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Abstract. We describe an approach to zero-sum partitions using Todo’s
division property at EUROCRYPT 2015. It follows the inside-out method-
ology, and includes MILP-assisted search for the forward and backward
trails, and subspace approach to connect those two trails that is less
restrictive than commonly done.
As an application we choose PHOTON, a family of sponge-like hash
function proposals that was recently standardized by ISO. With respect
to the security claims made by the designers, we for the first time show
zero-sum partitions for almost all of those full 12-round permutation
variants that use a 4-bit S-Box. As with essentially any other zero-sum
property in the literature, also here the gap between a generic attack and
the shortcut is small.
Key words: PHOTON, Integral, Division Property, Zero-sum, MILP,
Subspace

1 Introduction

Hash functions are one of the most important primitives in symmetric-key cryp-
tography. Sponge functions [6] are a way of building hash functions from a fixed
permutation. Modern cryptanalytic approaches target both hash function prim-
itives and underlying ciphers or permutations. Internal components are indeed
expected to provide certain properties and for verifying their closeness to ideal
behavior it is important to evaluate the security of hash functions. The analysis
of hash functions underlying block ciphers or permutations is often done in the
known-key model, as introduced by Knudsen and Rijmen in [21].

In this paper, we exhibit the very first zero-sum partitions based on the inte-
gral property on the full permutation of some PHOTON variants, a lightweight
hash function proposed by Guo et al. [19] at CRYPTO 2011 and recently stan-
dardized by ISO.

1.1 Background on the Integral Distinguishers, Zero-sum
Distinguishers and Division Property

Integral and Zero-Sum Distinguishers. A possible analysis of the inner
permutation of a hash function is based on the zero-sum property, which can be
seen as a generalization of an integral property [22]. The integral attack, also



known as square attack, is originally proposed by Knudsen to analyze SQUARE
block cipher [11]. There are several variants of the integral attack with different
names: multiset attack [7], saturation attack [24], and collision attack [16]. In-
tegral distinguishers mainly make use of the observation that when fixing some
parts of the plaintext, the specific parts of the ciphertext have balanced prop-
erty, i.e. each possible partial value occurs the exact same number of times in
the output.

In more details, a zero-sum structure for a function f is defined as a set Z of
inputs zi that sum to zero, and for which the corresponding outputs f(zi) also
sum to zero (see Aumasson and Meier[3]). For an iterated function, the existence
of many zero-sums is usually due either to the particular structure of the round
function or to a low degree. Since it is expected that a randomly chosen function
does not have many zero-sums, the existence of several such sets of inputs can be
seen as a distinguishing property of the internal function. By using the inside-
out technique, zero-sums could be constructed starting from the middle, and be
extended to forward and backward direction as far as possible.

Division Property. As we have already said, a zero-sum property can be found
working on the degree of the function. As an example, if f is a k-degree func-
tion on F2n , then it is proved that

⊕
v∈V⊕a f(v) = 0 for any (k + 1)-dimension

subspace V ⊆ F2n where V ⊕ a is an arbitrary coset of V (see Higher Order
Differential [23] for details). The main approach to construct zero-sum distin-
guishers is related to find accurate estimations on the degree of both the forward
and backward permutations that define the encryption/hash function f .

As a generalized integral property, division property was proposed by Todo
at EUROCRYPT 2015 [28] to search integral distinguishers for symmetric-key
primitives including SPNs and Feistel structures. Taking SPNs - which are also
the main focus of this paper - as an example, the main idea was to formu-
late the propagation of division property through an S-Box, where the S-Box
was regarded as unknown but restricted only by its algebraic degree. Moreover,
since the degree remains the same while going through linear permutations,
division property propagation through the permutation layer can easily be mod-
eled. Based on these, new integral distinguishers for many SPN ciphers have
been constructed. One prominent example was the application to MISTY1 [27],
where the S-Box S7 was shown to have an important vulnerability in terms of
division property. By employing this, a new 6-round integral distinguisher was
constructed, and a full-round attack on MISTY1 was achieved for the first time.
At CRYPTO 2016, Boura and Canteaut [9] proposed a new notion, called parity
set, to study division property from the coding theory(’s) point of view, based
on which they found better integral distinguishers for PRESENT.

Motivated by narrowing the 5 rounds gap between the integral distinguishers
for SIMON32 in [31] and [28], bit-based division property [29] was introduced at
FSE 2016, where the division property of each bit was treated independently. As
a result, the 14-round integral distinguishers for SIMON32 in [31] were found.
However, as pointed out in [29], for a block cipher with block size n, the time and
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memory complexity is lower bounded by 2n. As most ciphers adopt block size
larger than 32, this makes searching integral distinguisher by bit-based division
property under this framework computationally infeasible.

To solve this problem, Xiang et al. [32] built an automatic tool based on
mixed integer linear programming (MILP) to study the division property of
SPNs with bit-permutation linear layers (e.g. PRESENT). They first introduced
notion division trail to build the objective function, then represented the oper-
ations of the ciphers by linear (in)equalities to constrain the objective function.
After setting the required stopping rules of searching division trails, they could
determine the existence of certain number of rounds integral distinguishers by
optimizing the MILP. As a result, they found many interesting integral distin-
guishers for the targeted ciphers. Later, a MILP automatic tool for SPNs with
non-bit-permutation linear layers (mainly MDS matrices) was studied in [25].

It shows that an automatic tool based on bit-based division property is very
powerful in the search of better integral distinguishers, and therefore we for
the first time apply it to construct zero-sum distinguishers for symmetric-key
primitives which we will pursue in the following.

1.2 Our Contributions

In this paper we focus on zero-sum distinguishers exploiting the recent division
property developments in the searching integral distinguishers and provide much
improved results compared to earlier works. As an application, we choose the in-
ternal permutation of PHOTON, which is a lightweight hash function proposed
by Guo et al. [19] at CRYPTO 2011 and has been standardized in ISO/IEC
29192-5:2016, to demonstrate our new techniques. As the “idealness” of the un-
derlying permutation is important for security properties that are expected for
a sponge-based hash function using it, the PHOTON designers claim particular
security levels for each of their variants. We exhibit for the first time distinguish-
ers of the full number of rounds with a complexity that is below the designers
claims1 (except the one with internal state size 100, for which we present a
distinguisher on 11 out of 12 rounds).

Our concrete results are summarized in Table 1. For achieving these results,
we use an approach that combines various ideas from related areas which we
summarize in the following:
Inside-out approach for division-property distinguishers. The inside-out

approach was perhaps first used by Wagner [30] in block cipher cryptanalysis
or Dobbertin [12,13] with his work on the MD5 compression function. It later
became a default approach for analyzing various building blocks in symmet-
ric cryptography. We for the first time apply this approach to distinguishers
using the division property.

MILP automatic tool to search zero-sum partitions based on division
property. We mainly focus on versions with 4-bit S-Box (PRESENT S-Box).

1 We mention that our distinguishers have only a small advantage (approximately a
factor 2) when compared to the generic attack.
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We find a set of 8 linear equations to represent its division trails table, which
is 3 less than the one in [32]. This enables us to obtain 6-round zero-sum
partitions for versions of PHOTON permutation with 4-bit S-Box, which are
not given in [25]. A detailed description of the automatic tool can be found
in Sect. 3.1.

Improved zero-sum partitions based on the weakness of PRESENT S-
Box. We further exploit the algebraic normal form (ANF) of the PRESENT
S-Box, and find that when fixing the least significant bit of the input, the
algebraic degree drops from 3 to 2. This property of the S-Box enable us to
find zero-sum partitions based on division property that can improve some
of the results in [28] by 2 of data complexity. Since we look at integral prop-
erty of both forward and backward directions of the internal permutations,
though this advantage of our distinguishers for single forward/backward di-
rection is not substantial, when constructing a zero-sum distinguisher, we
can directly gain an advantage of 22 in size of partitions. The detailed zero-
sum partitions of PHOTON permutations are provided in Sect. 5 and App.
C–E.

A method to add one round in the middle. Using the MILP automatic tool
just cited, an attacker can find initial set of texts with active/partial ac-
tive/constant nibbles that satisfy the zero-sum property after a certain num-
ber of decryption - encryption rounds. For the decryption case and for some
of these sets, we choose how to keep/preserve (almost) for free this property
adding one round at the beginning. The basic idea is to choose sets for which
(1) some linear relations (which depend on the MixColumns matrix) hold
between the nibbles that lie on the same column - a property/case which
is not investigated by the MILP automatic tool - and (2) that are mapped
in the sets found by the automatic tool one round before. Such a strategy
can be easily described using the subspace trail notation [18]. Those sets
are finally used by the inside-out approach in order to set up the zero-sum
partition. All details are given in Sect. 5.3.
When using the subspace trail to connect two initial zero-sum partitions for
both directions, we also present a generic formula, without writing out the
representation of the state, to compute directly the dimension of combined
middle round from the dimensions of the two initial subspaces.
We note that such strategy to add one round in the middle is not new in
literature. A similar technique is exploited for example by Gilbert in [15] in
order to set up a 8-round integral known-key distinguisher extending the 7-
round initial proposed by Knudsen and Rijmen [21]. However, while Gilbert
explains such result using the super-S-Box notation, we present it using the
subspace trail cryptanalysis. It turns out to be directly applicable for the
distinguishers found by the MILP tool. Finally, other (different) techniques
to gain rounds in the middle have been proposed e.g. by Boura and Canteaut
in [8] to set up a 18-round distinguisher for Keccak.

Zero-sums for hash function PHOTON We apply our zero-sum approach
to the hash functions. Because the utilization of degrees of freedom for PHO-

4



Table 1. PHOTON-n/r/r′ Permutation Distinguishers. We list here the cur-
rently best known results on inner permutations. All variants have full 12 rounds
and we focus on the variants with 4-bits S-Box. “Partition Size N” denotes the
size of the zero-sum partitions.

PHOTON Security # Partition
Property Reference

Variants Claim Rounds Size N

-80/20/16 80

8 28 Multiple Diff. Trail [19]

9 235 Partial Balance App. C.1

9 236 Balance App. C.1

10 240 Balance App. C.1

11 276 Balance App. C.2

-128/16/16 128

8 28 Multiple Diff. Trail [19]

9 242 Balance Sect. 3.3

10 247 Balance Sect. 5.1

11 2107 Balance Sect. 5.2

12 2127 Partial Balance Sect. 5.3

-160/36/36 160

8 28 Multiple Diff. Trail [19]

9 243 Partial Balance App. D.1

9 244 Balance App. D.1

10 248 Balance App. D.1

11 2108 Balance App. D.2

12 2159 Partial Balance App. D.3

-224/32/32 224

8 28 Multiple Diff. Trail [19]

9 2184 Parallel Merging [20]

9 250 Balance App. E.1

10 254 Balance App. E.1

11 2119 Balance App. E.2

12 2184 Balance Sect. 5.4

TON is so thin that we can only create 4-round zero-sums for almost all of
the variants. We demonstrate our result on one example in Sect. 6.

2 A Brief Description of PHOTON

The domain extension algorithm of PHOTON is largely inspired from the sponge
functions introduced by Bertoni et al. [6] in 2007. It uses sponge functions frame-
work in order to keep the internal memory size as low as possible.

There are 5 variants of PHOTON and are denoted by PHOTON-n/r/r′,
where n is the bit-size of the hash output, r and r′ are input and output bit-
rate respectively. c is defined as the bit-size of the capacity part of the internal
state, and t = (c+ r) is the internal state size. As a consequence, the 5 internal
permutations are defined as Pt, where t ∈ {100, 144, 196, 256, 288}. The internal
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Table 2. Parameters of PHOTON-n/r/r′

Versions Permutation Pt t n c r r′ d s

PHOTON-80/20/16 P100 100 80 80 20 16 5 4

PHOTON-128/16/16 P144 144 128 128 16 16 6 4

PHOTON-160/36/36 P196 196 160 160 36 36 7 4

PHOTON-224/32/32 P256 256 224 224 32 32 8 4

PHOTON-256/32/32 P288 288 256 256 32 32 6 8

state of the permutation is, similarly to the AES, viewed as a (d× d) matrix of
s-bit cells and the corresponding values depending on t are given in Table 2.

In this paper we focus on the integral property of the internal permutation
Pt, we therefore describe them in details. For the domain extension function we
refer to [19]. Similar to the AES, four operations are applied to each round below

– AddConstants: applies round-dependent constants to each cell of the first
column.

– SubCells: applies the s-bit S-Box to every cell of the internal state. PRESENT
S-Box is chosen for Pt for t ∈ {100, 144, 196, 256} while AES S-Box is pre-
ferred for P288.

– ShiftRows: rotates each cell located at row i by i positions to the left.
– MixColumnsSerial: updates linearly all columns independently. The ma-

trix underlying the MixColumnsSerial layer is Maximum Distance Separable
(MDS) so as to provide maximal diffusion. We refer to [19] for matrix for
each state size t.

Every PHOTON internal permutation iterates 12 rounds.

Fig. 1. One Round of PHOTON Internal Permutation

3 Zero-sum Partitions and Its Construction Based on
Division Property by MILP

Definition 1. (Zero-sum)[8] Let F be a function from F2n into F2m . A zero-
sum for F of size K is a subset {x1, . . . , xK} ⊂ F2n of elements which sum
to zero and for which the corresponding images by F also sum to zero, i.e.,∑K

i=1 xi =
∑K

i=1 F (xi) = 0.
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In general, given F a permutation over F2n , a much stronger property - named
zero-sum partition - can be investigated.

Definition 2. (Zero-sum Partition)[8] Let P be a permutation from F2n to
F2n . A zero-sum partition for P of size K = 2k is a collection of 2k disjoint
{X1, X2, ..., Xk} sets with the following properties:

– Xi = {xi,1, . . . , xi,2n−k} ⊂ F2n for each i = 1, ..., k and ∪2n−k

i=1 Xi = F2n ;
– for each i = 1, ..., 2k:

∑
xi,j∈Xi

xi,j =
∑

xi,j∈Xi
P (xi,j) = 0.

We focus on creating zero-sum partitions of the permutation P . Assume P is an
iterated permutation of the form P = Rr ◦ · · · ◦R1, where all Ri is permutations
over F2n , named the round function of permutation P . Remember that for the
permutation in a hash function, one can exploit any state starting from an
intermediate state, without knowing any secret element. Assume one can find a
set of texts X = {xi}i and a set of texts Y = {yi}i with the following properties:⊕

i

R−1r ◦ · · · ◦R−1s+1(yi) = 0 and
⊕
i

R1 ◦ · · · ◦Rs(x
i) = 0.

For the following, note thatX⊕Y =
⋃

y∈Y X⊕y =
⋃

x∈X Y⊕x, and |X⊕Y | = K.
Since one can work with the intermediate states, and simply chooses texts in
X ⊕ Y and simply defines the plaintexts pi as the (r − s) rounds decryption of
X⊕Y , and the corresponding ciphertexts ci as the s rounds encryptions of X⊕Y .
A zero-sum partition {pi}i=1,...,K with the properties

∑K
i=1 pi =

∑K
i=1 ci = 0 is

created for permutation P . We will follow this strategy to construct zero-sum
partitions of PHOTON permutations in the following.

Notation - Zero-sum. First we introduce the notations that we are going
to use to present our zero-sums. Let Λ be a collection of state vectors X =
(x0, . . . , x2n−1) where xi ∈ F2m .

– A: if all xi in Λ are distinct, X is called active
– B: if the sum of all xi in Λ can be predicted, X is called balanced
– C: if the values of xi in Λ are equal, X is called passive/constant
– ?: if the sum of all xi in Λ cannot be predicted, X is called unknown

When considering bit-level - i.e. let xi ∈ F2 (the above m is equal to 1), we use
lower case letters instead of uppercase letters, that is a represents an active bit,
b a balance one, c a constant one and ? an unknown bit. For example, “aaac”
in the nibble means that only the least significant bit is constant, all the others
are active. Similarly, “???b” means that only the least significant bit is balanced,
while the rest are unknown. For simplicity, we call a nibble with property “aaac”
as partial active nibble, and “???b” as partial balance nibble in this paper.

Finally, we denote by B a full-balance state of size d × d, and PB a partial-
balance state of size d× d.
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3.1 Model Bit-based Division Property Propagation of Operations
by MILP

In this section, we recall how to model the bit-based division property propa-
gation of operations in a cipher by using MILP: copy, XOR, S-Box and Mix-
Columns. Then we describe the searching strategy for zero-sum partitions based
on MILP of division propagation. Some preliminaries of division property are
provided in App. B.1, while we refer to [28] and [10] for a formal description of
the division property.

Model Operations. We recall how to model the operations in ciphers to con-
struct the MILP [32] - [33].
Model Copy. Let X be an input multiset of copy operation whose elements x

take a value of F2, and Y be the output multiset whose elements (y0, y1) take
a value of F2 × F2. The copy operation creates y = (y0, y1) from x ∈ X as
y0 = x and y1 = x. Assume the input multiset has division propertyD1

k (since

this is on bit-level, we do not distinguish between D1,1
k and D1

k), then the
corresponding output multiset has division property D1

(0,k),(1,k),...,(k,0). Since
we consider bit-based division property, the input multiset division property
D1

k must have 0 ≤ k ≤ 1. If k = 0, the output multiset has division property
D1

(0,0); otherwise, the output multiset has division property D1
(0,1)(1,0). Thus,

(0)
copy−−−→ (0, 0) is the only division trail given the initial division property

D1
0, and (1)

copy−−−→ (0, 1), (1)
copy−−−→ (1, 0) are the two division trails given the

initial division property D1
1.

Let a
copy−−−→ (b0, b1) denote the division trail of the copy operation x

copy−−−→
(y0, y1), then MILP can describe this by the following inequality: a−b0−b1 =
0, where a, b0, b1 ∈ {0, 1} are binaries.

Model XOR. Let X denote the input multiset whose elements x = (x0, x1)
take a value of F2 × F2, and Y denote the output of the XOR operation
where y = x0 ⊕ x1. Assume the input multiset X has division property D2

k

where k = (k0, k1), thus the corresponding output multiset Y has division
property D1

k0+k1
.

Let (a0, a1)
XOR−−−→ b denote a division trail through XOR operation y =

x0 ⊕ x1, which can be described by MILP through the following equality:
a0 + a1 − b = 0 where a0, a1, b ∈ {0, 1}.

Model S-Box. Xiang et al. [32] exploited the algebraic normal form (ANF) of
an S-Box, and provided an accurate description the division trail (B.1) of an
S-Box. For any S-Box, one can easily build the Division Trail Table (DTT)
according to the definition of division property of boolean functions. Next
we describe briefly how to model the DTT of an S-Box by MILP.
At ASIACRYPT 2014, Sun et al. [26] encoded the differential distribution
table of an S-Box to the set of linear equations describing ciphers. The idea
is to choose a set of linear (in)equalities L from the H-Representation of the
convex hull of a set of points A in differential distribution table of an S-Box,
such that the feasible solutions of L are exactly the points in A. By including
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L as part of the linear constraints, a MILP can be constructed, and then be
solved by optimization solvers such as CPLEX [1] and Gurobi [2], to search
differentials with the maximum probability. Similarly, for division property,
the DTT of S-Boxes can also be represented as a set of linear (in)equalities
and included into a MILP describing the division trails of a cipher.
We propose Algorithm 1 in App. B.2 to search for the minimum number of
linear (in)equalities to represent the DDT of an S-Box. For PRESENT S-Box
which is used by PHOTON in the inner permutation, we find 8 inequalities
(App. B.2) to model the division trails, which is 3 less than [32].2

Model MixColumns. The idea is to represent the matrix in bit level. Given
the polynomial of the field where the multiplications operate on, the repre-
sentation of the matrix is unique. For PHOTON permutations based on F24 ,
the polynomial is x4 + x+ 1.
Then, dummy binary variables are introduced to describe the multiplication
with the primitive matrix. Denote TMC = (tij)n×n, where the binary dummy
variables tij = 0 if mij = 0. Then the MixColumns operation of Y = MC×
X, where X = (x0, x1, · · · , xn−1)T and Y = (y0, y1, · · · , yn−1)T , can be

modeled as xj
copy−−−→ (t0j , t1j , · · · , t(n−1)j) and (ti0, ti1, · · · , ti(n−1))

XOR−−−→ yi.
For the case of P144 for PHOTON-128/16/16, n = 24. Then, we can represent
MixColumns by linear equations for copy operation and XOR operation. An
example of the bit representation of PHOTON permutation P144 can be
found in B.3.

Objective Function and Rules to Determine the Existence of Zero-
Sum. By modeling the operations of ciphers in the above, we are able to describe
all the operations in a cipher by linear (in)equalities, and call them the set of
linear constraints. In order to construct our MILP, the objective function should
be built first. Let’s consider a set X with division property D1,n

K . If X does not
have any zero-sum property, that is the Xor-sum of X does not balance on any
bit, thus we have

⊕
x∈X πu(x) is unknown for any unit vector u ∈ (F2)n. Since

X has division property D1,n
K , there must exist a vector k ∈ K such that u � k 3.

Note that u is a unit vector, thus u = k, which means K contains all the n unit
vectors. On the other hand, if K contains all the n unit vectors over F2n , then
for any 0 6= u ∈ (F2)n there must exist a unit vector e ∈ K such that u � e, that
is
⊕

x∈X πu(x) is unknown. Thus, X does not have any integral property.

Proposition 1. [32] Assume X is a multiset with division property Dn
K, then X

does not have zero-sum property if and only if K contains all the n unit vectors.

2 A C/C++ program that verifies our 8 inequalities can cover DDT of PRESENT as
the ones given in [32] can be provided if requested. We note that a smaller number of
inequalities could help to accelerate searching for zero-sum partitions in some cases
(e.g. when the state size is getting large).

3 Let two vectors k = (k0, k1, . . . , km−1) and k′ = (k′0, k
′
1, . . . , k

′
m−1) ∈ Zm, define

k � k′ if ki ≥ k′i for all 0 ≤ i ≤ m− 1; otherwise we denote k � k′.
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Table 3. Number of Rounds of Zero-sums by the MILP Division Property Tool
for PHOTON Internal Permutations, in Forward and Backward Direction

Permutation P100 P144 P196 P256

Forward Direction

#Rounds 4 5 6 4 5 6 4 5 6 4 5 6

[28] 12 20 72 12 24 84 12 24 84 12 28 92

Ours 11 20 72 11 23 84 11 24 84 11 27 92

Backward Direction

#Rounds 3 4 5 3 4 5 3 4 5 3 4 5

Ours 11 19∗ 71∗ 11 23 83∗ 11 23∗ 83∗ 11 27 91∗

∗ Partial balanced

Thus, we only need to detect whether Kr contains all unit vectors. In order
to check the vectors in Kr, it is equivalent to check the last vectors of all r-
round division trails. Denote (a0n−1, · · · , a00)→ · · · → (arn−1, · · · , ar0) an r-round
division trail. Thus, we can set the objective function as

Min : ar0 + ar1 + · · ·+ arn−1.

Till now, we completely construct the MILP for the division property propaga-
tion of a cipher.

Now we are ready to apply this MILP-based division property tool to search
for the zero-sums of PHOTON permutations. The zero-sums for variants (both
forward and backward directions) with 4-bit S-Box are given in Table 3. Note
that we can reach more rounds with a number of texts which is less than the
internal state size. The claimed attack complexities by the designers for the
above PHOTON permutation variants are 80, 128, 160 and 224 respectively. We
only list the ones that help to construct our distinguishers later.

3.2 Observation on the Algebraic Degree Decrease

Denote the input and output of PRESENT S-Box as (x3, x2, x1, x0) and (y3, y2, y1, y0),
then the ANF of it is as

y3 = 1⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3
y2 = 1⊕ x2⊕ x3⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3
y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3
y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2

When x0 is fixed as constant, then the degree of ANF decreases from 3 to 2 (note
that all the terms of degree 3 contains x0). This fact can be used to improve most
of the results found by Todo [28], as we will show the details in the following.

10



3.3 Simple Zero-sum Partitions for PHOTON Permutations

Given the zero-sums of both forward and backward directions of permutations,
automatically, one can construct many zero-sums. We take P144 for PHOTON-
128/16/16 as an example. As we are going to show in next section, since

B R−4

←−−−


A C C C C C
A C C C C C
A C C C C C
A C C C C C
A C C C C C
aaac C C C C C

 ,


A C C C C C
C A C C C C
C C A C C C
C C C A C C
C C C C A C
C C C C C aaac

 R5

−−→ B

where B means that the sum is equal to zero in each bit, it is possible to set up
258 9-round zero-sum partitions with size 242, that is

B R−4

←−−−


A C C C C C
A A C C C C
A C A C C C
A C C A C C
A C C C A C
aaac C C C C aaac

 R5

−−→ B.

This example allows us to highlight one more time the possibility to reduce the
degree of the S-Box (from 3 to 2) working with input of the form aaac. Our
zero-sums exploit this observation to reduce the size of the partitions by 22 to
guarantee the zero-sum property.

In [8], Boura and Canteaut looked into the the new bound of the concate-
nated permutation, and add one more round in the middle the zero-sums of
single direction, when the non-linear layer is composed of parallel applications
of smaller S-boxes. In the next, we apply Subspace trail cryptanalysis to extend
one more round in the middle of the zero-sums, and show our applications to
PHOTON permutation.

4 Subspace Trails

Subspace Trail Cryptanalysis [18] was recently introduced at FSE 2017. We
recall the main concept of such a notation, and refer to [18] for more details.
Our treatment here is however meant to be self-contained.

4.1 Subspace Trails of AES-like Permutations

Since PHOTON permutation is an AES-like cipher, in this section we recall
the subspace trails of AES presented in [18]. For the following, we only work
with vectors and vector spaces over Fn×n2m for fixed m,n, and we denote by
{e0,0, ..., en−1,n−1} the unit vectors of Fn×n2m (e.g. ei,j has a single 1 in row i and
column j).

Definition 3. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, ..., en−1,i〉.
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For instance, if n = 4 then C0 corresponds to the symbolic matrix

C0 =

{x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 ∣∣∣∣ ∀xi ∈ F2m , i = 0, 1, 2, 3

}
≡

x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 .

Definition 4. The diagonal spaces Di and the inverse-diagonal spaces IDi are
respectively defined as Di = SR−1(Ci) and IDi = SR(Ci):

Di = 〈e0,i, e1,(i+1), e2,(i+2), ..., en−1,(i+n−1)〉,
IDi = 〈e0,i, e1,(i−1), e2,(i−2), ..., en−1,(i−n+1)〉

where all the indexes are taken modulo n.

For instance, if n = 4 then D0 and ID0 correspond to symbolic matrix

D0 ≡

x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

 , ID0 ≡

x0 0 0 0
0 0 0 x1
0 0 x2 0
0 x3 0 0


for all xi ∈ F2m , i = 0, 1, 2, 3.

Definition 5. The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For instance, for PHOTON permutation P144, n = 6 and m = 4 - working in
GF (24) ≡ GF (2)[X]/(X4 +X + 1) - then M0 corresponds to symbolic matrix

M0 =


1 2 8 5 8 2
2 5 1 2 6 12
12 9 15 8 8 13
13 5 11 3 10 1
1 15 13 14 11 8
8 2 3 3 2 8

× ID0 ≡


x0 2x1 8x2 5x3 8x4 2x5
2x0 12x1 6x2 2x3 x4 5x5
12x0 13x1 8x2 8x3 15x4 9x5
13x0 x1 10x2 3x3 11x4 5x5
x0 8x1 11x2 14x3 13x4 15x5
8x0 8x1 2x2 3x3 3x4 2x5


for all xi ∈ F2m , i = 0, 1, . . . , 5.

Definition 6. Let I ⊆ {0, 1, ..., n− 1}. The subspaces CI , DI , IDI and MI are
defined as: CI =

⊕
i∈I Ci, DI =

⊕
i∈I Di, IDI =

⊕
i∈I IDi, MI =

⊕
i∈IMi.

As shown in detail in [18], for any coset DI ⊕ a there exists unique b ∈ C⊥I such
that R(DI ⊕ a) = CI ⊕ b. Similarly, for any coset CI ⊕ a there exists unique
b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1. For each I and each a ∈ D⊥I , there exists one and only one b ∈
M⊥I s.t.

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [18] for a proof of this statement. We limit to observe that b depends
on the initial constant a that defines the coset DI ⊕ a and on the secret key k.
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5 Improved Zero-sum Partitions of P144 for PHOTON-
128/16/16 and P256 for PHOTON-224/32/32

We show how to extend the simple zero-sum partitions in Sect. 3.3 by adding
one round in the middle for “free” using the subspace trail cryptanalysis. We
emphasize that since this technique is very general, it can be used more generally
for any AES-like cipher (as an example, a similar technique allows to explain the
8-round zero-sum partition of AES proposed by Gilbert4 in [15] starting from
the 7-round one proposed in [21]). All the details are only given for the 10-round
case. The other cases - 11- and 12-round of P144 and all zero-sums of P100, P196

and P256 - are obtained using the same strategy.

5.1 10-round Zero-sum Partitions for P144 of size 247

In order to set up a 10 round partitioning, we first re-write the simple 9-round
zero-sum partition for P144 using the subspace trail notation. Since we use the
same strategy also for the next zero-sums, we give here all the details. For the
following, we define C′I and D′I for some I ⊆ {0, 1, 2, 3} as subspaces of CI and DI

respectively, for which some nibbles are only partially active (i.e. some nibbles
can have some active bits and some constant bits). Let C′0 and D′0 defined as

C′0 ≡


x0 0 0 0 0 0
x1 0 0 0 0 0
x2 0 0 0 0 0
x3 0 0 0 0 0
x4 0 0 0 0 0
y 0 0 0 0 0

 , D′0 ≡


x0 0 0 0 0 0
0 x1 0 0 0 0
0 0 x2 0 0 0
0 0 0 x3 0 0
0 0 0 0 x4 0
0 0 0 0 0 y

 ,

for all xi ∈ F24 , 0 ≤ i ≤ 4 and for all y = 2 · y′ where y′ can take any value in
F23 . It follows that

B R−4

←−−− D′0 ⊕ C′0 ⊕ a
R5

−−→ B.

How to add one round in the middle for “free”? The idea is to extend
the previous 9-round zero-sum adding one round in the middle, exploiting the
fact that a coset of a column space CI is always mapped into a coset of a mixed
spaceMI after one round. In more details, using the MILP automatic tool based
on division property, one can only found “zero-sum” for which the nibbles can
only be active/partial active or constant. This means that other more generic
possible cases are not considered, including the one for which some particular
(linear) relationships between the nibbles hold. In the following we show how to
use subspace trails and the results found by the tool in order to derive these cases.
For completeness, we emphasize that the 8-round zero-sum partition proposed
by Gilbert [15] - using the super-S-Box view - starting from the 7-round one of

4 In order to explain such result, Gilbert propose that super-Sbox notation, where
super-Sbox(·) := S-Box ◦ARK ◦MC◦ S-Box(·). The same result has been explained
in details in [17] using the subspace trail notation.
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Knudsen and Rijmen [21] can be derived using the same technique based on the
subspace trail notation.

By Theorem 1, it follows that for each constant a there exists a constant b
such that

R(C′0 ⊕ a) ⊆ R(C0 ⊕ a) = M0 ⊕ b,
where C′0 ⊆ C0. Before we go on, note that S-Box(·) is a non-linear operation.
It follows that while S-Box(aaaa) is well defined (i.e. S-Box(aaaa) = aaaa), S-
Box(aaac) is not defined in general5. Thus, we replace the subspace C′I (where
some nibbles are only partially active) with the corresponding subspace CI
(where all the nibbles are only constant or completely active). Note that if the
zero-sum property holds for C′I , it also holds for CI since CI ≡

⋃
x∈CI\C′I

C′I ⊕ x
where C′I ⊆ CI . Thus, we introduce X defined as X ≡ D′0⊕M0 of dimension 47,
that is

X =


x6 2x1 8x2 5x3 8x4 2x5
2x0 x7 6x2 2x3 x4 5x5
12x0 13x1 x8 8x3 15x4 9x5
13x0 x1 10x2 x9 11x4 5x5
x0 8x1 11x2 14x3 x10 15x5
8x0 8x1 2x2 3x3 3x4 2x5 ⊕ y


for all xi ∈ F24 with 0 ≤ i ≤ 10 and for all y = 2 · y′ as before (where y′ can
take any value in F23). In App. A we present a generic formula that allows to
compute directly the dimension of X from the dimensions of the initial subspaces
D′I and C′J .

10-round zero-sums. Since for each constant b X ⊕ b =
⋃

c∈D′0
M0⊕ (b⊕ c) =⋃

d∈M0
D′0 ⊕ (b⊕ d), it follows that

B R−4

←−−−
⋃
c

C0 ⊕ c
R−1

←−−− X ⊕ b ≡
⋃

d∈M0

D′0 ⊕ (b⊕ d)
R5

−−→ B.

As a result, starting in the middle with a coset of X implies zero-sum after

5-round decryption/encryption, that is B R−5

←−−− X ⊕ b R5

−−→ B. Thus for partitions
in X ⊕ b of size 247, we construct 10-round zero-sum partition for P144. Note
that this complexity is significantly below the birthday bound of the security
level 264.

5.2 11-round Zero-sum Partitions for P144 of size 2107

As before, we first present the simple10-round zero-sums found by the tool:

B R−5

←−−−


A A A C C C
A A A C C C
A A A C C C
A A A A C C
A A A A C C
A A A A C C

 ,


A C C C C C
C A C C C C
C C A C C C
C C C A C C
C C C C A C
C C C C C ccca

 R5

−−→ B

5 More precisely, S-Box(aaac) is a subset of 8 elements of {0x0, 0x1, ..., 0xf}. On the
other hand, such subset depends on the details of the S-Box function and doesn’t
have any particular property.
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Let D′0 defined as before, and let

C0,1,2 ⊕ (C3 ∩ D0,1,5) =


x0 x6 x12 0 0 0
x1 x7 x13 0 0 0
x2 x8 x14 0 0 0
x3 x9 x15 x18 0 0
x4 x10 x16 x19 0 0
x5 x11 x17 x20 0 0

 , ∀xi ∈ F24 , 0 ≤ i ≤ 20.

Thus, for each constant a:

B R−5

←−−− D′0 ⊕ C0,1,2 ⊕ (C3 ∩ D0,1,5)⊕ a R5

−−→ B.

This size of these 10-round zero-sums found by the tool is 289, which is much
higher than the one proposed in the previous section obtained by extending in
the middle of a 9-round exploiting the subspace trail. Similar to before, for each
constant a there exists unique b such that after one round encryption

R(C0,1,2 ⊕ (C3 ∩ D0,1,5)⊕ a) =M0,1,2 ⊕ (M3 ∩ C0,1,5)⊕ b.

Let X defined as X ≡ D′0 ⊕M0,1,2 ⊕ (M3 ∩ C0,1,5) of dimension 107. By similar
argumentation as before, for each b, we have

B R−6

←−−− X ⊕ b R5

−−→ B.

Thus, one can construct 11-round zero-sum partitions of size 2107 for P144.

5.3 12-round Zero-sum Partitions of P144

Impossibility to set up a 12-round zero-sum partition with full balance.
By tool, the best result (in term of minimum number of active bits) that we
obtained for 11-round P144 is given by

B R−5

←−−−


A A A C C C
A A A C C C
A A A C C C
A A A A C C
A A A A C C
A A A A C C

 ,


A C C C A A
A A C C C A
A A A C C C
A A A A C C
C A A A A C
C C A A A A

 R6

−−→ B.

Thus, it is possible to construct a 11-round zero-sums, that is

B R−5

←−−−


A A A C A A
A A A C C A
A A A C C C
A A A A C C
A A A A A C
A A A A A A

 R6

−−→ B.

Also in this case, we can re-write these zero-sums using the subspace trail nota-
tion. In particular, denoted by Z ≡

[
D0,1,2⊕(D3∩C0,1,2)

]
⊕
[
C0,1,2⊕(C3∩D0,1,5)

]
,

it follows that B R−5

←−−− Z R6

−−→ B.

15



In the same way as before, one can try to extend these zero-sums in the
middle. However, the dimension of X ≡ R(C)∩D in this case is equal to dim =
144 (we refer to App. A for all the details). It follows that this is an example for
which it is not possible to set up a 12-round zero-sum partition starting from a
11-round one and using the strategy just presented.

12-round partial zero-sum partition for P144 of size 2127. By tool, we
found the following 12-round partial zero-sum partition of P144 of size 2127:

PB R−6

←−−−


A A A A A C
A A A A A C
A A A A A C
A A A A A C
A A A A A aaac
A A A A A A

 R6

−−→ B.

5.4 Full-Round Zero-sum Partitions of P256 for PHOTON-224/32/32

In this subsection, we propose a full-round zero-sum of P256 for PHOTON-
224/32/32. Let’s start with the following 11-round zero-sum partition found by
the tool

PB R−5

←−−−



A A A C C C C C
A A A C C C C C
A A A C C C C C
A A A C C C C C
A A A C C C C C
A A A C C C C C
A A A C C C C C
A A C C C C C C

 ,



A C C C C C A A
A A C C C C C C
A A A C C C C C
C A A A C C C C
C C A A A C C C
C C C A A A C C
C C C C A A A C
C C C C C A A A


R6

−−→ B

which can be rewritten using the subspace trail notation as B R−5

←−−− Z ⊕ a R6

−−→
B for each constant a, where Z ≡

[
C0,1 ⊕ (C2 ∩ D0,1,3,4,5,6,7)

]
⊕
[
D0,7 ⊕ (D6 ∩

C0,1,2,3,4,5,6)
]
. Using the subspace trail cryptanalysis (see Sect. 5.1 for details),

let the space X defined as

X ≡
[
M0,1 ⊕ (M2 ∩ C0,1,3,4,5,6,7)

]
⊕
[
D0,7 ⊕ (D6 ∩ C0,1,2,3,4,5,6)

]
of dimension 184. Since for each b:

B R−6

←−−− X ⊕ b R6

−−→ B,

it is possible to set up full-round zero-sum partitions for P256.

6 Zero-sum Partitions for the PHOTON Hash Functions

The utilization of degrees of freedom has always been one of the most power-
ful cryptanalyst tool for sponge-like hash functions, thus reducing this ability
as much as possible greatly increases the confidence in the sponge-like hash
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function’s security. For PHOTON, this “small-r” sponge-like shape makes the
amount of freedom degrees available at the input of each internal permutation
call during the absorbing phase is extremely small. Thus, even though we manage
to find the full-round distinguishers for the internal permutation, the amount of
freedom degrees is so thin that utilizing this flaw will not threaten the security
of PHOTON as a hash function.

In this section, we explain our results for hash function PHOTON. Following
the sponge strategy, at iteration i PHOTON absorbs the message block mi on
leftmost part of the internal state Si, and then applies the permutation Pt.
Following that is the squeezing phase. We take PHOTON-160/36/36 as the
example, and the absorbing positions of the state array are underlined as below

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6
s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 s1,6
s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 s2,6
s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6
s4,0 s4,1 s4,2 s4,3 s4,4 s4,5 s4,6
s5,0 s5,1 s5,2 s5,3 s5,4 s5,5 s5,6
s6,0 s6,1 s6,2 s6,3 s6,4 s6,5 s6,6


With data of size 220, we can find a 4-round zero-sum partition for PHOTON-
160/36/36. 

A A A A A C C
C C C C C C C
C C C C C C C
C C C C C C C
C C C C C C C
C C C C C C C
C C C C C C C

 R4

−−→ B

7 Comparison with Generic Approaches

A natural question to ask here is how generic approaches to construct zero-sums
or zero-sum partitions compare with our dedicated approach for PHOTON. Here
we tackle this question, considering as starting point the zero-sum results on
Keccak.

We first briefly recall the generic method for constructing a zero-sum struc-
ture which is inspired by the attack against XHASH in [4] (brought to at-
tention of Keccak Team [5] by Jean-Philippe Aumasson). The strategy is the
following. Assume we are looking for a set Z = {zi} of N elements in F2n
such that

⊕
i zi =

⊕
i f(zi) = 0. As first step, one considers N random value

xi ∈ F2n and computes X = {xi||f(xi)}i where xi||f(xi) ∈ F22n . Let A =⊕
X xi||f(xi) ≡

⊕
X xi||

⊕
X f(xi). If A is equal to zero (prob. 2−2n), then

the problem is solved. Assume A 6= 0. The idea is to consider other M ran-
dom elements - for a certain M - yi ∈ F2n and compute {yi||f(yi)}i. Then,
one computes binary coefficients {ai}i=0,...,M that satisfy the following equality⊕M

i=0 ai ·(xi||f(xi)⊕yi||f(yi)) = A. Observe that such condition is satisfied with
non-negligible property if M > 2N - in particular6, it is satisfied with probabil-

6 Given a fixed set {ai}i, they satisfy the required equality with probability 2−2n.
It follows that given 2n + ε sets, at least one of them satisfy it with probability
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ity higher than 99.99% if M = 2N + 10. Assume that a solution of the previous
equality is found. The set Z = {zi} is defined as

zi ≡
{
ai · yi ⊕ (1⊕ ai) · xi, if i ≤M
xi, if i > M

Such set provided a solution of the problem, and the total cost of this algorithm
is well approximated by N computations/encryptions.

For a zero-sum distinguisher, in order to construct the set Z, one needs to
start from some intermediate state and compute forward and backward to get
the input and output of the zero-sum. Since for our zero-sums for PHOTON
permutation, the number of forward and backward rounds are almost equal, we
assume the computations equivalent of N/2 calls to the permutations. Also we
assume the cost of encryption and decryption are the same. For the values of
partition size N given in Table 1, our method for generating zero-sum structures
as distinguishers for PHOTON, is more efficient than the generic method by a
factor 2. For instance, consider the case of P256 for PHOTON-224/32/32, the
complexity of generating our full round distinguisher needs 6/12 × 2184 = 2183

encryptions while for the generic method it is 2184 encryptions.
There are a number of related zero-sum results in the literature, most promi-

nently perhaps a full-round result on Keccak (NIST SHA-3) [3,8,14]. In all these
works, the computational complexity difference between zero-sum method and
the generic method is usually very small (a factor 2). Even if a distinguisher
can be considered meaningful only if this difference is significant, the Keccak
Team published a note [5] where they confirmed the validity of such distin-
guishers: “[...] the zero-sum distinguishers of [3,8] are valid, albeit with a very
small advantage”. Our approach to set up zero-sum distinguishers on PHOTON
permutation follows the same philosophy.

Before we go on, one may ask the implication of a zero-sum distinguisher.
Indeed, even if it provides a way to distinguish a permutation from a random
one, for a hash function it is still difficult that the distinguisher can be used
to set up an attack. To give a concrete example of implications of a zero-sum
distinguisher, we recall its implication on Keccak (Sect. 4 of [5]). The Keccak
Team claimed it is very unlikely that the zero-sum distinguishers can result in
actual attacks against Keccak calling (reduced-round) versions of Keccak-f , but
still they confirmed the distinguishers described in [3,8] show non-ideal properties
of the (reduced round) Keccak-f permutation and they decided to increase the
number of rounds (e.g., for Keccak-f [1600] from 18 to 24 rounds) in round 2
of the SHA-3 competition. Since PHOTON follows exactly the classical sponge
strategy, we would believe our full-round zero-sum distinguishers for PHOTON
permutations have similar implications on the family of hash functions to the
ones on Keccak hash function.

Finally, we emphasize that such distinguishers based on zero-sum cannot be
considered meaningless because they cannot be set up for any arbitrary number

1 − (1 − 2−2n)2n+ε ≈ 1 − eε, assuming 2n � 1. For a probability of success higher
than 99.99%, it follows ε ≥ 10.
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of rounds. In other words, the inside-out approach used in this paper and in lit-
erature to set up distinguishers doesn’t work for any arbitrary number of rounds
of the inner permutation of the Sponge function. For example, it is not possi-
ble to set up a zero-sum distinguisher in the case of PHOTON-80/20/16 with
12-round, while it is possible for the other cases. In these last cases and in the
same way, if the number of rounds of PHOTON inner permutations are increased
from 12 to (e.g.) 16, our zero-sum distinguishers proposed in this paper can not
cover the full inner permutation, which then becomes indistinguishable from a
pseudo-random permutation as in the assumptions/requirements provided by
the sponge construction/design.

8 Conclusions

We presented zero-sum-related properties of the full-round permutation of many
members of the PHOTON family of hash functions. Observations on the used S-
Box, a tool-approach to finding division trails, and an inside-out approach with
a technique to add a round in the middle are important ingredients. This seems
to be the first time that the individual techniques that we employ are used in
combination, and the result is on the full version of an ISO standard.

Our results are theoretical in nature and we stress that there is currently no
reason to believe that the security of PHOTON as a hash function is endangered.
It will be interesting to see applications of our approach to other constructions.
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SUPPLEMENTARY MATERIAL

A How to Compute Directly Dimension of X in Sect. 5?

In Sect. 5, it is possible to compute the dimension dim of X without writing the
explicit matrix. Here we give all the details.

Assume we are working with n × n matrix, and consider two input spaces:
a diagonal space D with dimension nd and a columns space C with dimension
nc - here the dimension denotes the number of non-constant bits. Due to the
argumentation given in Sect. 5 (e.g. see footnote 5), each nibble of C can be only
active or constant (i.e. it is not possible that some bits of a nibble are active
and others are constant). It follows that nc must be a multiple of 4, that is
nc ← nc + (nc mod 4). Moreover, let nD the number of diagonals of D with at
least one non-constant nibble, and let nC the number of columns of C with at
least one non-constant nibble.

Since X are defined as R(C) ⊕ D, in order to compute the dimension of Y
or X we consider separately the two cases, that is (1) nD + nC < n and (2)
nD + nC ≥ n.

Case (1): nD + nC < n. Let M ≡ R(C), where the dimension nm - i.e. of
non-constant and independent variables - number of the mixed spaceM is equal
to nc. In this case, since M∩D = {0} (see [18] for details), it follows that the
dimension dim of X or Y is simply defined as: dim = nd + nc. As an example,
for X on 10-round we have that nD = 1, nC = 2, nd = 23 and nc = 34, while
for X on 11-round we have that nD = 1, nC = 3, nd = 23 and nc = 83.

Case (2): nD+nC ≥ n. In this case, dim is given by dim = nd+nc−dim(M∩
D) since M∩ D 6= {0}. In order to compute “quickly” dim(M∩ D), one can
use the following analysis. For the following, we limit to consider for simplicity
the case in which a nibble can be active or constant (in other words, it is not
possible that some bits of a given nibble are active, and the others constant).

Let niD the number of active nibbles in the i-th column for i = 0, ..., n − 1
of D, and similarly let niC the number of active nibbles in the i-th column for
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i = 0, ..., n − 1 of SR(C) = MC−1(M), i.e. of independent variables of the i-
th column of M. Obviously, nD =

∑
i n

i
D and nC =

∑
i n

i
C . It follows that

dim = 4 ·
∑n−1

i=0 min(niD + niC , n).
As example, we propose in details the calculation to compute the dimension

of X defined in Sect. 5.3. Let D = D0,1,2⊕(D3∩C0,1,2) with nd = 84 and nD = 4
and C = C0,1,2 ⊕ (C3 ∩D0,1,5) with nc = 84 and nC = 4. Since nD + nC ≥ 6, the
intersection R(C) ∩ D is not null. Using the previous formula, we have

(n0D, n
1
D, n

2
D, n

3
D, n

4
D, n

5
D) = (4, 4, 4, 3, 3, 3)

(n0C , n
1
C , n

2
C , n

3
C , n

4
C , n

5
C) = (4, 3, 3, 3, 4, 4).

It follows that the dimension of R(C) ∩ D is equal to dim = 144.

B Definition of Division Property and Its MILP Model
of Operations

B.1 Definition of Division Property

We first briefly recall the definition related to division property here:
For any a ∈ F2n , let a[i] denote the i-th bit of a, and the Hamming weight of

a is defined as w(a) =
∑n−1

i=0 a[i]. For any a = (a0, a1, . . . , am−1) ∈ (F2n)m, the
vectorial Hamming weight of a is defined as w(a) = (w(a0), w(a1), . . . , w(am−1))
where w(ai) is the Hamming weight of ai.

Definition 7 (Bit Product Function). For any u ∈ F2n , let πu(x) be a func-

tion from F2n to F2. For any x ∈ F2n , define πu(x) as πu(x) =
∏n−1

i=0 x[i]u[i].
For any u ∈ (F2n)m, let πu(x) be a function from (F2n)m to F2. For all u =
(u0, u1, . . . , um−1) and x = (x0, x1, . . . , xm−1) ∈ (F2n)m, define πu(x) as πu(x) =∏m−1

i=0 πui
(xi).

Definition 8 (Division Property [28]). Let X be a multiset whose elements
take a value of (F2n)m, and k be an m-dimensional vector whose coordinates
take values between 0 and n. When the multiset X has the division property
Dn,m

k(0),k(1),...,k(q−1) , it fulfills the following conditions: The parity of πu(x) over

all x ∈ X is always even when

{u = (u0, u1, . . . , um−1) ∈ (F2n)m|w(u) � k(0), . . . , w(u) � k(q−1)}.

Definition 9 (Division Trail [32]). Let R denote the round function of an
iterated block cipher. Assume the input multiset to the block cipher has initial
division property K0 = Dn,m

k , and denote the division property after i-round
through R by Dn,m

Ki
. We have the following trail of division property propagations:

k ≡ K0
R−→ K1

R−→ · · · R−→ Ki.

For (k0,k1, · · ·kr), if ki can propagate to ki+1, for all 0 ≤ i ≤ r − 1, we call
(k0,k1, · · ·kr) an r-round division trail.
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B.2 Model Division Propagation of PRESENT S-Box

For an n-bit S-Box, assume the input multiset X takes values (xn−1, . . . , x1, x0) ∈
F2n , and the output multiset Y takes values (yn−1, . . . , y1, y0) ∈ F2n , i.e.

(xn−1, . . . , x1, x0)
S-Box−−−−→ (yn−1, . . . , y1, y0). Assume the input and output di-

vision property of S-Box is Dn
(an−1,...,a1,a0)

and Dn
(bn−1,...,b1,b0)

respectively, i.e.

Dn
(an−1,...,a1,a0)

S-Box−−−−→ Dn
(bn−1,...,b1,b0)

.

The DDT of the PRESENT S-Box is given as below, where the left column
is value of (an−1, . . . , a1, a0) and the right column is all the possible values of
(bn−1, . . . , b1, b0). There are 47 division trails for PRESENT S-Box, as showed in
details in Tab. 4. Given the DDT of a n-bit S-Box, we denote the set of the impossible

Table 4. Division Trail Table of PRESENT S-Box

Input D4
k Output D4

K

(0,0,0,0) (0,0,0,0)

(0,0,0,1) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0)

(0,1,1,1) (0,0,1,0) (1,0,0,0)

(1,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,1,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,0,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,1,0) (0,1,0,1) (1,0,1,1) (1,1,1,0)

(1,1,1,1) (1,1,1,1)

division trails as Bset, and the size of it as trailsize. For PRESENT, trailsize = 256−
47 = 209. We denote the total number of linear inequalities in the H-Representation
of S-Box as len, and for PRESENT S-Box, len is 122. Our target here is to find the
minimum number of inequalities from len linear equalities in H-Represent to describe
the DDT of a S-Box, i.e. to remove all the impossible division trails in Bset. Our
algorithm of searching is in Algorithm 1. The 8 linear inequalities of PRESENT S-Box
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Algorithm 1 Search minimum amount of linear inequalities representing DDT
of S-Box

/* len is the total number of linear inequalities in H-Represent of DDT, and
Coefset is the coefficients of these inequalities; Bset is the set of impossible
division trails need to be removed, and trailsize is the total number of these trails
path is the system of minimum amount of linear inequalities describing DDT */

Input: (Coefset, Bset)
Output: path

/* Recurse from linear equality start with depth depth; sum is the number of trails
that have been removed by the ith inequality; depthmin is the number of linear
inequalities in path */
function DFS(depth, start, sum, depthmin)

if sum = trailsize and depthmin > depth then
depthmin← depth
return

end if
for i = start to len and depth + 1 < depthmin do

cnt[depth][i]← 0
for all trail ∈ Bset[depth] do

if v(Coefset[i], trail) ≥ 0 then . trail can be removed by inequality i
add trail to Bset[depth + 1]

else
cnt[depth][i]++

end if
end for
if cnt[depth][i] > 0 then

add i to path
DFS(depth + 1, i + 1, sum + cnt[depth][i], depthmin)

end if
end for

end function

we found by our algorithm are:

−a2 − a1 + b3 + b1 + b0 ≥ −1

−3a3 − 3a2 − 3a1 + b3 + 2b2 + b1 + 2b0 ≥ −5

−2a3 − a2 − a1 − 2a0 + 5b3 + 5b2 + 5b1 + 2b0 ≥ 0

−a0 − b3 − b2 + 2b1 − b0 ≥ −2

a3 + a2 + a1 + a0 − 2b3 − 2b2 + b1 − 2b0 ≥ −1

−a0 + 2b3 − b2 − b1 − b0 ≥ −2

−a0 − 2b3 + b2 − 2b1 + b0 ≥ −3

a3 + a2 + a1 + 2a0 − 2b2 − 2b1 − 2b0 ≥ −1
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B.3 Model Division Propagation of MixColumns - An example for
P144

In this section, we show how to represent the matrix in bit level, giving an example for
P144. We remember that given the polynomial of the field where the multiplications
operate on, the representation of the matrix is unique. For PHOTON permutations
based on F24 , the polynomial is x4 + x + 1.

The MDS matrix of P144 is as follows

MC144 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 2 8 5 8 2


6

=


1 2 8 5 8 2
2 5 1 2 6 12
12 9 15 8 8 13
13 5 11 3 10 1
1 15 13 14 11 8
8 2 3 3 2 8


can be easily rewritten into MC144 = (mij)24×24 as

1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0
0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1
1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0
1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0
0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1
0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0
0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0
1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0
0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1
1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1
0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1
1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0
0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 0
0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0



C Zero-sums of P100 for PHOTON-80/20/16

C.1 10-round Zero-sums for P100 of Size 240

By tool, we found the following:

PB R−4

←−−−


A C C C C
A C C C C
A C C C C
A C C C C

aaac C C C C

 , B R−4

←−−−


A C C C C
A C C C C
A C C C C
A C C C C
A C C C C

 ,


A C C C C
C A C C C
C C A C C
C C C A C
C C C C A

 R5

−−→ B.

By adding one more round in the middle, one can construct 10-round zero-sums for
P100 of size 240 , while it is possible to construct a 9-round balance zero-sum for P100

with size 236 and a 9-round partial balance zero-sum for P100 with partition size of 235.
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C.2 11-round Zero-sums of P100 with 276 Texts

By tool, we found the following:

B R−4

←−−−


A C C C C
A C C C C
A C C C C
A C C C C
A C C C C

 ,


A C A A A
A A C C A
A A A C C
A A A A C
C A A A A

 R6

−−→ B.

By adding one more round in the middle, one can construct a 11-round zero-sums for
P100 with 276 texts.

D Zero-sums of P196 for PHOTON-160/36/36

D.1 10-round zero-sum partition of P196 with 248 Texts

With the tool, we found the following:

PB R−4

←−−−


A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C

aaac C C C C C C
C C C C C C C

 ,


A C C C C C C
C A C C C C C
C C A C C C C
C C C A C C C
C C C C A C C
C C C C C A C
C C C C C C C

 R5

−−→ B

and

B R−4

←−−−


A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
C C C C C C C

 ,


A C C C C C C
C A C C C C C
C C A C C C C
C C C A C C C
C C C C A C C
C C C C C A C
C C C C C C C

 R5

−−→ B.

By adding one more round in the middle, one can construct a 10-round zero-sum
partition for P196 with 248 texts, while it is possible to construct a 9-round partial
zero-sum partition for P196 with 243 texts and a balance zero-sum partition for P196

with size of 244 texts.

D.2 11-round zero-sum partition of P196 with 2108 Texts

By tool, we found the following:

B R−4

←−−−


A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
A C C C C C C
C C C C C C C

 ,


A C C C C A A
A A C C C C A
A A A C C C C
C A A A C C C
C C A A A C C
C C C A A A C
C C C C A A A

 R6

−−→ B.

By adding one more round in the middle, one can construct a 11-round zero-sum
partition for P196 with 2108 texts.
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D.3 12-round (Partial) Zero-sum Partitions for P196 of Size 2159

By tool, we found that it is only possible to set up a Partial Balance 12-round distin-
gusher of P196, with a complexity of 2159 texts:

PB R−6

←−−−


A A A A A C C
A A A A A C C
A A A A A aaac C
A A A A A A C
A A A A A A C
A A A A A A C
A A A A A A C

 R6

−−→ B.

E Zero-sums of P256 for PHOTON-224/32/32

We remember that the 12-round distinguisher is presented in details in Sect. 5.4.

E.1 10-round Zero-sum partition for P256 of Size 263

By tool, we found the following:

B R−4

←−−−



A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C

aaac C C C C C C C
C C C C C C C C


,



A C C C C C C C
C A C C C C C C
C C A C C C C C
C C C A C C C C
C C C C A C C C
C C C C C A C C
C C C C C C aaac C
C C C C C C C C


R5

−−→ B.

By adding one more round in the middle, one can construct a 10-round zero-sum
partition for P256 with 254 texts, while it is possible to construct a 9-round zero-sum
partition for P256 with 250 texts.

E.2 11-round Zero-sum Partition for P256 of Size 2119

By tool, we found the following:

B R−4

←−−−



A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C
A C C C C C C C

aaac C C C C C C C


,



A C C C C C A A
A A C C C C C C
A A A C C C C C
C A A A C C C C
C C A A A C C C
C C C A A A C C
C C C C A A A C
C C C C C A A A


R6

−−→ B.

By adding one more round in the middle, one can construct a 11-round zero-sum
partition for P256 with 2119 texts.
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