
Faster Cryptographic Hash Function From
Supersingular Isogeny Graphs

Javad Doliskani, Geovandro C. C. F. Pereira and
Paulo S. L. M. Barreto

Abstract. We propose a variant of the CGL hash [5] that is significantly faster than the
original algorithm, and prove that it is preimage and collision resistant. For n = log p
where p is the characteristic of the finite field, the performance ratio between CGL and the
new proposal is (2n + 104.8)/(1.8 logn + 12.6). Assuming the best quantum preimage
attack on the hash has complexityO(p

1
4), we attain a concrete speed-up for a 256-bit quan-

tum preimage security level by a factor 70.35. For a 384-bit quantum preimage security
level, the speed-up is by a factor 100.36.

Keywords. Cryptographic hash functions, Supersingular elliptic curves, Isogeny graphs,
Expander graphs.

2010 Mathematics Subject Classification. 94A60, 14K02, 11Y16.

1 Introduction

A provably secure hash function is a hash function in which finding collisions is
efficiently reducible from a computationally hard problem. The first proposals for
provably secure hash functions were based on number theoretic problems such as
integer factorization and discrete logarithm which are widely believed to be hard.
The Very Smooth Hash (VSH) proposed by Contini et al. [9] is a provably secure
hash algorithm based on an assumption related to integer factorization. The idea
behind VSH is similar to the one appeared in the earlier work of Chaum [6] on
undeniable signatures. A variant of VSH, called VSH-DL, is based on a problem
related to discrete logarithm. VSH is very fast and can be used in schemes like the
Cramer-Shoup signature [11] to improve the performance without sacrificing any
security.

Security of the schemes based on these classical number theoretic problems,
however, is threatened by the emergence of quantum computers. A quantum com-
puter can perform the Fourier Transform on an exponential number of amplitudes

This work was partially supported by NSERC, CryptoWorks21, and Public Works and Government
Services Canada.

2

in polynomial time [8, 25]. This leads to polynomial time quantum algorithms
for phase estimation and order-finding, and consequently factoring and discrete
logarithm [28, 30].

Modern provably secure hash functions are based on less standard assumptions
but are believed to resist quantum attacks. Inspired by Ajtai’s seminal work [1]
on average-case to worst-case reduction of standard lattice problems, Miccian-
cio [22] proposed an efficient hash function whose security is based on certain
approximation problems on ideal lattices. A more efficient variant of Miccian-
cio’s hash function, called SWIFFT, was latter proposed by Lyubashevsky et al.
[19,20]. SWIFFT is very efficient, with performance comparable to SHA-256 and
has good statistical properties. It, however, cannot be used as a pseudorandom
function since it preserves addition [20, §4.3].

A class of provably secure hash functions are based on expander graphs. An
expander graph is, informally, a graph with low degree and high connectivity. The
use of expander graphs for hashing started with the works of Zémor and Tillich
[34, 39, 40] on particular expander graphs called Cayley graphs. In 2009, Charles
et al. [5] proposed an expander hash, called CGL, which is based on the isogeny
graph of supersingular elliptic curves over finite fields. Supersingular isogeny
graphs are excellent expander graphs with asymptotically optimal expansion con-
stant [27]. The security of CGL is based on the hardness of computing isogenies of
large degree between supersingular elliptic curves. Since the introduction of CGL,
supersingular isogeny problems have attracted considerable attention in cryptog-
raphy, and the best known attacks on them have exponential complexity. The main
drawback of CGL is efficiency. For a finite field of characteristic p, the algorithm
requires roughly 2 log p modular multiplications per bit of the input. This makes
CGL far less efficient than other provably secure hash algorithms.

Our contributions. We exploit primes of the form p = 2nf ± 1, where f > 0 is
a small integer, as the characteristic of the finite field. Instead of consuming a bit
of the input at a time, we use a block of length n ≈ log p bits at once to generate
the kernel of a cyclic smooth isogeny of degree 2n. The isogeny is then computed
very efficiently to get the next curve in the graph. We show that this does not
sacrifice any security and reduces the complexity of the original CGL hash from
2 log p+ 104.8 to 1.8 log log p+ 12.6 modular multiplications per bit of the input.

Organization of the paper. In Section 2 we review some background on elliptic
curves, isogenies and the CGL hash. Our new hash algorithm and the proofs of its
preimage and collision resistance are given in Section 3. In Section 4 we perform
a detailed operation count on CGL and the new hash algorithm, and compare the
runtime complexities.

3

2 Preliminaries

Let Fq be a finite field of q elements where q = pn for some prime p > 3 and
integer n ≥ 1. An elliptic curve E/Fq is an abelian variety of genus 1, that is a
nonsingular projective curve of genus 1 which is also an abelian group. A mor-
phism E1 → E2 of elliptic curves that preserves the group structure is called an
isogeny. An isogeny from an elliptic curve E to itself is called an endomorphism.
The set of all such endomorphisms, denoted by End(E), form a ring under addition
and composition.

Any isogeny φ : E1 → E2 induces an inclusion φ∗ : K(E2) ↪→ K(E1) of
function fields. We say that φ is separable if φ∗ is separable. Also the degree of
φ, denoted by deg(φ), is defined to be the degree of φ∗. We will call an isogeny
of degree m an m-isogeny. For a separable isogeny φ we have deg(φ) = |kerφ|
[36]. For any integer m, the multiplication-by-m endomorphism [m] : E → E is
separable. The kernel of [m], denoted by E[m], is the m-torsion subgroup of E.
It can be shown that E[m] ∼= Z/mZ ⊕ Z/mZ for any m such that p - m. We
have E[p] = 0 or Z/pZ. The curve E is called ordinary if E[p] = Z/pZ, and
supersingular otherwise. This is equivalent to saying that End(E) is an order in an
imaginary quadratic extension or a quaternion algebra over Q [29, §V.3].

Two curves E1/Fq and E2/Fq are called isogenous if there exists an isogeny
between them. For any isogeny φ : E1 → E2 there exists an isogeny φ̂ : E2 → E1
such that φ ◦ φ̂ = [m] where m = deg(φ). Therefore, being isogenous is an
equivalence relation between curves defined over Fq. Two isogenous curves are
either ordinary or supersingular. This means the isogeny classes of ordinary and
supersingular curves are disjoint. As a consequence of Tate’s isogeny theorem
[33], E1 and E2 are Fq-isogenous if and only if |E1(K)| = |E2(K)| for any finite
extension K/Fq. This implies that all curves in the same isogeny class have the
same number of Fq-rational points.

2.1 Isogeny graphs

It can be shown that every supersingular elliptic curve can be defined over Fp2 ,
that is its j-invariant is in Fp2 . Since our focus in this paper will only be on super-
singular curves, we assume from now on that Fq = Fp2 . For a prime ` 6= p, the
set of isomorphism classes of elliptic curves over Fq and the degree-` isogenies
between them form a graph called the graph of `-isogenies. The graph consists of
ordinary and supersingular components that, according to above remarks, are dis-
connected. The ordinary components, which we will not discuss here, are called
isogeny volcanoes [31].

There is only one supersingular component in the isogeny graph, which we

4

denote by G` [18]. The nodes in G` are usually represented by the j-invariants. In
this paper, we interchangeably use curves and j-invariants to refer to the vertices
of G`. For p = 3 we have |G`| = 1 and for p ≥ 5 we have |G`| ≈ [p/12].
We consider the edges of G` to be isomorphism classes of `-isogenies, where
isogenies φ, ψ : E1 → E2 are isomorphic if there is an automorphism α of E2
such that ψ = αφ. Another way to look at the edges in G` is through the modular
polynomial Φ`(x, y) ∈ Z[x, y] [37, §69]. The modular polynomial is symmetric
in the sense that Φ`(x, y) = Φ`(y, x), and is of degree `+ 1 in both x, y. It is well
known that there is an `-isogeny between two curvesE1, E2 with j-invariants j1, j2
if and only if Φ`(j1, j2) = 0. Therefore, the neighbors of each E ∈ G` are exactly
the curves with j-invariants a root of the univariate polynomial Φ`(x, j(E)). Since
all the j-invariant are in Fq, we see that G` is an (`+ 1)-regular graph.

2.2 Computational problems

In this subsection, we review the hard problems [5] that the security of our hash
will be based on. Let n, which is the main security parameter, be a positive integer
and let p be a prime of size ≈ n bits. For a prime ` 6= p, denote by G` the graph
of supersingular elliptic curves over Fq.

Problem 2.1. Find curves E1, E2 ∈ G` and two distinct isogenies φ1, φ2 : E1 →
E2 of degrees `rn and `sn for some integers r, s > 0.

By distinct isogenies we mean distinct edges in the graph G`, that is isogenies
in different isomorphism classes. In particular, composing an isogeny with an
automorphism of either E1 or E2 does not produce another isogeny.

Problem 2.2. Given a curve E ∈ G`, find an endomorphism φ ∈ End(E) \ Z of
degree `rn for some integer r > 0. By φ not being in Z we mean when rn is even,
φ is not ψ ◦ [`rn/2] for some automorphism ψ of E.

As noted in [5], if an endomorphism φ ∈ End(E) is given in the factored form
φ = φkn ◦φkn−1 ◦ · · · ◦φ1 where each φi has degree `, then an efficient solution to
Problem 2.1 can be found by setting E1 = E and E2 = Esn where Esn is a curve
in the cycle. More precisely, ψ1 = φsn ◦ · · · ◦ φ1 and ψ2 = φ̂kn ◦ · · · ◦ φ̂sn+1 are
two distinct isogenies of degrees `sn and `(k−s)n from E1 to E2. Note that since
we assume that ` is small, isogenies of degree ` can be computed efficiently. So
it suffices to only have a cycle of vertices E → E2 → · · · → Ekn−1 → E to
construct ψ1 and ψ2.

5

Problem 2.3. Given curves E1, E2 ∈ G`, find an isogeny φ : E1 → E2 of degree
`rn for some integer r > 0.

Problem 2.1 can be reduced to Problem 2.3 by taking a random walk of length
rn from a curve E1 to a curve E2 in G`, and using the solver for Problem 2.3 to
find another path E1 → E2 of length sn. These two paths will be distinct with
high probability. Using the same strategy, Problem 2.2 can be reduced to Problem
2.3.

Attacks. Problem 2.3 is known as the Supersingular Isogeny Problem, and was
first introduced in [17]. As noted in [5], a variation of the Pollard-rho attack would
give an algorithm of complexity O(

√
p log2 p) for this problem.

Another attack is known as the claw finding attack. The claw finding problem
is as follows. Given functions f : X → Y and g : Z → Y , find (x, y) ∈ X × Z
such that f(x) = g(z). A naive algorithm can solve this in time O(|X| + |Z|).
Therefore, setting X and Z to be all the isogenies of length n/2 starting from E1
andE2, respectively, we get an attack of complexityO(

√
p) on Problem 2.3. Using

a quantum computer, the claw finding problem can be solved in timeO(3
√
|X||Z|)

which is optimal for black-box claw algorithm [32, 41]. This gives a quantum
attack of complexity O(3

√
p).

The best known attack on Problem 2.3 is due to Biasse et al. [4]. Given curves
E1, E2 over Fq, the idea is to generate random isogenies E → E′1 and E2 → E′2
until E′1 and E′2 are both defined over Fp. Using Grover’s algorithm, this can be
done in O(p1/4) quantum operations. Computing an isogeny between E′1 and E′2
can then be done in subexponential time. The total complexity of the algorithm is
thus O(p1/4).

Another computational problem related to supersingular isogeny graphs is the
endomorphism ring problem which is: given E ∈ G`, compute the endomor-
phism ring End(E). In a recent work by Petit and Lauter [26], it is shown that
the endomorphism ring problem is polynomially equivalent to Problem 2.3 under
some plausible heuristic assumptions. Petit and Lauter also give an algorithm that
can efficiently compute an endomorphism for a special j-invariant in the isogeny
graph. This leads to a backdoor attack on the CGL hash which can easily be de-
tected if a collision is produced. Later, Eisentraeger et al. [16] showed that the
endomorphism ring problem reduces to Problem 2.3 if in addition to a chain of
`-isogenies, the representation of the `-power isogeny by a left ideal in a maximal
order is given.

Note that if we consider Problem 2.3 in the ordinary isogeny graph, then there
is a subexponential quantum attack due to Childs et al. [7]. In contrast to supersin-
gular curve, the ideal classes of the endomorphism ring of an ordinary curve form

6

an abelian group. This allows the application of the abelian hidden shift algorithm
to find the ideal corresponding to an isogeny.

2.3 The CGL hash

In this subsection, we review the original hash construction proposed in [5]. Let us
first recall some definitions. For a family of hash functionsH = {h : {0, 1}L(n) →
S}, where L(n) = poly(n), we always assume that

• 2L(n) > |S|, and

• any h ∈ H is efficiently computable.

A hash function is called collision resistant if it is computationally infeasible to
find two messages that hash to the same value. More formally,

Definition 2.4. A family of hash functions H = {h : {0, 1}L(n) → S} is said to
be collision resistant if for any nonuniform PPT algorithm A

Pr[x 6= y ∧ h(x) = h(y) | h← U(H), (x, y)← A(h, 1n)] ≤ negl(n).

A hash function h is called provable collision resistant if there exists a compu-
tational hard problem that is polynomially reducible to any algorithm that can find
collisions in h. A hash function is called preimage resistant if given an output y of
the hash, it is computationally infeasible to find a message that hashes to y.

Definition 2.5. A family of hash functions H = {h : {0, 1}L(n) → S} is said to
be preimage resistant if for any nonuniform PPT algorithm A

Pr[z = h(y) | h← U(H), z ← U(h({0, 1}L(n))), y ← A(h, h(x), 1n)] ≤ negl(n).

Similarly, a hash function h is called provable preimage resistant if there exists
a computational hard problem that is polynomially reducible to any algorithm that
can find preimages of h.

Let G` = G`(Fq) be the graph of `-isogenies over Fq. For simplicity we only
consider the case ` = 2, i.e., the graph of 2-isogenies. The whole scheme can
be easily generalized for a any prime `. Let E ∈ G` be a fixed starting curve.
Since G` is 3-regular, there are three isogenies from E to the neighboring curves.
One of these isogenies is ignored once and for all. Given an n-bit message M =
b1b2 . . . bn, the process starts by choosing an isogeny from E according to the bit
b1 to arrive at a curve E1. If we don’t allow backtracking, then there are two
isogenies out of E1, one of which can be chosen according to b2. Continuing the
same process, the message M determines a unique path of length n in G`. Note

7

that it is required to make a convention for the ordering of the isogenies at each
curve so that the hash is well defined. That is, the same output is produced for the
same messages.

The output of the hash is the j-invariant of the curve at the end of the path.
The j-invariants are of the form ax + b where x is a generator of the extension
Fq/Fp. As suggested in [5], the output of the hash can be represented in log p bits
by applying a linear congruential operator to the resulting j-invariant.

From this scheme, we see that selecting a different starting curve E ∈ G`
gives a different hash function. This way, we get a family of hash functions H =
{hj}j∈G`

indexed by the supersingular j-invariants. Assume the hashes accept
inputs of length a multiple of n. Then the above hash family is provable collision
and preimage resistant.

Theorem 2.6 ([5, Theorem 1]). If there is an efficient algorithm for finding colli-
sions in the hash family H = {hj}j∈G`

, then there is an efficient algorithm for
Problem 2.1 and Problem 2.2.

Theorem 2.7 ([5, Theorem 2]). If there is an efficient algorithm for finding preim-
ages in the hash family H = {hj}j∈G`

, then there is an efficient algorithm for
Problem 2.3.

3 The new hash algorithm

In this section, we propose a new hash algorithm based on supersingular isogeny
graphs G`. For simplicity, we assume ` = 2, but the scheme can easily be general-
ized for any prime ` ≥ 2. Let p = 2nf ± 1 where f is small. Then we can assume
that the curves inG` have order (p∓1)2 = (2nf)2. This follows from the fact that
a the group of Fq-rational points on a supersingular elliptic curve over Fq is of the
form (Z/(p ∓ 1)Z)2. From this group structure we see that for each E ∈ G`, the
whole 2n-torsion subgroup E[2n] is contained in E(Fq). Let P,Q ∈ E[2n] denote
a set of generators of the 2n-torsion. Given any n-bit messagem, we obtain a hash
of m as follows.

First, we compute R = P + mQ which determines a cyclic subgroup H =
〈R〉 ⊂ E of order 2n. Then we compute an isogeny E → E′ with kernel H ,
which is also of degree 2n, and return the j-invariant of E′ as the hash. This
way, taking E as the starting vertex, we have mapped an n-bit message to a vertex
E′ ∈ G`.

8

Algorithm 1 h(E,m, c)
Input:

- An n-bit message m,
- A supersingular curve E ∈ G` as the starting vertex,
- An integer c

Output: A supersingular curve E′ ∈ G`
1: Obtain generators P,Q of E[2n] deterministically from c
2: Compute R = P +mQ
3: Compute an isogeny φ : E → E′ with kernel 〈R〉
4: return E′

The function h(E,m) computed using Algorithm 1 is a compression function:
it accepts a j-invariant and a message m, and returns a j-invariant. Therefore, we
can apply the Merkle-Damgård construction [12,21] to hash messages of arbitrary
length using h.

Remark 3.1. In Step 1 of Algorithm 1, the generators P,Q of the 2n-torsion
should be obtained canonically so that the hash is well-defined. The input inte-
ger c is used for this purpose. For example, one could use c as the starting index
of the table T1 (or T2) in the entangled basis algorithm of [38].

Algorithm 2 H(E,m)

Input: A message m, a supersingular curve E ∈ G` as the starting vertex
Output: A supersingular curve E′ ∈ G`

1: Pad the message m to get m = m1‖m2‖ . . . ‖mk where each block mi is n
bits

2: c := 0
3: E1 := E, E2 := E, E3 := E
4: for i = 1 to k do
5: do // prevent backtracking
6: E3 := h(E2,mi, c)
7: c := c+ 1
8: while E3 = E1
9: E1 := E2, E2 := E3

10: c := c+ 1
11: end for
12: return E′

Since the starting vertex can be any E ∈ G`, Algorithm 2 gives a hash family

9

H = {Hj}j∈G`
indexed by the curves in G`. So a hash can be selected from

the family by providing a curve E ∈ G`. Note that as in the original CGL algo-
rithm, we need to prevent backtracking (which is done at Step 5 using a counter).
This is because of the following simple attack: compute two random isogenies
φ1 : E → E1 and φ2 : E → E2 using two random message blocks m1 and
m2. Then compute the duals φ̂1, φ̂2 corresponding to some message blocks t1, t2
respectively. This gives a collision h(E,m1‖t1) = h(E,m2‖t2).

3.1 Preimage and Collision resistance

We assume p = 2nf ± 1 as above, and assume that the length of the input is kn
for some integer k ≥ 1. Let H = {Hj}j∈G`

be the hash family computed using
Algorithm 2.

Theorem 3.2 (Preimage Resistance). If there is an efficient algorithm for finding
preimages for the hash family H, then there is an efficient algorithm for Problem
2.3.

Proof. Let H ∈ H be a hash function corresponding to an initial vertex E ∈
G`. Given an output E1 ∈ G` of H , a preimage for E1 is a message m =
m1‖m2‖ . . . ‖mk, where each mi is n bits. By construction, the message m cor-
responds to an isogeny E → E1 of degree 2kn. This means finding a preimage for
H is equivalent to finding a 2kn-isogeny between the two given curves E,E1.

Remark 3.3. By Merkle-Damgård Theorem, collision resistance of the compres-
sion function implies the collision resistance of the hash function. Therefore, we
only need to prove that the compression function h(E,m) of Algorithm 1 is col-
lision resistant. But h(E,m) is not collision resistant. In fact, we can easily find
curvesE1, E2 ∈ G` and n-bit messagesm1,m2 such that h(E1,m1) = h(E2,m2)
as follows. Let E ∈ G` be any curve and let P,Q ∈ E[2n] be a basis gener-
ated by Algorithm 1. For any integer 0 ≤ t1 < 2n we can construct an isogeny
φ1 : E → E1 with kernel 〈P + t1Q〉. Now, the kernel of φ̂1 : E1 → E is of the
form 〈P1 +m1Q1〉 for a basis P1, Q1 ∈ E1[2n]. We can efficiently find m1 from
φ. Repeating the process for another t2 6= t1, we get an isogeny φ̂2 : E2 → E with
kernel 〈P2 +m2Q2〉. Clearly, the pairs (E1,m1) and (E2,m2) give a collision in
h.

This, however, does not imply that the hash H(E,m) is not collision resis-
tant. On the contrary, we prove in the following that Problem 2.1 and Problem
2.2 are efficiently reducible to finding collisions in H(E,m). This means, the
collision resistant condition on the compression function might not be required in

10

some concrete instantiations of the Merkle-Damgård paradigm. In other words,
the condition is sufficient but not necessary.

Let us first review some definitions from commutative algebra. Let R be com-
mutative ring and let M be an R-module. A chain of submodules of length n of
M is sequence of submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M.

A maximal such chain, in the sense that no other distinct modules can be added
into the chain, is called a composition series for M . Equivalently, a chain is a
composition series if and only if each quotient Mi/Mi−1 is simple. It is not hard
to show that every composition series of M has the same length, and any chain in
M can be refined into a composition series. The length of M is defined to be the
length of any composition series of M .

If M has finite length n, then by Jordan-Hölder theorem, composition series
of M are unique up to permutation and isomorphism. That is, if (Mi)0≤i≤n and
(Ni)0≤i≤n are two composition series of M , then a permutation of the quotients
(Mi/Mi−1)1≤i≤n is isomorphic to the quotients (Ni/Ni−1)1≤i≤n.

In our hash construction, an n-bit message m is mapped to a kernel of order 2n.
The following lemma asserts that such a mapping is unique.

Lemma 3.4. Let E ∈ G` and let P,Q ∈ E[2n] be a basis. Then there is bijection
between n-bit integers m ∈ {0, 1}n and the subgroups 〈P +mQ〉 ⊂ E[2n].

Lemma 3.5. Let E ∈ G` and let P,Q ∈ E[2n] be a basis. For any integer m > 0,
the subgroup 〈P +mQ〉 ⊂ E[2n] has exactly one composition series.

Proof. Let G = 〈P +mQ〉, and let

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G (3.1)

be a composition series. Let R be a generator of G, which has order 2n. By the
maximality of series (3.1), we must have |Gi/Gi−1| = 2 for all 1 ≤ i ≤ n, so the
quotients are isomorphic to Z/2Z. From this, we see that Gi = 〈2n−iR〉 for all
1 ≤ i ≤ n. That is, the composition series of G is

0 = 〈2nR〉 ⊂ 〈2n−1R〉 ⊂ · · · ⊂ 〈20R〉 = G

for any generator R of G.

11

Following the notation of [5], given an isogeny φ : E → E′ of degree 2n, we
say that the two factorizations

E = E0
φ1−→ E1

φ2−→ E2
φ3−→ · · · φn−→ En = E′,

E = E0
φ′1−→ E′1

φ′2−→ E′2
φ′3−→ · · · φ

′
n−→ En = E′

are isomorphic if there exist isomorphisms εi : Ei
∼−→ E′i such that φ′i ◦ εi−1 =

εi ◦ φi for all 1 ≤ i ≤ n. We have the following.

Proposition 3.6. Let E ∈ G` and let P,Q ∈ E[2n] be a basis. Let φ : E → E′ be
an isogeny with kernel G = 〈P +mQ〉 ⊂ E[2n] for some integer m > 0. Then,
all factorizations of φ to 2-isogenies are isomorphic.

Proof. Since the isogeny φ is cyclic, its factorization to 2-isogenies is uniquely
determined by the composition series of its kernel. By Lemma 3.5, the kernel G
has exactly one composition series, so factorization of φ into 2-isogenies is unique
up to isomorphism.

The following corollary follows from Lemma 3.4 and Proposition 3.6.

Corollary 3.7. Let E ∈ G` and let P,Q ∈ E[2n] be a basis. There is a bijection
between n-bit integers m ∈ {0, 1}n and isogenies with kernels 〈P +mQ〉 up to
isomorphism.

We now prove collision resistance for the hash familyH = {Hj}j∈G`
of Algo-

rithm 2.

Theorem 3.8 (Collision Resistance). If there is an efficient algorithm for finding
collisions in the hash family H, then there is an efficient algorithm for Problem
2.1 and Problem 2.2.

Proof. Let H ∈ H be a hash function corresponding to an initial vertex E ∈ G`
and let H(E,m) = j(E′) = H(E,m′) for two distinct messages m,m′. Write

m =m1 ‖m2 ‖ · · · ‖mr,

m′=m′1 ‖m′2 ‖ · · · ‖m′s

where each of the blocks mi and m′i are n bits. Since m 6= m′, there is exists a
smallest 1 ≤ i < k such that mi 6= m′i. By Corollary 3.7 the blocks {mj}1≤j<i
and {m′j}1≤j<i produce isomorphic isogenies from E to some curve Ei−1; But

12

the isogenies, with domain Ei−1, corresponding to mi and m′i are not isomorphic.
This means the two long isogenies corresponding to m,m′ are not isomorphic as
well. That is, we have two distinct isogenies φ, φ′ : E → E′ of degrees `rn and
`sn, respectively. Therefore, a collision in h gives a solution for Problem 2.1.

Also, the composition ψ = φ̂′ ◦φ : E → E is an endomorphism of E of degree
`(r+s)n, and since φ is not isomorphic to φ′, the endomorphism ψ is in End(E)\Z.
Therefore, ψ is a solution for Problem 2.2.

4 Complexity

In this section, we compare the runtime complexity of the original CGL hash with
the one proposed in Section 3. We will count the number of operations in Fq, and
denote multiplication, squaring, and inversion by M, S, and I, respectively. To get
a more precise operation count we fix the following parameters:

• The prime p = 2nf − 1, where f is a small positive integer,

• The prime ` = 2 so that we work on the 2-isogeny graph G`,

• The length kn of the input message, where k is a positive integer.

We assume the curves in G` have order (p + 1)2 = (2nf)2. The assumption on
the length of the input message means we have already padded the input message
so that it is k blocks of size n bits.

4.1 Moving around the isogeny graph

The complexities of both hash algorithms clearly depend on the cost of walking
around in G`. The standard approach is to use the Vélu formulas [35]. This in-
volves operations such as point addition and scalar multiplication, and small de-
gree isogeny computation and evaluation. So we need to choose a curve model
that is most optimized for these operations. The three well-known models that are
widely used for computations are the Weierstrass model, the Montgomery model
[23], and the twisted Edwards model [2, 15].

The short Weierstrass model is written as y2 = x3 + ax + b. Using projective
coordinates, one point addition in this model takes 12M + 2S and one doubling
takes 5M + 6S [3]. If we assume one of the points is scaled to have Z = 1, then
addition and doubling are done using 9M + 2S and 3M + 5S, respectively.

The Montgomery model is written as by2 = x3 + ax2 + x. Using the X,Z
coordinates, which is called the Kummer line, one differential addition in this
model costs 4M + 2S, and one doubling costs 2M + 2S. If one of the points is

13

scaled to have Z = 1, then a differential addition costs 3M + 2S, and a doubling
costs 1M + 2S.

The twisted Edwards model is written as ax2+y2 = 1+dx2y2. Using projective
coordinates, one addition in this model costs 10M + 1S, and one doubling costs
3M + 4S. If one of the points is scaled to have Z = 1, then an addition and
doubling cost 9M + 1S and 2M + 4S.

Unfortunately, there is not much literature on efficient computation and eval-
uation of small degree isogenies. Analogues of the Vélu formulas for twisted
Edwards curves are given in [24], and the ones for Montgomery curves are given
in [13]. Note that since the order of curves in G` is (2nf)2, all curves have points
of order 2, so any of the above models can be used for our algorithm. However,
based on the above operation counts and the advice of [13], we choose to work
with the Montgomery model in this paper.

Montgomery curves. As mentioned above, a Montgomery curve over Fq has
equation

Ea,b : by2 = x3 + ax2 + x

where a, b ∈ Fq. The projective equation of Ea,b is bY 2Z = X3 + aX2Z +XZ2.
The projection x : Ea,b \ {0} → P1 defined by (X : Y : Z) 7→ (X : Z) is a mor-
phism of order 2 that induces a bijection Ea,b/〈1,−1〉 ∼= P1. This map provides
efficient arithmetic in Ea,b/〈1,−1〉, done entirely in the X,Z coordinates. The
line P1 can be considered as the Kummer variety of Ea,b, and is called the Kum-
mer line of Ea,b. Since the map x takes both P and −P to x(P) for all P ∈ Ea,b,
we cannot add two distinct points P,Q on the Kummer line unless the difference
P −Q is already known. This particular addition, that takes P −Q as an input, is
called differential addition.

Efficient formulas for the following operations on the Kummer line were given
in [23].

• Doubling: {x(P), a} 7→ x(2P),

• Differential addition: {x(P), x(Q), x(P −Q)} 7→ x(P +Q),

• Double and add: {x(P), x(Q), x(P −Q), a} 7→ {x(2P), x(P +Q)},

• Ladder: {x(P), a,m} 7→ x(mP).

The last operation, known as the Montgomery ladder, is done using doubling and
differential addition.

14

Isogenies of Montgomery curves. Computing 2-isogenies between Montgomery
curves can also be done entirely on the Kummer line. Efficient formulas for 2 and
4-isogenies were derived in [13]. Later, it was observed by Costello et al. [10]
that computing an isogeny of degree 2n is more efficiently done using 4-isogenies.
To avoid many inversions in computing small degree isogenies, it was proposed
in [10] to consider “projective” coefficients for the curve Ea,b as well. That is to
write Ea,b as E(A:B:C) : By2 = Cx3 +Ax2 +Cx for some C 6= 0, with b = B/C
and a = A/C. Like the arithmetic on the Kummer line, this leads to an isogeny
arithmetic in which curves and their quadratic twists are identified by working
only with the coefficients (A : C) ∈ P1.

The projective versions of the 4-isogeny formulas in [13] can be written as
follows [10]. Let P = (X4 : Z4) ∈ E(A:C) be a point of order 4 and denote by
φ : E(A:C) → E(A′:C′) the 4-isogeny with kernel 〈P 〉. The target curve of φ is
given by

(A′, C ′) = (2(2X4
4 − Z4

4) : Z4
4),

and an evaluation (X ′ : Z ′) = φ(X : Z) is given by

(X ′ : Z ′) = (X(2X4Z4Z −X(X2
4 + Z2

4))(X4X − Z4Z)
2 :

Z(2X4Z4X − Z(X2
4 + Z2

4))(Z4X −X4Z)
2).

The costs of point and isogeny arithmetics on Mongomery curves, taken from [10],
are summarized in Table 1.

cost
operation input output M S I

doubling x(P), a x(2P) 4 2 -

differential addition x(P), x(Q), x(P −Q) x(P +Q) 3 2 -

double and add x(P), x(Q), x(P −Q), a x(2P), x(P +Q) 6 4 -

ladder x(P), a,m x(mP) 5n 4n -

compute 4-isogeny x(P) A′, C′ - 5 -

evaluate 4-isogeny x(Q) x(φ(Q)) 9 1 -

Table 1. Costs of different operations for Montgomery curves

4.2 Complexity of CGL

For hashing a message in the original CGL algorithm, 2-torsion points and the
Vélu formulas are used. This requires obtaining two 2-torsion points at each curve
by eliminating the point corresponding to the arriving isogeny, and using Vélu
to compute the next curve. The 2-torsion can be computed using f(x) from the
equation y2 = f(x) of the curve. The polynomial f(x) is cubic, but a linear

15

factor corresponding to one of the 2-torsion points is eliminated. This means we
always have a quadratic equation to factor. Therefore, hashing each bit of the
message needs: 1 isogeny computation, 1 isogeny evaluation, and 1 square root
computation.

Modular polynomials. Since we only need to work with j-invariants, a more
efficient approach is to use the modular polynomial Φ2(x, y). For any curve E ∈
G`, the univariate polynomial Φ2(x, j(E)) is a cubic with roots the j-invariants of
the curves 2-isogenous to E. Eliminating one of the linear factors corresponding
to the j-invariant of the previous curve, we are left with a quadratic equation. Now,
computing a square root gives the j-invariant of the next curve. This way, isogeny
computation and evaluation is avoided altogether. For each bit of the input we
need to do the following:

• Evaluate the modular polynomial for the current curve. The modular poly-
nomial is

Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + y2x)− 162000(x2 + y2)

40773375xy + 8748000000(x+ y)− 157464000000000.

The evaluation Φ2(x, j(E)) requires 1M + 1S and a few scalar multiplica-
tions.

• Obtain a quadratic equation g(x) from Φ2(x, j(E)) by factoring out a linear
factor. This needs only 1M.

• Solve the quadratic equation. This needs 1S and 1 square root computa-
tion. Using the method of [14], square root computation in Fq reduces to
square root computation in Fp and an exponentiation. More precisely, taking
a square root in Fq requires (2 log p+ 1)M + 1S + 1I operations in Fq.

In summary, we need (2 log p+ 3)M + 3S + 1I for each bit, and hence

kn((2 log p+ 3)M + 3S + 1I) (4.1)

for a message of length kn bits.

4.3 Complexity of the new hash

For each n-bit block m of the input message Algorithm 2 performs the following:

• Obtain generators P,Q of the group E[2n] of the current curve E. This can
be efficiently done using the entangled basis technique of [38]. An entangled
basis computation takes, on average, 2 quadratic residuosity test, 1 square

16

root computation, 6M and 4S. A quadratic residuosity test in Fq takes 1S +
1
3 log pM, and the square root computation can be done as in Subsection 4.2.
The total cost of basis generation is thus(

8
3

log p+ 7
)

M + 7S + 1I.

• Compute R = P + mQ. For this, we first compute mQ using the usual
Montgomery ladder which takes 6nM+ 4nS, and then add P at the cost of a
few multiplications.

• Compute an isogeny φ : E → E′ with kernel 〈R〉. For this, we use the op-
timal strategy approach of [13]. Using this strategy, computing a 2n-isogeny
takes 1

2n logn point doublings and 2-isogeny computations. As mentioned
above, we can use 4-isogenies instead of 2-isogenies. Using this strategy,
obtaining the target curve E′ takes n

2 4-isogeny computations and 1
4n logn

point doubling and 4-isogeny evaluations. According to Table 1, all these
together take

13
8
n lognM +

(
3
8
n logn+

5
2
n

)
S.

The total complexity of Algorithm 2 for an input of length kn bits is then(
13
8
n logn+

8
3

log p+ 6n+ 7
)
kM +

(
3
8
n logn+

13
2
n+ 7

)
kS + kI (4.2)

operations in Fq.

Performance comparison. Comparing the complexity of the new hash algo-
rithm, Eq. (4.2), with CGL, Eq. (4.1), we immediately see that the new algorithm
is significantly faster. Asymptotically, the runtime of the new hash is quasi-linear
in n while the runtime of CGL is quadratic in n. For a concrete performance com-
parison, we can replace the squaring and inversion operations S and I by a factor of
multiplication M. A frequently used convention is to set S = 0.6M and I = 100M.
From this, we get the estimations

kn(2n+ 104.8)M

for complexity of the CGL hash algorithm, and

kn(1.8 logn+ 12.6)M

for complexity of the new hash algorithm. This leads to the performance ratio

2n+ 104.8
1.8 logn+ 12.6

(4.3)

17

which is asymptotically c n
logn for the constance c = 2/1.8. Figures 1a and 1b

compare the performances of CGL and the new hash algorithm for different pa-
rameter sizes.

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 0 500 1000 1500 2000

R
un

tim
e

(M
ul

tip
lic

at
io

ns
)

Prime size

CLG
New

(a) Number of multiplications in Fq for
CGL and the new hash algorithm

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000

P
er

fo
rm

an
ce

 r
at

io

Prime size

(b) Performance ratio between CGL and the
new hash algorithm

Figure 1a shows the quadratic versus quasi-linear behaviors of the algorithms.
From Figure 1b and Eq (4.3) we see that for a prime of size n = 1024, the new
algorithm is 70.35 times faster than the original CGL algorithm. Given that the best
attack on the hash has quantum complexity O(p1/4), this corresponds to 256-bit
quantum security level. For a 384-bit quantum security level, we get a performance
ratio of 100.36.

Bibliography

[1] Miklós Ajtai, Generating hard instances of lattice problems, in: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, ACM, pp. 99–108,
1996.

[2] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters,
Twisted edwards curves, in: International Conference on Cryptology in Africa,
Springer, pp. 389–405, 2008.

[3] Daniel J Bernstein and Tanja Lange, Explicit Formulas Database, 2007, http://
www.hyperelliptic.org/EFD/index.html.

[4] Jean-François Biasse, David Jao and Anirudh Sankar, A quantum algorithm for com-
puting isogenies between supersingular elliptic curves, in: International Conference
in Cryptology in India, Springer, pp. 428–442, 2014.

[5] Denis X Charles, Kristin E Lauter and Eyal Z Goren, Cryptographic hash functions
from expander graphs, Journal of Cryptology 22 (2009), 93–113.

http://www.hyperelliptic.org/EFD/index.html
http://www.hyperelliptic.org/EFD/index.html

18

[6] David Chaum, Eugène van Heijst and Birgit Pfitzmann, Cryptographically strong un-
deniable signatures, unconditionally secure for the signer, in: Annual International
Cryptology Conference, Springer, pp. 470–484, 1991.

[7] Andrew Childs, David Jao and Vladimir Soukharev, Constructing elliptic curve
isogenies in quantum subexponential time, Journal of Mathematical Cryptology 8
(2014), 1–29.

[8] Richard Cleve, Artur Ekert, Chiara Macchiavello and Michele Mosca, Quantum al-
gorithms revisited, in: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 454, The Royal Society, pp. 339–354, 1998.

[9] Scott Contini, Arjen K Lenstra and Ron Steinfeld, VSH, an Efficient and Provable
Collision-Resistant Hash Function., in: Eurocrypt, 4004, Springer, pp. 165–182,
2006.

[10] Craig Costello, Patrick Longa and Michael Naehrig, Efficient algorithms for su-
persingular isogeny Diffie-Hellman, in: Annual Cryptology Conference, Springer,
pp. 572–601, 2016.

[11] Ronald Cramer and Victor Shoup, Signature schemes based on the strong RSA
assumption, ACM Transactions on Information and System Security (TISSEC) 3
(2000), 161–185.

[12] Ivan Bjerre Damgård, A design principle for hash functions, in: Conference on the
Theory and Application of Cryptology, Springer, pp. 416–427, 1989.

[13] Luca De Feo, David Jao and Jérôme Plût, Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies, Journal of Mathematical Cryptology 8
(2014), 209–247.

[14] Javad Doliskani and Éric Schost, Taking roots over high extensions of finite fields,
Mathematics of Computation 83 (2014), 435–446.

[15] Harold Edwards, A normal form for elliptic curves, Bulletin of the American Math-
ematical Society 44 (2007), 393–422.

[16] Kirsten Eisentraeger, Sean Hallgren and Travis Morrison, On the Hardness of Com-
puting Endomorphism Rings of Supersingular Elliptic Curves, Cryptology ePrint
Archive, Report 2017/986, 2017, https://eprint.iacr.org/2017/986.

[17] Steven D Galbraith, Constructing isogenies between elliptic curves over finite fields,
LMS Journal of Computation and Mathematics 2 (1999), 118–138.

[18] David Russell Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D.
thesis, University of California, Berkeley, 1996.

[19] Vadim Lyubashevsky and Daniele Micciancio, Generalized compact knapsacks are
collision resistant, Automata, Languages and Programming (2006), 144–155.

[20] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFT:
A modest proposal for FFT hashing, Lecture Notes in Computer Science 5086
(2008), 54–72.

https://eprint.iacr.org/2017/986

19

[21] Ralph C Merkle, A certified digital signature, in: Conference on the Theory and
Application of Cryptology, Springer, pp. 218–238, 1989.

[22] Daniele Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions, Computational Complexity 16 (2007), 365–411.

[23] Peter L Montgomery, Speeding the Pollard and elliptic curve methods of factoriza-
tion, Mathematics of computation 48 (1987), 243–264.

[24] Dustin Moody and Daniel Shumow, Analogues of VéluâĂŹs formulas for isogenies
on alternate models of elliptic curves, Mathematics of Computation 85 (2016), 1929–
1951.

[25] Michael A Nielsen and Isaac Chuang, Quantum computation and quantum informa-
tion, AAPT, 2002.

[26] Christophe Petit and Kristin Lauter, Hard and easy problems for supersingular
isogeny graphs, Cryptology ePrint Archive, Report 2017/962, 2017, https://

eprint.iacr.org/2017/962.

[27] Arnold K Pizer, Ramanujan graphs and Hecke operators, Bulletin of the American
Mathematical Society 23 (1990), 127–137.

[28] Peter W Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM review 41 (1999), 303–332.

[29] Joseph H Silverman, The arithmetic of elliptic curves, 106, Springer Science & Busi-
ness Media, 2009.

[30] Daniel R Simon, On the power of quantum computation, SIAM journal on computing
26 (1997), 1474–1483.

[31] Andrew Sutherland, Isogeny volcanoes, The Open Book Series 1 (2013), 507–530.

[32] Seiichiro Tani, Claw finding algorithms using quantum walk, Theoretical Computer
Science 410 (2009), 5285–5297.

[33] John Tate, Endomorphisms of abelian varieties over finite fields, Inventiones mathe-
maticae 2 (1966), 134–144.

[34] Jean-Pierre Tillich and Gilles Zémor, Group-theoretic hash functions, in: Workshop
on Algebraic Coding, Springer, pp. 90–110, 1993.

[35] Jacques Vélu, Isogénies entre courbes elliptiques, Comptes-Rendus de l’Académie
des Sciences 273 (1971), 238–241.

[36] Lawrence C Washington, Elliptic curves: number theory and cryptography, CRC
press, 2008.

[37] Heinrich Weber, Lehrbuch der Algebra, vol. 3, III, third edition (Chelsea, New York,
1961) (1908).

https://eprint.iacr.org/2017/962
https://eprint.iacr.org/2017/962

20

[38] Gustavo H. M. Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira, Javad
Doliskani and Paulo S. L. M. Barreto, Faster isogeny-based compressed key agree-
ment, Cryptology ePrint Archive, Report 2017/1143, 2017, https://eprint.

iacr.org/2017/1143.

[39] Gilles Zémor, Hash functions and graphs with large girths, in: Advances in
Cryptology-EUROCRYPT’91, Springer, pp. 508–511, 1991.

[40] Gilles Zémor, Hash functions and Cayley graphs, Designs, Codes and Cryptography
4 (1994), 381–394.

[41] Shengyu Zhang, Promised and distributed quantum search, in: International Com-
puting and Combinatorics Conference, Springer, pp. 430–439, 2005.

Author information

Javad Doliskani, Institute for Quantum Computing, University of Waterloo, Canada.
E-mail: javad.doliskani@uwaterloo.ca

Geovandro C. C. F. Pereira, Institute for Quantum Computing, University of Waterloo,
Canada.
E-mail: geovandro.pereira@uwaterloo.ca

Paulo S. L. M. Barreto, University of Washington Tacoma, USA.
E-mail: pbarreto@uw.edu

https://eprint.iacr.org/2017/1143
https://eprint.iacr.org/2017/1143
mailto:javad.doliskani@uwaterloo.ca
mailto:geovandro.pereira@uwaterloo.ca
mailto:pbarreto@uw.edu

