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Abstract

Daeman and Rijmen had derived the distributions of correlations between linear combinations of the input
and output of uniform random functions and uniform random permutations. We generalise their results by
deriving the distributions of correlations between arbitrary combinations of the input and the output of uniform
random functions and uniform random permutations.
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1 Introduction

One of the basic tools for analysing symmetric key ciphers is a possible correlation between linear combinations of
the input and output of a primitive. If this correlation is different from that of an idealised version of the primitive,
then a distinguishing attack becomes possible. Determining whether a distinguishing attack is indeed possible
requires the knowledge of the distribution of correlations for the idealised primitives. Two kinds of idealised
primitives are usually considered, namely uniform random functions and uniform random permutations. For
example, a uniform random permutation is an idealisation of a block cipher while a uniform random function is
an idealisation of the state to keystream map in a stream cipher.

The distributions of the correlations between linear combinations of input and output for uniform random
functions and uniform random permutations were derived in [4]. For the case of uniform random permutations,
the distribution was earlier stated without proof in [6]. The distribution of correlation between linear combina-
tions of input and output for uniform random permutation has proved to be useful in later work. This result
formed the basis for an alternative formulation of the wrong key randomisation hypothesis in linear cryptanaly-
sis [3] and has been followed up in later works [2, 1].

In this paper, we extend the results of [4] by considering correlation between arbitrary combiners of the
input and output of uniform random functions and uniform random permutations. For any input combiner and
any output combiner, the complete distribution of the correlation is derived. The result is more conveniently
explained in terms of the weight of the XOR of the input and the output combiner. In the case of a uniform random
function, if the output combiner is balanced, then we prove that this weight follows the binomial distribution; on
the other hand, if the output combiner is not balanced, then we derive bounds on the probability that the weight
deviates from its expected value. In the case of a uniform random permutation, we show that the distribution
of the weights of the XOR of the input and output combiner can be expressed in terms of the hypergeometric
distribution.
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2 Preliminaries

For two binary strings α and β of the same length, α ⊕ β will denote a binary string obtained by bitwise XOR
of α and β.

An m-variable Boolean function f is a map f : {0, 1}m → {0, 1}. The support of f , denoted supp(f), is
defined as follows.

supp(f) = {α ∈ {0, 1}m : f(α) = 1}.

The weight wt(f) of f is defined to be the cardinality of the support of f , i.e.,

wt(f) = #{α ∈ {0, 1}m : f(α) = 1}.

The function f is said to be balanced if wt(f) = 2m−1.
The imbalance of f will be denoted as Imb(f) and is defined as follows.

Imb(f) =
1

2
(#{α ∈ {0, 1}m : f(α) = 0} −#{α ∈ {0, 1}m : f(α) = 1}) = 2m−1 − wt(f).

Let f, g : {0, 1}m → {0, 1} be two Boolean functions. By f ⊕ g we denote the Boolean function h : {0, 1}m →
{0, 1} where h(α) = f(α)⊕ g(α) for all α ∈ {0, 1}m. The correlation between f and g is denoted as C(f, g) and
is defined to be

C(f, g) =
Imb(f ⊕ g)

2m−1
.

An (m,n) function S is a map S : {0, 1}m → {0, 1}n. Let φ : {0, 1}m → {0, 1} and ψ : {0, 1}n → {0, 1}.
Given S, φ and ψ, we define a Boolean function

fS [φ, ψ] : {0, 1}m → {0, 1}, where fS [φ, ψ](α) = φ(α)⊕ ψ(S(α)). (1)

The function φ is a combiner of the input of S while the function ψ is a combiner of the output of S. There
are no restrictions on φ and ψ and in particular, they are not required to be linear combiners. Both φ(·) and
ψ(S(·)) are m-variable Boolean functions. So, it is meaningful to talk about the correlation between these two
functions. This correlation will be denoted as CS(φ, ψ) and is equal to

CS(φ, ψ) =
Imb(fS [φ, ψ])

2m−1
= 1− wt(fS [φ, ψ])

2m−1
. (2)

So, CS(φ, ψ) measures the correlation between the combiner of the input as given by φ and the combiner of the
output as given by ψ. From (2), determining CS(φ, ψ) essentially boils down to determining wt(fS [φ, ψ]).

3 Case of Uniform Random Function

Let S be a function picked uniformly at random from the set of all functions from {0, 1}m to {0, 1}n. Such an
S is a uniform random (m,n) function. An equivalent way to view S is the following. Let α0, . . . , α2m−1 be
an enumeration of {0, 1}m. Let Xi = S(αi), i = 0, . . . , 2m − 1. Then the random variables X0, . . . , X2m−1 are
independent and uniformly distributed over {0, 1}n.

Proposition 1. Let S be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m. For 0 ≤ i ≤ 2m − 1, define Wi = fS [φ, ψ](αi).
Then Wi ∼ Ber(pi), where

pi =
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
. (3)

If ψ is a balanced Boolean function, then Wi ∼ Ber(1/2).
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Proof. Let Xi = S(αi). Since S is a uniform random function, Xi is uniformly distributed over {0, 1}n. We have

Wi = fS [φ, ψ](αi) = φ(αi)⊕ ψ(S(αi)) = φ(αi)⊕ ψ(Xi).

Let Yi = ψ(Xi). Then Yi is a binary valued random variable where Yi takes the value 1 if and only if Xi lies in
the support of ψ. Since Xi is uniformly distributed over {0, 1}n, the probability that Xi lies in the support of ψ
is wt(ψ)/2n. So, Pr[Yi = 1] = wt(ψ)/2n and Pr[Yi = 0] = (2n − wt(ψ))/2n. So,

Pr[Wi = 1] = Pr[φ(α)⊕ ψ(Xi) = 1]

= Pr[Yi = 1⊕ φ(αi)]

=
(1− φ(αi))wt(ψ) + φ(αi)(2

n − wt(ψ))

2n

=
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
= pi.

This shows that Wi follows Ber(pi). If ψ is a balanced Boolean function, then wt(ψ) = 2n−1 in which case
pi = 1/2 and so Wi follows Ber(1/2).

We are interested in the weight of the function fS [φ, ψ].

Proposition 2. Let S be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m and Wi = fS [φ, ψ](αi). Let W = wt(fS [φ, ψ]). Then
W =

∑2m−1
i=0 Wi.

Proof. The following calculation shows the result.

W = wt(fS [φ, ψ]) = #{αi : fS [φ, ψ](αi) = 1} = #{i : Wi = 1} =
2m−1∑
i=0

Wi.

Theorem 1. Let S be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. If ψ is a balanced Boolean function, then wt(fS [φ, ψ]) ∼ Bin(2m, 1/2).

Proof. From Proposition 2, wt(fS [φ, ψ]) = W =
∑2m−1

i=0 Wi where Wi ∼ Ber(pi) with pi given by (3). If ψ is a
balanced Boolean function, then pi = 1/2 and Wi ∼ Ber(1/2). Let α0, . . . , α2m−1 be an enumeration of {0, 1}m
and Xi = S(αi) as in Proposition 1. Note

Wi = fS [φ, ψ](αi) = φ(α)⊕ ψ(Xi).

Since the random variables X0, . . . , X2m−1 are independent, so are the random variables W0, . . . ,W2m−1. As a
result, W is a sum of 2m independent random variables each of which follows Ber(1/2). So, W ∼ Bin(2m, 1/2).

The special case of Theorem 1 where φ and ψ are non-trivial linear functions was proved in [4].
In the case where ψ is not a balanced function, pi takes either the value wt(ψ)/2n or (2n−wt(ψ))/2n according

as φ(αi) equals 0 or 1. So, the Wi’s are not identically distributed and hence W does not follow the binomial
distribution. In this case, W0, . . . ,W2m−1 is a sequence of 2m Poisson trials. It is possible to use the Chernoff
bound to get an estimate of the probability that W stays close to the mean.
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Theorem 2. Let S be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Then the expected value of wt(fS [φ, ψ]) is

µ =
2mwt(ψ) + 2nwt(φ)− 2wt(φ)wt(ψ)

2n
. (4)

Further, for any 0 < δ < 1

Pr [|wt(fS [φ, ψ])− µ| ≤ δµ] ≤ e−µδ2/2. (5)

Proof. Let Wi be as in Proposition 1 so that wt(fS [φ, ψ]) =
∑2m−1

i=0 Wi. From Proposition 1, Wi ∼ Ber(pi) and
so the expected value of Wi is pi. By linearity of expectation, the expected value of wt(fS [φ, ψ]) equals

2m−1∑
i=0

pi =
2m−1∑
i=0

wt(ψ) + φ(αi)(2
n − 2wt(ψ))

2n

=
2mwt(ψ) + wt(φ)(2n − 2wt(ψ))

2n

=
2mwt(ψ) + 2nwt(φ)− 2wt(φ)wt(ψ)

2n
.

As in the proof of Theorem 1, W0, . . . ,W2m−1 are independent and since Wi ∼ Ber(pi), these random variables
form a sequence of Poisson trials. The Chernoff bound applies (see Section A) leading to (5).

4 Case of Uniform Random Permutation

Let m = n and we consider the set of all bijections from {0, 1}n to itself, i.e., the set of all permutations of
{0, 1}n. There are 2n! such permutations.

Proposition 3. Let S be a permutation of {0, 1}n; let φ and ψ be n-variable Boolean functions. Let x be an
integer such that 0 ≤ x ≤ min(wt(φ),wt(ψ)). Then

#{α : φ(α) = 1 and ψ(S(α)) = 1} = x

if and only if
wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

Proof. Define

A0,0 = {α : φ(α) = 0, ψ(S(α)) = 0};
A0,1 = {α : φ(α) = 0, ψ(S(α)) = 1};
A1,0 = {α : φ(α) = 1, ψ(S(α)) = 0};
A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}.

The sets A0,0, A0,1, A1,0 and A1,1 are mutually disjoint; A0,0∪A0,1 = {α : φ(α) = 0}; A1,0∪A1,1 = {α : φ(α) = 1}
and so

#A0,0 + #A0,1 = 2n − wt(φ),
#A1,0 + #A1,1 = wt(φ).

(6)
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Further, A0,0 ∪ A1,0 = {α : ψ(S(α)) = 0}. Since S is a permutation, {α : ψ(S(α)) = 0} = {β : ψ(β) = 0}. So,
A0,0 ∪A1,0 = {β : ψ(β) = 0} and similarly, A0,1 ∪A1,1 = {β : ψ(β) = 1} leading to

#A0,0 + #A1,0 = 2n − wt(ψ),
#A0,1 + #A1,1 = wt(ψ).

(7)

Equations (6) and (7) imply that #A1,1 = x if and only if #A0,1 + #A1,0 = wt(φ) + wt(ψ)− 2x.
Note that the support of fS [φ, ψ] is A0,1 ∪ A1,0 and A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}. So, #{α : φ(α) =

1, ψ(S(α)) = 1} = x if and only if wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

From Proposition 3, given the functions φ and ψ, the possible weights that fS [φ, ψ] can take for any permu-
tation S of {0, 1}n are the elements of the set

{wt(φ) + wt(ψ)− 2x : 0 ≤ x ≤ min(wt(φ),wt(ψ))}. (8)

Suppose S is picked uniformly from the set of all permutations of {0, 1}n. We are interested in the probability
that fS [φ, ψ] takes a value from the set given by (8).

Theorem 3. Let S be a permutation of {0, 1}n; let φ and ψ be n-variable Boolean functions. Then for 0 ≤ x ≤
min(wt(φ),wt(ψ)),

Pr[wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(wt(φ)
x

)(2n−wt(φ)
wt(ψ)−x

)(
2n

wt(ψ)

) . (9)

If both φ and ψ are balanced functions, then

Pr[wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(
2n−1

x

)2(
2n

2n−1

) . (10)

Proof. Let α0, . . . , α2n−1 be an enumeration of {0, 1}n and let Xi = S(αi). Unlike the case where S is a uniform
random function, the random variables X0, . . . , X2n−1 are not independent. Instead, it is more convenient to
view these random variables in the following manner. Consider an urn containing balls labelled α0, . . . , α2n−1.
Balls are picked one by one from the urn without replacement and we number the trials from 0 to 2n − 1. Then
the random variable Xi is the label of the ball picked in trial number i.

Consider the random Boolean function g(α) = ψ(S(α)). A Boolean function is defined by its support. So,
it is sufficient to choose wt(ψ) balls from the urn and let the labels of these balls define the support of g.
From Proposition 3, the probability that wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x is equal to the probability that the
cardinality of the set

A1,1 = {α : φ(α) = 1 and ψ(S(α)) = 1} = {α : φ(α) = 1 and g(α) = 1}

is x.
To obtain this probability, we consider the following equivalent random experiment. Consider the urn as

before containing balls labelled α0, . . . , α2n−1. Further, say that a ball labelled αi is ‘red’ if φ(αi) = 1 and
otherwise it is ‘black’. Now, consider that wt(ψ) balls are drawn from this urn which defines the support of g.
The event that we are interested in is that x of these wt(ψ) are ‘red’ while the other wt(ψ)− x are ‘black’. The
probability of this event is the probability that #A1,1 = x which is given by the right hand side of (9). From
Proposition 3, it follows that wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x if and only if #A1,1 = x. This shows (9).

In the case where both φ and ψ are balanced functions, both their weights are equal to 2n−1. So, substituting

2n−1 for wt(φ) and wt(ψ) in (9) and using
(

2n−1

2n−1−x
)

=
(
2n−1

x

)
yields (10).

The expression given on the right hand side of (9) is the probability mass function of the hypergeometric
distribution. In the special case where φ and ψ are non-trivial linear functions, the distribution given by (10)
was proved in [4].
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A Chernoff Bounds

We briefly recall the Chernoff bound. This result can be found in standard texts [5].

Theorem 4. Let X1, X2, . . . , Xλ be a sequence of independent Poisson trials such that for 1 ≤ i ≤ λ, Pr [Xi = 1] =
pi. Then for X =

∑λ
i=1Xi and µ = E [X] =

∑λ
i=1 pi the following bounds hold:

For any 0 < δ ≤ 1, Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3. (11)

For any 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2. (12)


