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Abstract

Public key Encryption with Keyword Search (PEKS) aims in mitigating the impacts of
data privacy versus utilization dilemma by allowing any user in the system to send encrypted
files to the server to be searched by a receiver. The receiver can retrieve the encrypted files
containing specific keywords by providing the corresponding trapdoors of these keywords
to the server. Despite their merits, the existing PEKS schemes introduce a high end-to-
end delay that may hinder their adoption in practice. Moreover, they do not scale well for
large security parameters and provide no post-quantum security promise. In this paper, we
propose novel lattice-based PEKS schemes that offer a high computational efficiency along
with better security assurances than that of existing alternatives. Specifically, our NTRU-
PEKS scheme achieves 18 times lower end-to-end delay than the most efficient pairing-based
alternatives. Our LWE-PEKS offers provable security in the standard model with a reduction
to the worst-case lattice problems. We fully implemented our NTRU-PEKS on embedded
devices with a deployment on real cloud infrastructures to demonstrate its effectiveness.

Keywords: applied cryptography, Public Key Encryption with Keyword Search (PEKS), lattice-
based cryptography, internet of things

1 Introduction

Cloud computing has significantly impacted the computing infrastructure and enabled a large
pool of applications. For example, data outsourcing [1] permits small/medium size businesses to
increase data availability by minimizing the management and maintenance costs. Data outsourc-
ing, despite its merits, raises significant data privacy concerns for clients. Traditional encryption
techniques can be used to overcome such privacy concerns. However, standard encryption does
not permit search capabilities on the encrypted data. Therefore, a significant amount of research
is focused on Searchable Encryption (SE) technologies that can be used to efficiently address
this problem. There are two main branches of SE where each is tailored for a distinct set of
application.

Dynamic Searchable Symmetric Encryption (DSSE) (e.g., [2, 3, 4]) provides search capabili-
ties on encrypted data for private data outsourcing applications (e.g., data storage on the cloud),
in which the client uses her own private key to encrypt and then search on her own data over
the cloud. Public Key Encryption with Keyword Search (PEKS) schemes [5] allow any client
to encrypt data with specified keywords under the public key of a designed receiver. The de-
signed receiver, Alice, can then use her private key to generate and send trapdoors for her desired
keywords, and enable the server to search on the encrypted data to retrieve the files that are
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Figure. 1-a  PEKS scheme in secure email system

Figure. 1-b  PEKS scheme in privacy-preserving audit logging system

Figure 1: Potential applications of PEKS schemes

associated with the keyword. PEKS is well suited for distributed applications (e.g., e-mail, audit
logging for Internet of Things, etc.) where a large number of users/entities generate encrypted
data to be retrieved by a receiver. The focus of this paper is on PEKS schemes.

In Figure 1, we depict two system models as the potential applications of PEKS schemes.
Figure 1-a illustrates an application of PEKS schemes which is considered as the main motive
for the initial proposal of PEKS schemes in [5]. Alice, who is assumed to have a number of
devices (e.g., cellphone, desktop), wants her e-mails to be routed to her devices based on the
keywords associated to them. For instance, when the sender, Bob, sends her an e-mail with
keyword “urgent”, the e-mail should be routed to her cellphone. To achieve this, after encrypting
the e-mail content with a conventional public key encryption scheme, Bob uses a PEKS scheme
to encrypt the keyword “urgent” and sends it together with the encrypted e-mail to the e-mail
server. Alice can then use her private key to generate the trapdoor corresponding to keyword
“w = urgent” and ask the server to retrieve all the e-mails associated with w.

Another important application of PEKS schemes for storing private log files is illustrated in
Figure 1-b. For Internet of Things (IoT) applications, PEKS schemes can enable a heterogeneous
set of devices to send their encrypted log files concatenated with a searchable ciphertext of distinct
keywords to an untrusted storage server. To analyze the log files, an auditor can use his private
key to generate trapdoors and enable the server to search and return the files that are associated
with the target keyword.
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1.1 Research Gap

Since their introduction in [5], several PEKS schemes with a variety of features have been pro-
posed (e.g., [6, 7, 8, 9]). However, the wide adoption of PEKS schemes in practice has been
hindered due to a number of obstacles:
• High End-to-End Delay: The most computationally expensive part of the PEKS is generally

the search phase, which requires the execution of a test algorithm for each keyword in the database
during the search process. The existing PEKS schemes (e.g., [5, 7]) introduce a significant end-
to-end computation delay due to their reliance on heavy pairing computations, which require
at least one pairing operation per item, in total linear number of pairing calls with respect to
the number of keyword-file pairs in the database, for each search query. Therefore, providing a
computational efficient test algorithm is a critical requirement to minimize the end-to-end delay.
• Lack of Long-term Security: It is a highly desirable property for data storage applications

to offer long-term data security measures. However, achieving a high level of security for an ex-
tended duration of time requires continuous increment in key sizes, which results in a substantial
increase in computation overhead for conventional cryptographic primitives (e.g., ECC, RSA).
Furthermore, the emergence of quantum computers will render most of the conventional asym-
metric cryptography primitives unsafe, and therefore, there is a great merit in devising PEKS
schemes that can provide a post-quantum security promise.
• Lack of Full-Fledged Implementations: While a number of DSSE schemes have been fully

implemented on real data (and are publicly accessible, e.g., [10, 11]), to the best of our knowledge,
no full-fledged implementation (with a real dataset) of PEKS schemes is publicly available to
this date. Hence, there is a need of providing a full-fledge implementation of PEKS schemes on
actual cloud platforms to measure important performance factors (e.g., communication delay,
disk access time) that cannot be precisely captured with mere "cost estimations".

1.2 Our Contribution

Towards addressing the aforementioned research gaps, we developed two lattice-based PEKS
schemes with a post-quantum security promise and presented a full-fledged implementation of
our efficient lattice-based PEKS scheme and its pairing-based counterpart. We outline our con-
tributions as follows:
• New Lattice-Based PEKS Schemes: In the initial proposal of PEKS in [5], Boneh et al.

showed how to derive a PEKS scheme from an Identity-Based Encryption (IBE). Abdalla et
al. [12] specified the requirements for the underlying IBE scheme to ensure the security and
correctness of the derived PEKS. In this paper, we propose two PEKS schemes based on lattices-
based tools. (i) Our first scheme is referred to as NTRU-PEKS, which harnesses Ducas et al.’s
IBE scheme [13], and it meets the all requirements provided by [12] to ensure the provable
security in Random Oracle Model (ROM). (ii) Our second scheme is referred to as LWE-PEKS,
which leverages IBE constructions in [14, 15] and [16] to offer the first provable secure lattice-
based PEKS in the standard model (to the best of our knowledge). We prove the security and
consistency of our PEKS schemes and suggest parameter sizes to avoid potential consistency
errors (with an overwhelming probability).
• High Computational Efficiency: Our NTRU-PEKS scheme offers significant computational

efficiency advantages over the existing PEKS schemes. This is achieved by harnessing the latest
efforts in improving the efficiency of the lattice-based schemes, ring-LWE [17] and fast arithmetic
operations (e.g., Fast Fourier Transform) over polynomial rings Z[x]/(xN + 1). As it is shown
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in Table 1, our scheme has significantly more efficient Test and PEKS algorithms than those
in [5, 18], which are currently considered as the most efficient PEKS alternatives [19]. The
efficiency of Test algorithm is of vital importance, since it is executed by the server linear with the
total number keyword-file pairs in the database. The efficiency of the PEKS algorithm facilitates
the implementation of PEKS schemes on battery-limited IoT devices. Due to its computational
efficiency, despite having larger ciphertext sizes, we showed with experiments on actual cloud
deployments that, NTRU-PEKS achieves a superior end-to-end response time compared to its
counterparts (see Section 4).
• Long-term Security: Both of our constructions are based on lattice-based tools that provide

long-term security and are currently considered secure against quantum computers. It is worth
noting that lattice-based schemes also have a substantially smoother performance response to
increased key sizes compared to conventional cryptographic primitives (e.g., ECC, RSA).
• Full-Fledged Implementation on Cloud Infrastructure: We provide a full-fledged implemen-

tation of our NTRU-PEKS scheme and its most efficient pairing-based counterpart on a real cloud
computing infrastructure with Enron e-mail dataset. We chose Amazon Web Server (AWS) as
the server in our system, a commodity hardware and an ARM Cortex-A53 as the client ma-
chines. One can easily see the importance of a full-fledged implementation when comparing the
benchmark provided from the simulation results in Table 5 and the benchmark results of the
full implementation in Section 4. Detailed experimental results are further explained in Section
4. We also open-sourced our implementations for public testing and wide adoption (please see
Section 4).

Differences Between this Article and its Preliminary Version in [20]: In this article,
we put forth a new lattice-based PEKS scheme in the standard model and present the first full-
fledged implementation of our NTRU-PEKS scheme along with its counterparts on actual cloud
environments: (i) We introduced the first LWE-based PEKS scheme in the standard model (LWE-
PEKS) with a security reduction to the worst-case lattice-based problems. (ii) We presented full-
fledged implementations of the NTRU-PEKS scheme and its most efficient counterpart [5] (with
Enron e-mail dataset) on commodity hardware, AWS and ARM Cortex-A53 (as an embedded
device). (iii) Based on our full-fledged implementations, we provided a more precise performance
analysis of our NTRU-PEKS scheme and its counterpart in [5]. We also highlighted differences
between the results of the simulated implementation and our full-fledged implementation.

2 Preliminaries

In this section, we provide definitions and notations that are used by our schemes. For the sake
of compliance, we try to use similar notation as in [13] and [14].
Notations. a

$←− X denotes that a is randomly selected from distribution X . Hi for i ∈
{1, . . . , n} denotes a hash function which is perceived to behave as a random oracle in this
paper. AO1,...,On(.) denotes algorithm A that is provided with access to oracles O1, . . . ,On. The
norm of a vector v is denoted by ‖v‖. dxc rounds x to the closest integer. x =∆ y means x is
defined as y. The function gcd(x, y) returns the greatest common divisor of values x and y.
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2.1 Integer Lattices

Let B = [b1| . . . |bm] ∈ Rm×m be an m × m matrix whose columns are linearly independent
vectors b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ generated by B is the set,

Λ = L(B) =

{
y ∈ Rm : ∃s ∈ Zm,y = Bs =

m∑
i=1

sibi

}
Definition 1. For a prime q, A ∈ Zn×mq and u ∈ Znq , define:

Λq(A) := {e ∈ Zm : ∃s ∈ Znq where A>s = e mod q}
Λ>q (A) := {e ∈ Zm : Ae = 0 mod q}
Λuq (A) := {e ∈ Zm : Ae = u mod q}

2.2 NTRU Lattices

Ajtai [21] introduced the Short Integer Solution (SIS) problem and demonstrated the connection
between average-case SIS problem and worst-case problems over lattices. Hoffstein et al. [22]
proposed a very efficient public key encryption scheme based on NTRU lattices. Regev [17]
introduced the Learning with Error (LWE) problem. The SIS and LWE problems have been
used as the building blocks of many lattice-based schemes.

NTRU encryption works over rings of polynomialsR =∆ Z[x]/(xN+1) andR′ =∆ Q[x]/(xN+1)
which are parametrized with N as a power-of-two integer. (xN + 1) is irreducible, therefore, R′
is a cyclotomic field. For f =

∑N−1
i=0 fix

i and g =
∑N−1

i=0 gix
i as polynomials in Q[x], fg denotes

polynomial multiplication in Q[x] while f ∗ g =∆ fg mod (xN + 1) is referred to as convolution
product. For an N -dimension anti-circulant matrix AN we have AN (f) + AN (g) = AN (f + g),
and AN (f)× AN (g) = (f ∗ g).

Definition 2. For prime integer q and f, g ∈ R, h = g ∗ f−1 mod q, the NTRU lattice with
h and q is Λh,q = {(u, v) ∈ R2 : u + v ∗ h = 0 mod q}. Λh,q is a full-rank lattice generated by

Ah,q =

(
AN (h) IN
qIN 0N

)
, where I is an identity matrix.

Note that one can generate this basis using a single polynomial h ∈ Rq. However, the
lattice generated from Ah,q has a large orthogonal defect which results in inefficiency of standard
lattice operations. As proposed by [23], another basis (which is much more orthogonal) can be
efficiently [13] generated by selecting F,G ∈ R and computing f ∗G− g ∗ F = q. The new base

Bf,g =

(
A(g) −A(f)
A(G) −A(F )

)
generates the same lattice Λh,q.

2.3 Tools and Definitions

Definition 3. (Gram-Schmidt norm [24]) Given B = (bi)i∈I as a finite basis and B̃ = (b̃i)i∈I

as its Gram-Schmidt orthogonalization, the Gram-Schmidt norm of B is
∥∥∥B̃∥∥∥ = max

i∈I
‖bi‖.

Definition 4. (Statistical Distance [14]) Given two random variables X and Y taking values in
a finite set S, the statistical distance is defined as:

∆(X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|
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X is said to be δ−uniform over S if ∆(X,Y ) ≤ δ.
Using Gaussian sampling, Gentry et al. [24] proposed a technique to use a short basis as

trapdoor without disclosing any information about the short basis and prevent attacks similar
as in [25].

Definition 5. An N-dimensional Gaussian function ρσ,c : R → (0, 1]) is defined as ρσ,c(x) =∆

exp(−‖x−c‖
2

2σ2 ). Given a lattice Λ ⊂ Rn, the discrete Gaussian distribution over Λ is DΛ,s,c(x) =
ρσ,c(x)
ρσ,c(Λ) for all x ∈ Λ.

If we pick a noise vector over a Gaussian distribution with the radius not smaller than
the smoothing parameter [26], and reduce the vector to the fundamental parallelepiped of our
lattice, the resulting distribution is close to uniform. We formally define this parameter through
the following definition.

Definition 6. (Smoothing Parameter [26]) For any N-dimensional lattice Λ, its dual Λ∗ and
ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such that ρ1/s

√
2π,0(Λ∗ \ 0) 6 ε. A

scaled version of the smoothing parameter is defined in [13] as η′
ε = 1√

2π
ηε(Λ).

Gentry et al. [24] defined a requirement on the size of σ related to the smoothing parameter.
In [13], Ducas et al. showed that using Kullback-Leibler divergence, the required width of
σ can be reduced by a factor of

√
2. Based on [27, 24, 13], for positive integers n, λ, ε 6

2−λ/2/(4
√

2N), any basis B ∈ ZN×N and any target vector c ∈ Z1×n, the algorithm (v0 ←
Gaussian-Sampler(B, σ, c)) as defined in [24, 13] is such that ∆(DΛ(B),σ,c,v0) < 2−λ.

In this paper, we will use the same algorithm in our Trapdoor algorithm of our NTRU-PEKS
scheme.

Definition 7. (Decision LWE Problem) Given R =∆ Z[x]/(xN + 1) and an error distribution χ
over R. For s as a random secret ring element, uniformly random ai’s ∈ R and small error
elements ei ∈ χ, the decision LWE problem asks to distinguish between samples of the form
(ai, ais+ ei) and randomly selected (ai, bi) ∈ R×R.

In [17], Regev has shown that for a certain error distribution χ, denoted Ψ̄α, the LWE problem
is as hard as the worst-case SIVP and GapSVP under quantum reduction.

Definition 8. (Distribution of Ψ̄α [17, 28]) For α ∈ (0, 1) and a prime q, Ψ̄α denotes the
distribution over Zq of the random variable bqXe mod q is a normal random variable with mean
0 and the standard deviation α√

2π
.

Theorem 1. (From LWE to Worst-case Lattice Problems [17]) For α ∈ (0, 1), and prime q s.t.
q > 2

√
n/α there is an efficient algorithm that solve LWEp,Ψ̄α , then there is an efficient, possibly

quantum, algorithm that approximates the decision version of SVP and the SIVP within Õ(n/α)
factor, in the worst case.

Proof. Please refer to [17, Theorem 1.1].

Definition 9. (A tool for computing Gram-Schmidt norm [13]) Let f ∈ R′, we denote f̄ as
a unique polynomial in f ∈ R′ such that A(f)T = A(f̄). If f(x) =

∑N−1
i=0 fix

i, then f̄(x) =

f0 −
∑N−1

i=1 fN−ix
i.

Definition 10. [29, Lemma 7.1] Given Λ as an m−dimensional lattice, there exists a determin-
istic polynomial time algorithm that, given an arbitrary basis of Λ and a full-rank set S ∈ Λ,
where S = s1, s2, . . . , sm, returns a short basis T where ˜‖T‖ ≤ ˜‖S‖ and ‖T‖ ≤ ‖S‖

√
m/2.
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2.4 Identity-Based Encryption

Definition 11. An IBE scheme is a tuple of four algorithms IBE = (Setup,Extract,Enc,Dec)
defined as follows.

• (mpk,msk)← Setup(1k): On the input of the security parameter(s), this algorithm pub-
lishes system-wide public parameters params, outputs the master public key mpk and the
master secret key msk.

• sk ← Extract(id,msk,mpk): On the input of a user’s identity id ∈ {0, 1}∗, mpk, and
msk, this algorithm outputs the user’s private key sk.

• c ← Enc(m, id,mpk): On the input of a message m ∈ {0, 1}∗, identity id, and mpk, this
algorithm outputs a ciphertext c.

• m← Dec(c, sk): On the input of a ciphertext c, the receiver’s private key sk and mpk, this
algorithm recovers the message m from the ciphertext c.

Following the work of [12], the following definition defines anonymity in the sense of [30].

Definition 12. Anonymity under chosen plaintext attack (IBE-ANO-RE-CPA) for an IBE
scheme is defined as follows. Given an IBE scheme, the KeyQuery oracle as defined below,
we associate a bit b ∈ {0, 1} to the adversary A in the following experiment.
KeyQuery(id)

idSet← idSet ∪ id
return sk

Experiment ExpIBE-ANO-RE-CPA-b
IBE,A (1k)

idSet← ∅, (mpk,msk)
$←− Setup(1k)

for a random oracle H
(id0, id1,m)← FKeyQuery(.),H(find ,mpk)
c← EncH(m, idb,mpk)

b′ ← FKeyQuery(.),H(guess, c)
if {id0, id1} ∩ idSet = ∅ return b′ else, return 0

A’s advantage in the above experiment is defined as:

AdvIBE-ANO-RE-CPA
IBE,A (1k) = Pr[ExpIBE-ANO-RE-CPA-1

IBE,A (1k) = 1]−Pr[ExpIBE-ANO-RE-CPA-0
IBE,A (1k) = 0]

2.5 Public Key Encryption with Keyword Search

A PEKS scheme consists of the following algorithms.

Definition 13. A PEKS scheme is a tuple of four algorithms PEKS = (KeyGen,PEKS,Trapdoor,Test)
defined as follows.

• (pk, sk)← KeyGen(1k): On the input of the security parameter(s), this algorithm outputs
the public and private key pair (pk, sk).

7



• sw ← PEKS(pk,w): On the input of user’s public key pk and a keyword w ∈ {0, 1}∗, this
algorithm outputs a searchable ciphertext sw.

• tw ← Trapdoor(sk, w): On the input of a user’s private key sk and a keyword w ∈ {0, 1}∗,
this algorithm outputs a trapdoor tw.

• d ← Test(tw, sw): On the input of a trapdoor tw = Trapdoor(sk, w′) and a searchable
ciphertext sw = PEKS(pk,w), this algorithm outputs a decision bit d = 1 if w = w′, and
d = 0 otherwise.

Definition 14. Keyword indistinguishability against an adaptive chosen-keyword attack (IND-
CKA) is defined as follows. Given a PEKS scheme, and the TdQuery oracle as defined below, we
associate a bit b ∈ {0, 1} to the adversary A in the following experiment.
TdQuery(w)

wSet← wSet ∪ w
tw ← Trapdoor(w, sk, pk)
return tw

Experiment ExpPEKS-IND-CKA-b
PEKS,A (1k)

wSet← ∅, (pk, sk)← KeyGen(1k)
for a random oracle H
(w0, w1)← ATdQuery(.),H(find , pk)
sw ← PEKSH(pk,wb)

b′ ← ATdQuery(.),H(guess, sw)
if {w0, w1} ∩ wSet = ∅ return b′ else, return 0
A’s advantage in the above experiment is defined as

AdvPEKS-IND-CKA
PEKS,A (1k) = Pr[ExpPEKS-IND-CKA-1

PEKS,A (1k) = 1]− Pr[ExpPEKS-IND-CKA-0
PEKS,A (1k) = 0]

.

2.6 Consistency of PEKS

Due to the properties of NTRU-based encryption scheme, and following the work of [31], we
investigate the consistency of our scheme from two aspects, namely, right-keyword consistency
and adversary-based consistency [12]. Right-keyword consistency implies the success of a search
query to retrieve records associated with keyword w for which the PEKS algorithm had computed
a searchable ciphertext. On the other hand, we define the adversary-based consistency [12] as
follows.

Definition 15. Adversary-based consistency of a PEKS scheme is defined in the following ex-
periment.
Experiment ExpPEKS-Consist

PEKS,A (1k)

(pk, sk)← KeyGen(1k)
for a random oracle H
(w0, w1)← AH(pk), sw0 ← PEKSH(pk,w0)
tw1 ← TrapdoorH(pk,w1)
if w0 6= w1 and [TestH(pk, tw1 , sw0) = 1] return 1 else,
return 0
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A’s advantage in the above experiment is defined as:

AdvPEKS-Consist
PEKS,A (1k) = Pr[ExpPEKS -Consist

PEKS ,A (1 k ) = 1].

We note that for schemes with security in the standard model, the random oracle H is
eliminated in Definitions 12, 14 and 15 .

3 Proposed Schemes

In this section, we first propose our scheme based on NTRU lattices (NTRU-PEKS) which enjoys
from highly efficient Test and PEKS algorithms and then put forth our scheme in the standard
model (i.e., LWE-PEKS) which provides a high level of security.

3.1 PEKS Scheme from NTRU Lattices

In this section, we present our highly efficient NTRU-PEKS scheme that consists of the following
algorithms.

(pk, sk)← KeyGen(q,N): Given a power-of-two integer N and a prime q, this algorithm works
as follows.

1) Compute σf ← 1.17
√

q
2N and select f, g ← DN,σf to compute

∥∥∥B̃f,g

∥∥∥ andNorm← max(‖(g,−f)‖ ,∥∥∥( qf̄
f∗f̄+g∗ḡ ,

qḡ
f∗f̄+g∗ḡ )

∥∥∥). If Norm < 1.17
√
q, proceed to the next step. Otherwise, if Norm ≥

1.17
√
q, this process is repeated by sampling new f and g.

2) Using extended euclidean algorithm, compute ρf , ρg ∈ R andRf ,Rg ∈ Z such that ρf ·f = Rf
mod (xN +1) and ρg ·g = Rg mod (xN +1). Note that if gcd(Rf ,Rg) 6= 1 or gcd(Rf , q) 6= 1,
start from the previous step by sampling new f and g.

3) Using extended euclidean algorithm, compute u, v ∈ Z such that u ·Rf +v ·Rg = 1. Compute
F ← q · v · ρg, G ← q · u · ρf and k ← bF∗f̄+G∗ḡ

f∗f̄+g∗ḡ e ∈ R and reduce F and G by computing
F ← F − k ∗ f and G← G− k ∗ g.

4) Finally, compute h = g ∗ f−1 mod q and B =

(
A(g) −A(f)
A(G) −A(F )

)
and output (pk ← h, sk ←

B).

sw ← PEKS(pk,w): Given cryptographic hash functions H1 : {0, 1}∗ → ZNq and H2 : {0, 1}N ×
{0, 1}N → ZNq , the receiver’s public key pk and a keyword w ∈ {0, 1}∗ to be encrypted, the
sender performs as follows.

1. Compute t← H1(w) and pick r, e1, e2
$←− {−1, 0, 1}N , k $←− {0, 1}N .

2. Compute c0 ← r ∗ h + e1 ∈ Rq and c1 ← r ∗ t + e2 +
⌊ q

2

⌋
k ∈ Rq.

3. Finally, the algorithm outputs sw = 〈c0, c1, H2(k, c1)〉.
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tw ← Trapdoor(sk, w): Given the receiver’s private key sk, and a keyword w ∈ {0, 1}∗, the
receiver computes t← H1(w) and using the sampling algorithm Gaussian-Sampler(B, σ, (t, 0)),
samples s and tw such that s + tw ∗ h = t.
d← Test(pk, tw, sw): On the input of a receiver’s public key pk, a trapdoor tw and a searchable
ciphertext sw = 〈A,B,H2(k,B)〉, this algorithm computes y ← bc1−c0∗twq/2 e and outputs d = 1 if
H2(y, c1) = H2(k, c1) and d = 0, otherwise.

3.1.1 Completeness and Consistency

In this section, we show the completeness and consistency of NTRU-PEKS.

Lemma 1. Given a public-private key pair (h,B)← KeyGen(q,N), a searchable ciphertext sw ←
PEKS(pk,w), and a trapdoor generated by the receiver tw ← Trapdoor(sk, w) our proposed scheme
is complete.

Proof. To show the completeness of our scheme for sw = 〈c0, c1, H2(k, c1)〉, the Test algorithm
should return 1 when bc1−c0∗twq/2 e = k . To affirm this, we work as follows.

c1 − c0 ∗ tw = (r ∗ t + e2 +
⌊q

2

⌋
k)− (r ∗ h + e1) ∗ tw ∈ Rq

= r ∗ s + e2 + bq
2
ck− tw ∗ e1

Given r, e1, e2, tw and s are all short vectors (due to the parameters of our sampling algo-
rithm), all the coefficients of r ∗ s + e2 − tw ∗ e1 will be in (− q

4 ,
q
4), and therefore, bc1−c0∗twq/2 e =

k.

To address right-keyword consistency issues related to the decryption error of encryption over
NTRU lattices, we need to make sure that all the coefficients of z = r ∗ s + e2 − e1 ∗ tw are in
the range (− q

4 ,
q
4) and q ≈ 224 for κ = 80 and q ≈ 227 for κ = 192.

Theorem 2. The NTRU-PEKS scheme is consistent in the sense of Definition 11.

Proof. Upon inputting q andN , the challenger C initiates the experiment (h,B)← KeyGen(q,N).
It passes h to the adversary A and keeps B secret.

• (w0, w1)← AH1(pk): A sends C two keywords (w0, w1).

• sw0 ← PEKSH(pk, wb): C computes c0 = r ∗ h + e1 and c1 = r ∗H(w0) + e2 +
⌊ q

2

⌋
k for a

random selection of r, e1, e2
$←− {−1, 0, 1}N , k $←− {0, 1}N , and sends 〈c0, c1, H2(k, c1)〉 to

A.

• tw1 ← TrapdoorH(pk, wb): C samples short vectors s, tw such that s + tw ∗ h = H(w1) and
returns tw to A.

Following Definition 11, A wins when w0 6= w1, and the Test algorithm outputs 1 (i.e,H2(k, c1) =
H2(y, c1)).

Note that in the above game, A wins when w 6= w′ and H2(z1, z
′
1) = H2(z2, z

′
2). Let’s

assume A makes q1 queries to H1 and q2 queries to H2 oracles. Let E1 be the event that
there exists (x1, x2) such that H1(x1) = H1(x2) and x1 6= x2 and let E2 be the event that
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there exist two pairs (z1, z
′
1) and (z2, z

′
2) such that H2(z1, z

′
1) = H2(z2, z

′
2) for z1 6= z2 and

z′1 6= z′2. Then if Pr[·] represents the probability of consistency definition, AdvPEKS-Consist
PEKS,A (1k) ≤

Pr[E1] + Pr[E2] + Pr[ExpPEKS-Consist
PEKS,A = 1 ∧ Ē1 ∧ Ē2]

Given the domain of our hash functions, the first and second terms are upper bounded by
(q1+2)2/N2log2 q and (q2+2)2/N2log2 q, respectively. For the last term, if H1(x1) 6= H1(x2), then in
our scheme, the probability that B1 = B2 is negligible due to the decryption error. Therefore,
H2(y1, B1) 6= H2(y2, B2), hence, the probability of the last term is also negligible.

3.1.2 Security Analysis

In this section, we focus on analyzing the security of the NTRU-PEKS scheme.
The security of lattice-based schemes can be determined by hardness of the underlying lattice

problem (in case of NTRU-PEKS, ring-LWE). Therefore, similar to the LWE-PEKS scheme, we
use the root Hermite factor to assess the security of the NTRU-PEKS scheme. According to
[32], for a short planted vector v in an NTRU lattice, the associated root Hermite factor is

computed as γn =

√
N/(2πe)×det(Λ)1/n‖v‖

0.4×‖v‖ . Based on [33, 34], γ ≈ 1.004 guarantees intractability
and provides approximately 192-bit security.

Following Lemma 3, to establish the security of our NTRU-PEKS scheme, we need to rely on
the security of the underlying IBE scheme. Ducas et al. provided the proof of IBE-IND-CPA of
their scheme in [13]. Therefore, we are left to prove the anonymity of their scheme via Theorem
2.

Theorem 3. The IBE scheme of Ducas et al. is anonymous in the sense of Definition 8 under
the decision ring-LWE problem.

Proof. Since the output of the PEKS algorithm of our scheme corresponds to the encryption
algorithm of [35, 36], for A to determine sw corresponds to which keyword with any probability
Pr ≥ 1

2 + ε - for any non-negligible ε, it has to solve the decision ring-LWE. Our scheme works
over the polynomial ring Z[x]/(xN + 1), for a power-of-two N and a prime q ≡ 1 mod 2N . The
ring-LWE based PEKS algorithm computes a pseudorandom ring-LWE vector c0 = r ∗ h + e1

(for a uniform r, e1
$←− {−1, 0, 1}N ) and uses H(w) to compute c1 = r ∗H(w) + e2 +

⌊ q
2

⌋
k

that is also statistically close to uniform. Therefore, the adversary’s view of 〈c0, c1, H2(k, c1)〉
is indistinguishable from uniform distribution under the hardness of decision ring-LWE. The
pseudorandomness is preserved when tw is chosen from the error distribution (by adopting the
transformation to Hermite’s normal form) similar to the one in standard LWE [37].

Theorem 4. If there exists an adversary A that can break IND-CKA of NTRU-PEKS scheme as
in Definition 10, one can build an adversary F that uses A as subroutine and breaks the security
of the IBE scheme in Definition 8.

Proof. The proof works by having adversaries F and A initiating the find phase as in Definition
8 and Definition 10 respectively.
Algorithm FKeyQuery(.),H(find ,mpk)

• (mpk,msk)
$←− Setup(q,N): F receives mpk and passes it to A.

Algorithm ATdQuery(.),H(find , pk)

11



• Queries on TdQuery(.): Upon such queries, F queries KeyQuery(.) which keeps a list idSet
maintaining all the previously requested queries and responses. If the submitted query
exists, the same response is returned, otherwise, to sample short vectors s, tw the oracle
uses msk to run (s, tw)

$←− Gaussian-Sampler(msk, σ, (H(w), 0)) and passes tw to F . F
sends tw to A.

After the find phase, a hidden fair coin b ∈ {0, 1} is flipped.
Execute (w0, w1)← ATdQuery(.),H(guess, pk)

• Upon receiving (w0, w1), F selects a message m ∈ {0}N and calls Enc(m,w0, w1) that runs
encryption on (wb,m) which works as in Definition 7 and outputs sw = 〈c0, c1, H2(k, c1)〉.
F relays sw to A.

Finally, A outputs its decision bit b′ ∈ {0, 1}. F also outputs b′ as its response. Omitting the
terms that are negligible in terms of q and N , the upper bound on IND-CKA of NTRU-PEKS
is as follows.

AdvPEKS-IND-CKA
A (q,N) ≤ AdvNTRU-IBE-ANO-CPA

F (q,N)

3.2 Lattice-Based PEKS Scheme in the Standard Model

Similar to [14], we treat keywords as a sequence of l bits w = (b1, . . . , bl) ∈ {1,−1}l. Before
presenting the scheme in details, we review the tools that are needed for the correctness of
our LWE-PEKS scheme. In [38], Ajtai illustrated how to sample a random uniform matrix
(with a small Gram-Schmidt norm) A ∈ Zn×mq with an associated basis SA of Λ⊥q (A). The
following theorem, defines the properties of TrapGen algorithm [39, 14] which is used in the
KeyGen algorithm of the LWE-PEKS scheme.
(A,S)← TrapGen(q, n) : Given a prime q, a positive n and δ = 1

3 , there is a polynomial time
algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×mq ,S ∈ Zm×m) s.t., A is statistically
close to uniform and S is a basis for Λ⊥q (A) , where m = 6n log q and ˜‖S‖ ≤ O(

√
n log q) and

‖S‖ ≤ O(n log n) hold with a high probability.
Following [14], we set σTG = O(

√
n log q) as the maximum Gram-Schmidt norm of the basis

generated by TrapGen(q, n).
In the following we define the sampling algorithm which is used to generate trapdoors in our

scheme (i.e., SampleLeft), the same algorithm, with identical properties has also been used in
[28, 40].
e← SampleLeft(A,M1,TA,u, σ) : Given an n-rank matrix A ∈ Zn×mq , a matrix M1 ∈ Zn×m1 ,

a short basis of Λ⊥q (A), a vector u ∈ Znq , and a Gaussian parameter σ >
∥∥∥T̃A

∥∥∥·ω(
√

log(m+m1)),
this algorithm outputs a vector e ∈ Zm+m1 sampled from the distribution statistically close to
DΛuq (F1),σ where F1 := (A|M1).

In the following, we present the LWE-PEKS scheme in detail.
(pk, sk)← KeyGen(λ): On the input of the security parameter λ, and the parameters q,m, n, σ, α
(set as instructed in the following section), the receiver works as follows to generate her key pair.

1. Use TrapGen(q, n) to pick a randommatrixA0 ∈ Zn×m with basisTA0 for Λ>q (A0) s.t.
∥∥∥T̃A0

∥∥∥ ≤
O(
√
n log q).
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2. Select l + 1 random matrices A1, . . .Al,B
$← Zn×mq and a random vector u $← Znq .

3. Output the public key pk ← (A0,A1, . . . ,Al,B,u) and secret key sk ← TA0 .

sw ← PEKS(pk,w): On the input of the pk and an l-bit keyword w = (b1, . . . , bl) ∈ {1,−1}l, the

sender picks b′j
$← {0, 1} for j = 1, . . . , κ, setsAw ← B +

∑l
i=1biAi ∈ Zn×mq and Fw ← (A0|Aw) ∈

Zn×2m
q . For each b′j , it computes as follows.

1. Choose a uniformly random sj
$← Znq and matrices Rij

$← {−1, 1}m×m for i = 1, . . . , l and
set Rb′

j
←
∑l

i=1 biRij ∈ {−l, . . . , l}m×m.

2. Choose noise vectors xj
Ψα← Zq and yj

Ψmα← Zmq , and set zj ← R>b′
j
yj ∈ Zmq .

3. Set c0j ← u>sj + xj + b′jb
q
2c ∈ Zq and c1j

← F>wsj +

[
yj

zj

]
∈ Z2m

q .

4. Output searchable ciphertext swj = (c0j , c1j
, b′j) for j = 1, . . . , κ.

tw ← Trapdoor(pk, sk, w): On the input of the keys and a keyword w = (bi, . . . , bl) ∈ {1,−1}l,
the sender computes as follows.

1. LetAw ← B+
∑l

i=1 biAi ∈ Zn×mq and sample tw ∈ Z2m
q as tw ← SampleLeft(A0,Aw,TA0 ,u,σ)1

.

2. Output the trapdoor as tw.

Given Fw := (A0|Aw), then Fw · tw = u ∈ Zq, and tw is distributed as DΛuqFw,σ.
d← Test(tw, sw): Given a trapdoor td for a keyword w = (bi, . . . , bl) ∈ {1,−1}l, and κ searchable
ciphertexts swj = (c0j , c1j , b

′
j) for j = 1, . . . , κ on keyword w, it computes as follows.

i. Set νj ← c0j − twc1j
∈ Zq and check if |δj − b q2c| < b

q
4c, set νj ← 1 and otherwise, νj ← 0.

ii. If νj = b′j holds for all 1 ≤ j ≤ κ, set d← 1, else d← 0.

3.2.1 Completeness and Consistency

In this section we show the completeness and consistency of our scheme.

Lemma 2. Given a public-private key pair (pk, sk)← KeyGen(λ), a searchable ciphertext sw ←
PEKS(pk,w) and a trapdoor generated by the receiver td ← Trapdoor(pk, sk, w), the proposed
scheme is complete.

Proof. To show the completeness of our scheme for swj := (c0j , c1j , b
′
j), the Test algorithm

should return 1 when νj = b′j where νj ← c0j − tdc1j for all j = 1, . . . , κ. To affirm this, we work

1As shown in [14], A0 is of rank n, with a high probability.
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as follows.

νj = c0j − tw
>c1j

= u>sj + xj + b′jb
q

2
c − tw

(
F>idsj +

[
yj

zj

] )
= u>sj + xj + b′jb

q

2
c − u>sj − tw

>
[
yj

zj

]
= b′jb

q

2
c+ x− tw

>
[
yj

zj

]

Where x− t>w
[
yj
zj

]
is the error term. Based on Lemma 21 in [14], the error term is bounded by

q · σ · l ·m · α · ω · (
√

logm) + O(σm3/2). For the system to work correctly, one needs to make
sure that:

i. α < [σ · l ·m · ω(
√

logm)]−1 and q = Ω(σm3/2),

ii. m > 6n log q so TrapGen can operate,

iii. σ is large enough so that SampleLeft as defined above, and SampleRight (which is similar
to SampleLeft, and is used in the proof of [14]) can operate, i.e., σ > l ·m · ω(

√
logm)

iv. For Regev’s [17] reduction to work, set q > 2
√
n/α .

To achieve these requirements, we set q ≥ m2.5 · ω(
√

log n),m = 6n1+δ, σ = ml · ω(
√

log n),
α = [l2m2 · ω(

√
log n)]−1.

Following the results of Lemma 13 and Lemma 19 in [14], setting the parameters of the
scheme as suggested above will ensure the right-keyword consistency of our PEKS scheme with
a high probability.

Theorem 5. The LWE-PEKS scheme is consistent in the sense of Definition 11.

Proof. For the Test algorithm to return 1, all the κ bits of b′j and νj for 1 ≤ j ≤ κ should match.
This implies that given Aw (obtained from the bit string in the keyword w), the SampleLeft
algorithm should sample short vectors statistically close (i.e., have negligible statistical distance)
to Fw ← (A0|Aw). Therefore, our adversary based consistency comes from the Theorem 3.4 in
[40] (and the signing algorithm in [28]) that proves the statistical closeness of tw that is generated
by the SampleLeft on the input of Fw. Therefore, for the suggested parameters and based on
[28, 40], our LWE-PEKS scheme is consistent.

3.2.2 Security Analysis

Based on [33], the hardness of lattice problems is measured using the root Hermite factor.

Lemma 3. If an IBE scheme is IBE-IND-CPA and IBE-ANO-RE-CPA-secure, then it is also
IBE-ANO-CPA-secure.

Proof. Please refer to [12].
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Following Lemma 3, to establish the security of our LWE-PEKS scheme, we need to establish
the anonymity property of the underlying IBE scheme. In [14], Agrawal et al. proved the secu-
rity of their adaptive IBE scheme with a strong privacy property called indistinguishable from
random, which is a stronger security notion as compared to the anonymity property defined in
[41, 12]. In the initial proposal of [14], for the security proof of the adaptive variant of the scheme,
there was a restriction where q > Q where Q is the number of queries made by the adversary.
This restriction was later lifted in by a more refined analysis in [16]. This implies that based
on Lemma 3, the resulting LWE-PEKS scheme is secure in the standard model. Based on [33],
the hardness of lattice problems is measured using the root Hermite factor. For a vector v in
an N-dimension lattice that is larger than the nth root of the determinant, the root Hermite
factor is computed as γ = ‖v‖

det(Λh,q)1/n
. For our LWE-PEKS scheme, we follow the suggested

parameters in [42, 34] to achieve ≈ 192-bit security for message and randomness recovery attack
with γ ≈ 1.0042.

Secure channel requirement. Baek et al. [43] highlighted the requirement of a secure channel
for trapdoor transmission between the receiver and the server and proposed the notion of Secure-
Channel Free (SCF) PEKS schemes where the keywords are encrypted by both the server’s and
receiver’s public keys. Offline keyword-guessing attack, as introduced by Byun et al. [44],
implies the ability of an adversary to find which keyword was used to generate the trapdoor.
This inherent issue is due to low-entropy nature of the commonly selected keywords and public
availability of the encryption key [19]. Since Byun et al.’s work [44], there have been a number
of attempts in proposing schemes that address keyword guessing attacks [45, 46, 47]. However,
in all the proposals, once the trapdoor is revealed to the server, the keyword guessing attacks
remain a perpetual problem [47]. Jeong et al. [47] showed the trade-off between the security of a
PEKS scheme against keyword-guessing attacks and its consistency - by mapping a trapdoor to
multiple keywords. For our scheme, we can assume a conventional or even post quantum secure
[48, 49] SSL/TLS connection between the receiver and the server. We believe such reliable
protocols provide the best means for communicating trapdoors to the servers. Establishing a
secure line through SSL/TLS could be much more efficient than using any public key encryption
as in SFC-PEKS. Since in such protocols, after the hand shake protocol, all communications are
encrypted using symmetric encryption.

3.3 Alternative NTRU-based Constructions

Bellare et al. [50] proposed a new variation of public key encryption with search capability called
Efficiently Searchable Encryption (ESE). The idea behind ESE is to store a deterministically
computed “tag” along with the ciphertext. To respond to search queries, the server only needs
to lookup for a tag in a list of sorted tags. This significantly reduces the search time on the
server. For ESE to provide privacy, the keywords need to be selected from a distribution with
a high min-entropy. To compensate for privacy in absence of high min-entropy distribution
for keywords, the authors suggested truncating the output of the hash function to increase the
probability of collisions. However, this directly affects the consistency of the scheme and shifts
the burden of decrypting unrelated responds to the receiver. As compared to PEKS schemes,
in ESE schemes, the tag can be computed from both the plaintext and ciphertext. This highly
differentiates the applications of these two searchable encryption schemes.

In this paper, we focused on PEKS scheme as it does not have consistency issues or min-
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Table 1: Analytical performance analysis and comparison.
Schemes Computation Storage

Test PEKS Trapdoor PK Size SK Size SC Size TD Size
BCO [5] bp 1bp+ sm sm 2|q′| |q′| 3|q′| 2|q′|

ZI [18] ex+ bp
2sm+ 2ex

+2bp
sm+ 1pa 2|q′| |q′| 38|q′| 2|q′|+ |q′|

NTRU-PEKS Conv 2Conv‡ GSamp N |q| 2N
log2(2sπ)†

3N |q| N |q|

LWE-PEKS κ mulv
2κ (mulv+
mulvm)

SampLeft nm|q| nm
√
n|q| κ(2m+ 1)

|q|
2m

log2 σ
q

For 192-bit security, we set N = 1024 and q ≈ 227 which gives us a root Hermite factor γ = 1.0042 for our scheme and for BCO
and ZI schemes, we set q′ ≈ 2192.
PK and SK denote public key and private key, respectively. SC and TD refer to the searchable ciphertext and trapdoor, respec-
tively. mulv and mulvm represent vector-vector and vector-matrix multiplication in Zq , respectively. SampLeft represents the
cost of the SampLeft sampling function as in [14]. Conv denotes convolution product as defined in Section 2. GSamp denotes a
Gaussian Sampling function as in [13]. bp denotes a bilinear pairing operation [52], pa and sm denote point addition and scalar
multiplication in G, respectively, and ex denotes exponentiation in GT .
Public key, private key and SC are stored on the sender, receiver and server’s machines, respectively. PEKS, Trapdoor and Test
algorithms are run by the senders, receiver and server machines, respectively.
‡ With a slight storage sacrifice, sender can pre-compute one of the convolution products.
† The value of s defines the norm of the Gram-Schmidt coefficient. In [13], the authors set the norm s ≈

√
qe
2
, where e is the

base of natural logarithm.
q
σ is the standard deviation of the distribution that is used in the SampleLeft algorithm defined in Section 3.2.

Table 2: Parameter sizes of our scheme and its pairing-based counterparts for κ = 192.
Schemes Public Key Size (Kb) Private Key Size (Kb) SC Size (Kb) TD Size (Kb)
BCO [5] 0.38 0.19 0.57 0.38

NTRU-PEKS 27.2 32 52 27

entropy distribution requirement, and fits better for our target real-life applications (as discussed
in Section 1). Nevertheless, for the sake of completeness, to extend the advantages of NTRU-
based encryption [51] to ESE, we also instantiated an NTRU-based ESE scheme based on the
encrypt-with-hash transformation proposed in [50]. We compared it with its counterpart which
was instantiated based on El-Gamal encryption. Our implementations of NTRU-based ESE
and El-Gamal ESE (developed on elliptic curves) were run on an Intel i7 6700HQ 2.6GHz CPU
with 12GB of RAM . We observed that encryption for NTRU-based ESE takes 0.011ms where
encryption in El-Gamal ESE takes 2.595ms. As for decryption, NTRU-based ESE takes 0.013ms
and El-Gamal ESE takes 0.782ms. The differences are substantial, since the NTRU-base ESE is
236× and 60× faster in encryption and decryption, respectively.

4 Performance Analysis and Comparison

We first give the analytical performance comparison and then describe our experimental setup
and evaluation metrics. We then provide a detailed performance analysis of our scheme in a real
cloud setting. To the best of our knowledge, this is the first deployment of PEKS schemes in
real-life cloud infrastructure with public data sets.
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Table 3: Sender-side computation and communication comparison of our NTRU-PEKS scheme
with state-of-the-art.

Schemes PEKS (ms) Sending PEKS (ms)
Commodity Hardware

BCO [5] κ = 80 6.78 80.34
κ = 192 66.31 81.75

NTRU-PEKS κ = 80 1.97 86.32
κ = 192 4.44 93.78

IoT Device

BCO [5] κ = 80 57.09 83.65
κ = 192 904.36 85.12

NTRU-PEKS κ = 80 6.90 95.60
κ = 192 22.58 99.54

4.1 Analytical Performance Comparison

As depicted in Table 1, we analyze the analytical performances of our schemes and their pairing-
based counterparts in terms of computation, storage and communication. Based on [19], the
selected pairing-based counterparts are the most efficient schemes proposed in random oracle
and standard models.
Computation: The Test algorithm of our NTRU-PEKS scheme only requires one convolution
product, which is more efficient than the bilinear pairing operation required in almost all of
the existing pairing-based PEKS schemes. As it is shown in Table 2, the dominant operations
of the PEKS algorithm in our NTRU-PEKS scheme are two convolution products of form x1 ∗
x2. However, since one of the operands has very small coefficients (i.e., r $←− {−1, 0, 1}N ), the
convolution products can be computed very efficiently. Specifically, in our case, since N has
been selected as a power-of-two integer, the convolution product can be computed in N logN
operations by the Fast Fourier Transform. The PEKS algorithm in pairing-based schemes again
requires bilinear pairing operations (BCO requires one and ZI requires two) that is more costly
than the convolution products. The Trapdoor algorithm in NTRU-PEKS requires a Gaussian
Sampling, similar as in [24, 13]. This is the most costly operation in our scheme. This algorithm
in Boneh et. al.’s scheme only requires one scalar multiplication and consequently, it is the
fastest. Although LWE-PEKS offers a very high security promise, our simulation results show
that it is not efficient to be deployed with the current state of computing power in commodity
hardware.
Storage and Communication: In terms of storage and communication, our schemes require
more space than their pairing-based counterparts. For instance the sender needs to store the
receiver’s public key of size N |q| for our NTRU-PEKS. Referring to Table 2, for 192-bit security,
it can be up to 27.2Kb. As depicted in Table 2 the size of the searchable ciphertext in NTRU-
PEKS is significantly larger than the ones in BCO and ZI schemes. However, in section 4.3,
we show that in the actual real-life experiment, even though our NTRU-PEKS scheme incurs a
higher communication overhead, this overhead is insignificant (as compared to the pairing-based
counterparts) even with a moderate-speed home network.

Based on the analytical analysis and the simulation results depicted in Table 1, BCO [5]
scheme outperforms ZI [18] in term of computation and storage. Moreover, although LWE-PEKS
offers a very high-level of security (maximum security guarantee that lattice-based schemes can
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Table 4: Search-Time comparison of our NTRU-PEKS scheme with state-of-the-art in real cloud
setting.

Schemes Trapdoor (ms) Sending Trapdoor (ms) Test (ms)

BCO [5] κ = 80 1.26 128.08 4.55
κ = 192 4.13 137.60 60.75

NTRU-PEKS κ = 80 9.71 146.19 1.05
κ = 192 31.59 151.08 3.40

offer), based on our analytical results, due to the storage requirements and the relatively costly
computations, it is not feasible to be deployed in practice with current processing and storage
capabilities of commodity hardware. Therefore, our focus in our real-life experiments is on BCO
and NTRU-PEKS schemes.

4.2 Evaluation Metrics and Experimental Setup

Evaluation Metrics: We implemented our NTRU-PEKS scheme and BCO both on an IoT
device (ARM Cortex A53) and a commodity hardware. As aforementioned (Figure 1), PEKS
schemes have the potential applications in IoT settings. Since in most of these applications, the
IoT devices are conceived to be in the role of a sender, in our experiments, their performance
is evaluated in terms of PEKS generation and sending it to the server. In other applications
(e.g., secure e-mail system), commodity hardware may also generate PEKS and send it to the
e-mail server. Thus, their cost is also evaluated on commodity hardware. The receiver/auditor
generates a trapdoor to search over the database and process the results. In most applications,
the receiver is conceived to be equipped with a commodity hardware (e.g., Laptop). Therefore,
we evaluated trapdoor generation and sending it to the server on commodity hardware only.
Software Libraries and Hardware Configurations:

We fully implemented our NTRU-PEKS scheme in C++, using NTL [53], ZeroMQ and b2
libraries. NTL library was used for low-level arithmetic and matrix operations whereas ZeroMQ
was used for network communication. b2 library is a portable C implementation of high-speed
Blake2 hash function [54]. Blake2 is used in the full implementation of NTRU-PEKS to map
keywords to vec_ZZ type. More specifically, we used Blake2 as a pseudorandom function (PRF),
in our Trapdoor and PEKS algorithms. The implementation of the pairing-based counterpart [5]
was obtained from MIRACL library, that was provided as a simulation. We extended this

Table 5: Simulated comparison of our schemes with state-of-the-art

Schemes † Test
(ms)

PEKS
(ms)

Trapdoor
(ms)

BCO [5] κ = 80 3.38 2.53 0.36
κ = 192 43.39 46.02 2.69

ZI [18] κ = 80 8.12 16.37 1.05
κ = 192 118.65 194.42 5.61

NTRU-PEKS κ = 80 0.34 0.69 5.15
κ = 192 1.23 2.50 17.35

† These results are based on simulations performed on commodity hardware
described in Section 4.

18



Figure 2: End-to-end search time in real cloud setting for κ = 80.

Figure 3: End-to-end search time in real cloud setting for κ = 192.

implementation for real cloud setting, therefore, in addition to MIRACL, ZeroMQ library is also
used in this implementation. Elliptic curves for BCO scheme were selected based on MIRACL,
specifically, we used MNT curve with κ = 80-bit security (with embedding degree k = 6) and
KSS curve with κ = 192-bit security (with embedding degree k = 18). We made both of the
implementations open-sourced for further improvements and adoption2.

As the commodity hardware, we used an Intel Core i7-6700HQ laptop with a 2.6GHz CPU
and 12GB RAM. We selected our IoT device as an ARM Cortex A53 processor, due to its
flexibility and low-power consumption [55]. Although it is a low-power device (can run with a
small 2200mAh battery), ARM Cortex A53 is equipped with a 64-bit 1GHz processor and 1GB
SDRAM. It is extensively preferred in practice since it combines powerful processing power with
low energy consumption [55]. At the server-side, we used an Amazon EC2 instance located in
Oregon, with a single core Intel(R) Xeon(R) CPU E5-2676 operating at 2.4GH, 2GB RAM and
2https://github.com/Rbehnia/Full_PEKS
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250 GB SSD. Since our parameter sizes are larger than pairing-based schemes, we preferred to
be conservative and selected a home network with a 75Mbps connection for both commodity
hardware and IoT device. The ping to server is measured as 25.23 ms and 26.78 ms from
commodity hardware and IoT device, respectively. In our experiments, we used subsets of
publicly available Enron e-mail dataset.

4.3 Performance Evaluation and Comparisons

Tables 3 and 4 depict the experimental results obtained from our real cloud experiments. Com-
paring the simulation results in Table 5 with the full-fledged implementation results in Table 3
and Table 4 the differences are apparent. We observed that these differences are mainly due to
the memory accesses. For each Test operation, the server has to access and read the files con-
taining the searchable ciphertext. Another reason for this difference for NTRU-PEKS is the PRF
calls. However, since these are implemented with a very high-speed hash function (i.e., Blake2),
their impact is rather insignificant. In our real-life experiments, our NTRU-PEKS scheme is
14.93× and 17.87× faster than BCO in the PEKS and Test algorithms, respectively. However,
due to costly Gaussian Sampling, the Trapdoor algorithm is 7.65× slower than the one in BCO
scheme.

Figures 2 and 3 show the end-to-end delay when the receiver searches over the database, for
κ = 80 and κ = 192, respectively. As depicted, especially for κ = 192, there is a significant
difference due to the fact that Trapdoor algorithm (which is slower in our scheme) is only run
once for one search, whereas the Test runs linear with the number keyword-file pairs. Therefore,
we conducted experiments with varying sizes of database, up to 400,000 keyword-file pairs. For
400,000 keyword-file pairs, BCO algorithm takes 3.34 hours, whereas NTRU-PEKS takes 11.15
minutes. Both of these times are dominated by the Test computation on the server-side, since
the receiver generates and sends the Trapdoor only once for a each search.

We implemented PEKS on both the commodity hardware and IoT devices. We observed
significant improvements on the IoT device, wherein specifically, PEKS is 40.51× faster than
BCO in ARM Cortex A53. This difference is mainly due to the fact that our PEKS algorithm
does not require any expensive operations (e.g., exponentiation or pairing computation) and
matrix operations can be efficiently computed on a wide range of devices. Another advantage of
our scheme is the energy efficiency (longer battery life) on IoT devices. The energy consumption
of a device is linear with the computation time (E = V · I · t, where E = energy, V = voltage,
I = current and t = time). Therefore, with our NTRU-PEKS scheme, battery replacement cost
and cryptographic overhead on energy consumption highly decreases.

We observed that although parameter sizes for NTRU-PEKS are much larger than the pairing-
based counterpart, they do not significantly affect the communication delay. More specifically,
Tables 3 and 4 show that communication difference between NTRU-PEKS and BCO is only
around 10-15ms. The reason behind this is the round-trip delay time (RTT) from our moderate-
speed home network (which is located in the same state as the server, i.e., Oregon) to the
server is 25.23 ms and 26.78 ms , for commodity hardware and IoT device, respectively. With
a three way handshake in TCP, RTT dominates the total communication cost, resulting with
in an insignificant difference between our NTRU-PEKS and BCO. This shows that, although
NTRU-based schemes have larger parameters, their efficiency results in a lower end-to-end delay
as compared to their communication efficient counter parts (e.g., pairing-based schemes).
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4.4 Discussion

We present the first full-fledged implementations for PEKS schemes, and make our implemen-
tation open-sourced for further adoption and improvements. Our experiments showed that (i)
Simulated results may not reflect the real-life experiments in PEKS schemes. (ii) Test algorithm
dominates the total search time since it runs O(L) times (linear with number of keyword-file
pairs, L). (iii) The efficiency of PEKS algorithm is also crucial since it is to be run on energy-
constrained devices in IoT settings. (iv) Given that lattice-based schemes have larger parameters
and require significantly larger ciphertexts/trapdoors to be transferred, in a real cloud setting,
with a moderate speed network, the communication time difference with pairing-based schemes
could be insignificant.

For real-world cases with large databases, our NTRU-PEKS scheme seems to be the only
practical solution at this moment. We believe that this is one of the main aspects of our scheme
that makes it an attractive candidate to be implemented for real-world applications.
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