
Integer Reconstruction Public-Key Encryption

Houda Ferradi2 and David Naccache1

1 Département d’informatique, École normale supérieure, Paris, France
45 rue d’Ulm, 75230, Paris cedex 05, France

david.naccache@ens.fr
2 NTT Secure Platform Laboratories

3–9–11 Midori-cho, Musashino-shi, Tokyo 180–8585, Japan
ferradi.houda@lab.ntt.co.jp

Abstract In [AJPS17], Aggarwal, Joux, Prakash & Santha described
an elegant public-key cryptosystem (AJPS-1) mimicking NTRU over the
integers. This algorithm relies on the properties of Mersenne primes
instead of polynomial rings.
A later ePrint [BCGN17] by Beunardeau et al. revised AJPS-1’s initial
security estimates. While lower than initially thought, the best known
attack on AJPS-1 still seems to leave the defender with an exponential
advantage over the attacker [dBDJdW17]. However, this lower exponential
advantage implies enlarging AJPS-1’s parameters. This, plus the fact that
AJPS-1 encodes only a single plaintext bit per ciphertext, made AJPS-1
impractical. In a recent update, Aggarwal et al. overcame this limitation
by extending AJPS-1’s bandwidth. This variant (AJPS-ECC) modifies the
definition of the public-key and relies on error-correcting codes.
This paper presents a different high-bandwidth construction. By opposi-
tion to AJPS-ECC, we do not modify the public-key, avoid using error-
correcting codes and use backtracking to decrypt. The new algorithm
is orthogonal to AJPS-ECC as both mechanisms may be concurrently
used in the same ciphertext and cumulate their bandwidth improvement
effects. Alternatively, we can increase AJPS-ECC’s information rate by a
factor of 26 for the parameters recommended in [AJPS17].
The obtained bandwidth improvement and the fact that encryption and
decryption are reasonably efficient, make our scheme an interesting post-
quantum candidate.

1 Introduction

In a recent paper [AJPS17], Aggarwal, Joux, Prakash, & Santha described an
elegant public-key cryptosystem (AJPS-1) mimicking NTRU over the integers.
AJPS-1 relies on a specific arithmetic property of Mersenne numbers3 instead of
polynomial rings.

A later ePrint [BCGN17] by Beunardeau et al. revised AJPS-1’s initial se-
curity estimates. While lower than initially thought, the best known attack
3 Recall that a Mersenne prime is a prime of the form 2n − 1 for n ∈ N.

david.naccache@ens.fr
ferradi.houda@lab.ntt.co.jp

against AJPS-1’s complexity assumption4 still seems to leave the defender with
an exponential advantage over the attacker [dBDJdW17]. However, this lower
exponential advantage implies enlarging AJPS-1’s parameters. This, plus the fact
that AJPS-1 only encodes a single plaintext bit per ciphertext, made AJPS-1
impractical. In a recent update, Aggarwal et al. overcame this limitation by
extending AJPS-1’s bandwidth. This variant (AJPS-ECC) modifies the definition
of the public-key and relies on error-correcting codes.

Our paper presents a different high-bandwidth construction. By opposition
to AJPS-ECC, we do not modify the public-key, avoid the use of error-correcting
codes and use backtracking to decrypt. The new algorithm is orthogonal to
AJPS-ECC as both mechanisms may be concurrently implemented in the same
ciphertext and cumulate their bandwidth improvement effects5. Alternatively, we
can increase AJPS-ECC’s information rate by a factor of 26 for the parameters
recommended in [AJPS17].

The obtained bandwidth improvement and the fact that encryption and
decryption are reasonably efficient, make our scheme an interesting post-quantum
candidate.

1.1 The Original AJPS-1 Cryptosystem

We denote by ‖x‖ the Hamming weight of x and let Hn,h be the set of all n-bit
strings of Hamming weight h.

The original AJPS-1 scheme is defined by the following sub-algorithms:

– Setup(1λ) → pp. Chooses the public parameters pp = {n, h} so that p =
2n − 1 is an n-bit Mersenne prime achieving some λ-bit security level.

– KeyGen(pp)→ {sk, pk}. Picks {F,G} ∈R H2
n,h and returns:{

sk ← G

pk ← H = F/G mod p

– Enc(pp, pk,m ∈ {0, 1})→ C. Picks {A,B} ∈R H2
n,h, and computes:

C ← (−1)m(AH +B) mod p

– Dec(pp, sk, C)→ {⊥, 0, 1}, computes d = ‖GC mod p‖ and returns:
0 if d ≤ 2h2,

1 if d ≥ n− 2h2,

⊥ otherwise
4 The Mersenne Low Hamming Ratio Assumption
5 This requires that the {h, n} parameters of both schemes coincide. We conjecture
that such a meeting point exists.

2

The intuition behind the decryption formula is the observation that when
m = 0 we get:

W = GC = G(AH +B) = FA+GB ⇒W is of low Hamming weight

We refer the reader to [AJPS17] for more details about this cryptosystem.
To increase bandwidth, Aggarwal et al. introduced the AJPS-ECC variant

described hereafter.

1.2 The AJPS-ECC Cryptosystem

AJPS-ECC requires an ancillary error correction scheme {D, E}.
AJPS-ECC is formally defined by the following sub-algorithms:

– Setup(1λ)→ pp. As in AJPS-1.

– KeyGen(pp)→ {sk, pk}. Picks {F,G} ∈R H2
n,h, R ∈R {0, 1}n and returns:{

sk ← F

pk ← {R, T} = {R,F ×R+G mod p}

– Enc(pp, pk,m ∈ {0, 1}λ)→ C. Picks {A,B1, B2} ∈R H3
n,h and computes the

ciphertext:

C =

{
C1 ← (A×R+B1 mod p

C2 ← (A× T +B2 mod p)⊕ E(m)

– Dec(pp, sk, C)→ {⊥,m} returns:

D((F × C1 mod p)⊕ C2).

For the sake of clarity, we keep the definition of C1 unchanged but slightly
depart from [AJPS17]’s original formulae by modifying the definitions of T and
C2 as follows:

T ← (F ×R−G mod p

C2 ← (A× T −B2 mod p)⊕ E(m)

To understand the intuition behind Dec consider the quantityW = FC1−C2

corresponding to the particular case E(m) = 0:

W = FAR+FB1−AT+B2 = FAR+FB1−A(FR−G)+B2 = FB1+GA+B2

As before, we see that d = ‖W‖ is low. This means that the noise attached
to E(m) after the clean-off operation (F × C1 mod p) ⊕ C2 is low and thus
surmountable by the error-correcting code {E ,D}.

The reader is referred, again, to [AJPS17] for more details about this cryptosys-
tem and the parameter choices allowing successful decryption and sufficient
security. Sticking only to the core idea, we purposely omit the hashing and
re-encryption tests performed during the key de-encapsulation process.

3

2 The New Idea: Randomness Reconstruction

Our idea departs from AJPS-1 in a direction orthogonal to the above.

We set by design m = 0 in AJPS-1 or E(m) = 0 in AJPS-ECC and attempt
to recover the randomness6 into which information (encapsulated keys and/or
plaintext information) will be embedded.

The intuition is that the receiver might be able to recover the randomness if
parameters are properly chosen using his extra knowledge of G,F and knowing
that, in addition, the unknown randomness has a low Hamming weight.

We hence focus the rest of this paper on methods for solving the equations:

W = Fx+Gy or W = Fx+Gy + z mod p

Where all parameters7 and unknowns are randomly chosen in Hn,h and where
a solution {x, y} or {x, y, z} is known to exist.

We do not introduce any modifications in Setup and KeyGen, nor do we
modify pp or sp8. We thus focus on the encapsulation (encryption) and on the
de-encapsulation (decryption) processes only.

In a non-KEM version, a plaintext m encoded in the unknowns (x, y or
x, y, z) can be directly recovered upon decryption. Such an encryption mode must
however be protected against active attacks using padding and randomization
that we do not address here.

Note 1: It is tempting but inadvisable to create dependencies between the
variables F,G and/or the unknowns x, y, z. Consider an AJPS-ECC where m ∈R
{0, 1}λ and {A,B2} ∈R H2

n,h but where B1 ← H(m) is obtained by hashing m
into Hn,h. Given m, anybody can re-compute B1 and algebraically infer A,B2.
We hence see in this example that A,B2 do not add extra entropy as security
solely rests upon m.

Note 2: We carefully distinguish between security bandwidth and information
rate. An idea, unexplored in AJPS-ECC, may exploit Note 1 to transport more
plaintext information in {C1, C2} without adding extra security. To encrypt
a τ -bit message µ, pick a key m ∈R {0, 1}λ and encrypt c ← Fm(µ) using
a block cipher F . Set B1 ← H(m). Let M be any invertible public mapping
M : {0, 1}τ → H2

n,h. Encode: {A,B2} ← M(c) and form {C1, C2} using AJPS-
ECC. To decrypt, recover m using error-correction, recompute B1, algebraically
recover {A,B2} and retrieve the plaintext µ by:

6 A,B or A,B1, B2
7 Except W
8 Note that in AJPS-1/ECC given G one can compute F and vice versa.

4

µ← F−1m (M−1(A,B2))

= F−1m
(
M−1(C1 −B1

R
mod p, C2 −

(C1 −B1)T

R
mod p)

)
= F−1m

(
M−1(C1 −H(m)

R
mod p, C2 −

(C1 −H(m))T

R
mod p)

)
Because in AJPS-ECC {n, h} = {756839, 256} the potential encoding capacity

ofM can be relatively high:

2 log2

(
756839

256

)
= 6631 bits

This increases AJPS-ECC’s information rate by a factor of 26. Again, proper
message padding may be necessary to resist active attacks (analysis underway).
We stress, again, that this does not increase security bandwidth but information
rate only. An attacker guessing m will determine µ.

2.1 The Bivariate Cryptosystem

– Setup(1λ)→ pp and KeyGen(pp)→ {sk, pk} are identical to AJPS-1.

– Enc(pp, pk)→ C. Picks {A,B} ∈R H2
n,h and computes:

C ← AH +B mod p

– Dec(pp, sk, C)→ {⊥, {A,B}} returns:

{A,B} ← Solvex,y[GC = Fx+Gy mod p]

If {A,B} 6= ⊥ use {A,B} as KEM entropy for further encryption.

Let µ be a plaintext and R a redundancy function. Compute m ← R(µ, ρ)
where ρ is random. A typical KEM9 is shown here:

RNG H(α,m) H′(A,B) Fk(α,m)

HA+B

α

A,B

k

mm

C ′

C

H

9 Where H,H′s are hash functions and F is a block-cipher.

5

Solvex,y H′(A,B) F−1k (C ′)

m valid if (A,B) = H(α,m)

A,B k α,m

C ′

F,G,C

Retrieve m from µ← R−1(m).

2.2 The Trivariate Cryptosystem

– Setup(1λ) → pp and KeyGen(pp) → {sk, pk} are identical to AJPS-ECC
but with the modified formula T ← F ×R−G mod p.

– Enc(pp, pk)→ C. Picks {A,B1, B2} ∈R H3
n,h and computes the ciphertext:

C =

{
C1 ← A×R+B1 mod p

C2 ← A× T −B2 mod p

– Dec(pp, sk, C)→ {⊥, {A,B1, B2}} returns:

{A,B1, B2} ← Solvex,y,z[FC1 − C2 = Fy +Gx+ z mod p]

If {A,B1, B2} 6= ⊥ use {A,B1, B2} as KEM entropy for further encryption.

Note 3: As noted before, the trivariate version may accommodate in the en-
cryption formula an independent E(m) and thus cumulate the bandwidth im-
provements due to both mechanisms. This requires that the {h, n} values of both
schemes coincide and the enforcement of the condition n ≤ 16h2, not addressed
here. We conjecture that such a meeting point exists.

The following sections explain how to instantiate Solvex,y. The routine
Solvex,y,z is obtained mutatis mutandis.

3 Instantiating Solvex,y Using Backtracking

The intuition behind Solvex,y is the following: assume that we are given the
quantity W = GC = AF +BG mod p where ‖W‖ ∼= 2h2. Because multiplication
modulo p is (somewhat) weight-preserving, we can test the hypothesis that the
i-th bit of A is equal to one by looking at the quantity ∆:

∆ = ‖W‖ − ‖W − 2iF mod p‖

6

Intuitively, a good guess should result in a weight decrease of ' h whereas a
wrong guess should re-blurW by triggering random carry propagations. Evidently,
because there may be false positives during this process, we must be able to
backtrack. To reduce the false positive error probability, n must be large enough
with respect to h. The exact same idea applies to Solvex,y,z.

3.1 Prerequisites & Subroutines

We start by introducing three necessary prerequisites.

The ancillary function Confirm: Our algorithms require an ancillary function
Confirm-ing a candidate solution {x, y}. e.g. given a candidate x, Confirm(x)
may solve GC = Fx + Gy mod p for y and return {y,True} if ‖x‖ = ‖y‖ = h.
Because in some cases several solutions may exist, a simpler implementation may
just compare H(x, y) to a confirmation digest τ provided with the ciphertext
and return {y,True} if the purported solution hashes into τ . If H(x, y) 6= τ then
Confirm(x) returns {⊥,False}.

Dealing with decoding failures: Because we may discard seemingly unin-
teresting (but actually promising) exploration paths, backtracking may fail to
decode W . As it seems complex to formally compute the algorithm’s success
probability, we estimated it by simulation. To deal with decryption failures we
re-attempt backtracking after index randomization i.e. pick t random permuta-
tions {φ0, . . . , φt−1} of Zk and re-run B2(W, ∅, 0, φj) t times hoping that at least
one of the t runs will succeed10. A more brutal approach consists in sending t
encapsulated keys to increase the probability exponentially. This (conjectured)
exponential probability gain only handicaps the information rate by a constant
factor11. A simple idea for (conjectured) squaring the failure probability con-
sists in trying to backtrack on A and, upon failure, re-launch the algorithm to
backtrack on B.

Determining the backtracking aperture Γ : Backtracking is parametrized
by a constant Γ controlling the aperture of the exhausting process (i.e. the
marginal tolerance allowing to exclude a search path from further investigation).
Simulations indicate that for any given {n, h} there is a Γoptimal value minimizing
the failure probability. We did not attempt a formal analysis of the dependency
between {n, h} and Γoptimal but estimated Γoptimal for various {n, h} pairs using
simulations as shown in Table 1 and Figure 1.

10 Note that B1(W, ∅, 0) = B2(W, ∅, 0, ID).
11 Link B0, . . . , Bt−1 in a way allowing the recovery of all the Bi if one of them is known

(e.g. define Bi = Fi(seed) where Fk(m) is a block-cipher encrypting into Hn,h). Use
the Ai to transport entropy or information. One successful decryption reveals the
seed ⇒ open all the Bis ⇒ all the t information containers Ai.

7

Γ 50 51 52 53 54 55 56 57 58 59 60
Probability 24% 20% 26% 30% 32% 20% 22% 18% 14% 9% 4%

Table 1: Backtracking success chances for {t, h, n} = {1, 72, 19937}. 50 decryption
simulations per entry.

10 20 30 40 50 60 70

G

20

40

60

80

% of success

Figure 1: Backtracking success chances for {t, h, n} = {1, 65, 19937}. 200 decryp-
tion simulations per entry. Fitted with 82.922 exp(−(x− 45.7122)2/34.6815)

3.2 The Backtracking Algorithms

The deterministic backtracking algorithm B1 subtracts left-shifted F s from W to
obtain candidate ws having smaller and smaller weights. B1 maintains a set of
integers R containing the bit positions of x discovered so far. The deterministic
algorithm is called by {A,B} ← B1(W, ∅, 0) and the randomized version is called
by B2(W, ∅, 0, φj) where φjs are random permutations of Zk. Code is available
from the authors upon request.

8

Algorithm 1
Backtracking B1(w,R, e)
Input: w,R, e. The values G,F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A,B} such that W = CG = Fx+Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x←

∑
i∈R 2i

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2e × F mod p
if |‖w‖ − ‖w‖+ h| ≤ Γ then
B1(w,R ∪ {e}, e+ 1)

else
B1(w,R, e+ 1)

Algorithm 2
Backtracking B2(w,R, e, φ)
Input: w,R, e, φ. The values G,F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A,B} such that W = CG = Fx+Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x←

∑
i∈R 2φ(i)

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2φ(e) × F mod p
if |‖w‖ − ‖w‖+ h| ≤ Γ then
B2(w,R ∪ {e}, e+ 1, φ)

else
B2(w,R, e+ 1, φ)

Note 4: We conjecture that working with a fixed Γ during the entire backtracking
process handicaps the algorithm. When the process starts the weight of W is
high, hence the probability to strike-out h bits by subtraction is high. However as
subtractions make w sparser aperture should intuitively decrease. It may hence
make sense to explore algorithms in which the constant Γoptimal is replaced by a
function Γ (‖w‖, ‖w‖, n, h).

Best candidate search: B1 and B2 explore all the paths starting by an a priori
promising ∆. However, B1 and B2 do not explore the most promising paths
first. A more complex backtracking strategy (B3) trying with priority the paths

9

starting by a ∆ as close as possible to h was developed as well (information
available from the authors upon request). We do not include this algorithm here
for the sake of concision.

Information leakage from decryption failures: Because decryption may fail,
a possible cryptanalysis (that we did not investigate) might be to analyze, possibly
adaptively, the ciphertexts causing failures and thereby extract information on
{F,G}. We do not regard this as a major problem for the following reasons:

– Failure is highly dependent on the backtracking algorithm chosen by the
receiver. The backtracking procedures that we give here are one possibility
amongst many.

– An empirical protection consists in randomizing the backtracking process,
e.g., assume all the φi to be randomly drawn per decryption and secret.

– Another protection is to purposely fail decryption with some probability ε to
prevent the cryptanalyst from identifying true failures. Note that the random
tape used to simulate false failures must be derived from a fixed secret and
the ciphertext itself to avoid replays and majority votes.

Protection against side-channel attacks: It is reasonable to assume that, like
most encryption schemes, the algorithms described in this paper are vulnerable
to timing and side-channel attacks, an aspect that we did not investigate here.

3.3 Eccentric Reconstruction Strategies

Backtracking might be improved in a variety of ways. As examples, we list here
three research ideas that we did not explore in detail.

Brittle encryption formulae: We may modify the bivariate encryption
formula to C ← HA + 3B and enforce by design that H,A,B do not contain
the binary sequence 11. This means that the bit positions representing 3B will
be “colored” by a pattern 11 making their isolation and identification easier. If
n � h we may even attempt to brutally reset all the isolated ones in W and
divide the result by 3G to directly obtain B. For the trivariate version one may
use:

C =

{
C1 ← AR+B1 mod p

C2 ← AT − 3B2 mod p

resulting in the decryption formula W = FC1−C2 = FB1 +GA+3B2. Here
as well, we banish the pattern 11 from G,F,A,B1, B2. We may thus attempt to
identify in W the binary patterns 11, hinting the probable presence of B2 to ease
decoding. Note that the pattern 11 may result naturally from the multiplication,
the addition or the reduction and hence mislead the decoder (backtrack). Similarly,

10

an 11 due to 3B2 may disappear due to addition (backtrack). Note that marking
B with 11s makes backtracking more efficient as this increases the SNR. e.g. if
we replace each 1 in B by a 1111 we increase overall weight of W to 5h2 but a
correct guess will cause a weight decrease of ' 4h instead of h. In other words,
while requiring a larger n, this improves the SNR:

from SNR =
h

2h2
=

1

2h
to SNR =

4h

5h2
=

4

5h

Dye tracing: In hydrogeology, dye tracing is a technique for tracking various
flows using dye added to the water source. In other words, dye tracing uses dye
as a flow tracer. It is an evolution of the ages-known float tracing method, which
consists of throwing a buoyant object into a waterflow to see where it emerges.
To simulate the effect of dye tracing, we inject into F ’s digits a few low-weight
binary patterns and track their appearance in W . For instance (toy example),
generate an F of weight h− 10 not containing any of the ten sequences `i:

11 101 111 1001 1011 1101 10001 11001 10101 10011

randomly insert those ten `is into F ’s blank spaces (insert each `i once, this
will increase the weight of F to h− 10 +

∑
‖`i‖ = h− 10 + 26 = h+ 16 and the

weight of W to ' 2h2 +16h). To retrieve A, isolate the 10 dyes tracers in W and
use majority voting on bit offsets to infer the probable positions of A’s bits.

Demodulation: We can attempt to “travel back in time” and infer ω =
FA + GB ∈ Z from W , or at least estimate the probability that a candidate
bit in W originates from the number’s pre-reduced upper half. Given ω ∈ Z
decryption12 is immediate because:

A = ωF−1 mod G = (W demod p)× F−1 mod G

To demodulate W we work modulo p = 2n − 3 that “colors” the folded MSBs
by turning them into LSB 11s. The process is error-prone13 but actually works
for parameters that are large enough. We implemented the idea very brutally,
by simply translating each 11 in W into a 1 in the MSB of ω without taking
any further precautions. 100 demodulation attempts for {k = 6× 107, h = 55}
resulted in 29 successes. Although k is huge, the resulting information rate is not
“that” catastrophic as we can pack:

12 Take F,G coprime in Setup.
13 Again, “natural” 11s may be already present in the LSBs of ω, 11+ 01 may destroy

an 11, 10+ 01 may create fake 11s etc.

11

2 log2

(
6× 107

55

)
= 2356 plaintext bits into the ciphertext.

In other words, each plaintext bit claims 25461 ciphertext bits and is success-
fully transmitted with probability 29%.

While h = 55 is not very large and k = 6 × 107 is extremely large, our
simulation shows that it is definitely possible to make ingredients meet at a
workable parameter combination. We conjecture that with proper analysis and
refined demodulation strategies k might be reduced by at least two orders
of magnitude. It may also be possible to work modulo 2k − π with a more
distinguishable color π 6= 3 despite an extra weight due to a more complex π.
π = −1 is interesting as well as −1 turns folded bits into long chains of 1s.

Note 5 (important): One of the features preventing lattice-based attacks in
AJPS-1/ECC is the emergence of parasitic short vectors due to working modulo
2n − 1 (section 5.1.[AJPS17] 14). We did not evaluate the impact of π 6= 1 on the
number and the norm of parasitic short vectors and hence on security.

Pattern identification: Another idea consists in exploiting the fact that
W = AF +BG mod p will naturally contain binary sequences of the form:

v` = 0, . . . , 0︸ ︷︷ ︸
` zeros

|1| 0, . . . , 0︸ ︷︷ ︸
`+ 1 zeros

Let m be an `-bit encapsulated key15 and define C = m(AH +B) mod p we
get:

CG = m(AF +GB) = mW = m× (w′|v`|w) = u′|m|u mod p

m can thus be read16 on CG mod p. It remains to identify m. To do so,
we can generate {A,B} ← H(m) and hence confirm proper decryption using
n re-hashings and re-encryptions. This workload may be considerably reduced
by sacrificing a few bits of m, e.g. 16 bits, to display a specific pattern (e.g.
0xFFFF) allowing a quick identification of m. This divides the number of hashings
and re-encryptions by 216. As a numerical example, {n, h} = {75 × 104, 100}
corresponds to an ` ' 200. If we sacrifice 20 bits for an identification pattern we
can hope to decapsulate a ' 160-bit key using one re-encryption only.

` has a low variance as it is essentially determined by a max-min over the
differences between the positions si of the bits equal to one in W :

` ∼= max
i mod n

min(si − si−1, si+1 − si)

14 ePrint version 20170530:072202.
15 We consider m to be beyond exhaustive search, typically 160 bits.
16 Note that reading is circular i.e. wrapping around CG mod p.

12

weight =
h/4 +∆

weight =
h/2− 2∆

weight =
h/4 +∆

Figure 2: Unbalanced weight of A,B, F,G before multiplication.

weight ∼=
h2/4 + 2∆2

weight ∼=
h2/2− 4∆2

weight ∼=
h2/4 + 2∆2

Figure 3: Unbalanced weight of AF mod p and BG mod p after multiplication.

Pattern identification is somewhat homomorphic but with a very fast increas-
ing noise: encode a zero as m = 01, a one as m = 11 and read the plaintext on
the most significant bit of that encoding.

A second pattern identification variant is the following: Let R be a secret
n-bit number of the form:

R← random|v`|random

and define the auxiliary public-key L← R/G mod p.
Encrypt by:

C ← AH +B + Lm mod p

To decrypt compute:

W ← GC = AF +GB +Rm mod p

This offers a (noisy) visibility window on m allowing to extract and error-
correct m.

Unrecommended dangerous games: The following are for readers fond of
dangerous games.

A first interesting dangerous game, that we do not recommend, reduces noise
in the visibility window. If A,B,G, F are generated in a biased way by shifting
more Hamming weight into the MSBs and the LSBs as shown in Figure 2, then
the result of the multiplication modulo p of two such numbers results in a number
of the form shown in Figure 3. Those densities are illustrated in Figures 5,6 and
7. This reduces the noise in the reading window and allows an easier recovery of
m.

A second interesting dangerous game, that we do not recommend, consists in
taking A← 0 in the encryption formula and eliminating H from the public-key.

13

weight ∼=
h2/2 + 4∆2

weight ∼=
h2 − 8∆2

weight ∼=
h2/2 + 4∆2

Figure 4: Unbalanced weight of AF +BG mod p after addition.

Figure 5: Unbalanced A for {n, h,∆} = {214, 32, 6}.

Prime embedding: A variant of the above, mostly of theoretical interest,
is the following: because there is a number of natural leading and tailing zeros in
η = AF +GB mod p we can encode C = m(AH + B) mod p, recover m(AF +
GB) mod p and, provided that m is short enough, hope that η is small enough
to get17 ω = mη ∈ Z. It remains to extract m from ω. To do so, pick m as a
product of, say 64-bit random primes. The receiver can pull-out those primes
from ω using ECM factorization18. When a candidate m was formed, confirm
it using hashing and re-encryption as before. {n, h} = {2.5× 106, 100} gives an
average expected margin of ' 240 bits for encoding m. The main problem with
this variant would be the high variance in the size of m embeddable into the
ciphertext which would make decryption very uncertain.

Brittle encryption, dye tracing, demodulation, pattern identification and
prime embedding are only illustrative research directions that we consider
interesting or curious but that we do not claim nor conjecture to be secure.

Caveat

17 the possibly rotated
18 Accidental similar-size prime factors may come from AF +GB as well, but those are

few and hence easy to filter.

14

Figure 6: Unbalanced F for {n, h,∆} = {214, 32, 6}.

Note 6 (research note): To the above we add a last idea that we conjecture
to be insecure (by opposition to the previous ideas that we do not conjecture to
be secure).

Variant 6.1. Correlated As: To ease backtracking we wish to give the
decoder several ∆s generated from the same B. Generate t independent keys
{Fi, Gi, Hi} (possibly modulo different pis). Pick t−1 public random permutations
φ1, . . . , φt−1 of Zn. Generate {B0, . . . , Bt−1, A0} ∈R Ht+1

n,h . Let

A0 =

n−1∑
i=0

2iai

and form t ciphertexts {C0, . . . , Ct−1}:

Cj = AjHj +Bj mod pj where Aj =

n−1∑
i=0

2φj(i)ai

Simultaneous backtracking on the Ajs will reveal more information per bit
guess to the decoder.

Variant 6.2. Correlated Hs: Set G and define Hi = Fi/G for i ≥ 1. We
illustrate the idea with two His. Encrypt C = A0H0 +A1H1 +B. We see that
W = GC = F0A0 + F1A1 +BG. Linking A0 and A1 as in note 6.1 we see that
the SNR19 in the case of a successful guess increases:

from SNR =
h

2h2
=

1

2h
to SNR =

2h

3h2
=

2

3h
This modifies the complexity assumption as well.

19 Note that as backtracking proceeds the SNR improves. In this paper SNR stands for
the SNR at the beginning of the backtracking process.

15

Figure 7: Unbalanced AF mod p for {n, h,∆} = {214, 32, 6}. Note the relatively
lower dot density at the middle of the diagram.

4 Security & Parameter Sizes

This work did not cover the security of the proposed constructions and focused on
the textbook modes in which data is encoded and decoded. Parameter sizes were
not recommended and numerical examples are given for illustrative purposes.

A careful balance must be established between 1 the security, 2 the decodab-
ility (backtracking failure probability) and 3 the efficiency of the various Solve
processes. So far, simulations indicate that there are ways to practically satisfy
those three constraints at once.

5 Acknowledgments

The authors thank Waïss Azizian, Sarah Houdaigoui and Quốc Tún Lê for the
development and the simulation of different backtracking strategies.

References

AJPS17. Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A
new public-key cryptosystem via Mersenne numbers. Cryptology ePrint
Archive, Report 2017/481, 2017. http://eprint.iacr.org/2017/481.

BCGN17. Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache.
On the hardness of the mersenne low hamming ratio assumption. Crypto-
logy ePrint Archive, Report 2017/522, 2017. http://eprint.iacr.org/
2017/522.

dBDJdW17. Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks
on the ajps mersenne-based cryptosystem. Cryptology ePrint Archive,
Report 2017/1171, 2017. https://eprint.iacr.org/2017/1171.

16

http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/522
http://eprint.iacr.org/2017/522
https://eprint.iacr.org/2017/1171

	Integer Reconstruction Public-Key Encryption

