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Abstract. In this work, we introduce a generalized concept for low-
latency masking that is applicable to any implementation and protection
order, and (in its extremest form) does not require on-the-fly random-
ness. The main idea of our approach is to avoid collisions of shared vari-
ables in nonlinear circuit parts and to skip the share compression. We
show the feasibility of our approach on a full implementation of a one
round unrolled Ascon variant and an AES S-box case study. We discuss
possible trade-offs to make our approach interesting for practical imple-
mentations. As a result we obtain a first-order masked AES S-box that is
calculated in a single clock cycle with rather high implementation costs
(17.8 kGE), and a two-cycle variant requiring only 6.7 kGE. The side-
channel resistance of our Ascon S-box designs up to order three are
then verified using the formal analysis tool of [6]. Furthermore, we intro-
duce a taint checking based verification approach that works specifically
for our low-latency approach and allows us to verify large circuits like
our low-latency AES S-box design in reasonable time.

Keywords: masking, low latency, AES, hardware security, threshold
implementations, domain-oriented masking

1 Introduction

Boolean masking is one of the most popular and well studied countermeasures
against side-channel analysis attacks like differential power analysis [16] or elec-
tromagnetic emanation analysis [20]. The protection against these kinds of at-
tacks, however, does not come for free. Masking hardware implementations re-
quires additional circuitry which is partially spent on masking the actual imple-
mentation but also for producing randomness to perform resharing and secure
compression in nonlinear parts of the circuit. A lot of research over the last years
has thus focused on reducing the hardware overhead. Either by making the mask-
ing itself more area efficient but also by reducing the amount of required online
randomness [3–5, 12, 13, 21]. Reducing the amount of randomness seems to go
hand in hand with the need for a better control over the glitching behavior of
circuits [2, 12] which requires more registers and thus naturally introduces more
latency.



In practice there exist many applications in which a short response time of the
system as well as protection against side-channel analysis is indispensable. The
research in the area of masking over the last years, however, has only marginally
addressed low latency as a design goal. Most recently, Arribas et al. [1] intro-
duced a first-order protected and two-round unrolled threshold implementation
of Keccak and Ghoshal et al. [10] introduced different variants of a first-order
protected Boyar-Peralta AES S-box which requires between 3 and 4 cycles per
S-box calculation and is thus the construction with least latency in the litera-
ture. Other existing works either require more cycles or have higher randomness
requirements [12, 13, 22]. To the best of our knowledge, there exists no masked
implementation of the AES S-box that requires less than three cycles up to now
and no generic scheme that covers protection for low-latency applications.

Our contribution. In this paper, we give answers to the intriguing question
how can we trade-off randomness usage and chip area against less latency in
hardware. For this purpose, we first introduce a generalized concept for low-
latency masking that builds on the domain-oriented masking scheme [13]. The
approach is applicable to all security sensitive circuits and is generic in terms
of protection order. We then show the feasibility of our idea by applying the
concept to a one round unrolled masked implementation of the authenticated
encryption scheme Ascon, and analyze the overhead over existing generically
protected designs in terms of latency, chip area, and randomness consumption.
Since Ascon was especially designed for efficient protection against side-channel
attacks, we then target the AES S-box which has a higher algebraic degree
and has proven to be a meaningful benchmark for the efficiency of masking
algorithms.

We show three different designs of a masked AES S-box. The first S-box is
purely combinatorial and thus cannot only be evaluated in one clock cycle, but
even additional linear operations at the outputs are possible within the same
clock cycle. The first-order masked S-box variant requires around 17.8 kGE and
requires no additional online randomness (even for higher orders). The output
shares, however, are increased from d+1 shares (for the S-box inputs) to 2(d+1)7.
The second design keeps the number of shares at d + 1 by performing a share
compression in the middle of the S-box and at the outputs. This variant has
lower chip area (6.7 kGE) requirements but requires 416 bits of randomness per
S-box calculation to keep d + 1 shares. Both designs can be generically scaled
to the desired protection order. Finally, the security of our approach is first
discussed and then analyzed using the formal analysis tool of [6] and a taint
checking approach specifically designed for our low-latency approach.

In Section 2, we first give an introduction to Boolean masking and the
domain-oriented masking scheme which we use as the basis of our approach.
Our low-latency approach is then presented in Section 3 in which we show that
masking not necessarily introduces latency or requires online randomness. In
Section 4, we apply this approach to the Ascon S-box and discuss some po-
tential pitfalls. We use this S-box construction to implement a round unrolled
implementation of Ascon with generic protection and compare it to existing
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implementations. A single cycle AES S-box is then introduced in Section 6 and
trade-offs are discussed which lead to a two cycle AES S-box with less hardware
requirements. The analysis of the side-channel resistance of our implementations
is performed in Section 8 before we draw conclusions in Section 9.

2 Introduction to Masking and Methodology

In general, masking works by disguising side-channel information of sensitive
variables and intermediates by randomizing their representation at runtime. By
randomizing the representation of variables, the side-channel information pro-
duced during the computation on these variables is made independent from the
underlying data up to a certain degree. In the following, we use a sharing based
masking notation in which the information is assumed to be split into a num-
ber of randomly created and uniformly distributed shares representing e.g. the
underlying variable x.

For a Boolean masking with d+1 fresh random shares, where d is the so-called
protection order, we can represent a masked variable x as the sum over its shares
xi so that at all times x =

∑d
i=0 xi is fulfilled. The sharing is performed in such

a way that only the combined information on all shares leak any information on
x. All operations are then performed on the shares xi in such a way that at no
time any intermediate result is statistically dependent on more than one share
of x to guarantee security in the so-called probing model of Ishai et al. [14].

Probing model. The probing model introduced by Ishai, Sahai and Wagner is
the de facto standard model in which the side-channel resistance of a Boolean
masked circuit is analyzed. Informally speaking, a circuit is said to be dth-order
secure in the probing model, if an attacker with the ability to place up to d
probing needles on to any wire or gate of a circuit (to continuously record the
signal transitions over time) is not able to combine the recorded information to
reveal any (unshared) critical information.

For example, the sharing of the variable x on its own, which consists d + 1
shares, is by definition dth-order secure in the probing model because it would
require more than d needles to collect all d + 1 shares. The inherent goal of a
masked circuit is to keep this independence throughout the entire circuit. While
keeping this independence is trivial for linear operations, for which operations
can be performed on all shares separately, nonlinear operations usually require
more attention. To manage the rather complicated handling of nonlinear opera-
tions, different masking schemes have been introduced over the years that help
in designing secure circuits. For the rest of the paper we consider and extend
the ideas behind the so-called domain-oriented masking (DOM) scheme [13].

Domain-Oriented Masking. The basic idea of domain-oriented masking is
based on the assumption that any circuit which can be separated (shared) into
d+ 1 completely independent circuits is trivially secure in the probing model if
each of these circuits uses at most one share per security critical variable. To
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achieve this separation each circuit is therefore associated with a certain share
index which is called the domain. We use the term domain and the associated
subcircuit interchangeably. For example the fist domain is associated with the
share index 0 and is uses only shares of security critical variables with this index
(e.g. x0, y0).

While this domain separation approach works for linear operations in a
straightforward manner, nonlinear operations require the communication across
domain borders. For example, the nonlinear calculation of the finite field multi-
plication x · y in shared form (assuming d + 1 shares per variable), requires to

calculate
∑d

i=0

∑d
j=0 xi · yj with respect to the probing model. In DOM this is

solved by using a DOM multiplier that follows the domain separation. A first
order variant (d = 1) is shown in Figure 1.
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Fig. 1. First order DOM multiplier for independetly shared inputs

According to the DOM scheme the circuit is split (vertically) into the domain
0 and domain 1 which are colored black and blue, respectively. Horizontally the
circuit is split into three steps called calculation, resharing, and compression.
During the calculation step, the so-called inner-domain multiplication terms,
which use only shares with the same share index (x0 · y0 and x1 · y1), do not
violate the domain separation and can thus securely be used in their respective
domains. The red parts represent the so-called cross-domain terms (x0 · y1 and
x1 · y0). These terms mix different domains and are potentially insecure due to
what we refer to as variable collisions and look at more deeply in Section 3. The
potential flaw can be easily observed if we assume the calculation of x · x with
the same DOM multiplier circuit and the same sharings for both operands. We
denote that the nonlinear combination of the same variable (a variable collision)
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is not necessarily intended by the designer of the circuit and can happen due to
temporary logic states of gates so-called glitches.

Both cross-domain terms of the DOM multiplier would then calculate x0 ·x1
which violates the probing model by combining all shares of x. If the dependency
is only temporary, register can be used in front of the multiplier to hinder the
propagation of the glitches, otherwise if the dependency is permanent, a reshar-
ing needs to be performed. For the remainder of this section, we assume that
we have an independent sharing for the inputs of the multiplier. The resulting
cross-domain terms are thus inherently secure in the probing model.

Due to efficiency reasons (to save registers and logic gates), a compression
of the multiplication terms is usually performed also in other existing masked
multiplication algorithms that operate on d+ 1 input shares. This compression
step is also performed in the depicted DOM multiplier by summing up the mul-
tiplication terms on the output. The result q is then again shared with only d+1
shares. To allow the secure summing of the multiplication terms, a resharing step
is performed by adding fresh randomness r to the two cross-domain terms. The
subsequent use of a register ensures that the resharing is active before the terms
are compressed on the output of the multiplier and suppresses the propagation
of glitches. This resharing allows to securely integrate the cross-domain terms
without violating the domain separation requirement of DOM.

The introduced multiplier as well as the domain separation can be generically
extended to any desired protection order. For more details we refer the interested
reader to [13]. In the next section, we extend the idea of domain separation and
leverage it to reduce the latency in masked circuits.

3 Our Low-Latency Approach

As denoted in Section 2, the causes which hinder the calculation of a DOM
masked circuit in less clock cycles are: 1) the compression to d + 1 shares af-
ter nonlinear operations (like the DOM multiplier in Figure 1) which require
registers for the resharing of the cross-domain terms, and 2) the temporary or
permanent dependencies (variable collisions) at the inputs of a nonlinear circuit
parts. Our low-latency approach thus works by skipping the share compression
and avoiding variable collisions at the input of nonlinear functions.

Compression skipping. Our main observation is that the resharing and com-
pression to d + 1 shares (and therefore also the randomness and additional cir-
cuitry) is not a necessity from the probing model itself. It is solely performed
for practical reasons and to some extend to make the result independent from
the shared operands without having an explicit mask refreshing. We extend the
domain separation requirement of the DOM approach insofar that we still con-
straint each domain to use at most one share per variable but with the addition
to allow domains with mixed share indices.

For example, the shared multiplication q = x · y in Figure 1 without a sub-
sequent resharing and compression step thus results in four share domains for
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the result variable q (Figure 2). Each domain contains only one multiplication
term from the calculation step. Any subsequent linear operations on the shares
of q that only involve shares that are already used in the respective domain can
be performed without violating the probing model. If q is multiplied by another
variable, e.g. z with d + 1 shares, the number of shares and domains grow to
(d+1)3 and so on. To keep this exponential blowup of shares and domains within
reasonable bounds, the number of consecutive nonlinear operations needs to be
minimized, or otherwise at some point a secure share compression needs to be
performed if the blowup becomes unbearable.
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Fig. 2. First order low-latency multiplication with compression skipping, resulting in
four domains

The security in the probing model for the compression skipping approach
is given because any masked circuit that can be divided into at least d + 1
independent subcircuits (without any wires to the other subcircuits), where each
subcircuit uses at most one of the d+1 input shares from each variable, requires
at least d+ 1 probes to combine all shares of one variable.

Avoiding variable collisions. The up to now tacit assumption that allows for
the nonlinear combination of shares without compression and mask refreshing
is that all operands have independent sharings. Meaning that it is relatively
straightforward to apply this approach to a masked circuit that calculates x ·y ·z
if all involved shares are produced using independent and fresh randomness. The
calculation of (x ·y) ·x, on the other hand, requires more attention (see Figure 3,
left). One of the resulting multiplication terms would be x0 · y0 · x1 (q0,0,1)
which brings two shares of x together and thus violates the domain separation
requirement. This circumstance is indicated in Figure 3 by the different coloring
of the shares for x which when combined result in an insecure sharing (colored
red). One approach to circumvent the violation of the probing model, that is
for example used by the threshold implementations scheme, is to use more than
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Fig. 3. Example for an insecure first-order masked circuit calculating (x · y) · x (left),
and a secure circuit (x · y) · x′ (right). The shares of x are colored green (x0) and blue
(x1) for clarity reasons.

d+1 shares and to ensure that in the worst case the probing attacker gets access
to at most d shares when using up to d probing needles. Efficient sharings that
fulfill the properties required by the TI [19] scheme (correctness, independence,
and uniformity) at the same time are, however, not trivial to find.

Instead of increasing the share count per variable, we propose the duplication
of colliding variables (and gates) by using multiple shared instances of the same
variable with independent sharings. Instead of calculating (x · y) · x we thus

calculate the equivalent (x ·y) ·x′ where x =
∑d

i=0 xi =
∑d

i=0 x
′
i, and all involved

shares are picked independently and uniformly at random. As Figure 3 (right)
shows, the mixing of the shares of x is circumvented this way. While this seems
on first sight as if we are using a sledgehammer to crack a nut, it has the same
randomness costs for sharing a variable than e.g. a first-order (d = 1) TI with
three shares and does not require additional (online) randomness. We would thus
share x into x0 = x ⊕ r0 and x1 = r0, and x′ into x′0 = x ⊕ r1 and x′1 = r1.
The probing security for this simple example can be easily observed by writing
down all resulting shares qi,j,k = xiyjx

′
k. Since none of the shares of q contain

two shares of the same variable, the sharing is secure.
More generally, the probing security of any circuit with d + 1 input shares

and protection order d is given, if at no point in the circuit there exists a path
from one share of a variable to another share of the same variable (assuming
that all variables are independently shared). We will also use this circumstance
for the taint checking based verification in Section 8 which allows us to perform
a fast verification of the probing security of a circuit.

Resolving collisions caused by gates. When looking at complex circuits
then the collisions can no longer entirely be resolved by duplication of the input
variables. For the purpose of illustration, we consider a purely combinatorial
unmasked circuit (Figure 4). We note that collisions that would be caused when
a circuit is masked using the DOM scheme are already evident in the unshared
circuit. The first collision in this circuit (1) is caused because there exists a path
(over other gates) from one input of the circuit to both inputs of a nonlinear
gate. Because this collision is directly caused by the circuit input i3, we could
simply duplicate the input that causes the collision as before and connect the
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Fig. 4. Example for collisions directly caused by inputs (1) and collisions caused by
gates (2), collisions (left) and resolved collisions (right).

copy (i′3) accordingly (Figure 4, right). The second collision is caused by a gate
(2) that has a path to both inputs of a nonlinear gate. In this case, simply
duplicating the inputs would not be enough to avoid this collision. Instead the
gate that causes the collision needs to be duplicated including its entire fan-in
circuity and their inputs. The output of the duplicated circuit then needs to be
used in one path instead of the output wire of the gate that caused the collision.

In the next sections we demonstrate the suitability of our low-latency masking
approach on practical examples and discuss trade-offs and possible pitfalls.

4 A Low-Latency Ascon S-box

As a first prove of concept we introduce a masked Ascon S-box that evaluates
in a single clock cycle while existing d + 1 share implementations [12] require
at least three clock cycles. The S-box is equivalent to the Keccak S-box except
for an affine transformation on the input that produces variable collisions which
makes it a viable first practical example for our approach. We first transform
the unshared S-box circuit to free the circuit from variable collisions, and then
share the S-box according to our low-latency approach.

Collision-free S-box. The structure of the S-box is depicted in Figure 4, which
corresponds to Equation 1.

a′′ = (a⊕ e)⊕ (¬b ∧ (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)
b′′ = b⊕ (¬ (b⊕ c) ∧ d)⊕ (a⊕ e)⊕ (¬b ∧ (b⊕ c))

c′′ = ¬
(

(b⊕ c)⊕ (¬d ∧ (d⊕ e))
)

d′′ = d⊕ (¬ (d⊕ e) ∧ (a⊕ e))⊕ (b⊕ c)⊕ (¬d ∧ (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)

(1)

By looking at the equations one can observe that there is a variable collision
in the AND gates in five cases (underlined parts in Equation 1, cf. Figure 3).
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Fig. 5. Ascon’s original S-box, with collisions in a to d

These are the nonlinear gates that would produce a violation in the probing
model due to glitches in case we would share the S-box (see Section 3). For
example (¬b ∧ (b⊕ c)) in a′′ combines the variable b with itself in an AND gate
which would combine shares with different share index (e.g. b0b1) when the S-box
is shared and thus create a violation.

To avoid collisions in the AND gates we provide duplicate the signals b, d, and
e (b′, d′, and e′) and replace one of the operands of the AND gates accordingly
as shown in Equation 2.

a′′ = (a⊕ e)⊕ (¬b′ ∧ (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)
b′′ = b⊕ (¬ (b⊕ c) ∧ d)⊕ (a⊕ e)⊕ (¬b′ ∧ (b⊕ c))
c′′ = ¬ ((b⊕ c)⊕ (¬d′ ∧ (d⊕ e)))
d′′ = d⊕ (¬ (d⊕ e) ∧ (a⊕ e′))⊕ (b⊕ c)⊕ (¬d′ ∧ (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)

(2)

Sharing of the S-box. Since the S-box description is now free from any variable
collisions, the S-box can now safely be shared following our low-latency approach.
We assume that each of the five inputs and the two copies are shared using d+1
shares. Because there is a single layer of AND gates the shares and thus the
domains for each of the outputs grow from d + 1 to (d + 1)2, and we use two
indices (i and j) to denote the according output share.
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a′′i,j =

{
(ai ⊕ ei)⊕

(
¬ib′i ∧ (bi ⊕ ci)

)
⊕ (di ⊕ ei)⊕

(
¬i (ai ⊕ ei) ∧ bi

)
, if i = j.(

¬ib′i ∧ (bj ⊕ cj)
)
⊕
(
¬i (ai ⊕ ei) ∧ bj

)
, otherwise.

b′′i,j =

{
bi ⊕

(
¬i (bi ⊕ ci) ∧ di

)
⊕ (ai ⊕ ei)⊕

(
¬ib′i ∧ (bi ⊕ ci)

)
, if i = j.(

¬i (bi ⊕ ci) ∧ dj
)
⊕
(
¬jb′j ∧ (bi ⊕ ci)

)
, otherwise.

c′′i,j =

{
¬i
(
(bi ⊕ ci)⊕

(
¬id′i ∧ (di ⊕ ei)

))
, if i = j.(

¬id′i ∧ (dj ⊕ ej)
)
, otherwise.

d′′i,j =

{
di ⊕

(
¬i (di ⊕ ei) ∧ (ai ⊕ e′i)

)
⊕ (bi ⊕ ci)⊕

(
¬id′i ∧ (di ⊕ ei)

)
, if i = j.(

¬i (di ⊕ ei) ∧
(
aj ⊕ e′j

))
⊕
(
¬jd′j ∧ (di ⊕ ei)

)
, otherwise.

e′′i,j =

{
(di ⊕ ei)⊕

(
¬i (ai ⊕ ei) ∧ bi

)
, if i = j.(

¬i (ai ⊕ ei) ∧ bj
)
, otherwise.

(3)

For each output variable we consider two cases:

1) The case i = j covers the inner-domain terms where only variables with same
share index appear. To ensure correctness of the sharing the negation e.g. ¬i
is only effective if the corresponding variable in the superscript is equal to zero
such that only the first share of one variable is inverted.

2) For the remaining case we need to be more careful to fulfill the domain
separation requirement. By the duplication of the according inputs we ensured
that there are no two paths for any of the input variables that are combined in
a nonlinear AND gate, which would result in a flaw that could not be avoided in
this case. However, for linear gates we still need to ensure that we do not combine
shares with different share index from the same variable in the same domain
(domain separation requirement). For example (b′i ∧ (bj ⊕ cj))⊕ ((ai ⊕ ei) ∧ bj)
in a′′ would produce a flaw in case we would switch the share index variable of one
of the b variables (i to j) in this equation so that we have (. . . (bi . . . ))⊕ ((. . . bj).
For this reason we also need to set the indices in b′′ and d′′ for the last AND
gate terms accordingly.

The correctness of the sharing is given by the fact that the sums over i and
j over each output variable result in Equations 1 when b′ is set to b, d′ is set
to d, and e′ is set to e. The security is given by the fact that we do not have
any domain crossings (as verified in Section 8), which also needs to be ensured
for the remaining circuitry in the Ascon circuit that we introduce in the next
section.

5 A Low-Latency Variant of Ascon

In this section we integrate the low-latency S-box design into a round unroled
variant of Ascon-128. The sponge mode for the data encryption and authenti-
cation is depicted in Figure 7, in which the round transformation p is performed
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Fig. 7. Data encryption and authentication with Ascon

iteratively either twelve (p12) or six (p6) times on the state in each round. One
round transformation consists of three parts p = pL ◦ pS ◦ pC . The linear round
constant addition pC followed by the S-box layer pS (Figure 6, left) and the lin-
ear transformation layer pL (Figure 6, right). Since the S-box layer in Ascon is
only preceded by linear addition of key or data, and only followed by the linear
transformation layer (which both can be securely realized by only operating on
each share separately), the shared S-box description from the last section can
now be used to implement a full transformation round of Ascon without any
registers in between.

For sake of completeness, we remark that the combination of the shares
created by the shared S-box in Equation 3, e.g. of a′′ and b′′, would not be secure
because different share indices are used for some variables (the term bj⊕cj in a′′

collides with the term bi⊕ci in b′′). However, this is not an issue for the one round
unrolled Ascon variant because the S-box is calculated column wise over the
state (as shown in Figure 6, left) and is only followed by a linear transformation
that operates inside one state row (right). Independence of the cipher rounds is
ensured by a resharing after each round transformation.

Design description. Figure 8 depicts our top module of the Ascon core. The
structure is based on the one used in [12] for which the sources are available
online [11]. The majority of changes are done in the state module (right). The
round transformation is no longer distributed over (at least) three clock cycles
but is performed in a single step. Because of the S-box layer the amount of shares
increases from d+1 to (d+1)2 for the linear layer which is followed by a remasking
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according to the CMS scheme of Reparaz et al. [21]. The CMS remasking requires
one fresh random bit per share which amounts to 8 · 64 · (d+ 1)2 bits in total for
our design. Before the compression to d+1 terms can be performed, the (d+1)2

refreshed shares are stored in the state registers which includes copies needed for
the S-box layer in the next round transformation. The number of state registers
is therefore increased from 5 · 64 · (d + 1) to 8 · 64 · (d + 1)2 compared to [12]
which is partially compensated by the registers which are not required for the
S-box layer.

Another change affects the key storage which now needs to supply an ad-
ditional copy of the key since the key is combined with the state during the
initialization and the finalization (see Figure 7) and is used in parts of the state
that need to be copied for the secure S-box transformation.

Results and comparison. The post-synthesis results for a 90 nm Low-K UMC
process with 1 V supply and a 20 MHz clock synthesized with the Cadence En-
counter RTL compiler v14.20 of the low-latency designs are given in Table 1.
The design is generic in terms of protection order (d), but since the number of
registers grows quadratically with the protection order, we only considered re-
sults up to order five. For all protection orders only six cycles per encryption or
decryption are required which is three to seven times less than the (64 parallel S-
boxes) DOM and UMA designs in [12]. Unrolling one round produces much more
combinatorial delay which results in a lowered maximum clock frequency. Nev-
ertheless, also the throughput is in all cases increased over related work. While
for first-order the throughput is only slightly increased, the difference becomes
much more significant for oder five for which the throughput is almost doubled
over the DOM design and 3.5 times higher than for the UMA design. The price
for the reduced latency is an increased chip area (about 15 kGE overhead for
the first-order variant, and double the amount of area over DOM for order five),
and an increased randomness consumption which is between 5.2 (UMA, order
five) and 6.4 (DOM/UMA, first order) higher.

Discussion. We admit that the randomness requirements for the higher-order
variants become very high but we denote two things:
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1) Our low-latency approach offers a design choice that a designer of a masked
circuit can use to trade-off area and randomness against less latency. We used one
extreme corner case to demonstrate the feasibility of the approach by targeting
one cycle per round transformation. A designer of course could also target a two-
cycle variant by using the resharing e.g. after the S-box or by inserting registers
after the affine transformation in the S-box to save randomness and area. We
discuss this in more detail for the AES S-box in the next section.

2) The CMS resharing function is probably not the ideal choice. A DOM re-
sharing, for example, could possibly reduce the randomness amount, e.g. for first
order by a factor of 4 which would reduce the randomness to 512 bits per cycle.
On the other hand, using the DOM resharing would require a deeper analysis
of the design over at least two rounds, while the CMS resharing separates the
rounds by resharing all bits of the state before the next round starts. Therefore,
we made the choice to use the CMS resharing at this point and denote the use of
a more efficient resharing function as one interesting practical extension of our
work.

Table 1. Results for Ascon-128 with once cycle per round (64 S-boxes)

Design Size Cycles Max. Throughput Randomness
[kGE] [Cycles/Round] [Gb/s] [bits/cycle]

1st-order 42.75 1 2.77 2,048

2nd-order 90.94 1 3.35 4,608

3rd-order 153.91 1 3.34 8,192

4th-order 238.30 1 2.59 12,800

5th-order 339.82 1 2.99 18,432

Related work

1st-order UMA[12] 27.18 3 2.25 320
1st-order DOM[12] 28.89 3 2.25 320

5th-order DOM[12] 161.87 3 1.86 4,800

5th-order UMA[12] 220.01 7 0.85 3,520

6 A Low-Latency Masked AES S-box

The efficient (masked) implementation of the AES S-box has proven to be a diffi-
cult practical problem and a huge variety of works exist on S-box constructions.
Most of the recent works on masked AES implementations use the S-box design
of David Canright [8] as basis. The original design goal of Canright’s S-box de-
sign is low chip area for an unmasked implementation which not automatically
results in the lowest area costs for a side-channel protected implementation. For
our low-latency approach the maximum logic depth and in particular the non-
linear gate depth (number of AND gates or GF multipliers in the logic path)
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seems to be the natural major design criterion because at each nonlinear gate
the number of shares is increased. The S-box design of Boyar and Peralta [7]
addresses low logic depth which results in a total logic depth of 16 and a non-
linear gate depth of 4. This design has most recently been used in another work
on low-latency masking by Ghoshal et al. [10] which has three to four cycles
latency. Canright’s S-box on the other hand has a logic depth of 25 to 27, and
a linear gate depth of 4 (in the variant as it is used by most masked implemen-
tations). Another important aspect that needs to be taken into account for our
approach is the number of bit collisions because this determines the number of
input copies we need to provide to guarantee collision freeness.

Choosing the most promising S-box design. Because analyzing a circuit
with respect to its collision behavior is a task that is rather time consuming
we developed a tool that simply traces all inputs and gate outputs through a
given circuit and checks for conflicts. We analyzed the Canright S-box (original
design), the Boyar-Peralta S-box and the design of Edwin NC Mui [18]. As it
shows, even given that fact that the Boyar-Peralta S-box was designed for low
circuit depth it has lots of gate dependencies which require lots of sub-circuit
copies and input copies. Furthermore, the Canright and the Mui S-box designs
do not break down the complete design of the AES S-box to single gates but
consist of larger self-contained structures like Galois field multipliers which can
be shared more efficiently than by sharing each AND gate separately. The circuit
which showed the least dependencies is the design of Mui for which we then chose
to take it as basis for our design. However, we note that we do not consider this
choice of the S-box or our low-latency implementations of it to be optimal.

6.1 “Zero Latency” AES S-box

X
Input 
Transf.

GF(16)
Mult.

x2 x∙λ
GF(16)
Mult.

GF(16)
Mult.

Output
Transf. Y

X' Input 
Transf.

4 Copies

X''
Input 
Transf.

GF(16)
Inverter

1. Compression
(optional)

2. Compression
(optional)

Fig. 9. Mui S-box design (black and red parts are from the original design), gray
dotted paths and elements replace the red paths to which they are connected in the
collision-free design

The design of Mui is depicted in Figure 9. The black and red (security critical)
paths correspond to the original design by Edwin NC Mui. The gray dotted
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circuits elements are used for the collision-free S-box design and replace the
red paths. For the design of the S-box without collisions we took an iterative
approach for which we implemented the circuit from the inputs onwards to the
next nonlinear part of the circuit and checked for collisions. We thus also split
the explanation into three parts.

S-box inputs to inverter. After the input transformation that maps the S-
box input x, which is interpreted as a polynomial in GF (256), to two elements
in GF (16) the transformed input is split into two halves. The two halves are
nonlinearly combined in the GF (16) multiplier. Since the linear input mapping
and the XOR in front of the first GF multiplier mixes a lot of the input bits
(cf. [18] for details), it requires to duplicate all bits of x (x′) except for one
(x′5 = x5) and the circuitry that causes the flaw (the grayed and dotted input
mapping). Otherwise an input collision would be caused in the multiplier as
indicated by the red wire. For the shared S-box variant the number of shares is
increased from d+ 1 to (d+ 1)2 after the multiplier and the linearly transformed
parts (x2 and xλ) are added with respect to their share domain.

GF(16) inverter. In Mui’s S-box design the GF (16) inverter is given as
Boolean equation instead of finite field arithmetic as e.g. in Canrights S-box.
The mathematical description is stated in Equation 4. The inversion in GF (16)
results in collisions for all S-box input bits which requires to separate the cal-
culation of all input bits of the inversion by copying the fan-in circuit (dotted
gray hexagon, “4 Copies”) four times including the changes as described above.
Up to this point the S-box circuit requires in total four full copies of the input
x and four partial copies (x′, each bit except for x5) to avoid collisions.

a′ = a⊕ abc⊕ ad⊕ b
b′ = abc⊕ abd⊕ ad⊕ b⊕ bc
c′ = a⊕ abc⊕ acd⊕ b⊕ bd⊕ c
d′ = abc⊕ abd⊕ ac⊕ acd⊕ ad⊕ b⊕ bc⊕ bcd⊕ c⊕ d

(4)

Different from the Ascon S-box example the equations for the inverter are
free from any internal collisions of the inverter inputs (there is no path from one
input variable to both inputs of an AND gate). In order to avoid the combination
of two or more shares of one input for the shared S-box representation, care
needs to be given also for the linear gates. Again we avoid collisions in the linear
parts by associating with each variable one share index which we keep for the
entire calculation. We thus follow and consequently extend the domain-oriented
masking scheme in the sense that we create mixed domains (different indices
per variable in the same domain) with which we associate at most one share per
variable, and keep this association for the entire circuit. To keep the number of
mixed domains to a minimum we try to use as less share indices as possible.
However, as can already be observed in the underlined parts of the unshared
calculation of d′ this is not always possible.
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Reduced example for flawed indexing. To demonstrate the resulting problem for
d′ in the shared variant we consider a reduced example that contains only the
problematic parts:

q = abc⊕ abd⊕ acd

If we want to calculate the shared representation of q we need to combine all
shares (given by the indices i, j, and k) of the variables connected by an AND
gate as given in following example. We assume, as for the inverter inputs, that
the input share count is already increased to (d+ 1)2.

q(i,j,k) = aibjck ⊕ aibjdk ⊕ aicjdk
The problem arises in the XOR gates because we combine shares from the

same variable c one time with the share index k and another time with index
j which violates the mixed domains assumption. Because there is no way to
overcome this issue by associating the share indices differently the calculation
is split into two parts. Splitting up the calculation in two parts as shown in
Equation 5 increases the amount of shares from (d+ 1)2 to 2(d+ 1)6 (the curly
braces indicate a concatenation of shares).

q(i,j,k) = {aibjck ⊕ aibjdk, aicjdk} (5)

By applying this solution to the equation of the inversion (Equation 4), we
can denote the sharing of the inverter as in Equation 6. The curly braces under
the equations ensure correctness of the sharing and denote that certain terms
are only present when the stated indices are zero.

a′(i,j,k) = a(i)︸︷︷︸
j=k=0

⊕ a(i)b(j)c(k) ⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

b′(i,j,k) =a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

c′(i,j,k) ={ a(i)︸︷︷︸
j=k=0

⊕a(i)b(j)c(k) ⊕ b(j)︸︷︷︸
i=k=0

⊕ c(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)d(k)︸ ︷︷ ︸
j=0

}

d′(i,j,k) ={a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)c(k)︸ ︷︷ ︸
j=0

⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

⊕ c(k)︸︷︷︸
i=j=0

⊕ d(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)c(j)d(k)}

(6)

Final multiplier stage to output transformation. For the final multiplier
stage we avoid collisions by using an additional set of freshly masked copies
of the S-box inputs (x′′, with d + 1 shares). These copies are then combined
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with outputs of the GF (16) inverter in the multipliers. Because these multipli-
cations happen in parallel and no nonlinear transformation follows in the S-box,
only one additional copy of the inputs x′′ suffices for both multiplications. The
adjacent linear transformations are applied share wise and with respect to the
share domains to avoid collisions at this stage. Up to this point no additional
online randomness or registers are required. However, the number of shares is
increased to 2(d + 1)7 at this point. We call this variant the “zero latency”
variant which denotes that further linear operations on the output shares (like
ShiftRows, MixColumns, or AddRoundkey) are still possible within the same cy-
cle. A share compression is thus not taken into account for this variant. The
first-order protected zero latency S-box requires 17.83 kGE of chip area for a
90 nm UMC process with a maximum clock frequency of 228 MHz.

6.2 two-cycle variant

The randomness and chip area costs for the zero latency S-box are admittedly
very high given the fact that a one round unrolled AES requires at least 16 of
these S-boxes. The costs can be reduced when an intermediate resharing and
compression step is performed after the inverter in Figure 9. The number of
shares is thus reduced from 2(d+ 1)6 to d+ 1 before the last two multiplications
are performed which saves many of the area consuming GF (16) multipliers and
linear transformations at the output. The final compression requires 8(d + 1)2

fresh random bits. In total this variant requires 6(d + 1)6 + 8(d + 1)2 random
bits (416 bits for first order protection) and the chip area is reduced to 6.7 kGE.
For second order, the amount of randomness is increased to 4,446 bits and the
chip area requirement to 57 kGE.

7 Summary of the AES S-box Results and Comparison

A summary of the results for our variants and related work is given in Table 2. All
of our stated results are post-synthesis results for a 90 nm Low-K UMC process
with 1 V supply and a 20 MHz clock, synthesized with the Cadence Encounter
RTL compiler v14.20. The used cell library and tool chain vary within the stated
related work and the numbers can thus only roughly be compared.

As the comparison shows, our low-latency AES S-boxe variants are the first
published constructions that reduce the latency below three cycles per S-box
calculation. The price is a significant increase of both chip area and randomness
requirements. The zero latency variant requires with 17.8 kGE almost nine times
more area than the smallest design. The chip area overhead for the first-order
AES S-box with two cycles is relatively moderate with about a factor of three
times the area of the smallest know S-box construction. Furthermore, our designs
are generic like the DOM [13] AES variant.

Comparing the randomness requirements is difficulty since most of the stated
work use a different amount of input shares which is usually not considered to be
part of the required (online) randomness. In this sense, our zero latency variant
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requires no additional online randomness but it requires of course additional
randomness for the duplication of shared input variables. In case of our two-
cycle variant the randomness costs are with 416 (and 4,446 bits, respectively)
increased over the state of the art.

However, we note that our primary goal was to demonstrate that for generic
higher-order protection a reduction of the latency is indeed possible even in
complex designs like the AES S-box. The most efficient design choices and the
best point at which the shares can be again compressed remains to be an open
problem.

Table 2. Results and comparison of masked AES S-box implementations

Design Order Size Latency Max. Frequency Randomness
[d] [kGE] [Cycles] [MHz] [bits] (online)

Zero Latency AES S-box first 17.83 0 228 0
Zero Latency AES S-box d 0 0
Two Cycle AES S-box first 6.74 2 584 416
Two Cycle AES S-box second 57.11 2 517 4,446
Two Cycle AES S-box d 2 6(d + 1)6 + 8(d + 1)2

Related work

Bilgin et al. [4] first 3.71 3 44
Bilgin et al. [5] first 2.84 3 32
De Cnudde et al. [9] second 7.9 - 11.2 6 126
Goshal et al. [10] first 4.61 4 0
Goshal et al. [10] first 3.63 - 3.80 4 34 - 68
Goshal et al. [10] first 2.91 - 3.34 3 20-24
Gross et al. [13] first 2.2 8 18
Gross et al. [13] second 4.5 8 54
Gross et al. [13] d 8 9d(d+1)
Moradi et al. [17] first 4.24 4 48
De Cnudde et al. [22] first 1.98 6 54

8 Analyzing the Side-Channel Resistance

For the analysis of the side-channel resistance of our Ascon S-box designs we
used the formal verification approach by Bloem et al. [6]. The tool is publicly
accessible online [15]. The basic idea of this tool is the calculation of the Fourier
spectrum (or Walsh transform) at all circuit positions and for all possible signal
timings. This Fourier spectrum allows to calculate for each wire which signals
leak in the probing model at a specific point in the circuit.

Since the calculation of the exact signal spectrum for all timings is a very
complex task, this tool uses a rule based system to perform an approximation of
the spectrum. More specifically, it is approximated which Fourier coefficients are
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unequal to zero instead of the calculation of concrete values for the coefficients.
A nonzero coefficient in the spectrum means that the signal leaks information
for this component (a signal or combination of signals). The rules guarantee that
the real Fourier spectrum is part of the approximation but does not guarantee to
calculate just the nonzero coefficients. In other words, circuits that are accepted
by the tool are provably secure for the given input parameters which are the
circuit itself and a labeling for the input signals according to three categories
(secrets, masks, or public signals). For our side-channel experiments we verified
the low-latency S-box designs of Ascon up to order three. The results are shown
in Table 3 (column FV).

It shows that the first-order S-box design is verified in less than two seconds
(parallel verification of the five secrets) on our Intel Xeon E5-2699v4 CPU with
a clock frequency of 3.6 GHz and 512GB of RAM running in a 64-bit Debian 9
operating system. For oder two the verification increases to about 18 seconds,
and for order three it takes about 21 minutes. All verifications show a positive
verification outcome which indicates the security of the tested circuits for the
given protection order.

For the verification of the AES S-box, on the other hand, the circuit size
exceeds the number of gates over the most complex circuit tested in the paper
of Bloem et al. [6] (a DOM protected AES S-box verified in 5 to 10 hours) by
almost a factor of ten. Therefore, we could not finish the verification within
one day and decided to use a verification approach specifically designed for our
approach which we refer to as taint checking in the following.

Taint checking of the AES S-box. The basic idea for the taint checking
verification approach follows from the design principle of our low-latency masking
approach. Any d + 1 masked circuit is trivially secure if for any gate and wire
of the circuit (e.g. see x0 and x1 on the right in Figure 3) there is no path that
connects any two shares of one variable. Similar to multi-party computation
protocols, we could thus split the circuit into d+ 1 distinct sub-circuits that are
never fed by two or more shares of one shared input variable. This approach of
course only works if we do not use a share compression like it is the case for
the Ascon S-box and the Zero Latency AES S-box variant in Table 3. Other
variants of our designs that use the CMS share compression cannot be verified
using this approach because the compression clearly creates paths that combine
two or more shares (which are of course first remasked to ensure independence).

However, our main goal is to show the security of our low-latency masking
approach and to demonstrate that even very complex designs like the AES S-
box can be securely implemented this way. The other variants of the AES S-
box suggested in Section 6 are introduced to analyze possible trade offs and
implementation costs of our approach.

We instantiated the taint checking approach by using the tool of Bloem et
al. [6] as basis. We label all shared circuit inputs accordingly to the sharing and
then simply propagate the input labels through the entire circuit such that every
gate and wire that is somehow connected with the input share (e.g. x0 or x1)
is tainted by assigning the label of the connected inputs. If at any point in the
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circuit two shares from the same variable (x0 and x1) are part of the labeling
of one wire, our tool denotes a flaw and returns the causing gate and inputs.
This tool has proven to be extremely helpful also during the design of the AES
and Ascon circuits. Therefore (and to make our verification as transparent and
accessible as possible), we set up a virtual machine with our taint checking tool
and some example circuits 1.

We also performed the verification with the taint checking approach for the
Ascon circuits which now take less than a second. Furthermore, we managed
to check the first-order zero latency AES S-box variant in a bit more than ten
minutes. We, however, note that this approach works only for this specific kind
of low-latency circuits without compression for which the security can be easily
verified by ensuring a separation of shares throughout the entire circuit.

Table 3. Side-channel resistance verification results for the low-latency Ascon and
the first-order zero latency AES S-box designs

Design
Gates

Order
FV [6] Taint Checking

Lin Non-lin Time Result Time Result

1st-order Ascon S-box 34 22 1 ≤ 2 s 3 ≤ 1 s 3

2nd-order Ascon S-box 58 48 2 ≤ 18 s 3 ≤ 1 s 3

3rd-order Ascon S-box 88 84 3 ≤ 21 m 3 ≤ 1 s 3

Zero Latency AES S-box 17,199 5,544 1 ≥ 1 day ? ≤ 11 m 3

9 Conclusions

In this work, we introduced a generic concept for Boolean masking to protect la-
tency constraint applications against side-channel analysis. Our approach works
by duplication of the sharing of inputs and circuit parts which hinder an evalu-
ation of the masked circuit in less cycles. In addition, we do not perform a share
compression step after each nonlinear operation which avoids register stages. We
used two case studies based on Ascon and the AES to demonstrate the feasi-
bility of our low-latency masking approach. We analyzed the hardware overhead
and possible trade-offs, and compared our designs to the state of the art. All
our designs reduce the amount of latency compared to existing works. The re-
duction of latency does not come for free and introduces a significant amount
of additional circuitry. However, we showed that even very complex circuits like
the masked AES S-box can be calculated in a single clock cycle and that also
higher-order masking not necessarily requires online randomness. Furthermore,
we showed that by taking compromises in terms of latency the overhead can be
highly reduced which could make our approach a viable option for low-latency
applications that require protection against side-channel analysis.

1 https://goo.gl/Wph3Ek

20



Acknowledgements.

We thank Stefan Mangard for his noteworthy contributions to this paper. The
work has been supported in part by the Austrian Science Fund (FWF) through
project P26494-N15 and project W1255-N23. This work has been supported by
the Austrian Research Promotion Agency (FFG) under grant number 845589
(SCALAS), and has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 644052. The work
has furthermore been supported in part by the Austrian Science Fund (project
P26494-N15) and received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme
(grant agreement No 681402).

References

1. V. Arribas, B. Bilgin, G. Petrides, S. Nikova, and V. Rijmen. Rhythmic keccak:
Sca security and low latency in hw. Cryptology ePrint Archive, Report 2017/1193,
2017. https://eprint.iacr.org/2017/1193.

2. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and P. Strub. Parallel
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