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Abstract. This paper shows that quantum computers can significantly speed-up
a type of meet-in-the-middle attacks initiated by Demiric and Selçuk (DS-MITM
attacks), which is currently one of the most powerful cryptanalytic approaches in the
classical setting against symmetric-key schemes. The quantum DS-MITM attacks are
then demonstrated against 6 rounds of the generic Feistel construction supporting
an n-bit key and an n-bit block, which was attacked by Guo et al. in the classical
setting with data, time, and memory complexities of O(23n/4). The complexities of
our quantum attacks depend on the adversary’s model and the number of qubits
available to the adversary. When the adversary has an access to quantum computers
for performing offline computations but online queries are made in a classical manner
(so called Q1 model), the attack complexities are O(2n/2) classical queries, O(2n/q)
quantum computations by using about q qubits. Those are balanced at Õ(2n/2),
which significantly improves the classical attack. Technically, we convert the quantum
claw finding algorithm to be suitable in the Q1 model, and apply it to reduce the
cost of finding a match in the MITM stage. The attack is then extended to the case
that the adversary is further allowed to make superposition queries (so called Q2
model). The attack approach is drastically changed from one in the Q1 model; the
attack is based on 3-round distinguishers with Simon’s algorithm and then appends 3
rounds for key recovery. This can be solved by applying the combination of Simon’s
and Grover’s algorithms recently proposed by Leander and May.
Keywords: post-quantum cryptography · Demiric-Selçuk meet-in-the-middle attack ·
Feistel network · Grover’s algorithm · claw finding algorithm · classical query model

1 Introduction
1.1 Background
Post-quantum cryptography is a hot topic in the current symmetric-key cryptographic
community. It has been known that Grover’s quantum algorithm [Gro96] and its generalized
versions [BBHT98, BHMT02] reduce the cost of the exhaustive search on a k-bit key from
2k to 2k/2. Whereas Grover’s algorithm is quite generic, post-quantum security of specific
constructions has also been evaluated, which includes key recovery attacks against Even-
Mansour constructions [KM12], distinguishers against 3-round Feistel networks [KM10],
key recovery attacks against multiple encryptions [Kap14], forgery attacks against CBC-
like MACs [KLLN16a], key recovery attacks against FX constructions [LM17], and so
on. Given those advancement of the quantum attacks, NIST announced that they take
into account the post-quantum security in the coming standardization process for the
light-weight cryptography [MBTM17]. It is now important to investigate how quantum
computers can impact to the symmetric-key cryptography.

It is also possible to view the quantum attacks in approach-wise. That is, several
researchers converted the well-known cryptanalytic approaches in the classical setting to
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ones in the quantum setting. Several examples are quantum differential cryptanalysis
[KLLN16b], quantum meet-in-the-middle attacks [Kap14, HS17], quantum universal forgery
attacks [KLLN16a], and so on.

At the present time, one of the most powerful cryptanalytic approaches in the classical
setting is a type of the meet-in-the-middle attacks initiated by Demiric and Selçuk [DS08].
The attacks are often called meet-in-the-middle attacks, while we call them the DS-MITM
attacks in order to distinguish them from the simple and traditional meet-in-the-middle
attacks that separate the attack target into two independent parts. The DS-MITM
attacks are powerful. For example, one of the current best attacks against AES-128 is
the DS-MITM attacks [DFJ13], which can often be applied to other SPN-based ciphers
as well. The DS-MITM attacks are also effective against Feistel networks [GJNS14] and
their variants [GJNS16]. Considering those facts, it is of great interest to check whether
quantum computers can significantly speed-up the DS-MitM attacks.

A pioneering work of quantum attacks against symmetric-key cryptography by Kuwakado
and Morii [KM12] and a remarkable work by Kaplan et al. [KLLN16a] demonstrate that
security of symmetric-key primitives drops to a linear to the output size when adversaries
are allowed to make quantum queries, in which the adversaries pass superposition states
to oracles and receive the results also as superposition states. However, assuming such
a strong ability may be too unrealistic. Security against the adversaries who only make
queries through a classical network but have access to quantum computers in their local
environment is more realistic. Kaplan et al. [KLLN16a] called the former and the latter
settings Q2 model and Q1 model, respectively.

Given the above background, our target in this paper is a quantum version of the
DS-MITM attacks. As a demonstration, we improve on the classical DS-MITM attack
against generic 6-round Feistel constructions proposed by Guo et al. [GJNS14]. Our main
focus is the Q1 model, while we also discuss further speed-up in the Q2 model.

1.2 Simple Quantum Attacks against Feistel Network

Before we explain the summary of our results, we explain that simple applications of the
quantum attacks do not strongly impact to the security of the Feistel network. We start
by introducing the target Feistel network analyzed in this paper.

Target Feistel Network. This paper presents cryptanalysis against Feistel network that
is typically analyzed in the context of generic attacks. Namely, our target is a balanced
Feistel network whose block size is n bits, and the round function consists of XORing
an n/2-bit subkey followed a public function F : {0, 1}n/2 7→ {0, 1}n/2. Subkeys in each
round are independently chosen, thus the key size for r rounds is nr/2 bits. The public
function F can be different in different rounds. To avoid making the paper unnecessarily
complicated, we denote the public function in all rounds by an identical notation F .

Classical Attacks against Feistel Network. Generic attacks in the classical setting against
the class of Feistel networks have been studied by many papers in various approaches; the
impossible differential attack [Knu02], the all-subkeys recovery attack [IS12, IS13], the
DS-MITM attack [GJNS14], the dissection attack [DDKS15], and so on. The number of
attacked rounds depends on the assumed key size. Considering that the block size is n bits
and thus the adversaries can obtain the full codebook with 2n queries and memory, let us
discuss the case that the adversaries can spend up to 2n computations. In this setting, the
best attack is the DS-MITM attack [GJNS14] that recovers the key up to 6 rounds with
O(23n/4) complexities in all of data, time, and memory.
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Application of Grover’s Algorithm and Parallelization. The most simple quantum attack
is applying Grover’s algorithm [Gro96] to exhaustive key search. Let k denote the key
length. With a quantum computer and Grover’s algorithm, the exhaustive search can be
performed in time O(2k/2). Furthermore, if O(n2p) qubits are available to the adversary,
the Grover search can be parallelized [GR03], and the cost of the exhaustive search is
reduced in time O(2(k−p)/2). Thus, by applying the parallelized Grover search to the
r-round Feistel network, key recovery attacks can be performed in time O(2nr/4−p/2) with
O(1) classical queries, using O(n2p) qubits.

For 6 rounds (r = 6), the key can be recovered in time O(2n), using Õ(2n) qubits. This
does not have any advantages. Strictly speaking, the exhaustive search can be performed
without guessing the last-round subkey, but the attack still does not have an advantage
over the classical DS-MITM attack.

Application of Quantum Dissection Attacks. Consider an iterated block cipher, i.e.,
the cipher which is constructed as Erk = E1,K1 ◦ E2,K2 ◦ · · · ◦ Er,Kr , where each Ei is an
n-block cipher with m-bit key, and subkeys in k = (K1, . . . ,Kr) are independently chosen.
Erk is an n-bit block cipher with mr-bit key, and the iterated construction is one of the
simplest ways to handle a long key only by using a block cipher for short keys.

Kaplan proposed quantum meet-in-the-middle attacks and quantum dissection at-
tacks to recovery the key against the iterated construction [Kap14]. For r = 2, the
quantum meet-in-the-middle attack can recover the full key in time O(22m/3), using
O(22m/3) qubits. For r = 4, the quantum dissection attack can recover the full key in time
O(22m/3+n/2), using O(22m/3) qubits.

These attacks can be applied to Feistel networks, as Dinur et al. [DDKS15] applied
the dissection attack to Feistel networks in the classical setting. For example, 6-round
Feistel networks can be regarded as two iterations of the 3-round Feistel construction.
Thus, applying the quantum meet-in-the-middle attack, we can recover the full key in time
O(2n), using O(2n) qubits. Again, this approach does not have any advantage over the
classical DS-MitM attack.

1.3 Our Contributions
In this paper, we show that quantum computers can significantly speed-up the DS-MITM
attacks in both of the Q1 and Q2 models.

For the Q1 model (classical queries with quantum offline computations), to find a
match between the offline and online phases, we need to solve a variant of claw finding
problem. Normally, a claw between functions f ′ and g is defined to be a pair (x, y) such
that f ′(x) = g(y), and there exist quantum algorithms [BHT97, Amb03, Zha05, Tan09] to
find a claw assuming both of f ′ and g are quantum accessible. However, we need to find a
pair (x, y) such that f(x, y) = g(y), and g must be implemented in a classical manner in
our Q1 model attack. Thus we describe a quantum algorithm to find a pair (x, y) that
satisfies f(x, y) = g(y) in such a situation.

We then apply the above algorithm in the Q1 model to improve the classical DS-MITM
attack by Guo et al. [GJNS14] against the 6-round generic Feistel construction. The data
complexity, or the number of classical queries, is reduced from O(23n/4) of the classical
attack to O(2n/2). The time complexity of our attack depends on the parameter q that
corresponds to the number of qubits available to the attacker. In fact, the time complexity
T is given by a tradeoff curve Tq = 2n, where q ≤ 2n/2. Hence, the quantum attack
outperforms the classical attack when q > 2n/4. In particular, all parameters are balanced
at Õ(2n/2), which improves previous O(23n/4) in the classical setting.

We then further analyze the attack complexity against the 6-round generic Feistel
construction in the Q2 model (quantum queries with quantum offline computations). The
attack approach is quite different from the one in the Q1 model. We use the distinguisher
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against 3-round Feistel network by Kuwakado and Morii [KM10] as a base, and then
append 3 more rounds for key recovery. The 3-round distinguisher uses Simon’s algorithm
[Sim97] whereas the 3-round key recovery requires to use Grover’s algorithm [Gro96]. The
combination of those two algorithms has recently been studied by Leander and May [LM17],
which leads to significant speed-up in our setting. In this attack, the time complexity and
the data complexity D are always identical, which again depends on the parameter q. The
actual tradeoff is Tq1/2 = 23n/4.

Tradeoffs between T and q, and between D and q in the classical setting and quantum
settings are compared in Fig. 1. As shown in Fig. 1, the data complexity in two quantum
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Figure 1: Time and Data Complexities in the Classical and Quantum Attacks (plotted
in the logarithmic scale). N stands for 2n. The complexities of the classical attack,
which needs classical memory of size O(2n/2), are independent from the number of qubits
available.

settings are always better than one in the classical setting. At the very particular point
q = 2n/2, the time complexity in the Q1 and Q2 models match. For other q, the Q2 model
generally outperforms the Q1 model.

1.4 Paper Outline

The paper is organized as follows. Section 2.1 explains attack models and quantum
algorithms related to this work. Section 3 extends the previous quantum claw finding
algorithm to the case that one function is evaluated only in the classical manner. Section 4
improves the previous DS-MitM attack against 6-round Feistel network by applying the
theory in Sect. 3. Section 5 discusses the attack on Feistel network when the adversaries
can make superposition queries.

2 Preliminaries

This section gives attack models and a summary of the quantum algorithms that are
related to our work. Throughout the paper, we assume a basic knowledge of the quantum
circuit model. For a public function F : {0, 1}n/2 → {0, 1}n/2, we assume that a quantum
circuit which calculates F , CF : |x〉 |y〉 7→ |x〉 |y ⊕ F (x)〉 is available, and CF runs in a
constant time.
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2.1 Attack Models

2.1.1 Online Query

As for an online oracle, which calculates an encryption of a keyed block cipher for example,
we can consider two natural attack models when an adversary has a quantum computer. In
the first model, an adversary can make only classical queries, whereas in the second model,
the adversary is allowed to make quantum superposition queries. The former is called
Q1 model and the latter is called Q2 model by Kaplan et al [KLLN16b] and Chailloux et
al. [?].

In Q2 model, ability of an adversary is very strong, and in some cases the symmetric
key cryptosystems that are proven to be secure in the classical setting are broken in
polynomial time [KM10, KM12, KLLN16a, Bon17]. In addition, in Q2 model other
symmetric key cryptosystems are also broken much faster than in the classical setting,
though time complexity of the attack is still exponential [LM17]. Thus the Q2 model is a
very interesting setting and new results in this setting give us new insight. However, it
implicitly assumes that keyed functions are implemented on quantum circuits and data
are communicated in quantum superposition states, which is relatively unrealistic.

On the other hand, Q1 model is the same as the classical model except that adversaries
have a quantum computer, which is relatively realistic. Although Q1 model is weaker than
Q2 model, we can still significantly speed up classical attacks [Kap14, KLLN16b, HS17].

2.1.2 Offline Quantum Computation

If we want to access some data or to operate table look-up in running a quantum circuit
without any observation, we have to set all data on the quantum circuit so that data
can be accessed in quantum superposition states. In particular, if we want to implement
random access to stored data, we need as many qubits (or width of the quantum circuit)
as the data size. Thus, quantum memory for random access is physically equivalent to
quantum processor. In fact we regard them as identical.

Regardless of whether we use quantum computers or classical computers, the running
time of an algorithm significantly depends on how a computational hardware is realized,
when the algorithm needs exponentially many hardware resources. Thus we have to pay
attention to data communication costs. In the quantum setting, Bernstein [Ber09] and
Banegas and Bernstein [BB17] introduced two communication models, which they call
free communication model and realistic communication model. The free communication
model assumes that we can operate a unitary operation on any pairs of qubits. On the
other hand, the realistic communication model assumes that 2p qubits are arranged as a
2p/2 × 2p/2 mesh, and a unitary operation can be operated only on a pair of qubits that
are within a constant distance.

In this paper, for simplicity, we estimate the time complexity of quantum algorithms
in the free communication model. A quantum hardware in the free communication model
which has O(N) qubits can simulate a quantum hardware in the free communication
model which has O(

√
N) qubits, with time overhead O(

√
N) [BBG+13]. Note that this

does not suggest that our proposed attacks do not work in the realistic communication
model. We design our algorithms so that small quantum processors (of size polynomial
in n) parallelly runs without any communication between each pair of small processors.
Hence if the realistic communication model is applied, time complexity increases by a
factor of polynomial in n.
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2.2 Related Quantum Algorithms
2.2.1 Grover’s Algorithm

Grover’s quantum algorithm, or the Grover search, is one of the most famous quantum
algorithms, with which we can obtain quadratic speed up on database searching prob-
lems compared to the classical database search algorithms. It was originally found by
Grover [Gro96] and generalized later [BBHT98, BHMT02]. Let us consider the following
problem:

Problem 1. Suppose a function φ : {0, 1}u → {0, 1} is given as a black box, with a
promise that there is x such that φ(x) = 1. Then, find x such that φ(x) = 1.

Grover’s algorithm (or its generalization) can solve the above problem with O(2u/2)
evaluations of φ using O(u) qubits, if φ is given as a quantum oracle. The algorithm is
composed of iterations of an elementary step which operates O(1) evaluation of φ, and
can easily be parallelized [GR04].

If we can use a quantum computer with O(u2p) qubits, we regard it as 2p independent
small quantum processors with O(u) qubits. Then, by parallelly running O(

√
2u/2p)

iterations on each small quantum processor, we can find x such that φ(x) = 1 with high
probability. This parallelized algorithm runs in time O(

√
2u/2p · Tφ), where Tφ is the time

needed to evaluate φ once.

2.2.2 Quantum Amplitude Amplification

There is an important generalization of the above Grover’s algorithm, named quantum
amplitude amplification, which was proposed by Brassard et al [BHMT02]. Let us consider
Problem 1 below, and define “good subspace” G and “bad subspace” B by G := φ−1(1)
and B := φ−1(0). Then the following proposition holds.

Proposition 1 (Quantum amplitude amplification [BHMT02]). Suppose that there is a
quantum algorithm A without observation such that A |0u〉 =

∑
x∈G αx |x〉+

∑
x∈B βx |x〉.

Let a :=
∑
x α

2
x. We call the probability that we get a good element x ∈ G when we observe

the quantum state A |0u〉 good probability. Then, there is a quantum algorithm that runs
in time O(

√
a(TA + Tφ)) that finds a good element x ∈ G with constant probability. Here,

TA and Tφ are the time that is required to run A and make a query to φ, respectively.

If A is an Hadamard gate, quantum amplitude amplification matches the Grover search,
and thus this technique is a generalization of the Grover search. In the similar way as
the Grover search, quantum amplitude amplification can be parallelized. Using O(u2p)
qubits, or O(2p) small quantum processors of size u, we can find a good element in time
O(
√
a/2p(TA + Tφ)).

2.2.3 Simon’s Algorithm

The above quantum algorithms we introduced are exponential time algorithms. Here we
introduce a quantum algorithm that can solve a problem in polynomial time. The problem
is defined as follows:

Problem 2. Let φ : {0, 1}u → {0, 1}u be a function such that there is a unique secret
value s that satisfies φ(x) = φ(y) if and only if x = y or x = y ⊕ s. Then, find s.

Suppose φ is given as a quantum oracle. Then, Simon’s algorithm [Sim97] can solve
the above problem with O(n) queries, using O(n) qubits. We have to solve a system of
linear equations after making queries, which requires O(n3) arithmetic operations. Since
any classical algorithm needs exponential time to solve this problem, Simon’s algorithm
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obtains exponential speed-up from classical algorithms. The algorithm can be applied
to the problem of which condition “ φ(x) = φ(y) if and only if x = y or x = y ⊕ s” is
replaced with the weaker condition “φ(x ⊕ s) = φ(x) for any x”, under the assumption
that φ satisfies some good properties [KLLN16a].

2.2.4 Quantum Claw Finding Algorithms

Let us consider two functions f : {0, 1}u → {0, 1}` and g : {0, 1}v → {0, 1}`. If there
is a pair (x, y) ∈ {0, 1}u × {0, 1}v such that f(x) = g(y), then it is called a claw of the
functions f and g. Now we consider the following problem:

Problem 3. Let u, v be positive integers such that u ≥ v. Suppose that two functions
f : {0, 1}u → {0, 1}` and g : {0, 1}v → {0, 1}` are given as black boxes. Then, find a claw
of f and g.

This problem, called claw finding problem, has attracted researchers’ attention. It is
known that, given f and g as quantum oracles, this problem can be solved with O(2(u+v)/3)
queries in the case v ≤ u < 2v, and O(2u/2) queries in the case 2v ≤ u [BHT97, Amb03,
Zha05, Tan09]. Quantum claw finding algorithms and their generalizations already have
some applications in attacks against symmetric-key cryptosystems [Kap14, MS17].

3 Claw Finding between Classical and Quantum Functions
Quantum claw finding algorithms are useful, though, they cannot be applied if one of target
functions, say g, is not quantum accessible. For example, if we need some information from
a classical online (or keyed) oracle to calculate g(y), then we have to use other algorithms,
even if we have a quantum computer.

Sections 3 and 4 focus on the Q1 model. Hence, this section considers how to find
a claw of functions f, g where g can be evaluated only classically. We are particularly
interested in the case that there exists only a single claw of f and g, and show that the
following proposition holds.

Proposition 2. Suppose that f can be implemented on a quantum circuit Cf using O(u)
qubits, g can be evaluated only classically, and we can use a quantum computer with
O((u+ v)2p) qubits. Assume that there exist only a single claw of f and g. Then we can
solve Problem 3 in time

O
(
TCg,all + 2 u

2 +v− p+pL
2 · TQf + 2v−pL+p

)
, (1)

where TCg,all is the time to calculate the pair (y, g(y)) for all y, TQf is the time to run Cf
once, and pL is a parameter that satisfies pL ≤ min{p, n}. We also use O(2v) classical
memory.

Below we give an algorithm to find a claw and confirm that it gives the upper bound
Eq.(2), which suggests Proposition 2.

Algorithm. First, evaluate g(y) for all y classically, and store each pair (y, g(y)) in a
list L. For each y ∈ {0, 1}v, define a function fy : {0, 1}u → {0, 1} by fy(x) = 1 if and
only if f(x) = g(y). Given Cf and the list L, we can implement fy on a quantum circuit
that runs in time O(TQf ) using O(u+ v) qubits. Note that the parallelized Grover search
on fy, which parallelly runs O(2p−pL) independent small processors, can find x0 such
that fy(x0) = 1 (if there exists) in time O(2u/2−(p−pL)/2 · TQf ). Let CGrovery denote this
quantum circuit of size O((u+ v)2p). Then, run the following procedure:
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1. For 0 ≤ i ≤ 2v−pL − 1, do:

2. Run CGrover(i‖j) parallelly for 0 ≤ j ≤ 2pL − 1 (see Fig. 2).

3. If a pair (x, (i‖j)) such that f(i‖j)(x) = 1 is found, then return the pair (x, (i‖j)).

In the above procedure, i, j are elements in {0, 1}v−pL and {0, 1}pL , respectively, and
i‖j ∈ {0, 1}v.

2𝑝−𝑝𝐿 copies for 𝑓(𝑖||1)

𝑂 (𝑢 + 𝑣)2𝑝 quantum registers

2𝑝−𝑝𝐿 copies for 𝑓(𝑖||0) 2𝑝−𝑝𝐿 copies for 𝑓(𝑖||2𝑝𝐿−1)

Figure 2: How to use O(2p) qubits

Complexity analysis. To evaluate g(y) and store it for every y, we need O(TCg,all) time
and O(2v) classical memory. In Step 2 of the procedure, the parallelized Grover search on
f(i‖j) requires time O(2u/2−(p−pL)/2TQf ) for each i and j as stated above. In Step 3 of the
procedure, we need time O(2p) to check whether a pair (x, (i‖j)) such that f(i‖j)(x) = 1
exists. Thus, the total running time is O(TCg,all + 2v−pL · (2u/2−p/2+pL/2TQf + 2p)) =
O(TCg,all + 2u/2+v−p/2−pL/2 · TQf + 2v−pL+p).

As for the number of qubits, for a fixed i, we use O((u + v)2p−pL) qubits for the
parallelized Grover search on f(i‖j) for each 0 ≤ j ≤ 2pL − 1. Thus the total number of
qubits we use is O((u+ v)2p−pL) · 2pL = O((u+ v)2p).

3.1 Variation of Claw Finding
Next, we consider the following variant of the claw finding problem.

Problem 4. Suppose that functions f : {0, 1}u×{0, 1}v → {0, 1}` and g : {0, 1}v → {0, 1}`
are given as black boxes, with promise that there is a unique pair (x, y) ∈ {0, 1}u × {0, 1}v
such that f(x, y) = g(y). Then, find such a pair (x, y).

Again, we assume that g can be evaluated only classically, and f can be implemented
on a quantum circuit. Problem 4 appears to be different from Problem 3, however, we can
also solve it by applying our algorithm introduced above with a slightly modification of
the definition of fy as follows:

fy(x) = 1 if and only if f(x, y) = g(y).
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With this small modification, we can find the pair (x, y) such that f(x, y) = g(y) with
the same complexity as in Proposition 2. The next section treats this variant problem to
attack Feistel networks instead of the original claw finding problem with the conditions
p ≤ v and 2v ≤ TCg,all.

Corollary 1. Suppose that f can be implemented on a quantum circuit Cf using O(u+ v)
qubits, g can be evaluated only classically, and we can use a quantum computer with
O((u+ v)2p) qubits, where p ≤ v. Assume that there is a unique claw of f and g. Then
we can solve Problem 3 in time

O
(
TCg,all + 2 u

2 +v−p · TQf
)
, (2)

where TCg,all ≥ 2v is the time to calculate the pair (y, g(y)) for all y and TQf is the time to
run Cf once. We also use O(2v) classical memory.

The above algorithms assume an ideal situation that we are given a quantum circuit
that calculates f without error. However, in real applications, having some error might be
inevitable. (e.g. we use Grover’s algorithm as a subroutine a few times to calculate f). If
the error is small, the above algorithm can still be used by replacing the Grover search
on each fy with quantum amplitude amplification explained in Sect 2.2.2. The following
paragraph explains how to deal with this situation.

Suppose that our goal is to find x such that f(x, y0) = g(y0) for a fixed y0 ∈ {0, 1}v.
Then assume that we only have a quantum circuit C ′f that calculates f with some error:

C ′f : |x〉 |y0〉 |0w+`〉 7→
√

1− δ2
x,y0
|x〉 |y0〉 |ψx,y0〉 |f(x, y0)〉+ δx,y0 |x〉 |y0〉 |garbage〉 ,

for some w-qubit state |ψx,y0〉, which contains some necessary intermediate information
to calculate f(x, y0), and (w + `)-qubit state |garbage〉, which corresponds to unnecessary
information. Here we assume that f is calculated by using the Grover search that
normally contains some small error, and we now assume that δx,y0 = O(1/2u/2). Let
U⊕y0 denote an operation |z〉 7→ |z ⊕ y0〉. With the notations in Proposition 1, we put
A := C ′f (Hu ⊗ U⊕y0 ⊗ Iw+`), which suggests that

A |0u+v+w+`〉 = C ′f

(√
1/2u

∑
x

|x〉 |y0〉 |0w+`〉

)
=
√

1/2u
∑
x

(√
1− δ2

x,y0
|x〉 |y0〉 |ψx,y0〉 |f(x, y0)〉+ δx,y0 |x〉 |y0〉 |garbage〉

)
,

where Hu is the Hadamard operator of dimension 2u and Iw+` is the identity operator
of dimension 2w+`. Now we run the quantum amplitude amplification with the above A,
defining that the “good” element corresponds to a state such that the last `-qubits match
g(y0) (i.e., define φ : {0, 1}u+v+w+` → {0, 1} as φ(α) = 1 if and only if the last `-bits of α is
g(y0), then a quantum circuit of φ can be implemented since we already know (y0, g(y0)).)
Then, the good probability is approximately equals to 1/2u ·(1−δ2) ≈ 1/2u, which suggests
that we can find x such that fy0(x) = 1 in time O(2u/2). Thus our algorithm works even
if f can be calculated with a small error.

4 Quantum DS-MitM Attacks against Feistel Ciphers
In this section, we show that quantum computers can significantly speed-up the DS-MitM
attacks even under the limitation that queries are made only in a classical manner. To
demonstrate it, we improve on the previous key recovery attack against 6-round Feistel
ciphers presented by Guo et al. [GJNS14].



10 Quantum Meet-in-the-Middle Attacks

4.1 Classical DS-MITM Attack on 6-Round Feistel Ciphers
4.1.1 Overview of DS-MITM Attacks

We first briefly introduce the framework of the DS-MITM attack. The attack generally
consists of the distinguisher and the key-recovery parts as illustrated in Fig. 3. A truncated
differential characteristic is specified to the entire cipher and suppose that the plaintext
difference ∆P propagates to the input difference to the distinguisher ∆X with probability
p1. Similarly, the ciphertext difference ∆C propagates to the output difference of the
distinguisher∆Y with probability p2 when decryption is performed. The attack is composed
of two parts: distinguisher analysis and queried-data analysis.

𝑘𝑒𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟

𝑘𝑒𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Δ𝑃

Δ𝑋

Δ𝑌

Δ𝐶
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(𝑋, 𝑋0
′), 𝑋1

′ , 𝑋2
′ , ⋯ , 𝑋𝛿−1

′

#𝑐ℎ𝑎𝑟𝑎𝑠 = 𝑁𝐶

Pr = 𝑝2

(𝑌, 𝑌0
′), 𝑌1

′, 𝑌2
′, ⋯ , 𝑌𝛿−1

′

𝛿-𝑠𝑒𝑡

Δ0
Δ1

Δ2
Δ𝛿−1

Δ-𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

(𝑃, 𝑃′)

(𝐶, 𝐶′)

Figure 3: Overview of DS-MITM Attacks.

In the distinguisher analysis, the attacker enumerates all the possible differential
characteristics that can satisfy the specified truncated differential. Suppose that there
exist Nc such characteristics. For each of them, input paired values to the distinguisher
are expected to be fixed uniquely. Let (X,X ′0) be the paired values. Then, the attacker
generates a set of texts called δ-set by generating δ − 1 new texts X ′i ← X ′0 ⊕ i for
i = 1, 2, · · · , δ− 1. Suppose that the corresponding value at the output of the distinguisher
can be computed. Let Y, Y ′0 , Y ′1 , Y ′2 , · · · , Y ′δ−1 be the corresponding values at the output
of the distinguisher. The attacker then computes the differences between Y and Y ′i for
i = 0, 1, · · · , δ − 1 and makes a sequence of δ output differences at the output of the
distinguisher. This sequence is called ∆-sequence. Note that the difference between Y
and Y ′i may be able to be computed only partially, say γ bits. Thus the bit-size of the
sequence is γδ. In the end, the ∆-sequence of the size γδ bits is computed for each of the
Nc characteristics and stored in a list L.

In the queried-data analysis, the attacker makes queries to collect (p1p2)−1 paired
values having the plaintext difference ∆P and the ciphertext difference ∆C. One pair,
with a good probability, satisfies ∆X and ∆Y at the input and output of the distinguisher,
respectively. Thus for each of (p1p2)−1 paired values, the attacker guesses subkeys for the
key-recovery rounds such that ∆X and ∆Y appear after the first and the last key recovery
parts, respectively. Then, one of the paired texts (corresponding to P ′) is modified to P ′i
so that the δ-set is generated at the input to the distinguisher, and those are queried to
the oracle to obtain the corresponding ciphertext C ′i. The attacker then processes C ′i with
the guessed subkeys for the last key-recovery part, and the ∆-sequence is computed at the
output of the distinguisher. Finally, those are matched the list L. If the analyzed pair is a
right pair and the guessed subkeys are correct, then a match will be found. Otherwise, a
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match will not be found as long as (p1p2)−1Nc × 2−γδ � 1.

4.1.2 Application to 6-Round Feistel Ciphers

Guo et al. [GJNS14] applied the DS-MITM attack to 6-round Feistel ciphers. The attack
needs to solve the following problems.

Problem 5. Let F : {0, 1}n/2 7→ {0, 1}n/2 be a public function and ∆ be a fixed difference.

• For a given output difference ∆o, find all v such that F (v)⊕ F (v ⊕∆) = ∆o?

• For a given input difference ∆i, find all v such that F (v)⊕ F (v ⊕∆i) = ∆?

In the classical attack, those problems can be solved only with 1 access to the precom-
puted table of size 2n/2. The procedure is rather straightforward. Readers are refer to the
paper by Guo et al. [GJNS14] for the exact procedure.

Distinguisher Analysis. The core of the attacks is the 5-round distinguisher explained
below. The input and output differences for the 5 rounds are defined as 0‖X and Y ‖0,
respectively, where X,Y ∈ {0, 1}n/2, X 6= Y . For a given X,Y , the number of the 5-round
differential characteristics satisfying those input and output differences is 2n/2. In fact, by
representing the n/2-bit difference of the second round-function’s output as Z, the 5-round
differential characteristics can be fixed to

(0‖X) 1stR−→ (X‖0) 2ndR−→ (Z‖X) 3rdR−→ (Y ‖Z) 4thR−→ (0‖Y ) 5thR−→ (Y ‖0),

which is illustrated in the left-half of Fig. 4.

𝐹 
𝐾𝑖  

𝐹 
𝐾𝑖+1 

𝐹 
𝐾𝑖+2 

𝐹 
𝐾𝑖+3 

𝐹 
𝐾𝑖+4 

0 𝑋 

𝑌 0 

0 0 

𝑍 𝑌 

𝑋⊕ 𝑌 𝑍 

𝑍 𝑋 

0 

𝛿-set 

Δ-sequence 
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𝐾0 

5𝑅 𝐷𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟 

𝑋 ∗ 

𝑌 0 

∗ 

Δ-sequence 

0 𝑋 𝛿-set 

0 ∗ 

𝑝1 = 2−𝑛/2 

Figure 4: Left: |Z| Differential Characteristics in the 5-Round Distinguisher. Right:
1-Round Extension for Key-Recovery.

For each Z, both input and output differences of F in the middle 3 rounds are fixed,
which suggests that the paired values during F are fixed to one choice on average. Guo
et al. showed that by generating a δ-set at the right half of the distinguisher’s input, the
corresponding ∆-sequence can be computed for the right-half of the distinguisher’s output.
Readers are referred to the paper by Guo et al. [GJNS14] for the complete analysis. The
computed ∆-sequences are stored in the list L. Note that the size of δ is very small. Indeed,
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p1 = 2−n/2, p2 = 1, Nc = 2n/2 and γ = n/2. Hence, δ = 3 is sufficient to filter out all the
wrong candidates.

To balance the complexities between the distinguisher analysis and the queried-data
analysis, Guo et al. iterated the above analysis for 2n/4 different choices of Y . More
precisely, the n/4 MSBs of Y are always set to 0 and n/4 LSBs of Y are exhaustively
analyzed. The complexity of the procedure for each choice of Y is O(2n/2) both in time
and memory. Hence, the entire complexity of the distinguisher part is O(23n/4) in both
time and memory.

Queried-Data Analysis. Guo et al. appended 1-round before the 5-round distinguisher
to achieve the 6-round key-recovery attack, which is illustrated in the right-half of Fig. 4.
By propagating the input difference to the distinguisher, 0‖X, in backwards, ∆P is set to
X‖∗ where ∗ can be any n/2-bit difference. The probability p1 that a randomly chosen
plaintext pair with the difference X‖∗ satisfies the difference 0‖X after 1 round is 2−n/2.

The attacker collects the pairs that satisfy the truncated differential in Fig. 4 by
using the structure technique. Namely, the attacker prepares 2 sets of 2n/2 plaintexts
in which the first and the second sets have the form {(c‖0), (c‖1), · · · , (c‖2n/2 − 1)} and
{(c⊕X‖0), (c⊕X‖1), · · · , (c⊕X‖2n/2 − 1)}, respectively, where c is a randomly chosen
n/2-bit constant. About 2n pairs exist whereas only O(2n/4) pairs satisfy ∆C in the
corresponding ciphertexts. By iterating this procedure O(2n/4) times for different choices
of c, the attacker collects O(2n/2) pairs satisfying the truncated differential in Fig. 4.
In summary, with O(23n/4) queries (and thus the time complexity of O(23n/4) memory
accesses), O(2n/2) pairs are obtained, in which one pair will satisfy the probabilistic
differential propagation in the first round.

For each pair, the input and output differences of F in the first round are fixed, which
will fix K0 uniquely. The attacker then modifies the left-half of the plaintext such that δ-set
with δ = 3 is generated at the right-half of the input to the distinguisher. The right-half of
the plaintext is also modified to ensure that the left-half of the input to the distinguisher
is not affected. The modified plaintexts are then queried to obtain the corresponding
ciphertexts. The attacker computes the corresponding ∆-sequence and matches L; the
list computed during the distinguisher analysis. A match recovers K0 and Z. The other
subkeys are trivially recovered from the second round one by one.

Summary of Complexity. In the distinguisher analysis, both of the time and memory
complexities are O(23n/4). In the queried-data analysis, the data and time complexities
are O(23n/4) and it uses a memory of size O(2n/2) to collect the pairs with the structure
technique.

Remarks. Solving Problem 5 is rather straightforward in the classical attack with O(2n/2)
memory, whereas this is a crucial problem to the quantum adversaries. This is because
the efficient table look-up cannot be executed in quantum computers.

4.2 Quantum DS-MITM Attack on 6-Round Feistel Ciphers
We now convert the classical DS-MITM attack on 6-round Feistel ciphers into quantum one,
in which the adversary has access to a quantum computer to perform offline computations
whereas queries are made in the classical manner. The attack complexity becomes O(2n/2)
queries, O(2n/2) offline quantum computations by using O(2n/2) qubits.

The main idea is to introduce quantum operations to reduce the complexity of the
distinguisher analysis. We show that the claw finding algorithm in Sect. 3 can be used to
find a match between the distinguisher and the queried-data analyses. This enables us
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to adjust the tradeoff between the complexities in the distinguisher and the queried-data
analyses, and thus the data complexity can also be reduced.

4.2.1 Adjusted Truncated Differentials

After the careful analysis, we determined to analyze all 2n/2 choices of Y in the 5-round
distinguisher during the distinguisher analysis part. In the classical attack, this increases
the cost of the distinguisher analysis to O(2n), whereas it reduces the number of queries in
the queried-data analysis. In the quantum attack, the increased cost of the distinguisher
analysis can be reduced to its square root, i.e. O(2n/2) and eventually the cost of two
analyses are balanced.

4.2.2 Switching Online and Offline Phases

The claw finding algorithm in Sect. 3 matches the result of the quantum computation
against the results collected in the classical method. Namely, the results of the queried-data
analysis must be stored before the distinguisher analysis starts.

This can be easily done by switching the order of the two analyses. In fact, such a
switch has already been applied by Darbez and Perrin [DP15, Appendix E] though their
goal is to optimize the classical attack complexity, which is different from ours.

4.2.3 Queried-Data Analysis

Because queries are made in the classical manner, the procedure of the queried-data
analysis remains unchanged from the classical attack by Guo et al. However, to directly
apply the claw finding algorithm to the DS-MITM attack, we explicitly separate the
procedure to collect p−1

1 = 2n/2 pairs satisfying the truncated differentials (both ∆P and
∆C) and the procedure to compute ∆-sequences.

Precomputation for Collecting Pairs. The goal of this procedure is to collect 2n/2 pairs
satisfying both ∆P = X‖∗ and ∆C = ∗‖0. We again use the structure technique. Namely,
we query 2 sets of 2n/2 plaintexts {(c‖0), (c‖1), · · · , (c‖2n/2 − 1)} and {(c ⊕ X‖0), (c ⊕
X‖1), · · · , (c ⊕X‖2n/2 − 1)}. About 2n pairs can be generated and 2n/2 of them have
no difference in the right-half of the ciphertexts. The generated pairs are stored in the
list Lpre indexed by the difference Y (the left-half of ∆C). In summary, this procedure
requires O(2n/2) classical queries, O(2n/2) memory access and O(2n/2) classical memory.

Generating ∆-sequences. The goal of this procedure is to generate ∆-sequences for all
the pairs stored in Lpre. To make it consistent with the notations in Sect. 3, we define
a classical function g : {0, 1}n/2 → {0, 1}δn/2 that takes the difference Y (the left-half of
∆C) as input and outputs the ∆-sequence as follows.

1. Pick up all the pairs in Lpre such that the difference Y matches the g’s input.

2. Compute the ∆-sequences as in the classical attack by assuming that the probabilistic
differential propagation in the first round is satisfied.

Then, the classical queried-data analysis becomes identical with computing g(y) for all
y ∈ Y . The cost of computing g for a single choice of y is 1. Hence, with the notation in
Sect. 3, TCg,all becomes O(2n/2). After this phase, a list L with a classical memory that
stores O(2n/2) ∆-sequences is generated.
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4.2.4 Quantum Distinguisher Analysis

The goal of the distinguisher analysis is to calculate ∆-sequences for all 2n/2 choices of
Y and 2n/2 choices of Z in Fig. 4 in order to find a match with L. We define a quantum
function f : {0, 1}n/2 × {0, 1}n/2 → {0, 1}δn/2 that takes Z and Y as input and calculates
the corresponding ∆-sequence. Given that L is computed before this analysis, the goal
can be viewed as searching for a preimage Z such that ∃Y, f(Z, Y ) ∈ L.

Issues to be taken into account. Note that in our situation, the function f might be
incompletely defined. We want to define f(Z, Y ) to be the corresponding ∆-sequence to
(Z, Y ), however, to be precise, there are following two issues when Problem 5 is solved.

Issue 1. To calculate the corresponding ∆-sequence, we need input/output pairs of 2nd,
3rd, and 4th round functions that are compatible with the pair (Z, Y ). Though there
exists one suitable pair for each round function on average, there might be no pair
or more than one pair that are compatible with the pair (Z, Y ).

Issue 2. Suppose that issue 1 can be solved and we obtain two choices for the input and
output values of the i-th round function where i = 2, 3, 4. To construct the paired
values for the entire 5 rounds, we need to test 8 patterns (2 choices from each of the
2nd, 3rd, and 4th rounds).

These issues already exist even in the classical setting, but they are trivially solved.
However, solving those issues in the quantum setting is non-trivial, and deserves careful
attention. In what follows, for simplicity, we first describe the attack by assuming that the
above issues are naturally solved as in the classical setting, and later explain how to deal
with those issues.

Quantum procedures and complexity. Assume that f(Z, Y ) is uniquely determined for
each (Z, Y ). Remember that the goal of the quantum distinguisher analysis is to find Z
such that ∃Y, f(Z, Y ) ∈ L. As discussed in Corollary 1, suppose that a quantum circuit
Cf that calculates f(Y,Z) for a single choice of (Z, Y ) in time TQf can be implemented by
using O(n) qubits and we can use a quantum computer with O(n2p) qubits. Then the
time complexity to find such Z becomes O(2n/4+n/2−p · TQf + 2n/2).

We construct Cf so that it runs the following steps:

1. Find the input/output pair of the 2nd round function F that has input difference X
and output difference Z.

2. Find the input/output pair of the 3rd round function F that has input difference Z
and output difference X ⊕ Y .

3. Find the input/output pair of the 4th round function F that has input difference Y
and output difference Z.

4. Construct a δ-set and calculate the corresponding ∆-sequence, using the result of
Step1, 2, and 3,

5. Output the ∆-sequence obtained in Step 4.

Steps 1,2, and 3 correspond to Problem 5, which was solved using an efficient table look-up
in the classical setting. However, in our circuit Cf , we use the Grover search to find the
input/output pairs, since there is an obstacle that quantum computer cannot perform an
efficient table look-up. Because the input and output sizes of the F are n/2 bits, we can
run Steps 1,2, and 3 with Grover’s algorithm in time O(2n/4), using O(n) qubits. The
complexities for Steps 4 and 5 are much smaller than the application of Grover’s algorithm.
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Hence the above Cf runs in time TQf = O(2n/4), using O(n) qubits. Note that Cf may
return error with a small probability since we use the Grover search as subroutines for a
few times. However we can deal with this error, as explained in Sect. 3.

As described in Corollary 1, if O(n2p) qubits are available (p ≤ n/2), then we can find
Z such that f(Z, Y ) ∈ L in time O(2n/4+n/2−p+n/4 + 2n/2) = O(2n−p). Complexities are
balanced at p = n/2. In summary, we can find a match with time complexity O(2n/2),
using O(n2n/2) qubits.

Dealing with the two issues. Next, we explain how to deal with issues 1 and 2. We
regard that elements in {0, 1}n/2 are integers 0, 1, . . . , 2n/2 − 1

For a given input and output differences for the i-th round function i = 2, 3, 4, let
α

(i)
1 , α

(i)
2 , α

(i)
3 , · · · β(i)

1 , β
(i)
2 , β

(i)
3 , · · · are the input and output vales satisfying the given

differences, respectively, namely F (α(i)
1 ) = β

(i)
1 , F (α(i)

2 ) = β
(i)
2 , F (α(i)

3 ) = β
(i)
3 , · · · . In what

follows, we assume that α(i)
1 < α

(i)
2 and β(i)

1 < β
(i)
2 for i = 2, 3, 4, without loss of generality.

As for issue 1, if there is no value satisfying (Z, Y ), we simply put f(Z, Y ) :=⊥. The
problem is that there might be more than one pairs that are compatible with (Z, Y ). In
the classical setting, the number of solutions for a given (Z, Y ) can be obtained easily
bo looking-up a precomputation table, whereas in the quantum setting, we need to
iterate Grover’s algorithm multiple times, thus the complexity of this part increases as
proportional to the number of α. We expect that the following property holds: for arbitrary
d 6= d′ ∈ {0, 1}n/2\{0n/2}, there is at most Nmax := d3(n2−1)/ log(n2−1)e many bit-strings
α that satisfies F (α)⊕F (α⊕d) = d′ and α < α⊕d. This is a reasonable assumption since,
for a random function φ : {0, 1}u → {0, 1}u, we have Pr[|φ−1(d′)| ≤ 3u/ log u] ≥ 1− 1/2u
(see Lemma 5.1 in [MU05]), and F (·) ⊕ F (· ⊕ d) is an almost random function if F is
random (and here we consider that the domain of F (·)⊕F (·⊕d) is {x|x < x⊕d}, of which
cardinality is 2n/2−1). We consider N3

max divided cases, and associate a triplet (i, j, k)
with each cases (0 ≤ i, j, k ≤ Nmax − 1). In the case (i, j, k), we search for α(1)

1 , α
(2)
1 , α

(3)
1

from the sets of strings of which most significant logNmax bits are i, j, and k, respectively.
Trying all N3

max cases increases the time complexity by a factor of N3
max. However, we

run the Grover search on the restricted domains for each case, which decreases the time
complexity by a factor of

√
Nmax. Consequently, dealing with issue 1 increases the time

complexity by a factor of N5/2
max = O(n5/2).

As for issue 2, we choose one possibility among a constant number of choices before
running quantum algorithm. If no solution is found under one choice, then we try another
choice. Trying all possible choices increases the time complexity by a constant factor.

Eventually, we can deal with the issue by dividing the problem into O(n3) cases, which
increases the time complexity by a factor of O(n5/2).

4.2.5 Complexity Summary

• The queried-data analysis require O(2n/2) classical queries, O(2n/2) computations
and O(2n/2) classical memory.

• The quantum distinguisher analysis requires O(n2n/2) qubits and O(n5/22n/2) offline
computations.

In the end, all the complexities are balanced at Õ(2n/2), which is significantly smaller than
the classical attack by Guo et al. that requires Õ(23n/4) queries and offline computations.

5 Attacks Using Quantum Queries
This section discusses quantum attacks in the Q2 model, where an adversary is allowed to
make quantum superposition queries to online oracles. We show that we can recover full
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Figure 5: 3-round Feistel networks

keys of an r-round Feistel network (r > 3) in time O(n32n(r−3)/4), using O(n2) qubits. Our
idea is, with the technique by Leander and May [LM17], to combine the trivial key-recovery
attack using Grover search with the quantum distinguisher of 3-round Feistel network by
Kuwakado and Morii [KM10], which was later generalized by Kaplan et al. [KLLN16a].
Again, we consider n-bit Feistel networks such that each n/2-bit round key is added before
round function F .

Quantum distinguisher of 3-round Feistel networks. We briefly explain the quantum
attack that distinguishes 3-round Feistel networks from a random permutation π [KM10,
KLLN16a]. The attack works in the Q2 model, and runs in polynomial time due to Simon’s
algorithm.

Assume that we are given a quantum oracle that calculates W (x, y), the right n/2-bits
of the ciphertext which is encrypted with 3-round Feistel networks (see Fig. 5). Then,
W (x, y) = x⊕ F (K1 ⊕ y ⊕ F (K0 ⊕ x)) holds.

If we fix two different bit strings α, β ∈ {0, 1}n/2 and define f : {0, 1}n/2+1 → {0, 1}n/2

by

f(b, x) =
{
W (α, x)⊕ β
W (β, x)⊕ α,

then simple calculation shows that

f ((b, x)⊕ (1, F (K0 ⊕ α)⊕ F (K0 ⊕ β))) = f (b, x) ,

i.e., f has a period (1, F (K0 ⊕ α)⊕ F (K0 ⊕ β)).
On the other hand, if we are given a quantum oracle that calculates the right n/2-

bits of π(x, y) instead of W (x, y) and construct such a function f , where π is a random
permutation, then f does not have such a period with high probability. Thus, roughly
speaking, we can distinguish 3-round Feistel networks from a random permutation π with
high probability by using Simon’s algorithm and by being given a quantum oracle that
calculates W (x, y), or the right n/2-bits of π(x, y).

Simulating the half output oracle given the complete encryption oracle. As pointed
out by Kaplan et al. [KLLN16a], if we are only given the complete encryption oracle
(quantum oracle that returns n-bit output values (V (x, y),W (x, y)) or π(x, y) ), then it
is not trivial whether the above attack works. In the classical setting, if we are given
the complete encryption oracle and only want the right half of outputs, then we can just
truncate outputs of the complete oracle. However, in the quantum setting, answers to
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queries are in quantum superposition states, of which right n/2-bits and left n/2-bits are
entangled. Since the truncation destroys entanglements, it is not trivial to simulate the
oracle that only produces the right half of the output from the complete encryption oracle.
However, the simulation is still possible and we explain its procedure below.

Let O : |x〉 |y〉 |z〉 |w〉 7→ |x〉 |y〉 |z ⊕OL(x, y)〉 |w ⊕OR(x, y)〉 be the complete en-
cryption oracle, where OL, OR denote the left and right n/2-bits of the complete en-
cryption, respectively. Suppose that we want to simulate oracle OR : |x〉 |y〉 |w〉 7→
|x〉 |y〉 |w ⊕OR(x, y)〉. It suffices to make an operator that maps |ψ〉 |0n/2〉 to (OR |ψ〉)⊗
|0n/2〉, using ancilla qubits. Let |+〉 := Hn/2 |0n/2〉, where Hn/2 is an n/2-bit Hadamard
gate. Then O |x〉 |y〉 |+〉 |w〉 = |x〉 |y〉 |+〉 |w ⊕OR(x, y)〉 holds for any x, y, w ∈ {0, 1}n/2.
Therefore,

(I ⊗Hn/2) · Swap · O · Swap · (I ⊗Hn/2) |ψ〉 ⊗ |0n/2〉 = (OR |ψ〉)⊗ |0n/2〉

holds, where Swap is an operator that swaps last n-qubits: |x〉 |y〉 |z〉 |w〉 7→ |x〉 |y〉 |w〉 |z〉.
Hence we can simulate OR given the complete encryption oracle O, using ancilla qubits.

Combining the quantum distinguisher with key recovery attacks. Leander and May
proposed a technique to combine Grover’s algorithm and Simon’s algorithm [LM17].
Particularly, they proposed a quantum algorithm and showed the following proposition:

Proposition 3 (Theorem 2 in [LM17]). Let Ψ : Fm2 × Fn2 → Fn2 be a function such that
Ψ(k, ·) : Fn2 → Fn2 is a random function for any fixed k ∈ Fn2 . Let Φ : Fm2 × F3n

2 → Fn2 be
a function defined by Φ(k0, k1, k2, x) = Ψ(k0, x ⊕ k1) ⊕ k2. Then, given quantum oracle
accesses to Φk0,k1,k2(·) and Ψ(·, ·), we can recover (k0, k1, k2) with a constant probability
and O((m+ n)2m/2) queries, using O(m+ n2) qubits.

Leander and May’s algorithm firstly defines function Φ′ : Fm2 × Fn2 → Fn2 by Φ′(k, x) =
Φk0,k1,k2(x)⊕ Ψ(k, x). Since Φ′(k, x) = Ψ(k0, x⊕ k1)⊕ k2 ⊕ Ψ(k, x) holds, Φ′(k0, ·) has a
period k1. Roughly speaking, their algorithm searches for correct key k0 with the Grover
search and checks whether or not Φ′(k, ·) is periodic for the candidate key k by running
O(n) many independent Simon’s algorithm parallelly. The Grover search for m-bit key k0
requires O(m) qubits. O(n) parallel Simon’s algorithm requires O(n2) qubits. Thus the
above algorithm needs O(m+ n2) qubits.

Note that the above proposition refers only to query complexity, but not to time
complexity. In the above algorithm, it is O(n3) arithmetic operations after O(n) queries
made by Simon’s algorithm (see Section 2.2.3) that makes difference between query
complexity and time complexity. Considering this O(n3) operations, the running time of
their algorithm is O((m+ n3)2m/2).

Now we guess subkeys for the last (r − 3)-rounds K3, . . . ,Kr−1, given the quantum
encryption oracle of an r-round Feistel network. If the guess is correct, we can implement
a quantum circuit that calculates the first three rounds of the Feistel network. Hence
we can detect the correctness of the guess by using the 3-round quantum distinguisher
described above. We guess K3, . . . ,Kr−1 by using Grover’s algorithm, while we use Simon’s
algorithm for the 3-round distinguisher. Therefore we need the technique by Leander and
May that combines Grover’s algorithm and Simon’s algorithm.

However, Proposition 3 dose not suit our case, and we need the following variant
proposition, which can be proven in the similar way as the original proposition.

Proposition 4. Let Ψ : Fm2 × Fn2 → Fn2 be a function such that Ψ(k, ·) : Fn2 → Fn2
is a random function for any fixed k ∈ Fn2 . Let Φ : Fm2 × Fn2 → Fn2 be a function
such that Φ(k, ·) : Fn2 → Fn2 is a random function for any fixed k ∈ Fn2 \ {k0}, and
Φ(k0, x) = Ψ(k0, x⊕ k1). Then, given quantum oracle accesses to Φ(·, ·) and Ψ(·, ·), we can
recover (k0, k1) with a constant probability and O((m+ n)2m/2) queries, using O(m+ n2)
qubits.
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Again, we search for the correct key k0 with the Grover search and check whether or
not Φ′(k, ·) = Φk0,k1,k2(·)⊕ Ψ(k, ·) is periodic for the candidate key k by running Simon’s
algorithm parallelly. Due to the similar reason as for Proposition 3, time complexity of
this variant algorithm also becomes at most O((m+ n3)2m/2).

Now we explain how to combine the quantum distinguisher with key recovery attacks.
Assume that we are given the quantum encryption oracle of an r-round Feistel network
Encr : {0, 1}n → {0, 1}n. For k = (K ′3, . . . ,K ′r−1) ∈ {0, 1}(r−3)n/2, let Dk : {0, 1}n →
{0, 1}n denote the partial decryption of the last (r − 3)-rounds with the key candidate
(K ′3, . . . ,K ′r−1). Define W : {0, 1}(r−3)n/2 × {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 be the
function that outputs the right half of n/2-bits of Dk ◦ Encr(x, y). We can implement a
quantum circuit of W using the quantum oracle of Encr and the simulating technique
we described above. Note that W (k0, x, y) = x ⊕ F (K1 ⊕ y ⊕ F (K0 ⊕ x)) holds, where
k0 = (K3, . . . ,Kr−1) is the set of partial keys of the Feistel network Encr from the 4-th
round to the last round.

Now, fix two different n/2-bit strings α, β, and define Ψ, Φ : {0, 1}(r−3)n/2×{0, 1}n/2 →
{0, 1}n/2 by

Ψ(k, x) = W (k, α, x)⊕ β, Φ(k, x) = W (k, β, x)⊕ α.

Then Ψ(k, ·) is an almost random function for each k, and Φ(k, ·) is also an almost
random function for each k 6= k0. In addition, Φ(k0, x) = Ψ(K0, x ⊕ k1) holds, where
k1 = F (α⊕K0)⊕ F (β ⊕K0), since

Φ(k0, x) = W (k0, β, x)⊕ α
= β ⊕ F (K1 ⊕ x⊕ F (β ⊕K0))α
= α⊕ F (K1 ⊕ x⊕ F (β ⊕K0)⊕ F (α⊕K0)⊕ F (α⊕K0))⊕ β
= W (k0, α, x⊕ k1)⊕ β
= Ψ(k0, x⊕ k1).

Thus, by applying Proposition 4, we can recover the round keys K3, . . . ,Kr−1. After we
obtain K3, . . . ,Kr−1, we can construct a quantum circuit that calculates the first 3 rounds
of the Feistel network. Thus, for arbitrary α, β ∈ {0, 1}n/2 such that α 6= β, we can compute
F (α⊕K0)⊕ F (β ⊕K0) in polynomial time by using the 3-round distinguisher. Hence we
can recover K0 in time O(2n/4) by using the Grover search. Once K0,K3, . . . ,Kr−1 are
recovered, we can easily recover K1,K2 in time O(2n/4) by using the Grover search.

Complexity summary. Consequently, we can recover K0, . . .Kr−1 in time O(n32(r−3)n/4),
using O(n2) qubits. In addition, the Grover search to find correct k0 can be parallelized. If
we can afford O(n22p) qubits, K0, . . . .Kr−1 can be recovered in time O(n32(r−3)n/4−p/2).

In particular, for the case r = 6, all the complexities are balanced at Õ(2n/2), which is
the same as the attack in Section 4:

• The attack requiresO(n2n/2) quantum queries, O(n32n/2) computations, andO(n22n/2)
qubits.

The time complexity and the number of qubits are almost the same as those in Section 4.
However, the trade-off between time complexity and the number of qubits are different.
For example, the attack described in this section runs in time Õ(23n/4) using polynomially
many qubits, while the attack in Section 4 requires time Õ(2n) using polynomially many
qubits (see Fig. 1).
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