.1. In Step 1 of Algorithm 1, the generators P, Q of the 2^{n}-torsion should be obtained canonically so that the hash is well-defined. For example, one could use the entangled basis generation technique of [38].

```
Algorithm \(2 H(E, m)\)
Input: A message \(m\), a supersingular curve \(E \in G_{\ell}\) as the starting vertex
Output: A supersingular curve \(E^{\prime} \in G_{\ell}\)
    1: Pad the message \(m\) to get \(m=m_{1}\left\|m_{2}\right\| \ldots \| m_{k}\) where each block \(m_{i}\) is \(n\)
    bits
    Set \(E^{\prime}=E\)
    for \(i=1\) to \(k\) do
    \(E^{\prime}=h\left(E^{\prime}, m_{i}\right)\)
    end for
    return \(E^{\prime}\)
```

Since the starting vertex can be any $E \in G_{\ell}$, Algorithm 2 gives a hash family $\mathcal{H}=\left\{H_{j}\right\}_{j \in G_{\ell}}$ indexed by the curves in G_{ℓ}. So a hash can be selected from the family by providing a curve $E \in G_{\ell}$.

3.1 Preimage and Collision resistance

We assume $p=2^{n} f \pm 1$ as above, and assume that the length of the input is $k n$ for some integer $k \geq 1$. Let $\mathcal{H}=\left\{H_{j}\right\}_{j \in G_{\ell}}$ be the hash family computed using Algorithm 2.

Theorem 3.2 (Preimage Resistance). If there is an efficient algorithm for finding preimages for the hash family \mathcal{H}, then there is an efficient algorithm for Problem 2.3.

Proof. Let $H \in \mathcal{H}$ be a hash function corresponding to an initial vertex $E \in$ G_{ℓ}. Given an output $E_{1} \in G_{\ell}$ of H, a preimage for E_{1} is a message $m=$ $m_{1}\left\|m_{2}\right\| \ldots \| m_{k}$, where each m_{i} is n bits. By construction, the message m corresponds to an isogeny $E \rightarrow E_{1}$ of degree $2^{k n}$. This means finding a preimage for H is equivalent to finding a $2^{k n}$-isogeny between the two given curves E, E_{1}.

Remark 3.3. By Merkle-Damgård Theorem, collision resistance of the compression function implies the collision resistance of the hash function. Therefore, we only need to prove that the compression function $h(E, m)$ of Algorithm 1 is collision resistant. But $h(E, m)$ is not collision resistant. In fact, we can easily find curves $E_{1}, E_{2} \in G_{\ell}$ and n-bit messages m_{1}, m_{2} such that $h\left(E_{1}, m_{1}\right)=h\left(E_{2}, m_{2}\right)$ as follows. Let $E \in G_{\ell}$ be any curve and let $P, Q \in E\left[2^{n}\right]$ be a basis generated by Algorithm 1. For any integer $0 \leq t_{1}<2^{n}$ we can construct an isogeny $\phi_{1}: E \rightarrow E_{1}$ with kernel $\left\langle P+t_{1} Q\right\rangle$. Now, the kernel of $\hat{\phi}_{1}: E_{1} \rightarrow E$ is of the form $\left\langle P_{1}+m_{1} Q_{1}\right\rangle$ for a basis $P_{1}, Q_{1} \in E_{1}\left[2^{n}\right]$. We can efficiently find m_{1} from ϕ. Repeating the process for another $t_{2} \neq t_{1}$, we get an isogeny $\hat{\phi}_{2}: E_{2} \rightarrow E$ with kernel $\left\langle P_{2}+m_{2} Q_{2}\right\rangle$. Clearly, the pairs $\left(E_{1}, m_{1}\right)$ and $\left(E_{2}, m_{2}\right)$ give a collision in h.

This, however, does not imply that the hash $H(E, m)$ is not collision resistant. On the contrary, we prove in the following that Problem 2.1 and Problem 2.2 are efficiently reducible to finding collisions in $H(E, m)$. This means, the collision resistant condition on the compression function might not be required in some concrete instantiations of the Merkle-Damgård paradigm. In other words, the condition is sufficient but not necessary.

Let us first review some definitions from commutative algebra. Let R be commutative ring and let M be an R-module. A chain of submodules of length n of M is sequence of submodules

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

A maximal such chain, in the sense that no other distinct modules can be added into the chain, is called a composition series for M. Equivalently, a chain is a composition series if and only if each quotient M_{i} / M_{i-1} is simple. It is not hard to show that every composition series of M has the same length, and any chain in M can be refined into a composition series. The length of M is defined to be the length of any composition series of M.

If M has finite length n, then by Jordan-Hölder theorem, composition series of M are unique up to permutation and isomorphism. That is, if $\left(M_{i}\right)_{0 \leq i \leq n}$ and $\left(N_{i}\right)_{0 \leq i \leq n}$ are two composition series of M, then a permutation of the quotients $\left(M_{i} / M_{i-1}\right)_{1 \leq i \leq n}$ is isomorphic to the quotients $\left(N_{i} / N_{i-1}\right)_{1 \leq i \leq n}$.

In our hash construction, an n-bit message m is mapped to a kernel of order 2^{n}. The following lemma asserts that such a mapping is unique.

Lemma 3.4. Let $E \in G_{\ell}$ and let $P, Q \in E\left[2^{n}\right]$ be a basis. Then there is bijection between n-bit integers $m \in\{0,1\}^{n}$ and the subgroups $\langle P+m Q\rangle \subset E\left[2^{n}\right]$.

Lemma 3.5. Let $E \in G_{\ell}$ and let $P, Q \in E\left[2^{n}\right]$ be a basis. For any integer $m>0$, the subgroup $\langle P+m Q\rangle \subset E\left[2^{n}\right]$ has exactly one composition series.

Proof. Let $G=\langle P+m Q\rangle$, and let

$$
\begin{equation*}
0=G_{0} \subset G_{1} \subset \cdots \subset G_{n}=G \tag{3.1}
\end{equation*}
$$

be a composition series. Let R be a generator of G, which has order 2^{n}. By the maximality of series (3.1), we must have $\left|G_{i} / G_{i-1}\right|=2$ for all $1 \leq i \leq n$, so the quotients are isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. From this, we see that $G_{i}=\left\langle 2^{n-i} R\right\rangle$ for all $1 \leq i \leq n$. That is, the composition series of G is

$$
0=\left\langle 2^{n} R\right\rangle \subset\left\langle 2^{n-1} R\right\rangle \subset \cdots \subset\left\langle 2^{0} R\right\rangle=G
$$

for any generator R of G.
Following the notation of [5], given an isogeny $\phi: E \rightarrow E^{\prime}$ of degree 2^{n}, we say that the two factorizations

$$
\begin{aligned}
& E=E_{0} \xrightarrow{\phi_{1}} E_{1} \xrightarrow{\phi_{2}} E_{2} \xrightarrow{\phi_{3}} \cdots \xrightarrow{\phi_{n}} E_{n}=E^{\prime}, \\
& E=E_{0} \xrightarrow{\phi_{1}^{\prime}} E_{1}^{\prime} \xrightarrow{\phi_{2}^{\prime}} E_{2}^{\prime} \xrightarrow{\phi_{3}^{\prime}} \cdots \xrightarrow{\phi_{n}^{\prime}} E_{n}=E^{\prime}
\end{aligned}
$$

are isomorphic if there exist isomorphisms $\epsilon_{i}: E_{i} \xrightarrow{\sim} E_{i}^{\prime}$ such that $\phi_{i}^{\prime} \circ \epsilon_{i-1}=$ $\epsilon_{i} \circ \phi_{i}$ for all $1 \leq i \leq n$. We have the following.

Proposition 3.6. Let $E \in G_{\ell}$ and let $P, Q \in E\left[2^{n}\right]$ be a basis. Let $\phi: E \rightarrow E^{\prime}$ be an isogeny with kernel $G=\langle P+m Q\rangle \subset E\left[2^{n}\right]$ for some integer $m>0$. Then, all factorizations of ϕ to 2-isogenies are isomorphic.

Proof. Since the isogeny ϕ is cyclic, its factorization to 2-isogenies is uniquely determined by the composition series of its kernel. By Lemma 3.5, the kernel G has exactly one composition series, so factorization of ϕ into 2-isogenies is unique up to isomorphism.

The following corollary follows from Lemma 3.4 and Proposition 3.6.
Corollary 3.7. Let $E \in G_{\ell}$ and let $P, Q \in E\left[2^{n}\right]$ be a basis. There is a bijection between n-bit integers $m \in\{0,1\}^{n}$ and isogenies with kernels $\langle P+m Q\rangle$ up to isomorphism.

We now prove collision resistance for the hash family $\mathcal{H}=\left\{H_{j}\right\}_{j \in G_{\ell}}$ of Algorithm 2.

Theorem 3.8 (Collision Resistance). If there is an efficient algorithm for finding collisions in the hash family \mathcal{H}, then there is an efficient algorithm for Problem 2.1 and Problem 2.2.

Proof. Let $H \in \mathcal{H}$ be a hash function corresponding to an initial vertex $E \in G_{\ell}$ and let $H(E, m)=j\left(E^{\prime}\right)=H\left(E, m^{\prime}\right)$ for two distinct messages m, m^{\prime}. Write

$$
\begin{aligned}
& m=m_{1}\left\|m_{2}\right\| \cdots \| m_{r} \\
& m^{\prime}=m_{1}^{\prime}\left\|m_{2}^{\prime}\right\| \cdots \| m_{s}^{\prime}
\end{aligned}
$$

where each of the blocks m_{i} and m_{i}^{\prime} are n bits. Since $m \neq m^{\prime}$, there is exists a smallest $1 \leq i<k$ such that $m_{i} \neq m_{i}^{\prime}$. By Corollary 3.7 the blocks $\left\{m_{j}\right\}_{1 \leq j<i}$ and $\left\{m_{j}^{\prime}\right\}_{1 \leq j<i}$ produce isomorphic isogenies from E to some curve E_{i-1}; But the isogenies, with domain E_{i-1}, corresponding to m_{i} and m_{i}^{\prime} are not isomorphic. This means the two long isogenies corresponding to m, m^{\prime} are not isomorphic as well. That is, we have two distinct isogenies $\phi, \phi^{\prime}: E \rightarrow E^{\prime}$ of degrees $\ell^{r n}$ and $\ell^{s n}$, respectively. Therefore, a collision in h gives a solution for Problem 2.1.

Also, the composition $\psi=\hat{\phi}^{\prime} \circ \phi: E \rightarrow E$ is an endomorphism of E of degree $\ell^{(r+s) n}$, and since ϕ is not isomorphic to ϕ^{\prime}, the endomorphism ψ is in $\operatorname{End}(E) \backslash \mathbb{Z}$. Therefore, ψ is a solution for Problem 2.2.

4 Complexity

In this section, we compare the runtime complexity of the original CGL hash with the one proposed in Section 3. We will count the number of operations in \mathbb{F}_{q}, and denote multiplication, squaring, and inversion by \mathbf{M}, \mathbf{S}, and \mathbf{I}, respectively. To get a more precise operation count we fix the following parameters:

- The prime $p=2^{n} f-1$, where f is a small positive integer,
- The prime $\ell=2$ so that we work on the 2-isogeny graph G_{ℓ},
- The length $k n$ of the input message, where k is a positive integer.

We assume the curves in G_{ℓ} have order $(p+1)^{2}=\left(2^{n} f\right)^{2}$. The assumption on the length of the input message means we have already padded the input message so that it is k blocks of size n bits.

4.1 Moving around the isogeny graph

The complexities of both hash algorithms clearly depend on the cost of walking around in G_{ℓ}. The standard approach is to use the Vélu formulas [35]. This involves operations such as point addition and scalar multiplication, and small degree isogeny computation and evaluation. So we need to choose a curve model that is most optimized for these operations. The three well-known models that are widely used for computations are the Weierstrass model, the Montgomery model [23], and the twisted Edwards model [2,15].

The short Weierstrass model is written as $y^{2}=x^{3}+a x+b$. Using projective coordinates, one point addition in this model takes $12 \mathbf{M}+2 \mathbf{S}$ and one doubling takes $5 \mathbf{M}+6 \mathbf{S}$ [3]. If we assume one of the points is scaled to have $Z=1$, then addition and doubling are done using $9 \mathbf{M}+2 \mathbf{S}$ and $3 \mathbf{M}+5 \mathbf{S}$, respectively.

The Montgomery model is written as $b y^{2}=x^{3}+a x^{2}+x$. Using the X, Z coordinates, which is called the Kummer line, one differential addition in this model costs $4 \mathbf{M}+2 \mathbf{S}$, and one doubling costs $2 \mathbf{M}+2 \mathbf{S}$. If one of the points is scaled to have $Z=1$, then a differential addition costs $3 \mathbf{M}+2 \mathbf{S}$, and a doubling costs $1 \mathbf{M}+2 \mathbf{S}$.

The twisted Edwards model is written as $a x^{2}+y^{2}=1+d x^{2} y^{2}$. Using projective coordinates, one addition in this model costs $10 \mathbf{M}+1 \mathbf{S}$, and one doubling costs $3 \mathbf{M}+4 \mathbf{S}$. If one of the points is scaled to have $Z=1$, then an addition and doubling cost $9 \mathbf{M}+1 \mathbf{S}$ and $2 \mathbf{M}+4 \mathbf{S}$.

Unfortunately, there is not much literature on efficient computation and evaluation of small degree isogenies. Analogues of the Vélu formulas for twisted Edwards curves are given in [24], and the ones for Montgomery curves are given in [13]. Note that since the order of curves in G_{ℓ} is $\left(2^{n} f\right)^{2}$, all curves have points of order 2, so any of the above models can be used for our algorithm. However, based on the above operation counts and the advice of [13], we choose to work with the Montgomery model in this paper.

Montgomery curves. As mentioned above, a Montgomery curve over \mathbb{F}_{q} has equation

$$
E_{a, b}: b y^{2}=x^{3}+a x^{2}+x
$$

where $a, b \in \mathbb{F}_{q}$. The projective equation of $E_{a, b}$ is $b Y^{2} Z=X^{3}+a X^{2} Z+X Z^{2}$. The projection $x: E_{a, b} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ defined by $(X: Y: Z) \mapsto(X: Z)$ is a morphism of order 2 that induces a bijection $E_{a, b} /\langle 1,-1\rangle \cong \mathbb{P}^{1}$. This map provides
efficient arithmetic in $E_{a, b} /\langle 1,-1\rangle$, done entirely in the X, Z coordinates. The line \mathbb{P}^{1} can be considered as the Kummer variety of $E_{a, b}$, and is called the Kummer line of $E_{a, b}$. Since the map x takes both P and $-P$ to $x(P)$ for all $P \in E_{a, b}$, we cannot add two distinct points P, Q on the Kummer line unless the difference $P-Q$ is already known. This particular addition, that takes $P-Q$ as an input, is called differential addition.

Efficient formulas for the following operations on the Kummer line were given in [23].

- Doubling: $\{x(P), a\} \mapsto x(2 P)$,
- Differential addition: $\{x(P), x(Q), x(P-Q)\} \mapsto x(P+Q)$,
- Double and add: $\{x(P), x(Q), x(P-Q), a\} \mapsto\{x(2 P), x(P+Q)\}$,
- Ladder: $\{x(P), a, m\} \mapsto x(m P)$.

The last operation, known as the Montgomery ladder, is done using doubling and differential addition.

Isogenies of Montgomery curves. Computing 2-isogenies between Montgomery curves can also be done entirely on the Kummer line. Efficient formulas for 2 and 4-isogenies were derived in [13]. Later, it was observed by Costello et al. [10] that computing an isogeny of degree 2^{n} is more efficiently done using 4-isogenies. To avoid many inversions in computing small degree isogenies, it was proposed in [10] to consider "projective" coefficients for the curve $E_{a, b}$ as well. That is to write $E_{a, b}$ as $E_{(A: B: C)}: B y^{2}=C x^{3}+A x^{2}+C x$ for some $C \neq 0$, with $b=B / C$ and $a=A / C$. Like the arithmetic on the Kummer line, this leads to an isogeny arithmetic in which curves and their quadratic twists are identified by working only with the coefficients $(A: C) \in \mathbb{P}^{1}$.

The projective versions of the 4-isogeny formulas in [13] can be written as follows [10]. Let $P=\left(X_{4}: Z_{4}\right) \in E_{(A: C)}$ be a point of order 4 and denote by $\phi: E_{(A: C)} \rightarrow E_{\left(A^{\prime}: C^{\prime}\right)}$ the 4-isogeny with kernel $\langle P\rangle$. The target curve of ϕ is given by

$$
\left(A^{\prime}, C^{\prime}\right)=\left(2\left(2 X_{4}^{4}-Z_{4}^{4}\right): Z_{4}^{4}\right)
$$

and an evaluation $\left(X^{\prime}: Z^{\prime}\right)=\phi(X: Z)$ is given by

$$
\begin{aligned}
\left(X^{\prime}: Z^{\prime}\right)= & \left(X\left(2 X_{4} Z_{4} Z-X\left(X_{4}^{2}+Z_{4}^{2}\right)\right)\left(X_{4} X-Z_{4} Z\right)^{2}:\right. \\
& \left.Z\left(2 X_{4} Z_{4} X-Z\left(X_{4}^{2}+Z_{4}^{2}\right)\right)\left(Z_{4} X-X_{4} Z\right)^{2}\right) .
\end{aligned}
$$

The costs of point and isogeny arithmetics on Mongomery curves, taken from [10], are summarized in Table 1.

								cost		
operation	input	output	\mathbf{M}	\mathbf{S}	\mathbf{I}					
doubling	$x(P), a$	$x(2 P)$	4	2	-					
differential addition	$x(P), x(Q), x(P-Q)$	$x(P+Q)$	3	2	-					
double and add	$x(P), x(Q), x(P-Q), a$	$x(2 P), x(P+Q)$	6	4	-					
ladder	$x(P), a, m$	$x(m P)$	$5 n$	$4 n$	-					
compute 4-isogeny	$x(P)$	A^{\prime}, C^{\prime}	-	5	-					
evaluate 4-isogeny	$x(Q)$	$x(\phi(Q))$	9	1	-					

Table 1. Costs of different operations for Montgomery curves

4.2 Complexity of CGL

For hashing a message in the original CGL algorithm, 2-torsion points and the Vélu formulas are used. This requires obtaining two 2-torsion points at each curve by eliminating the point corresponding to the arriving isogeny, and using Vélu to compute the next curve. The 2-torsion can be computed using $f(x)$ from the equation $y^{2}=f(x)$ of the curve. The polynomial $f(x)$ is cubic, but a linear factor corresponding to one of the 2-torsion points is eliminated. This means we always have a quadratic equation to factor. Therefore, hashing each bit of the message needs: 1 isogeny computation, 1 isogeny evaluation, and 1 square root computation.

Modular polynomials. Since we only need to work with j-invariants, a more efficient approach is to use the modular polynomial $\Phi_{2}(x, y)$. For any curve $E \in$ G_{ℓ}, the univariate polynomial $\Phi_{2}(x, j(E))$ is a cubic with roots the j-invariants of the curves 2-isogenous to E. Eliminating one of the linear factors corresponding to the j-invariant of the previous curve, we are left with a quadratic equation. Now, computing a square root gives the j-invariant of the next curve. This way, isogeny computation and evaluation is avoided altogether. For each bit of the input we need to do the following:

- Evaluate the modular polynomial for the current curve. The modular polynomial is

$$
\begin{aligned}
\Phi_{2}(x, y)= & x^{3}+y^{3}-x^{2} y^{2}+1488\left(x^{2} y+y^{2} x\right)-162000\left(x^{2}+y^{2}\right) \\
& 40773375 x y+8748000000(x+y)-157464000000000
\end{aligned}
$$

The evaluation $\Phi_{2}(x, j(E))$ requires $1 \mathbf{M}+1 \mathbf{S}$ and a few scalar multiplications.

- Obtain a quadratic equation $g(x)$ from $\Phi_{2}(x, j(E))$ by factoring out a linear factor. This needs only $1 \mathbf{M}$.
- Solve the quadratic equation. This needs $1 \mathbf{S}$ and 1 square root computation. Using the method of [14], square root computation in \mathbb{F}_{q} reduces to square root computation in \mathbb{F}_{p} and an exponentiation. More precisely, taking a square root in \mathbb{F}_{q} requires $(2 \log p+1) \mathbf{M}+1 \mathbf{S}+1 \mathbf{I}$ operations in \mathbb{F}_{q}.
In summary, we need $(2 \log p+3) \mathbf{M}+3 \mathbf{S}+1 \mathbf{I}$ for each bit, and hence

$$
\begin{equation*}
k n((2 \log p+3) \mathbf{M}+3 \mathbf{S}+1 \mathbf{I}) \tag{4.1}
\end{equation*}
$$

for a message of length $k n$ bits.

4.3 Complexity of the new hash

For each n-bit block m of the input message Algorithm 2 performs the following:

- Obtain generators P, Q of the group $E\left[2^{n}\right]$ of the current curve E. This can be efficiently done using the entangled basis technique of [38]. An entangled basis computation takes, on average, 2 quadratic residuosity test, 1 square root computation, $6 \mathbf{M}$ and $4 \mathbf{S}$. A quadratic residuosity test in \mathbb{F}_{q} takes $1 \mathbf{S}+$ $\frac{1}{3} \log p \mathbf{M}$, and the square root computation can be done as in Subsection 4.2. The total cost of basis generation is thus

$$
\left(\frac{8}{3} \log p+7\right) \mathbf{M}+7 \mathbf{S}+1 \mathbf{I}
$$

- Compute $R=P+m Q$. For this, we first compute $m Q$ using the usual Montgomery ladder which takes $6 n \mathbf{M}+4 n \mathbf{S}$, and then add P at the cost of a few multiplications.
- Compute an isogeny $\phi: E \rightarrow E^{\prime}$ with kernel $\langle R\rangle$. For this, we use the optimal strategy approach of [13]. Using this strategy, computing a 2^{n}-isogeny takes $\frac{1}{2} n \log n$ point doublings and 2 -isogeny computations. As mentioned above, we can use 4 -isogenies instead of 2-isogenies. Using this strategy, obtaining the target curve E^{\prime} takes $\frac{n}{2}$ 4-isogeny computations and $\frac{1}{4} n \log n$ point doubling and 4 -isogeny evaluations. According to Table 1 , all these together take

$$
\frac{13}{8} n \log n \mathbf{M}+\left(\frac{3}{8} n \log n+\frac{5}{2} n\right) \mathbf{S} .
$$

The total complexity of Algorithm 2 for an input of length $k n$ bits is then

$$
\begin{equation*}
\left(\frac{13}{8} n \log n+\frac{8}{3} \log p+6 n+7\right) k \mathbf{M}+\left(\frac{3}{8} n \log n+\frac{13}{2} n+7\right) k \mathbf{S}+k \mathbf{I} \tag{4.2}
\end{equation*}
$$

operations in \mathbb{F}_{q}.

Performance comparison. Comparing the complexity of the new hash algorithm, Eq. (4.2), with CGL, Eq. (4.1), we immediately see that the new algorithm is significantly faster. Asymptotically, the runtime of the new hash is quasi-linear in n while the runtime of CGL is quadratic in n. For a concrete performance comparison, we can replace the squaring and inversion operations \mathbf{S} and \mathbf{I} by a factor of multiplication \mathbf{M}. A frequently used convention is to set $\mathbf{S}=0.6 \mathbf{M}$ and $\mathbf{I}=100 \mathbf{M}$. From this, we get the estimations

$$
k n(2 n+104.8) \mathbf{M}
$$

for complexity of the CGL hash algorithm, and

$$
k n(1.8 \log n+12.6) \mathbf{M}
$$

for complexity of the new hash algorithm. This leads to the performance ratio

$$
\begin{equation*}
\frac{2 n+104.8}{1.8 \log n+12.6} \tag{4.3}
\end{equation*}
$$

which is asymptotically $c \frac{n}{\log n}$ for the constance $c=2 / 1.8$. Figures 1 a and 1 b compare the performances of CGL and the new hash algorithm for different parameter sizes.

Figure 1a shows the quadratic versus quasi-linear behaviors of the algorithms. From Figure 1b and Eq (4.3) we see that for a prime of size $n=1024$, the new algorithm is 70.35 times faster than the original CGL algorithm. Given that the best attack on the hash has quantum complexity $O\left(p^{1 / 4}\right)$, this corresponds to 256-bit quantum security level. For a 384-bit quantum security level, we get a performance ratio of 100.36 .

Bibliography

[1] Miklós Ajtai, Generating hard instances of lattice problems, in: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, ACM, pp. 99-108, 1996.
[2] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters, Twisted edwards curves, in: International Conference on Cryptology in Africa, Springer, pp. 389-405, 2008.
[3] Daniel J Bernstein and Tanja Lange, Explicit Formulas Database, 2007, http:// www.hyperelliptic.org/EFD/index.html.
[4] Jean-François Biasse, David Jao and Anirudh Sankar, A quantum algorithm for computing isogenies between supersingular elliptic curves, in: International Conference in Cryptology in India, Springer, pp. 428-442, 2014.
[5] Denis X Charles, Kristin E Lauter and Eyal Z Goren, Cryptographic hash functions from expander graphs, Journal of Cryptology 22 (2009), 93-113.
[6] David Chaum, Eugène van Heijst and Birgit Pfitzmann, Cryptographically strong undeniable signatures, unconditionally secure for the signer, in: Annual International Cryptology Conference, Springer, pp. 470-484, 1991.
[7] Andrew Childs, David Jao and Vladimir Soukharev, Constructing elliptic curve isogenies in quantum subexponential time, Journal of Mathematical Cryptology 8 (2014), 1-29.
[8] Richard Cleve, Artur Ekert, Chiara Macchiavello and Michele Mosca, Quantum algorithms revisited, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454, The Royal Society, pp. 339-354, 1998.
[9] Scott Contini, Arjen K Lenstra and Ron Steinfeld, VSH, an Efficient and Provable Collision-Resistant Hash Function., in: Eurocrypt, 4004, Springer, pp. 165-182, 2006.
[10] Craig Costello, Patrick Longa and Michael Naehrig, Efficient algorithms for supersingular isogeny Diffie-Hellman, in: Annual Cryptology Conference, Springer, pp. 572-601, 2016.
[11] Ronald Cramer and Victor Shoup, Signature schemes based on the strong RSA assumption, ACM Transactions on Information and System Security (TISSEC) 3 (2000), 161-185.
[12] Ivan Bjerre Damgård, A design principle for hash functions, in: Conference on the Theory and Application of Cryptology, Springer, pp. 416-427, 1989.
[13] Luca De Feo, David Jao and Jérôme Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, Journal of Mathematical Cryptology 8 (2014), 209-247.
[14] Javad Doliskani and Éric Schost, Taking roots over high extensions of finite fields, Mathematics of Computation 83 (2014), 435-446.
[15] Harold Edwards, A normal form for elliptic curves, Bulletin of the American Mathematical Society 44 (2007), 393-422.
[16] Kirsten Eisentraeger, Sean Hallgren and Travis Morrison, On the Hardness of Computing Endomorphism Rings of Supersingular Elliptic Curves, Cryptology ePrint Archive, Report 2017/986, 2017, https://eprint.iacr.org/2017/986.
[17] Steven D Galbraith, Constructing isogenies between elliptic curves over finite fields, LMS Journal of Computation and Mathematics 2 (1999), 118-138.
[18] David Russell Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D. thesis, University of California, Berkeley, 1996.
[19] Vadim Lyubashevsky and Daniele Micciancio, Generalized compact knapsacks are collision resistant, Automata, Languages and Programming (2006), 144-155.
[20] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFT: A modest proposal for FFT hashing, Lecture Notes in Computer Science 5086 (2008), 54-72.
[21] Ralph C Merkle, A certified digital signature, in: Conference on the Theory and Application of Cryptology, Springer, pp. 218-238, 1989.
[22] Daniele Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient one-way functions, Computational Complexity 16 (2007), 365-411.
[23] Peter L Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of computation 48 (1987), 243-264.
[24] Dustin Moody and Daniel Shumow, Analogues of VéluâĂŹs formulas for isogenies on alternate models of elliptic curves, Mathematics of Computation 85 (2016), 19291951.
[25] Michael A Nielsen and Isaac Chuang, Quantum computation and quantum information, AAPT, 2002.
[26] Christophe Petit and Kristin Lauter, Hard and easy problems for supersingular isogeny graphs, Cryptology ePrint Archive, Report 2017/962, 2017, https:// eprint.iacr.org/2017/962.
[27] Arnold K Pizer, Ramanujan graphs and Hecke operators, Bulletin of the American Mathematical Society 23 (1990), 127-137.
[28] Peter W Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM review 41 (1999), 303-332.
[29] Joseph H Silverman, The arithmetic of elliptic curves, 106, Springer Science \& Business Media, 2009.
[30] Daniel R Simon, On the power of quantum computation, SIAM journal on computing 26 (1997), 1474-1483.
[31] Andrew Sutherland, Isogeny volcanoes, The Open Book Series 1 (2013), 507-530.
[32] Seiichiro Tani, Claw finding algorithms using quantum walk, Theoretical Computer Science 410 (2009), 5285-5297.
[33] John Tate, Endomorphisms of abelian varieties over finite fields, Inventiones mathematicae 2 (1966), 134-144.
[34] Jean-Pierre Tillich and Gilles Zémor, Group-theoretic hash functions, in: Workshop on Algebraic Coding, Springer, pp. 90-110, 1993.
[35] Jacques Vélu, Isogénies entre courbes elliptiques, Comptes-Rendus de l'Académie des Sciences 273 (1971), 238-241.
[36] Lawrence C Washington, Elliptic curves: number theory and cryptography, CRC press, 2008.
[37] Heinrich Weber, Lehrbuch der Algebra, vol. 3, III, third edition (Chelsea, New York, 1961) (1908).
[38] Gustavo H. M. Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira, Javad Doliskani and Paulo S. L. M. Barreto, Faster isogeny-based compressed key agreement, Cryptology ePrint Archive, Report 2017/1143, 2017, https://eprint. iacr.org/2017/1143.
[39] Gilles Zémor, Hash functions and graphs with large girths, in: Advances in Cryptology-EUROCRYPT'91, Springer, pp. 508-511, 1991.
[40] Gilles Zémor, Hash functions and Cayley graphs, Designs, Codes and Cryptography 4 (1994), 381-394.
[41] Shengyu Zhang, Promised and distributed quantum search, in: International Computing and Combinatorics Conference, Springer, pp. 430-439, 2005.

Author information

Javad Doliskani, Institute for Quantum Computing, University of Waterloo, Canada.
E-mail: javad.doliskani@uwaterloo.ca
Geovandro C. C. F. Pereira, Institute for Quantum Computing, University of Waterloo, Canada.
E-mail: geovandro.pereira@uwaterloo.ca
Paulo S. L. M. Barreto, University of Washington Tacoma, USA.
E-mail: pbarreto@uw.edu

[^0]: This work is partially supported by NSERC, CryptoWorks21, and Public Works and Government Services Canada.

