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Abstract. SPDZ denotes a multiparty computation scheme in the pre-
processing model based on somewhat homomorphic encryption (SHE)
in the form of BGV. At CCS ’16, Keller et al. presented MASCOT, a
replacement of the preprocessing phase using oblivious transfer instead
of SHE, improving by two orders of magnitude on the SPDZ implemen-
tation by Damg̊ard et al. (ESORICS ’13). In this work, we show that
using SHE is faster than MASCOT in many aspects:

1. We present a protocol that uses semi-homomorphic (addition-only)
encryption. For two parties, our BGV-based implementation is 6
times faster than MASCOT on a LAN and 20 times faster in a
WAN setting. The latter is roughly the reduction in communication.

2. We show that using the proof of knowledge in the original work by
Damg̊ard et al. (Crypto ’12) is more efficient in practice than the one
used in the implementation mentioned above by about one order of
magnitude.

3. We present an improvement to the verification of the aforementioned
proof of knowledge that increases the performance with a growing
number of parties, doubling it for 16 parties.

Keywords: Multiparty computation, somewhat homomorphic encryp-
tion, BGV, zero-knowledge proofs of knowledge

1 Introduction

Multi-party computation (MPC) allows a set of parties to jointly compute a
function over their inputs while keeping them private. In the last decade MPC
has developed from a largely theoretical field to a practical one where many
applications have been developed on top of it [DES16,GSB+17]. This is mostly
due to the rise of compilers which translate high-level code to secure branching,
additions and multiplications on secret data [BLW08,KSS13,DSZ15,ZE15].
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A high number of applications require to evaluate an arithmetic circuit (over
the integers or modulo p) due to the easiness of expressing them rather than
performing bitwise operations in a binary circuit. This is especially true for
linear programming of satellite collisions where fixed and floating point numbers
are intensively used [DDN+16,KW15]. A recent line of work even looked at how
to decrease the amount of storage needed throughout sequential computations
from one MPC engine to another with symmetric key primitives evaluated as
arithmetic circuits [GRR+16,RSS17].

To accomplish MPC one can select between two paradigms: garbled cir-
cuits [GLNP15,RR16,WRK17] or secret sharing [DGKN09,BDOZ11,DPSZ12].
We will concentrate on the latter because it is the most suitable at the moment
to evaluate arithmetic circuits although there have been some recent theoretical
improvements on garbling modulo p made by Ball et al. [BMR16]. Since our goal
in this paper is to have secure computation within a system that scales with the
number of parties as well as to provide a guarantee against malicious players we
will focus on SPDZ [DPSZ12,DKL+13].

It is no surprise that homomorphic encryption can help with multiparty
computation. In the presence of malicious adversaries, however, there needs to be
assurances that parties actually encrypt the information that they are supposed
to. Zero-knowledge proofs are the essential tool to achieve this, and there exist
compilers to make passive protocols secure against an active adversary. However,
these proofs are relatively expensive, and it is the aim of SPDZ to reduce this
cost by using them as little as possible.

The core idea of SPDZ is that, instead of encrypting the parties’ inputs, it is
easier to work with random data, conduct some checks at the end of the proto-
col, and abort if malicious behavior is detected. In order to evaluate a function
with private inputs the computation is separated in two phases, a preprocess-
ing or offline phase and an online phase. The latter uses information-theoretic
algorithms to compute the results from the inputs and correlated randomness
produced by the offline phase.

The correlated randomness consists of secret-shared random multiplication
triples, that is (a, b, ab) for random a and b. In SPDZ, the parties encrypt ran-
dom additive shares of a and b under a global public key, use the homomorphic
properties to sum up and multiply the shares, and then run a distributed de-
cryption protocol to learn their share of ab. With respect to malicious parties,
there are two requirements on the encrypted shares of a and b. First, they need
to be independent of other parties’ shares, otherwise the sum would not be ran-
dom, and second, the ciphertexts have to be valid. In the context of lattice-based
cryptography, this means that the noise must be limited. Both requirements are
achieved by using zero-knowledge proofs of knowledge and bounds of the clear-
text and encryption randomness. It turns out that this is the most expensive
part of the protocol.

The original SPDZ protocol [DPSZ12] uses a relatively simple Schnorr-like
protocol [CD09] to prove knowledge of cleartexts and correctness of ciphertexts,
but the later implementation [DKL+13] uses more sophisticated cut-and-choose-
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style protocols for both covert and active security. We have found that the sim-
pler Schnorr-like protocol which guarantees security against active malicious
parties is actually more efficient than the cut-and-choose proof with covert se-
curity.

Intuitively, it suffices that the encryption of the sum of all shares has to be
correct because only the sum is used in the protocol. We take advantage of this
by replacing the per-party proof by a global proof in Section 4. This significantly
reduces the computation because every party only has to check one proof instead
of n − 1. However, the communication complexity stays the same because the
independence requirement means that every party still has to commit to every
other party in some sense. Otherwise, a rushing adversary could make its input
dependent on others, resulting in a predictable triple.

Section 3 contains our largest theoretical contribution. We present a replace-
ment for the offline phase of SPDZ based solely on the additive homomorphism
of BGV. This allows to reduce the communication and computation compared to
SPDZ because the ciphertext modulus can be smaller. At the core of our scheme
is the two-party oblivious multiplication protocol by Bendlin et al. [BDOZ11],
which is based on the multiplication of ciphertexts and constants. Unlike their
work, we restrict the underlying cryptosystem to BGV, which enables us to avoid
the costliest part of their protocol, the proof of correct multiplication. Instead,
we replace this check by the SPDZ sacrifice, and show that increasing the en-
tropy in the secret key suffices to counter the leakage that stems from malicious
behaviour in the multiplication protocol.

We do not consider the restriction to BGV to be a loss. Bendlin et al. suggest
two flavors for the underlying cryptosystem, lattice-based and Paillier-like. For
lattice-based cryptosystems, Costache and Smart [CS16] have shown that BGV
is very competitive for large enough cleartext moduli such as needed by our pro-
tocol. On the other hand, Paillier only supports simple packing techniques and
it makes difficult to manipulate individual slots [NWI+13]. Another advantage
of BGV over Paillier is the heavy parallelization with CRT and FFT since in the
lattice based cryptosystem the ciphertext modulus can be a product of many
small primes.

2 Preliminaries

In the following section we define the basic notation and give an overview of the
BGV encryption scheme and the SPDZ protocol.

2.1 Security Model

We use the UC (Universally Composable) framework of Canetti [Can01] to prove
the security of our schemes against malicious, static adversaries, except for proofs
of knowledge where we use rewinding to extract inputs from the adversary. This is
in line with previous works [BDOZ11,DPSZ12] because fully UC zero-knowledge
proofs are considerably more expensive.
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Our protocols work with n parties P = {P1, . . . , Pn} where up to n − 1
corruptions can take place before the protocol starts. We say that a protocol
Π implements securely a functionality F if any probabilistic polynomial time
adversary Adv cannot distinguish between interacting with F or a simulator S
and Π with computational security k and statistical security sec.

2.2 BGV

We now give a short overview of the leveled encryption scheme developed by
Brakerski et al. [BGV12] required for our pre-processing phase. Since the proto-
cols used for generating the triples need only multiplication by scalars or cipher-
text addition the BGV scheme is instantiated with a single level. For completion
we present the details required to understand our paper yet the reader can con-
sult the following papers: [LPR10,BV11,GHS12a,LPR13].

Underlying Algebra. Let R = Z[X]/〈f(x)〉 be a polynomial ring with inte-
ger coefficients modulo f(x). In our case R = Z[x]/〈Φm(X)〉 where Φm(X) =∏

i∈Z∗m
(X − ωi

m) ∈ Z[X] and ωm = exp(2π/m) ∈ C is a principal m’th complex

root of unity and ωi
m = exp(2π

√
−1/m) ∈ C iterates over all primitive complex

mth roots of unity.

The ring R is also called the ring of algebraic integers of the m’th cyclotomic
polynomial. For example when m ≥ 2 and m is a power of two, the polynomial
Φm(X) = Xm/2 + 1. Notice that the degree of Φm(X) is equal to φ(m) which
makes R a field extension with degree N = φ(m). Next we define Rq = R/qR ∼=
R/〈(Φm(X), q)〉 where q is not necessarily a prime number. The latter will be
used as the ciphertext modulus.

Plaintext Slots. Since triples are generated for arithmetic circuits modulo
p, the plaintext space is the ring Rp = R/pR, for technical reasons p and q
are co-prime. If p ≡ 1 mod m we have that Φm(X) = F1(X) . . . Fl(X) mod p
splits into l irreducible polynomials where each Fi(X) has degree d = φ(m)/l
and Fi(X) ∼= Fd

p. It is useful to think of an element a ∈ Rp as a vector of size

l where each element is (a mod Fi(X))
l
i=1. This in turn allows to manipulate l

plaintexts at once using SIMD (Single Instruction Multiple Data) operations.

Distributions. Throughout the definitions we will refer to a polynomial a ∈ R
as a vector of size N = φ(m). To realize the cryptosystem we need to sample at
various times from different distributions to generate a vector of length N with
coefficients mod p or q (which means an element from Rp or Rq). We will keep
Rq throughout the following definitions:

– U(Rq) the uniform distribution where each unique polynomial a ∈ Rq has
an equal chance to be drawn. This can be done sampling each coefficient of
a uniformly at random (from the integers modulo q).
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– DG(σ2, Rq) the discrete Gaussian with variance σ2. Taking samples from
it is performed in a similar way to the uniform one but calling for each
coefficient of a ∈ Rq the normal Gaussian N (σ2) and then round it to the
nearest integer.

– ZO(0.5) outputs a vector of lengthN where each entry has values in {−1, 0, 1}.
Here zero has a 1/2 probability to appear, whereas {−1, 1} have both a prob-
ability of 1/4.

– HWT (h) outputs a random vector of length N where at least h entries are
non-zero and each entry is in the {−1, 0, 1} set.

Ring-LWE. Hardness of the BGV scheme is based on the Ring version of
Learning with Errors problem [LPR10]. For a secret s ∈ Rp, recall that a Ring-
LWE sample is produced by choosing a ∈ Rq uniformly at random, an error
e← χ from a special Gaussian distribution and compute b = a · s+ e. Turns out
that if an adversary manages to break the BGV encryption scheme in polynomial
time one can also build a polynomial time distinguisher for Ring-LWE samples

and the uniform distribution, namely (a, b = a · s+ e) ∼= (a′, b′) where (a′, b′)
$←

U(R2
q).

Key-Generation, Encryption and Decryption. The cryptosystem used in
Section 3 is identical to Damg̊ard et al. [DKL+13] bar the augmentation data
needed for modulus switching. First the public, secret key pairs are generated
as follows:

– KeyGen(): Sample s ← HWT (h), a ← U(Rq), e ← DG(σ2, Rq) and then
b ← a · s + p · e. Now set the public key pk ← (a, b). Notice that pk looks
very similar with a Ring-LWE sample.

– Encpk(m): To encrypt a message m ∈ Rp, sample a small polynomial with co-
efficients v ← ZO(0.5), and two Gaussian polynomials e1, e2 ← DG(σ2, Rq).
The ciphertext will be a pair c = (c0, c1) where c0 = b · v + p · e0 +m ∈ Rq

and c1 = a · v + p · e1 ∈ Rq.
– Decsk(c): To decrypt a ciphertext c ∈ R2

q one can simply compute m′ ←
c0 − s · c1 ∈ Rq and then set m ← m′ mod p to get the original plaintext.
The decryption works only if noise ν = (m′ mod p) −m associated with c
is less than q/2 such that the ciphertext will not wrap around the modulus
Rq.

2.3 Zero-Knowledge Proofs

In a typical scenario a zero-knowledge (ZK) proof allows a verifier to check the
validity of statement claimed by a prover without revealing anything other than
the claim is true. Previous implementations have used one of two approaches:
a Schnorr-like protocol [CD09,DPSZ12,DKL+12] and cut-and-choose [DKL+13].
We will call SPDZ using either of the two protocols SPDZ-1 and SPDZ-2, respec-
tively. Analysing the communication complexity, we found that the Schnorr-like
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protocol is more efficient because it only involves sending two extra ciphertexts
per ciphertext to be proven whereas Damg̊ard et al. [DKL+13] suggest that, for
malicious security, their protocol is most efficient with 32 extra ciphertexts. It is
also worth noting that the Schnorr-like protocol seems to be easier to implement.

The Schnorr-like protocol is based on the following 3-move standard Σ-
protocol. To prove knowledge of x in a field F such that f(x) = y without
revealing x:

1. The prover P sends a commitment a = f(s) for a random s.

2. The verifier V then samples a random e
$← F and sends it to P.

3. P replies with z = s+ e · x. Finally V checks whether f(z) = a+ e · y.

If f is homomorphic with respect to the field operations, the protocol is
clearly correct. Security of the prover (honest-verifier zero-knowledge) is achieved
by simulating (a, e, z) from any e by sampling z ∈ F and computing a = f(z)−
e · y. Security for the verifier (special soundness) allows to extract the secret
from two different transcripts (z, c), (z′, c′) with c 6= c′. This can be done by
computing x = (z−z′) · (c− c′)−1 since the inversion of c− c′ is possible because
both are elements from a field.

For our setting x is an integer (or a vector thereof), and we would like to prove
that ‖x‖∞ ≤ B for some bound. For this case, Damg̊ard and Cramer [CD09]
have presented an amortized protocol (proving several pre-images at once) where
s has to be chosen in a large enough interval (to statistically hide E · x) and the
challenge E is sampled from a set of matrices such that any (E−E′) is invertible
over Z for any E 6= E′. The preimage is now extracted as x = (E−E′)−1(z−z′),
thus a bound on ‖z‖∞ also implies a bound on ‖x‖∞.

However, it is not possible to make these bounds tight. Namely, an honest
prover using ‖x‖∞ ≤ B will achieve that ‖z‖∞ ≤ B′ for some B′ > B. The
quotient between the two bounds is called slack. Damg̊ard et al. [DPSZ12] also
show that in the Fiat-Shamir setting (where the challenge is generated using
a random oracle on a), a technique called rejection sampling can be used to
reduce the slack. This involves sampling different s until the response z achieves
the desired bound. In any case, we will see in Section 3.4 that the slack of this
proof is too small to make it worthwhile using the cut-and-choose proof instead.

Figure 1 shows the functionality that the proofs above implement. For a
simplified exposition we also assume that FS

ZKPoK generates correct keys. In pre-
vious works this has been done by separate key registration [BDOZ11] or key
generation functionalities [DPSZ12,DKL+13].

2.4 Overview of SPDZ

The SPDZ protocol [DPSZ12,DKL+13] can be viewed as a two-phase protocol
where inputs are shared via an additive secret sharing scheme. First part is the
pre-processing phase where triples are generated. The classical way to produce
these triples is either by oblivious transfer or HE (homomorphic encryption).
Each has its own advantages and caveats but we will discuss in depth about the
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FS
ZKPoK

The functionality generates keys (pk, sk) and sends them to PA and pk to PB . If
PA is corrupted, the adversary chooses the keys. Then, the following can happen
repeatedly:

1. PA inputs either a vector a or a value a. In the latter case, a is defined to
contain a in all slots.

2. If PA is honest, PB receives Encpk(a), otherwise Enc′pk(a), where Enc′ has noise
at most S times as much as regular encryption.

3. The adversary can abort any time.

Fig. 1. Proof of knowledge of ciphertext

HE techniques where ciphertexts are passed around players. Since in our setting
parties can deviate maliciously from the protocol by inserting too much noise in
the encryption algorithm the solution to prevent this is to use ZK proofs.

These random triples are further used in the online phase where parties inter-
act by broadcasting data whenever a value is revealed. Privacy and correctness
is then guaranteed by authenticated shared values with information theoretic
MAC’s on top of them.

More formally, an authenticated secret value x ∈ F is defined as the following:

JxK = (x(1), . . . , x(n),m(1), . . . ,m(n), ∆(1), . . . ,∆(n))

where each player Pi holds an additive sharing tuple (x(i),m(i), ∆(i)) such
that:

x =

n∑
i=1

x(i), x ·∆ =

n∑
i=1

m(i), ∆ =

n∑
i=1

∆(i).

For the pre-processing phase the goal is to model a Triple command which
generates a tuple (JaK, JbK, JcK) where c = a · b and a, b are uniformly random
from F.

To open a value JxK all players Pi broadcast their shares x(i), commit and
then open m(i) − x · ∆(i), afterwards they check if the sum is equal to zero.
One can check multiple values at once by taking a random linear combination
of m(i)−x ·∆(i) exactly as in the MAC Check protocol in Figure 5 in Section 3.

In the online phase the main task is to evaluate an arbitrary circuit with
secret inputs. After the parties provided their inputs using the Input command
next step is to perform addition and multiplication between authenticated shared
values. Since the addition is linear it can be done via local computation while
to multiply two values JxK, JyK requires some interaction between the parties.
To compute Jx · yK a fresh random triple JaK, JbK, JcK is provided by the Input
command and then Beaver’s trick is applied [Bea92]. Namely open Jx− aK to
get ε and Jx− bK to get ρ. In the end obtain the authenticated product by setting
Jx · yK← JcK + εJbK + ρJaK + ε · ρ.
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Offline phase. We now outline the core ideas of the preprocessing phase of
SPDZ. Assume that the parties have a global public key, a secret sharing of the
secret key ∆, and that there is a distributed decryption protocol that allows the
parties to decrypt an encryption such that they receive a secret sharing of the
cleartext (see Damg̊ard et al. [DPSZ12] Reshare procedure for details).

For passive security only, the parties can simply broadcast encryptions of
randomly sampled shares ai, bi and their share of the MAC key ∆i. These en-
cryptions can be added up and multiplied to produce encryptions of (a · b, a ·
∆, b ·∆, a · b ·∆) if the encryption allows multiplicative depth two. Distributed
decryption then allows the parties to receive an additive secret sharing of each
of those values, which already is enough for a triple. Since achieving a higher
multiplicative depth is relatively expensive, SPDZ only uses a scheme with mul-
tiplicative depth one and extends the distributed decryption to produce a fresh
encryption of a · b, which then can be multiplied with the encryption of ∆.

In the context of an active adversary there are two main issues: First, the
ciphertexts input by corrupted parties have to be correct and independent of
the honest parties ciphertexts. This is where zero-knowledge of knowledge of
bounded values are needed. Second, the distributed decryption protocol actually
allows the adversary to add an error, that is, the parties can end up with a triple
(a, b, ab+e) with e known to the adversary and where the MACs have additional
errors as well. While an error on a MAC will make the MAC check fail in any
case, the problem of an incorrect triple requires more attention. This is where
the so-called SPDZ sacrifice comes in. Imagine two triples with potential errors
(JaK, JbK, Jab+ eK) and (Ja′K, Jb′K, Ja′b′ + e′K), and let t be a random field element.
Then,

t · (ab+ e)− (a′b′ + e′)− (ta− a′) · b− a′ · (b− b)′

= tab+ te− a′b′ − e′ − tab− a′b− a′b+ a′b′

= te− e′,

which is 0 with probability negligible in sec for a field of size at least 2sec if either
e 6= 0 or e′ 6= 0. The use of MACs means that the adversary cannot forge the
result of this computation, hence any error will be caught with overwhelming
probability since with the additive secret sharing of our triples the parties have
to reveal Jta− a′K and Jb− b′K. Therefore, one of the triples has to be discarded
in order keep the other one “fresh” for use in the online phase. For MASCOT,
Keller et al. [KOS16] found that the sacrifice also works with two triples (a, b, ab)
and (a′, b, a′b), which implies b−b′ = b−b = 0. Such a combined triple is cheaper
to produce (both in MASCOT and SPDZ), and requires less revealing for the
check.
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3 Low Gear: Triple Generation
Using Semi-Homomorphic Encryption

The multiplication of secret numbers is at the heart of many secret sharing-based
multiparty computation protocols because linear secret sharing scheme makes
addition easy, and the two operations together are complete.1 Both Bendlin et
al. [BDOZ11] and Keller et al. [KOS16] have effectively reduced the problem of
secure computation to computing an additive secret sharing of the product of
two numbers known to two different parties. The former used semi-homomorphic
encryption which allows to add two ciphertexts to get an encryption of the sum
of cleartexts whereas the latter used oblivious transfer which is known to be
complete for any protocol.

The semi-homomorphic solution works roughly as follows: One party sends an
encryption Enc(a) of their input under their own public key to the other, which
replies by C := b · Enc(a) − Enc(cB), where b denotes the second party’s input
and cB is chosen at random. Any semi-homomorphic encryption scheme allows
the multiplication of a known value with a ciphertext, hence the decryption of
the second message is cA := b · a− cB , which makes (cA, cB) an additive secret
sharing of a · b. Here the noise of C might reveal information about b but this
can mitigated by adding random noise from an interval that is sec larger than
the maximum noise of C. This technique sometimes called “drowning” was also
used in the distributed decryption of SPDZ.

In the context of a malicious adversary there are two concerns with the above
protocol: Enc(a) might not be a correct encryption and C might not be computed
correctly. In both cases, Bendlin et al. use a zero-knowledge proof of knowledge
to make sure that both parties behave correctly.

To prove the correctness of Enc(a), there are relatively efficient proofs based
on amortized Σ-protocols (reducing the overhead per ciphertext by processing
several ciphertexts at once), but for the proof of correct multiplication amorti-
zation is not possible in our context because the underlying ciphertext Enc(a) is
different in every instance. The main goal of our work in this chapter is there-
fore to avoid the proof of correct multiplication altogether of defer this to a later
check in the protocol sometimes called “sacrificing”.

Recall that the goal in this family of protocols is generate random multipli-
cation triples (a, b, ab). The sacrifice will guarantee that the parties have shares
of correct triples, but there is a possibility of a selective failure attack. If C
was not computed correctly, just the fact that the check passed (otherwise the
parties abort without using their private data) can reveal information meant to
stay private in the protocol. We will show that, in case of BGV, this is infor-
mation about the private key. Therefore in a first step we define in Section 3.1
an enhanced CPA notion that we will use later in our proofs, and we show that
increasing the entropy in the private key suffices to achieve this notion.

1 This fact is mirrored in the world of garbled circuits, where the free-XOR technique
only requires to garble AND gates, which compute the product of two bits.
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In Section 3.2, we will then use our multiplication protocol a first time to
compute SPDZ-style MACs, that is, additive secret sharings of the product of a
value and a global MAC key, which itself is secret-shared additively. It is straight-
forward to compute such a global product from the two-party protocol. Consider
that

∑
i ai ·

∑
i bi =

∑
i,j ai · bj . Every summand in the right-hand side can be

computed either locally or by the two-party protocol, and the additive operation
is trivially commutative with the addition of shares. The resulting protocol can
be seen as a full-threshold version verifiable secret sharing as observed by Keller
et al. because it guarantees the soundness of inputs by parties and the correctness
of linear operations.

Building on the authentication protocol, we present the multiplication triple
generation in Section 3.3 using the two-party multiplication protocol once more.
Note that the after-the-fact check of correct multiplication works differently in
the two protocols. In the authentication protocol, we make use of the fact that
changing values are always multiplied with the same share of the MAC key. In
the triple generation, however, both values change from triple to triple, thus we
rely on the SPDZ sacrifice there. For this, we use a trick used by Keller et al.
that reduces the complexity by generating a pair of triples ((a, b, ab), (a′, b, a′b))
for the sacrifice instead of two independent triples.

Finally, we present our choice of BGV parameters in Section 3.4, following the
considerations of Damg̊ard et al. [DKL+13], which in turn are based on Gentry
et al. [GHS12b]. We found that the ciphertext modulus is about 100 bits shorter
compared to original SPDZ for fields of size 264 to 2128, which makes a significant
contribution to the reduced complexity of our protocol because SPDZ requires
a modulus of bit length more than 300 for 64-bit fields and 40-bit security.

3.1 Enhanced CPA Security

We want to reduce the security of our protocol to an enhanced version of the CPA
game for the encryption scheme. In other words, if the encryption scheme in use
is enhanced-CPA secure, then even a selective failure caused by the adversary
does not reveal private information.

We say that an encryption scheme is enhanced-CPA secure if, for all PPT
adversaries in the game from Figure 2, Pr[b = b′] is negligible in k.

Achieving enhanced-CPA security. The game without zero checks in step 3
clearly can be reduced to the standard CPA game. We therefore only show how
to achieve security with respect to the extra oracle queries.

Since decryption is deterministic, for every c, there exists a set Sc of potential
secret keys such that the decryption is zero:

Sc = {sk′ : Decsk′(c) = 0}.

The adversary can only win if the actual secret key is in S =
⋂

j Scj . Assume
this happens with probability

pS = Pr
sk′←KeyGen

[sk′ ∈ S].
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Gcpa+

1. The challenger samples (pk, sk)← KeyGen(k), sends pk to the adversary.
2. The challenger sends c = Encpk(m) for a random message m.
3. For j ∈ poly(k):

(a) The adversary sends cj to the challenger.
(b) The challenger checks if Decsk(cj) = 0; if this is the case the challenger

sends OK to the adversary; else, the challenger sends FAIL to the adversary
and aborts.

4. The challenger samples b
$← {0, 1} and sends m to the adversary if b = 0 and

a random m′ otherwise.
5. The adversary sends b′ ∈ {0, 1} to the challenger and wins the game if b = b′.

Fig. 2. Enhanced CPA game

A successful adversary learns only log pS bits of entropy of the secret key. It
follows that an adversary passing this step with probability at least 2−sec can
learn at most sec bits of entropy.

The key generation of BGV generates s of length N such that s has h = 64
non-zero entries at randomly chosen places, which are chosen uniformly from
{−1, 1}. The entropy is therefore

log

(
N

h

)
+ h.

It is easy to see that choosing h′ = h+ sec non-zero entries increases the entropy
by sec bits2 for large enough N . Because

(
N
k

)
monotonously increases for k ≤

N/2, (
N

h+ sec

)
≥
(
N

h

)
for N ≥ 2 · (h+ sec). It follows that

log

(
N

h+ sec

)
+ h+ sec ≥

(
log

(
N

h

)
+ h

)
+ sec,

which is the desired result. We will later see thatN is much bigger than 2·(h+sec)
for h = 64 and sec = 128.

3.2 Input Authentication

As in Keller et al. [KOS16], we want to implement a functionality (Figure 3) that
commits the parties to secret sharings and that provides the secure computation
of linear combinations of inputs. However, instead of using oblivious transfer for
the pairwise multiplication of secret numbers we use our building block based
on semi-homomorphic encryption. See Figure 4 for our protocol.

2 sec/2 would suffice, but sec does not affect the efficiency and allows for a simpler
analysis.
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FJ·K

Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from party Pj and
(Input, id1, . . . , idl, Pj) from all players Pi where i 6= j store Val[idk] ← xk
for all k ∈ [1 . . . l].

Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all
parties where idk ∈ Val.Keys() store Val[id] =

∑l
k=1 Val[idk] · ck + c.

Open: On input (Open, id) from all parties, send Val[id] to the adversary; wait for
input x from the adversary and then send x to all parties.

Check: On input (Check, id1, . . . , idl, x1, . . . , xl) from all parties wait for adver-
sary’s input. If the input is OK and Val[idk] = xk for all k ∈ [1 . . . l] then send OK
to every party, otherwise send ⊥ and terminate.

Abort: On input Abort from the adversary send ⊥ to all parties and terminate.

Fig. 3. Functionality FJ·K

In case parties Pi and Pj are honest,

∆(i) · ρ− σ(i) −
m∑

k=1

tk · d(i)
k = ∆(i) · (

m∑
k=1

tk · xk)−
m∑

k=1

tk · e(i)k −
m∑

k=1

tk · d(i)
k

=

m∑
k=1

tk · (∆(i) · xk − e(i)k − d
(i)
k ) = 0

for all i 6= j. This means that Pi’s check succeeds if. The last equation follows
from the homomorphism of the encryption scheme.

Furthermore, one can check similarly that∑
i

m
(i)
k = xk ·

∑
i

∆(i),

which is the desired equation underlying the MAC. If it does not hold because
of Pj ’s behaviour, we would like the check to fail for some honest Pi. Informally,
the fact that Pj cannot predict the coefficients tk makes it impossible for Pj to
provide correct (ρ, σ(i)) to an honest party Pi after computing C(i) incorrectly.
However, this opens the possibility for leakage by a selective failure attack, which
is why we need the underlying cryptosystem to achieve enhanced-CPA security.

The most intricate part of the simulator SJ·K (Figure 6) is simulating the
Input phase for a corrupted Pj while the same phase for honest Pj is straight-
forward given that Enc′ statistically hides the noise of x(i) · Enc(∆). Note that

the (xm, e
(i)
m , d

(i)
m ) are only used for the check. This maintains Pj ’s privacy even

after sending ρ and {σ(i)}i 6=j .

Theorem 1. ΠJ·K implements FJ·K in the FCommit-hybrid model with rewinding
in a presence of a dishonest majority if the underlying cryptosystem achieves
enhanced CPA-security.
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ΠJ·K

Initialize: Each Party Pi does the following:

1. Sample a MAC key ∆(i) $← F.
2. Initialize two instances of FS

ZKPoK with every other Party Pj (one as prover,
one as verifier), receiving (pkij , skij) and pkji.

3. Using FS
ZKPoK, send an encryption Encpkij (∆(i)) to every other party where

∆(i) denotes a cleartext with all slots set to ∆(i).
Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from Pj and

(Input, id1, . . . , idl, Pj) from all Pi where i 6= j:

1. For each input xk where k ∈ [1 . . . l] Pj samples randomly x
(i)
k

$← F and
sends them to the designated party i. Then Pj sets its corresponding share

x
(j)
k accordingly such that

∑n
l=1 x

(l)
k = xk.

2. We assume that l < m where m is the number of ciphertext slots in the
encryption scheme. Let x denote the vector containing xk in the first l
entries and a random number in the m-th one.

3. For every party Pi:
(a) Pj computes C(i) = x · Encpkij (∆(i)) − Enc′pkij (e(i)) for random e(i)

and sends C(i) to Pi. Enc
′ denotes encryption with noise p · 2sec larger

than in normal encryption.
(b) Pi decrypts d(i) = Decskij (C(i)).

4. The parties use FRand to generate random tk for k = 1, . . . ,m.
5. Pj computes ρ =

∑m
k=1 tk · xk and σ(i) =

∑m
k=1 tk · e

(i)
k , and sends (ρ, σ(i))

to Pi.
6. Pi checks whether ∆(i) · ρ− σ(i) −

∑m
k=1 tk · d

(i)
k = 0 and aborts if not.

7. Pj sets its MAC share associated to xk as m
(j)
k ←

∑
i 6=j e

(i)
k +xk ·∆(j) and

each party Pi does so for m
(i)
k ← d

(i)
k .

8. All parties store their authenticated shares x
(i)
k ,m

(i)
k as JxK under the iden-

tifiers id1, . . . , idl.
Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all

parties, every Pi retrieves the share-MAC pairs x
(i)
k ,m(xk)

(i)

k∈[1...l] and com-
putes:

y(i) =

l∑
k=1

ck · x(i)k + c · s(i)1

m(y)(i) =

l∑
k=1

ck ·m(xk)(i) + c ·∆(i)

s
(i)
1 denotes a fixed sharing of 1, for example, (1, 0, . . . , 0).

Open: On input (Open, id) from all parties each Pi looks-up for the share x(i)

with identifier id and broadcasts it. Then each party reconstructs x =
∑n

i=1 x
(i).

Check: On input (Check, id1, . . . , idl, x1, . . . , xl) from all parties:
1. Sample public vector r ← FRand(Fl).

2. Compute y(i) =
∑m

k=1 r
(i)
k x

(i)
k and m(y)(i) =

∑m
k=1 r

(i)
k mk(xk)(i).

3. Run ΠMACCheck with y(i),m(y)(i).

Fig. 4. Protocol for two-party input authentication
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ΠMACCheck

Each party Pi uses y(i),m(y)(i),∆(i) in the following way:

1. Compute σ(i) ← m(y)(i) −∆(i)y(i).
2. Call FCommit with (Commit, σ(i)) to receive handle τi.
3. Broadcast σ(i) to all parties by calling FCommit with (Open, τi).
4. If σ(1) + · · ·+ σ(n) 6= 0 then abort and output ⊥; otherwise continue protocol.

Fig. 5. Protocol for MAC checking

SJ·K

Let H denote the set of honest parties and A the complement thereof.

Init:
1. Emulating FS

ZKPoK, generate (pkij , skij) for all i ∈ H and j ∈ A and send
all pkij to the adversary.

2. Emulating FS
ZKPoK, send Encpkij (x) for random x to the adversary for all

i ∈ H.
Input: We assume that j /∈ H.

1. Receive x
(i)
k from the adversary for all k = 1, . . . , l and i ∈ H and store

them.
2. Receive the ciphertext C(i) from the adversary and decrypt it to get d(i)

for all i ∈ H.
3. Emulating FRand, sample random ti for i = 1, . . . ,m.
4. Receive (ρ, σ(i)) from the adversary for all i ∈ H.

5. Check whether σ(i) +
∑m

k=1 tk · d
(i)
k = 0 for all i ∈ H and abort if not.

6. Rewinding the adversary, collect enough answers (σ(i), ρ) for random t in
order to reconstruct x and e(i). Choose t such that it is linearly independent
from all previously used t.

7. Compute m
(i)
k for every i ∈ A and store it.

8. Input (x1, . . . , xl) to FJ·K.
Linear Combination: For every i ∈ A, compute shares and MACs as an honest

party would.
Open:

1. Receive the value from the FJ·K.
2. If the value is a linear combination of previously opened values, compute

the honest parties’ shares accordingly. Otherwise, sample new shares.
3. Send the honest parties’s shares to adversary.
4. Receive the corrupted parties’ shares from the adversary.
5. Input the sum to FJ·K.

Check:
1. Emulating FRand, send r to all corrupted parties.
2. Emulating FCommit receive σ(i) for all i ∈ A.
3. If

∑
i∈A σ

(i) does not match the result computed from stored shares, abort
FJ·K.

Fig. 6. Simulator for ΠJ·K
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Proof (Sketch). We focus on the case of a corrupted Pj in the Input phase be-
cause the adversary has a larger degree of freedom with the encryptions C(i).
However, with rewinding in step 6 we can extract the values used by the ad-
versary. This extraction takes time dependent inverse to the success probability,
similar the soundness argument for Σ-protocols. Too see this, consider that the
space of all possible challenges {tk}mk=1 has size |F|m. The extractor requires the
responses to m linearly independent challenges {tk}mk=1. The adversary can only
prevent this by restricting the correct responses to an incomplete subspace of
S ⊂ Fm, that is |S| ≤ Fm−1. Such an adversary will succeed with probability at
most |F|m−1/|F|m = |F|−1, which is negligible because we require the size of F to
be exponential in the security parameter. It follows that the soundness extractor
for Σ-protocols by Damg̊ard [Dam02] can be adapted to our case.

After the extraction, it is straight-forward to simulate the rest of the protocol
because the Linear Combination phase does not involve communication, and
producing a correct MAC in the Check phase for an incorrect output in the
Open phase is equivalent to extracting ∆. This argument can also be extended
to the random linear combination used in the Check phase similarly to Keller et
al. [KOS16]. It is easy to see that extracting ∆ is in turn equivalent to breaking
the security of the underlying cryptosystem.

We therefore construct a distinguisher in the enhanced-CPA security game
from an environment distinguishing between the real and the ideal world. The
difference between Encpkij (∆(i)) in the real world and E = Encpkij (x) for random
x in the simulation can trivially be reduced to our CPA security game because
the adversary never receives ∆(i). Furthermore, x and e(i) extracted from the
adversary can be used to compute C ′ = C(i)−x·E−e(i). By the check conducted
by the honest party Pi, the adversary learns whether C decrypts to the expected
value, or equivalently, whether C ′ is an encryption of zero. We therefore forward
C ′ to the zero test our enhanced CPA game.

3.3 Triple Generation

Recall that the goal is to produce random authenticated triples (JaK, JbK, JabK)
such that a, b are randomly sampled from F as described in Figure 8. Our proto-
col in Figure 7 is modeled closely after MASCOT [KOS16], replacing oblivious
transfer with semi-homomorphic encryption. The construction of “global” mul-
tiplication from a two-party works exactly the same way in both cases. The
Sacrifice step is exactly the same as in SPDZ and MASCOT and essentially
guarantees that corrupted parties have used the same inputs in the Multipli-
cation and Authentication steps. This is the only freedom the adversary has
because all other arithmetic is handled by FJ·K at this stage.

Theorem 2. ΠTriple implements FTriple in the (FJ·K,FRand)-hybrid model with a
dishonest majority of parties.

Proof (Sketch). For the proof we use STriple in Figure 9. The simulator is based on
important two facts: First, it can decrypt C(ji) for a corrupted party Pj because
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ΠTriple

Multiply:

1. Each party Pi samples a(i),b(i), b̂(i) $← F (such that the length of every
vector matches the number of slots in the encryption scheme).

2. Every unordered pair (Pi, Pj) execute the following:
(a) Pi uses FS

ZKPoK to send Pj the encryption Encpkij (a(i)).

(b) Pj computes C(ij) = b(j) · Encpkij (a(i)) − Enc′pkij (e(ij)) for random

e(ij) $← F and sends it to Pi. Enc
′
pkij

denotes encryption with noise p·2sec

larger than normal encryption times the slack in the zero-knowledge
proof.

(c) Pi decrypts d(ij) = Decskij (C(ij)).

(d) Repeat the last two steps with b̂(i) to get ê(ij) and d̂(ij).
3. Each party Pi computes c(i) = a(i) · b(i) +

∑
j 6=i(e

(ij) + d(ij)) and ĉ(i)

similarly.
Authenticate: Party Pi calls FJ·K.Input with (a(i),b(i), b̂(i), c(i), ĉ(i)) and then
FJ·K.LinComb to get vectors of handles of the sum of shares. E.g., we denote by

JaK the vector of handles for the respective sums of elements {a(i)}i=1...n.
Sacrifice: The parties do the following:

1. Call r ← FRand.
2. Call FJ·K.LinComb for r · JbK− Jb̂K and store them as JρK.
3. Reveal ρ← FJ·K.Open(JρK).
4. Call FJ·K.Open(·) on τ ← r ·c− ĉ−ρ ·a. If τ 6= 0 then abort; else continue.
5. Call FJ·K.Check an all opened values. If any check fails then abort, otherwise

continue the protocol.
Output: (JaK, JbK, JcK) as a vector of valid triples.

Fig. 7. Protocol for random triple generation

FTriple

FTriple offers the same interface as FJ·K and the following function:

Triple: On input (Triple, ida, idb, idc) from all parties sample a, b
$← F and store

(Val[ida],Val[idb],Val[idc]) = (a, b, c) where c = a · b.

Fig. 8. Functionality for random triple generation.
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it generated the keys emulating FS
ZKPoK. Second, the adversary is committed to

all shares of corrupted parties’ by the input to FJ·K in the Authenticate step.
This allows the simulator to determine exactly whether the Sacrifice step in ΠJ·K
will fail. Furthermore, the adversary only learns encryptions of honest parties’
shares, corrupted parties’ shares, ρ, and the result of the check. If the check fails,
the protocol aborts, ρ is independent of any output information because b̂ and
ĉ are discarded at the end, and finally, an environment deducing information
from the encryptions can be used to break the enhanced-CPA security of the
underlying cryptosystem. In addition, the environment only learns handles to
triples in the Output steps, from which no information can be deduced.

STriple

Let H denote the set of honest parties and A the complement thereof.

Initialize: Emulating FS
ZKPoK, for every i ∈ A and j ∈ H, generate all key pairs

(pkij , skij) and the send relevant parts to the relevant party.
Multiply:

1. For every i ∈ A and j ∈ H, emulate two instance of FS
ZKPoK:

(a) Send Encpkji(0) to the adversary and receive C(ji).

(b) Receive a(i) from the adversary and reply with Enc′pkij(e
(ij)) for ran-

dom e(ji).
Authenticate: Emulating FJ·K, receive a(i),b(i), b̂(i), c(i), ĉ(i) for all i ∈ A from

the adversary and return the desired handles.
Sacrifice:

1. Emulating FRand, sample r
$← Fp and send it to the adversary.

2. Sample ρ
$← Fm

p and send it to the adversary emulating FJ·K.Open. Set Fail
if the adversary inputs a different value in response.

3. Given the adversary’s inputs in Authenticate and Decskji(C
(ji)), we can

compute τ . Send it to the adversary emulating FJ·K.Open. If the response
is different, or τ 6= 0, set Fail.

4. Emulating FJ·K.Check, abort if Fail is set.

Fig. 9. Simulator for ΠTriple

3.4 Parameter Choice

Since we do not need multiplication of ciphertexts, the list of moduli used in
previous works [DKL+13,GHS12b] collapses to one q (= q1 = q0 = p0 depending
on context). The other main parameter is the number of ciphertext slots denoted
by N = φ(m). Gentry et al. [GHS12b] give the following inequality for the largest
modulus:

N ≥ log(q/σ)(k + 110)

7.2
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for a computational security k, which gives

N ≥ log q · 33.1 (1)

for 128-bit security. σ = 3.2 does not make difference in this inequality.
The second constraint on q and φ(m) depends on the noise of the ciphertext

that will decrypted. Damg̊ard et al. compute the bound Bclean on the noise of a
freshly generated ciphertext:

Bclean = N · p/2 + p · σ(16 ·N ·
√
n/2 + 6 ·

√
N + 16 ·

√
n · h ·N)

p denotes the plaintext modulus, and n denotes the number of parties, which
appears because of the distributed ciphertext generation (the secret is the sum
of n secret keys). Setting n = 1 because we do not use distributed ciphertext
generation, and h = 64 + sec ≤ 192, σ = 3.2 as in the previous works, we get

Bclean ≤ p · (37N + 685
√
N).

In the multiplication protocol, one party multiplies the ciphertext with a
number in Fp, adds a number in Fp, and then “drowns” the noise with statistical
security sec (adding extra noise sampling from interval that is 2sec larger than the
current noise bound). Furthermore, depending on the proof of knowledge used,
we can only assume that the noise of the ciphertext being sent is S · Bclean for
some soundness slack S ≥ 1. Therefore, the noise before decryption is bounded
by

p · S ·Bclean · (1 + 2sec),

which must be smaller than q/2 for correct decryption. Hence,

2 · p2 · S ·
(

37N + 685
√
N
)

(1 + 2sec) < q. (2)

Putting things together, (2) implies that, loosely, 120 ≤ log q or 384 ≤ log q
if sec = 40 or sec = 128 and p ≥ 2sec (the latter is a requirement of SPDZ-like
sacrificing). Using this in (1) gives N ≥ 3972 or N ≥ 12711. For both values of
N as well as a ten times larger N ,

log
(

37N + 685
√
N
)
≈ 20± 2.

Hence,
log q & 21 + 2 log p+ logS + sec± 2.

The proof of knowledge in the first version of SPDZ [DPSZ12] has the worst
soundness slack with

S = N · sec2 · 2sec /2+8.

Thus,
logS ≤ logN + 2 log sec + sec /2 + 8
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and

log q & 29 + 2 log p+ 3sec/2 + 2 log sec + logN ± 2.

Note that, even though this estimate is now five years old, we found our
parameters to uphold against more recent estimates [APS15] tested using the
script that is available online [Alb17]. The main reason is that our parameters
have a considerable margin because we require N to be a power of two.

More recently, Damg̊ard et al. [CDXY17] presented an improved version of
the cut-and-choose proof used in a previous implementation of SPDZ [DKL+13],
but the reduced slack does not justify the increased complexity caused by several
additional ciphertexts being computed and sent in the proof. Consider that, even
for sec = 128 and N = 216 (the latter being typical for our parameters, logS is
about 100, increasing the ciphertext modulus length by less than 25 percent.

We have calculated the ciphertext modulus q’s bit length for various pa-
rameters and for our protocol with semi-homomorphic encryption and SPDZ
(using somewhat homomorphic encryption), both with the Schnorr-like protocol
[CD09,DPSZ12] and the recent cut-and-choose proof [CDXY17]. Table 1 shows
results of our calculation as well as the results given by Damg̊ard et al. [DKL+13].
One can see that using cut-and-choose instead of the Schnorr-like protocol does
not make any difference for SPDZ. This is because the scaling (also called modu-
lus switching) involves the division by a number larger than the largest possible
slack of the Schnorr-like protocol (roughly 2100), hence the slack will be elimi-
nated. For our Low Gear protocol, the slack has a slight impact, increasing the
size of a ciphertext by up to 25 percent. However, this does not justify the use
of a cut-and-choose proof because it involves sending seven instead of two extra
ciphertexts per proof.

Table 1 also shows Low Gear ciphertexts are about 30 percent shorter than
SPDZ ciphertexts. Consider that Table 3 in Section 5 shows a reduction in the
communication from SPDZ to Low Gear of up to 50 percent. The main reason
for the additional reduction is the fact that for one guaranteed triple, SPDZ
involves producing two triples ((a, b, c), (d, e, f), of which (a, b, d, e) require a

zero-knowledge proof. In Low Gear on the other hand, we produce (a, b, c, b̂, ĉ),
of which only a requires a zero-knowledge proof.

Low Gear SPDZ
sec log(|Fp|)

[CD09] [CDXY17] 1 [DPSZ12] 2 [CDXY17] 2 [DKL+13]

238 199 330 330 332 40 64
367 327 526 526 526 40 128
276 224 378 378 N/A 64 64
406 352 572 572 N/A 64 128
504 418 700 700 N/A 128 128

Table 1. Ciphertext modulus bit length (log(q)) for two parties.
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4 High Gear: SPDZ With Global ZKPoK Check

In terms of computation, the most expensive part of SPDZ is anything related
to the encryption scheme, encryption, decryption, and homomorphic operations.
The encryption algorithm is not only used for inputs but also both by the prover
and the verifier in the zero-knowledge proof. While using a non-interactive zero-
knowledge allows the parties to only generate one proof per input, independently
of the number of parties, every party has to verify every other party’s proof be-
cause every other party is assumed to be corrupted. With a growing number
of parties, this is clearly the computational bottleneck of the protocol. In this
section, we present a way to avoid this by summing all proofs and only check-
ing the sum. This is similar to the threshold proofs presented by Keller et al.
[KMR12]. However, this neither reduces the communication nor the asymptotic
computation because every party still has to send every proof to every party and
then sum all the received proofs. Nevertheless, summing up the proofs is much
cheaper than verifying them individually.

The High Gear protocol is meant to surpass Low Gear when executed with
a high number of parties. To achieve this we design a new zero-knowledge proof
which scales better when increasing the number of players. One can think of
the High Gear proof of knowledge as customized interactive proof version from
Damg̊ard et al. [DPSZ12] whereas Low Gear is a protocol ran with the non-
interactive proof. The latter requires knowledge of the first message of the proof
(sometimes called the commitment) to compute the challenge. In the context
of combining the proof with many parties, the first message is the sum of an
input from each party, which means that communication is required in any case.
Therefore, there is less of an advantage in using the non-interactive proof.

Figure 10 shows our adapation of the zero-knowledge proof in Figure 9 from
Damg̊ard et al. [DPSZ12]. The main conceptual difference is going from a two-
party to a multi-party protocol. However, we have also simplified the bounds.

In the following we will prove that our protocol achieves the natural extension
of the Σ-protocol properties in the multi-party setting.

Correctness. The equality in step 6 follows trivially from the linearity of the
encryption. It remains to check the probability that an honest prover will fail
the bounds check on ‖z‖∞ and ‖t‖∞ where the infinity norm ‖·‖∞ denotes the
maximum of the absolute values of the components.

Remember that the honestly generated E(i) are (τ, ρ) ciphertexts. The bound
check will succeed if the infinity norm of

∑n
i=1(y(i)+

∑sec
k=1(Mejk ·x(i))) is at most

2·n·Bplain. This is always true because y(i) is sampled such that ‖y(i)‖∞ ≤ Bplain

and ‖Me · x(i)‖∞ ≤ sec · τ ≤ 2sec · τ = Bplain. A similar argument holds regarding
ρ and Brand.

Special soundness. To prove this property one must be able to extract the
witness given response from two different challenges. In this case consider the
transcripts (x,a, e, (z, T )) and (x,a, e′, (z′, T ′)) where e 6= e′. Recall that each
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ΠgZKPoK

Denote Bplain = 2sec ·τ and Brand = 2sec ·ρ bounds for plaintext and randomness used
for encryption where ρ = 2 · 3.2 ·

√
N and τ = p/2.

Let V = 2 · sec− 1 and Me ∈ {0, 1}V×sec the matrix associated with the challenge
∨ such that Mkl = ek−l+1 for 1 ≤ k − l + 1 ≤ sec and 0 in all other entries.
The randomness used for encryptions of x(i),y(i) is packed into matrices r(i) ←
(r

(i)
1 , . . . , r

(i)
sec) and s(i) ← (s

(i)
1 , . . . , s

(i)
V ). Hence r(i),∈ Zsec×3 and s(i) ∈ ZV×3 (each

row has 3 entries accordingly to Enc defined in Section 2.2). Recall that here x(i)

is a vector with sec entries: (x
(i)
1 , . . . ,x

(i)
sec) and y(i) has V entries: (y

(i)
1 , . . . ,y

(i)
V ).

1. Each party Pi broadcasts E(i) = Encpk(x
(i), r(i)).

2. Each party Pi samples each entry of y(i) and s(i) randomly w.r.t to the bounds
‖y(i)

j ‖∞ ≤ Bplain, ‖s(i)j ‖∞ ≤ Brand where j ∈ [1 . . . sec]. Then Pi uses the random

coins s(i) to compute a(i) ← Encpk(y
(i), s(i)) and broadcasts a(i).

3. The parties use FRand to sample e ∈ {0, 1}sec.
4. Each party Pi computes z(i)ᵀ = y(i)ᵀ +Me ·x(i)ᵀ and T (i) = s(i) +Me · r(i) and

broadcasts (z(i), T (i)).
5. Each party Pi computes d(i) = Encpk(z

(i), t) where t ranges through all rows
of T (i) then store the sum d =

∑n
i=1 d(i).

6. The parties compute E =
∑

iE
(i) a =

∑
i a(i), z =

∑
i z(i) and T =

∑
i T

(i)

and conduct the checks (allowing the norms to be 2n times bigger to accom-
modate the summations):

dᵀ = aᵀ + (Me · E), ‖z‖∞ ≤ 2 · n ·Bplain, ‖T‖∞ ≤ 2 · n ·Brand.

7. If the check passes, the parties output
∑n

i=1E
(i).

Fig. 10. Protocol for global proof of knowledge of ciphertext

21



party has a different secret x(i). Because both challenges have passed the bound
checks during the protocol, we get that:

(Me −Me′) · Eᵀ = (d− d′)ᵀ

To solve the equation for E notice that Me −Me′ is a matrix with entries
in {−1, 0, 1} so we must solve a linear system where E = Encpk(xk, rk) for
k = 1, . . . , sec. This can be done in two steps: solve the linear system for the
first half: c1, . . . , csec/2 and then for the second half: csec/2+1, . . . , csec. For the
first step identify a square submatrix of sec× sec entries in Me−Me′ which has
a diagonal full of 1’s or −1’s and it is lower triangular. This can be done since
there is at least one component j such that ej 6= e′j . Recall that the plaintexts
zk, z

′
k have norm less than Bplain and the randomness used for encrypting them,

tk, t
′
k, have norm less than Brand where k ranges through 1, . . . , sec.

Solving the linear system from the top row until the middle row via substitu-
tion we obtain in the worst case: ‖xk‖∞ ≤ 2k ·n ·Bplain and ‖yk‖∞ ≤ 2k ·n ·Brand

where k ranges through 1, . . . , sec/2. The second step is similar to the first
with the exception that now we have to look for an upper triangular matrix
of sec× sec. Then solve the linear system from the last row until the middle row.
In this way we extract xk, rk which form (2sec/2+1 ·n ·Bplain, 2

sec/2+1 ·n ·Brand) or
(23sec/2+1 ·n ·τ, 23sec/2+1 ·n ·ρ) ciphertexts. This means that the slack is 23sec/2+1.

Honest verifier zero-knowledge. Here we give a simulator S for an honest
verifier (each party Pi acts as one at one point during the protocol). The simula-
tor’s purpose is to create a transcript with the verifier which is indistinguishable
from the real interaction between the prover and the verifier. To achieve this

S samples uniformly e
$← {0, 1}sec and then create the transcript accordingly:

sample z(i) such that ‖z(i)‖∞ ≤ Bplain and T (i) such that ‖T (i)‖∞ ≤ Brand and
then fix a(i) = Encpk(z

(i), T (i)) − (Me · E(i)), where the encryption is applied
component-wise. Clearly the produced transcript (a(i), e(i), z(i), T (i)) passes the
final checks and the statistical distance to the real one is 2−sec, which is negligible
with respect to sec.

Putting things together. In the context of our triple generation, we model
ΠgZKPoK as FS

gZKPoK in Figure 11. We will argue below that ΠgZKPoK implements

FS
gZKPoK with slack S = 23sec/2+1.

FS
gZKPoK does not guarantee the correctness of individual corrupted parties ci-

phertexts but the correctness of the resulting sum. This suffices because only the
latter is used in the protocol. A rewinding simulator still can extract individual
inputs, but there is no guarantee that either they are in fact pre-images of the
encryptions sent by corrupted parties or they are subject to any bounds. Both
properties only hold for the sum. This is modeled by FS

gZKPoK only outputting a
sum, and it is easy to see that this output suffices for SPDZ.
SSgZKPoK in Figure 12 describes our simulator. The rewinding technique is

the same as in the soundness simulator for Σ-protocol and therefore has the
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FS
gZKPoK

Let H denote the set of honest parties. Initially, all parties input pk. Then, the
following can happen repeatedly:

1. Every honest party Pi inputs x(i).
2. Output Encpk(x

(i)) for all i ∈ H to the adversary.
3. The adversary inputs x′.
4. The functionality sends Encpk(x

′ +
∑

i∈H x(i)), all with noise increased by a
factor n · S to all parties.

Fig. 11. Functionality for global proof of knowledge of ciphertext

SS
gZKPoK

Let A denote the set of corrupted parties, and H the set of honest ones.

1. Receive E(i) for all i ∈ H.

2. Sample e
$← {0, 1}sec.

3. Use the honest-verifier zero-knowledge simulator above to generate transcripts
(a(i), e, (z(i), T (i))) for i ∈ H.

4. Send {a(i)}i∈H to the adversary.
5. Receive (E(i),y(i),a(i)) for every corrupted party Pi from the adversary.
6. Emulating FRand, send e to the adversary.
7. Receive (z(i), T (i)) for every corrupted party Pi from the adversary.
8. Check whether

∑
i∈A z(i) and

∑
i∈A T

(i) meets the bounds. Abort if not.
9. Rewinding the adversary, sample ẽ 6= e and conduct the same check for the

adversary’s responses {z̃(i), T̃ (i)}i∈A until the check passes.
10. Use the Σ-protocol extractor on {(E(i),y(i),a(i), e, z(i), T (i), ẽ, z̃(i), T̃ (i))}i∈A

to compute {x(i)}i∈A and input
∑

i∈A x(i) to FS
gZKPoK.

Fig. 12. Simulator for global proof of knowledge of ciphertext

23



same running time (roughly inverse to the success probability of a corrupted
prover). See Section 3 of [Dam02] for details. Similarly, the finishing probability
of SSgZKPoK is the same as a protocol because it only aborts if the first check fails.

5 Implementation

We have implemented all three approaches to triple generation in this paper
and measured the throughputs achieved by them in comparison to previous
results with SPDZ [DKL+12,DKL+13] and MASCOT [KOS16]. We have used
the optimized distributed decryption in Appendix A for SPDZ-1, SPDZ-2, and
High Gear. Our code is written in C++ and uses MPIR [MPI17] for arithmetic
with large integers. We use Montgomery modular multiplication and the Chinese
reminder theorem representation of polynomials wherever beneficial. See Gentry
et al. [GHS12b] for more details.

Note that the parameters chosen by Damg̊ard et al. [DKL+13][Appendix A]
for the non-interactive zero-knowledge proof imply that the prover has to re-
compute the proof with probability 1/32 as part of a technique called rejection
sampling. We have increased the parameters to reduce this probability by up to
220 as long as it would not impact the performance, i.e., the number of 64-bit
words needed to represent po and p1 would not change.

All previous implementations have benchmarks for two parties on a local
network with 1 Gbit/s throughput on commodity hardware. We have have used
i7-4790 and i7-3770S CPUs with 16 to 32 GB of RAM, and we have re-run and
optimized the code by Damg̊ard et al. [DKL+13] for a fairer comparison. Table 2
shows our results in this setting. SDPZ-1 and SPDZ-2 refer to the two different
proofs for ciphertexts, the Schnorr-like protocol presented in the original paper
[DPSZ12] and the cut-and-choose protocol in the follow-up work [DKL+13],
the latter with either covert or active security. k-covert security is defined as
a cheating adversary being caught with probability 1/k, and by k-bit security
we mean a statistical security parameter of k. Throughout this section, we will
round figures to the two most significant digits for a more legible presentation.

To allow direct comparisons with previous works, we have benchmarked our
protocols for several choices of security parameters and field size. The main
difference between our implementation of SPDZ with the Schnorr-like protocol
to the previous one [DKL+12] is the underlying BGV implementation because
the protocol is the same.

In Table 3, also analyse the communication per triple of some protocols with
active security and compared the actual throughput to the maximum possible on
a 1 Gbit/s link (network throughput divided by the communication per triple).
The higher the difference between actual and maximum possible, the more time
is spent on computation. The figures show that MASCOT has very low compu-
tation; the actual throughput is more than 90% of the maximum possible. On
the other hand, all BGV-based implementations have a significant gap, which is
to be expected. The relative gap increases with increasing security in Low Gear
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Triples/s Security BGV impl. log2(|Fp|)

SPDZ-1 [DKL+12] 79 40-bit active NTL 64
SPDZ-2 [DKL+13] 158 20-covert specific 64
SPDZ-2 [DKL+13] 36 40-bit active specific 64
MASCOT [KOS16] 5,100 64-bit active ⊥ 128

SPDZ-1 (ours) 12,000 40-bit active specific 64
SPDZ-1 (ours) 6,400 64-bit active specific 128
SPDZ-1 (ours) 4,200 128-bit active specific 128
SPDZ-2 (ours) 3,900 20-covert specific 64
SPDZ-2 (ours) 1,100 40-bit active specific 64

Low Gear (Section 3) 59,000 40-bit active specific 64
Low Gear (Section 3) 30,000 64-bit active specific 128
Low Gear (Section 3) 15,000 128-bit active specific 128
High Gear (Section 4) 11,000 40-bit active specific 64
High Gear (Section 4) 5,600 64-bit active specific 128
High Gear (Section 4) 2,300 128-bit active specific 128

Table 2. Triple generation for prime field with two parties on a 1 Gbit/s LAN.

because 32 GB of memory does not suffice one generator thread per core, hence
there is some computation capacity left unused.

Communication Security log2(Fp|) Triples/s Maximum

SPDZ-2 350 kbit 40 64 1,100 2,900
MASCOT [KOS16] 180 kbit 64 128 5,100 5,600

SPDZ-1 23 kbit 40 64 12,000 44,000
SPDZ-1 32 kbit 64 128 6,400 31,000
SPDZ-1 37 kbit 128 128 4,200 27,000

Low Gear (Section 3) 9 kbit 40 64 59,000 110,000
Low Gear (Section 3) 15 kbit 64 128 30,000 68,000
Low Gear (Section 3) 17 kbit 128 128 15,000 60,000
High Gear (Section 4) 24 kbit 40 64 11,000 42,000
High Gear (Section 4) 34 kbit 64 128 5,600 30,000
High Gear (Section 4) 42 kbit 128 128 2,300 24,000

Table 3. Communication per prime field triple (one way) and actual vs maximum
throughput with two parties on a 1 Gbit/s link

WAN setting. For a more complete picture, we have also benchmarked our
protocols in the same WAN setting as Keller et al. [KOS16], restricting the
bandwidth to 50 Mbit/s and imposing a delay of 50 ms to all communication.
Table 4 shows our results in similar manner to Table 3. As one would expect, the

25



gap between actual throughput and maximum possible is more narrow because
the communication becomes more of a bottleneck, and the performance is closely
related to the required communication.

Communication Security log2(Fp|) Triples/s Maximum

MASCOT [KOS16] 180 kbit 64 128 214 275
SPDZ-1 23 kbit 40 64 1,800 2,200
SPDZ-1 32 kbit 64 128 1,400 1,600
SPDZ-1 37 kbit 128 128 1,100 1,400

Low Gear (Section 3) 9 kbit 40 64 4,500 5,600
Low Gear (Section 3) 15 kbit 64 128 3,200 3,400
Low Gear (Section 3) 17 kbit 128 128 2,600 3,000
High Gear (Section 4) 24 kbit 40 64 1,600 2,100
High Gear (Section 4) 34 kbit 64 128 1,300 1,500
High Gear (Section 4) 42 kbit 128 128 700 1,200

Table 4. Communication per prime field triple (one way) and actual vs maximum
throughput with two parties on a 50 Mbit/s link

Fields of characteristic two. For a more thourough comparison with MAS-
COT, we have also implemented our protocols for the field of size 240 using
the same approach as Damg̊ard et al. [DKL+12]. Table 5 shows the low perfor-
mance of homomorphic encryption-based protocols with fields of characteristic
two. This has been observed before: in the above work, the performance for F240

is an order of magnitude worse than for Fp with a 64-bit bit prime. The main
reason is that BGV lends itself naturally to cleartexts modulo some integer p.
The construction for F240 sets p = 2 and uses 40 slots to represent an element
whereas an element of Fp for a prime p only requires one ciphertext slot.

Triples/s Security BGV impl. F2n

SPDZ-1 [DKL+12] 16 40-bit active NTL 40
MASCOT [KOS16] 5,100 64-bit active ⊥ 128

SPDZ-1 (ours) 67 40-bit active specific 40
SPDZ-2 (ours) 24 20-covert specific 40
SPDZ-2 (ours) 8 40-bit active specific 40

Low Gear (Section 3) 117 40-bit active specific 40
High Gear (Section 4) 67 40-bit active specific 40

Table 5. Triple generation for characteristic two with two parties on a 1 Gbit/s LAN.

26



More than two parties. Increasing the number of parties, we have bench-
marked our protocols and our implementation of SPDZ with up to 64 r4.16xlarge
instances on Amazon Web Services. Figure 13 shows that both Low and High
Gear improve over SPDZ-1, with High Gear taking the lead from about ten
parties. Missing figures do not indicate failed experiments but rather omitted
experiments due to financial reasons.

At the time of writing, one hour on an r4.16xlarge instance in US East costs
$4.256. Therefore, the number of triples per Dollar and party varies between 190
million (two parties with Low Gear) and 13 million (64 parties with High Gear).
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Fig. 13. Triple generation for prime field on AWS r4.16xlarge instances

5.1 Vickrey Auction for 100 Parties

As a motivation for computation with a high number of parties, we have imple-
mented a secure Vickrey second price auction [Vic61], where 100 parties input
one bid each. Table 6 shows our online phase timings for two different Amazon
Web Services instances.

The Vickrey auction requires 44,571 triples. In Table 7, we compare the offline
cost of MASCOT and our High Gear protocol on AWS m3.2xlarge instances.

6 Future work

Recently, there has been an improved zero-knowledge proof of knowledge of
bounded pre-images for LWE-style one-way functions [BL17]. It reduces the ex-
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AWS instance Time Cost per party

t2.nano 9.0 seconds $0.000017
c4.8xlarge 1.4 seconds $0.000741

Table 6. Online phase of Vickrey auction with 100 parties, each inputting one bid.

Time Cost per party

MASCOT [KOS16] 1,300 seconds $0.190
High Gear (Section 4) 98 seconds $0.014

Table 7. Offline phase of Vickrey auction with 100 parties, each inputting one bid.

tra ciphertexts per proven ciphertext from two (in our protocol) to any number
larger than one dependent on the number of ciphertexts that are proven simul-
taniously. More concretely, for u · sec ciphertexts in the one proof (and u ≥ 1),
the prover needs to send (u + 1) · sec ciphertexts in the first round, hence the
amortized overhead is (u + 1)/u. This compares to 2usec − 1 ciphertexts with
amortized over 2 − 1/(u · sec) in our scheme. However, we estimate that the
benefit of the newer proof strongly depend on the parameters and the available
memory. For some parameters, we found that our implementation would exhaust
32 GB of memory with less than eight generation threads. We therefore could
not exhaust the computational capacity of the CPU. Note that our implementa-
tion stores all necessary information for the proof in memory, and consider than
one ciphertext takes up to 216 ·700 ·2 bits or ≈ 11 MBytes. This means that, for
128-bit active security, we require about (3sec− 1) · 11 MBytes or ≈ 4.4 GBytes
of storage for the ciphertexts alone (not considering any cleartexts). It would be
interesting to see how the newer proof fares and whether using a solid state disk
for storage would improve the performance.
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editors, ESORICS 2008, volume 5283 of LNCS, pages 192–206. Springer,
Heidelberg, October 2008.

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 565–577. ACM Press, October 2016.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97–106. IEEE Computer Society Press, October 2011.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CD09. Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-
knowledge protocols. In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 177–191. Springer, Heidelberg, August 2009.

CDXY17. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized
complexity of zero-knowledge proofs revisited: Achieving linear soundness
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A More Efficient Decryption to Secret Sharing

SPDZ requires to decrypt values to an additive secret sharing without reveal-
ing them (e.g., the encrypted MACs). This is done with a protocol called Re-
share, which masks the ciphertext with a secret-shared mask before using public
distributed decryption. The secret-shared is then subtracted from the public
(masked) cleartext, resulting in a secret sharing of the actual cleartext. The
downside of this approach is the cost of the zero-knowledge proof required to
prove the correct encryption of the mask. In Figure 14 we propose a protocol
that avoids this. Note that it only works in the case where no fresh encryption
of the cleartext is required. Therefore, it is only useful for encryption of MAC
values, but not for the encryption of ab, where a fresh encryption is required to
compute the MAC.

31

https://www.mpir.org
https://www.mpir.org
http://eprint.iacr.org/2017/030
http://eprint.iacr.org/2015/1153


DistDec

Let (c0, c1) ∈ R2
q be an encryption of m ∈ FN

p and si ∈ Rq the key share of
party i such that

∑
si ∈ Rq is the secret key and ‖si‖∞ is “small” in usual sense.

Furthermore, let B denote a bound on the noise, that is ‖c0 − s · c1‖∞.

1. Party i samples fi
$← [0, B · 2sec]N .

2. Party 1 computes m′i := (c0 − s1 · c1) − f1 mod q, and every other party i
computes m′i := −si · c1.

3. Party i broadcasts m′i.
4. Party 1 outputs m1 := (

∑n
i=1 m′i mod q + f1) mod p, and every other party i

outputs mi := fi mod p.

Fig. 14. Distributed decryption to secret sharing

Correctness with honest parties. The protocol is easily seen to be correct
if the parties follow it and B · n · p · 2sec < q/2:

n∑
i=1

mi mod p =
( n∑

i=1

m′i mod q +

n∑
i=1

fi −
n∑

i=1

fi

)
mod p

=
(
c0 −

n∑
i=1

si · c1
)

mod q mod p

= m.

The first equation holds because q is large enough, and the last equation is how
the decryption is defined.

Privacy. The protocol does not reveal any information because fi is chosen
from an interval 2sec larger than c0 − s · c1, which makes

∑n
i=1 m′i statistically

indistinguishable to a random value in an interval of at least size B · 2sec with
respect to sec.

Correctness with malicious parties. Malicious parties can add an error
that is independent of the cleartext. This is the same as in the original protocol,
and it is dealt with later in the MAC check.
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