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Abstract. We introduce the abstract framework of decentralized smart
contracts system with balance and transaction amount hiding property
under the ACCOUNT architecture. To build a concrete system with
such properties, we utilize a homomorphic public key encryption scheme
and construct a highly efficient non-interactive zero knowledge (NIZK)
argument based upon the encryption scheme to ensure the validity of the
transactions. Our NIZK scheme is perfect zero knowledge in the common
reference string model, while its soundness holds in the random oracle
model. Compared to previous similar constructions, our proposed NIZK
argument dramatically improves the time efficiency in generating a proof,
at the cost of relatively longer proof size.

1 Introduction

Bitcoin [Nak08], as the first widely successful decentralized digital currency, has
drawn a lot of attention to the conception of blockchain. A blockchain is a
tamper-proof digital ledger of transactions with chronological order maintained
by distributed consensus nodes (called miners). The miners reach consensus
not only on the transactions (e.g., money transfer records or other data) but
also on the involving computations (e.g., validate or update the transactions).
This guarantees the blockchain to possess decentralization, verifiability and im-
mutability. Due to these properties, blockchain has been used in the design
of systems for data storage [KMH+17], provenance [LST+17,XSA+17], sharing
economy [XSC+17], dynamic key management [LCC+17], supply chain finance
and so forth.

Although the blockchain can provide a powerful abstraction for the design
of distributed protocols, the security and privacy issues (e.g., the leakage of user
real identity, transaction amount and balance) should not be ignored from the
protection of users’ interests. Among these security and privacy concerns, hid-
ing the transaction amount and balance is especially important when designing
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a blochchain-based system involving economic dealings (e.g., sharing economy
or supply chain finance system). Here, we take the blockchain-driven supply
chain finance (BDSCF) system [OHHH17] as an example to specify the poten-
tial threats without a protection mechanism for money transfer records.

The BDSCF system was proposed to cut unnecessary costs during the deal
appears between a supplier and a buyer who trust different supply chain fi-
nances (SCFs). Due to the integration of blockchain into supply chain finance
system, SCFs (as the distributed miners) collectively maintain a general ledger
(see Figure 1) which avoids complicated data synchronism across the partici-
pating SCFs and eliminates the inefficiencies in financial flaws. Consequently,
it helps the company financing make a higher profits and lower cost. Although
BDSCF can enhance the efficiency of trading processes among supply chain part-
ners and improve the buyer-supplier relation during the payment process, the
disclosure of the transferred and balance in general ledger to SCFs which may
leak key trade secrets of the suppliers. That is, the price of products from dif-
ferent suppliers involved in the general ledger can be estimated by analysing
transaction records and balance in account. As a result, the suppliers’ incentives
to adopt this blockchain-based mechanism will be diminished for their dinter-
ests are compromised, which seriously limits the application and scalability of
BDSCF.

Financier

Suppliers
Buyers

Blockchain

SCFSCF

SCF

...

General Ledger

Sender Receiv er Account

Financier Supplier_B 80,000

Buy er_C Financier 120,000

Buy er_A Financier 80,000

... ... ...

Fig. 1: The architecture of blockchain-based supply chain finance system

In order to protect suppliers’ commercial interests, we consider a direct but
efficient method, i.e., hiding the transferred and balance involved in the ledger.
If we can conceal the amount in both the user’s account and the transaction, the
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threats of amount-change analysed by compromised SCFs or other adversaries
will be mitigated.

There has been progress in designing privacy-preserving schemes (e.g., Con-
fidential Transaction [Max15], Zerocash [BCG+14], Monero [Sab13]), details of
which will be described in the Section 1.2. Most of them focus on hiding the
transaction accounts via several cryptographic techniques (e.g., cryptographic
commitment, zero-knowledge proof, ring signature, etc). Notice that the coins of
them are in Bitcoin’s UTXO (Unspent Transaction Outputs) architecture and
a user’s balance is the sum of all outputs regulated by wallet. In the UTXO
architecture, your wallet will simultaneously create a new address for the change
you are owed when greater coins are sent to another user. Subsequently, the
emergency of Ethereum [Woo14] has introduced an innovation architecture (the
ACCOUNT architecture), which relies on global state storage of accounts, bal-
ances, code and storage ( i.e. the user’s balance now is kept as global state).
Analogous to a bank account, there is a debit and corresponding credit to the
states with a transaction.

When considering the privacy of user’s balance, previous UTXO-based re-
searches may not work for the following reasons. Firstly, the cryptographic
commitment scheme may bring about the difficulty for the concurrent balance-
updating in the system. Secondly, high computational complexity greatly re-
stricts their application in the lightweight but widespread used devices (e.g.
mobile phone). Finally, none of them support the smart contract system of
Ethereum, which offers more flexible and arbitrary trading operations running
in the blockchain. Thus, we are motivated to propose a mechanism with the
ACCOUNT architecture for creating an expressive decentralized smart contract
(DSC) system with the above hiding and updating.

In order to achieve hiding and timely updating operations to the balance,
we employ the homomorphic encryption (HE) schemes. Both the amount of
transferred records and balance are encrypted by the HE algorithms and stored
in ciphertext. The homomorphism of HE allows the miners to directly update the
balance in ciphertext without the need of decryption, that is, given encryptions
E(v1), E(v2), · · · , E(vt) of the balance v1, v2, · · · , vt, the miners can efficiently
compute a ciphertext of f(v1, v2, · · · , vt), where f(·) is an efficiently computable
function (this function is mainly related to addition or substraction operation in
our paper). In addition, we propose a zero knowledge (ZK) proof tool to prove
two basis statements required by a transaction. One is “equivalence” (i.e. Alice’s
balance decreases v and Bob’s should correctly add v when Alice transfers money
v to Bob) and the other is “enough”(i.e. Alice’s balance should not be less than
v if she want to transfer money v to others). Thus, in this paper, we not only
find an applicable HE scheme, but also design the corresponding ZK scheme to
support DSC system with the balance hiding property.

1.1 Our contributions

In this section, we summarize the contributions of this paper as follows:
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1. The main contribution of this research is to introduce a priori mechanism
enabling programmability (i.e. decentralized smart contract) with balance
hiding property under the ACCOUNT architecture. This mechanism can
be applied in various financial scenarios and can also work when a system
involves economic dealings or even change in digital assets.

2. We utilize a public key encryption scheme with homomorphic property to
hide the balance and transaction amount, and design a non-interactive zero
knowledge (NIZK) scheme to prove the validity of the transactions. The
in-depth security proof shows that our proposed scheme is provably secure
under the random oracle model.

3. We analyze the performance of the proposed scheme both in asymptotic
and practical terms, and also implement it on the personal computer. The
encouraging result indicates that our scheme is practicable and maneuverable
in the mentioned actual applications.

1.2 Related Work

In this subsection, we briefly review some existing cryptographic techniques
around the privacy protection in the blockchain, however which are not suitable
to the demand of balance confidentiality and timely updating in our system.

Bitcoin Core Developer Gregory Maxwell [Max15] first conceptualizes Confi-
dential Transaction as a solution for keeping the transaction amounts unrevealed.
Their solution is based on the Pedersen commitment scheme [P+91], where the
transaction amounts are masked by random blinding factors before sent to the
recipients and lately notarized by the recipients. The clear thing is that, these
masked amounts still can be used for certain types of calculations, which means
that all inputs and outputs of a transaction can be added up respectively and
these two sums can be compared to ensure trade-off during the verifying process
without revealing the real values.

Ring Confidential Transaction (RingCT) is another variant CT approach
for hiding transaction amounts. Collaborated with the linkable ring signature
scheme [LWW04], Monero [NM+16] (another proof-of-work cryptocurrency) achieves
the requirements of decentralization, privacy and anonymity. Similar to [Max15],
the RingCT scheme improves the privacy of the blockchain by allowing the
amounts sent in a transaction to be concealed in an anonymous set. In addition,
the linkable mechanism is equipped to ensure any double-spending behaviors can
be detected timely.

However, the CT-based schemes uses blinding factors for inputs and outputs,
which are picked in special so that they add up correctly. This may cause lower
randomness and reduce the security of the whole scheme. In addition, the blind-
ing factors may need to be somehow synchronized to both sides, which may lead
to concurrency problems and have slightly difficulty when implementing into a
financial system (e.g. BDSCF).

Another cryptographic method is zero-knowledge proof. Zerocash [BCG+14]
employs the zero-knowledge succinct non-interactive argument of knowledge (zk-
SNARKs) [BSCG+13] and cryptographic commitment schemes to reach the un-
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linked transaction and confidential amount. The transfer transaction consists
of a cryptographic commitment to a new coin, which specifies the coin’s value,
owner address and unique serial number. When consuming the input coins, zero-
knowledge proofs and serial numbers are needed to prove the ownership of the
input coins and the trade-off between the inputs and outputs. Recently, Zerocash
can achieve the highest level of privacy protection and anonymity of the cryp-
tocurrency based on UTXO architecture. However, when using this method in
our account-based system, there are two main drawbacks. One is that the cryp-
tographic commitments generated by the one-way hash functions do not support
the ACCOUNT architecture, since homomorphic operations are not considered
while Zerocash was designed. The other is that the proof generation process
in this scenario is rather expensive which leads to the worse efficiency and not
suitable for the lightweight devices (e.g. mobile phones).

Instead of UTXO architecture, Ethereum [Woo14] introduce the ACCOUNT
architecture (mentioned in Section 1) and a decentralized arbitrary user-defined
programming system running in the blockchain, named of smart contract sys-
tem. Followed the idea of smart contract, Kosba et al. [KMS+16] implements
a cryptographic suite that can blind transactions with programmable logic. It
applies smart contract to store the committed coins generated by the users and
determine the payout distribution. Once the users open the commitments and
uncover the information to the manager (who is trusted not to disclosed the
user’s private data), the manager then interact with the smart contract to gen-
erate new coins and pay to the recipients. The new coins will lately be submitted
to the blockchain with zero knowledge proofs for its legality. This scenario pro-
vides programmability without exposing explicit transaction information to the
public. However, since the manager always knows users’ quotes, this scheme
is not suitable for the privacy protection in terms of transaction amount and
balance in our scenario.

1.3 Organization

We organize the remainder of this paper as follows. Section 2 contains back-
ground materials such as bilinear pairings, homomorphic encryption,Σ-protocols,
non-interactive zero knowledge proofs and some complexity assumptions. In sec-
tion 3, we describe our NIZK scheme, including the construction with its cor-
responding proof. Section 4 discusses the concrete instantiation of our scheme
and demonstrates a comparison with previous scheme. Section 5 concludes this
paper and gives future directions.

2 Preliminaries

In this section we give basic definitions of cryptographic primitives including
required tools and complexity assumptions, along with some properties if neces-
sary.
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Notations. If n is an integer, we denote [n] = {1, . . . , n}. For any set S, x←$S
means sampling uniformly at random some element x from the set S. Besides, for
any distribution D, x←$D means sampling x from the probability distribution
D, and v ∈R D denotes that variable v is uniformly random in D. We write
y = A(x; r) to represent that an algorithm A takes input x and randomness
r, output y. The formula y ← A(x) means picking randomness r uniformly at
random and setting y = A(x; r).

In this paper, we denote by n the security parameter, and abbreviate prob-
abilistic polynomial-time as PPT. A function ε(n) is negligible in n if ε(n) =
o(1/nc) for all c ∈ N. ε(n) = negl(n) denotes that ε(n) is a negilible function in
n, and ε(n) = poly(n) denotes that ε(n) is a polynomial function in n.

For a group G, we denote by ||G|| the size of its arbitrary element.

For any two distribution ensembles {Xn}n∈N and {Yn}n∈N, we write {Xn}n∈N
c
≈

{Yn}n∈N to represent the two distribution ensembles are computational indistin-
guishable with security parameter n.

2.1 Cryptographic primitives

Bilinear groups. We call Gbp(1n) the bilinear group generator which takes
a security parameter as input and outputs a description of a bilinear group
gk = (p,G1, G2, GT , e, g1, g2) such that p is a n-bit prime. We follow the notation
of [BLS01]:

– G1, G2, GT are multiplicative cyclic groups of order p. The elements g1, g2
generates G1, G2 respectively.

– e : G1 ×G2 → GT is a nondegenerate bilinear map, and e(g1, g2) generates
GT .

– φ : G2 → G1 is a computable isomophism, and g1 = φ(g2).

– ∀a, b ∈ Z, e(ga1 , gb2) = e(g1, g2)ab.

– It is efficient to compute group operations, compute the bilinear map, and
decide the membership in G1, G2 and GT .

Remark 1. In some cases, G1 = G2 = G and g1 = g2 = g, where the bilinear
group generator outputs (p,G,GT , e, g). Under different intractability problems,
the respective multiplicative groups are of prime order or composite order, for
instance, subgroup decision problem needs groups of composite order, and de-
cision linear problem needs groups of prime order. However, Freeman in his
work [Fre10] proposed an abstract framework to convert some pairing-based
cryptosystems from composite-order groups to prime-order groups.

DLIN assumption. With g1 ∈ G1 discribed above, let f, h, g be its arbitrary
generators. For a triple (s1, s2, s3) ∈ G3

1 w.r.t the basis (f, h, g), if there exist
r, s ∈ Zp such that s1 = fr, s2 = hs, s3 = gr+s, we call the triple linear. The
decision linear assumption proposed in [BBS04] states that no PPT algorithm
can distinguish gr+s from g′ (where g′←$G1).
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Definition 1 (DLIN Assumption). The decision linear assumpion (DLIN)
holds in G1 if for all non-uniform PPT A we have∣∣∣ Pr[f, h, g←$G1, r, s←$Zp : A(f, h, g, fr, hs, gr+s) = 1]

−Pr[f, h, g, g′←$G1, r, s←$Zp : A(f, h, g, fr, hs, g′) = 1]

∣∣∣ = negl(n) .

A public-key encryption(PKE) scheme consists of three PPT algorithms (KGen,
Enc,Dec) which indicates key generation, encryption, and decryption. We re-
quire that (pk, sk)← KGen(1n) and for any valid plaintext m and randomness r,
Decsk(Encpk(m; r)) = m. A PKE scheme is IND-CPA secure(a.k.a. semantically
secure [GM82]) if

Pr

 b←$ {0, 1}, (pk, sk)← KGen(1n)
m0,m1←$ {0, 1}n, c = Encpk(mb; r)

b′ ← A(1n, pk, c)
: b = b′

 = negl(n) .

In this paper, we use a PKE scheme with homomorphic property, called Ho-
momorphic Encryption (abbreviate as HE), to hide the balance and transaction.

Definition 2. The HE scheme comprises a triple of algorithms (KGen,Enc,Dec):

– (pk, sk)← KGen(1n): h←$G1, x, y←$Zp, sk = (x, y), pk = (X,Y ) = (gx1 , g
y
1 , g1, h).

– C ← Encpk(m): Randomly sample r, s←$Zp, set C1 = Xr, C2 = Y s, C3 =
gr+s1 · hm, then C = (C1, C2, C3).

– m = Decsk(C): Parse C into (C1, C2, C3), compute hm = C3/(C
1/x
1 · C1/y

2 ).
One can efficiently get m = loghmh if the plaintext space is small.

The correctness of the cryptosystem is straightforward. Note that for efficient
decryption we require the message space to be small for solving the discrete
logrithm problem. Assuming DLIN assumption, our encryption scheme is IND-
CPA secure.

Remark 2. The third part of the ciphertext, C3 = gr+s1 · hm, employs the form
of Perdersen commitment [P+91]. While the whole ciphertext owns a form like
linear encryption posed in [BBS04], there are significant differences in some
respects including the message space and the pair of keys.

q-SDH assumption. With the bilinear group gk = (p,G1, G2, GT , e, g1, g2)←
Gbp(1n), we pay attention to the q-strong Diffie-Hellman (q-SDH) assumption
proposed by Boneh and Boyen in [BB04]. Later the work of [TS10] gives more
information about the assumption.

Definition 3 (q-SDH Assumption). The q-Strong Diffie-Hellman (q-SDH)
assumption associated to a bilinear group gk holds if for all non-uiform PPT A,
we have

Pr[x←$Zp : (c, g
1/(x+c)
1 )← A(g1, g

x
1 , . . . , g

xq

1 , g2, g
x
2 )] = negl(n) ;

where c ∈ Zp.
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In a signature scheme, there exist a triple of polynomail-time algorithms
(KeyGen, Sign, V erify) for generating keys, signning, and verifing signatures,
respectively. The conditions should be satisfied:

– (sk, vk)← KeyGen(1n),
– V erifyvk(m,Signsk(x)) = 1.

As to the security of signature schemes, we only consider existential unforgeabil-
ity under a weak chosen message attack. In this model, the advesary submits q
queries m1, . . . ,mq to the challenger for asking their signatures. The challenger
runs (sk, vk) ← KeyGen(1n) and sends vk to the adversary, together with sig-
natures σ1, . . . , σq on m1, . . . ,mq. We say the adversary wins if it outputs a
signature σ′ such that V erifyvk(m′, σ′) = 1 and m′ /∈ {m1, . . . ,mq}. A signa-
ture scheme is said to be secure under a weak chosen message attack if no PPT
adversary wins the game with non-negligible probability.

Definition 4 (Boneh-Boyen Signature). Boneh-Boyen signature consists of
three polynomial-time algorithms:

– (sk, vk) ← KeyGen(1n): The randomized key generation algorithm takes
the security parameter n as input, randomly choose λ←$Zp, set (sk, vk) =
(λ, gλ2 ).

– σ ← Signsk(m): The deterministic signing algorithm uses the private signing

key sk and input m. It outputs σ = g
1

λ+m

1 .
– {0, 1} ← V erifyvk(m,σ): Given the public verification key vk, the deter-

ministic verification algorithm outputs 1 if e(σ, vk · gm2 ) = e(g1, g2), and 0
otherwise.

Under the q-SDH assumption, the Boneh-Boyen signature scheme is secure
against existential forgery under a weak chosen message attack, which is sufficient
enough for our goal. For more detail information on this proof, see [BB04].

Σ-Protocol. Let R = {(x,w)} be a binary relation which can be efficiently
computed such that |w| = poly (n) (|x|). Here, x is a statement and w is a
witness. Let LR = {x : ∃w s.t. (x,w) ∈ R} be an NP language. A Σ-protocol
Π = (a, c, z) introduced in [Cra96] is a 3-round public-coin protocol between
two efficient parties (P,V): the prover P sends the first message a ← P(x);
when received a, the verifier V sends c←$ {0, 1}n to P; the prover’s last message
z ← P(x, a, c). The transcript (a, c, z) is accepting iff. V(x, a, c, z) = 1. For more
information about Σ-protocols, see [HL10,Dam10]. Formally:

Definition 5 (Σ-Protocol). A 3-round public-coin protocol Π = (a, c, z) is a
Σ-protocol for language LR if the following conditions hold:

– Completeness: If P and V execute the protocol on input x and private input
w to P in which (x,w) ∈ R, then V always accepts.

– Special soundness: For any statement x, given two accepting transcripts on
input x: (a, c, z), (a, c′, z′) where c 6= c′, there exists a PPT algorithm Ext
which can compute the witness w s.t. (x,w) ∈ R.
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– Special honest verifier zero knowledge (SHVZK): There exists a PPT algo-
rithm Sim, on input x and a challenge c, can perfectly simulate the conver-
sations between the honest P,V on input x. Formally speaking,{

Sim(x, c)
}
x∈LR,c∈{0,1}n

≡
{
< P(w),V(c) > (x)

}
x∈LR,c∈{0,1}n

;

where Sim(x, c) represents the output of simulator Sim on input x and c, and
< P(w),V(c) > (x) denotes the real output transcript of the protocol.

NIZK argument. A non-interactive argument system for a relation R consists
of two efficient parties: a prover P and a verifier V. Taking (x,w) as input, P
produces a proof π, and sends it to V. The verifier V takes as input (x, π) and
outputs 1 if the proof is acceptable and output 0 if rejecting the proof. We call
(P,V) a non-interactive argument system for R if it owns the completeness and
soundness properties defined below.

A non-interactive zero knowledge (NIZK) argument system proposed in [BFM88]
is a non-interactive argument system which leaks no information to the verifier
except the validity of the statement.

Definition 6 (NIZK Arguments). A triple of PPT algorithms (K, P, V) is
called a NIZK argument system for language LR if the conditions described below
hold:

– Completeness: For all crs← K(1n) and all (x,w) ∈ R, we have:

Pr[π ← P(x,w, crs) : V(x, π, crs) = 1] = 1− negl(n) .

– (Adaptive) Soundness: For all non-uniform PPT prover P∗, the probability

Pr[crs← K(1n), (x, π)← P∗(crs) : x /∈ LR ∧ V(x, π, crs) = 1] = negl(n) .

– (Adaptive) Zero-Knowledge: There exists a PPT simulator S = (S1, S2), such
that for all stateful non-uniform PPT adversaries A = (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣∣

Pr
[ crs← K(1n)

(x,w)← A1(crs)
π ← P(crs, x, w)

:
(x,w) ∈ R∧
A2(crs, π) = 1

]

−Pr
[ (crs, td)← S1(1n)

(x,w)← A1(crs)
π ← S2(crs, x, td)

:
(x,w) ∈ R∧
A2(crs, π) = 1

]
∣∣∣∣∣∣∣∣∣∣∣∣

= negl(n) .

We call the NIZK argument perfect zero-knowledge if the above probability
equals 0.

The above definition discribes the NIZK argument in the common reference
string (CRS) model which is generated by a trusted third party. Using Fiat-
Shamir heuristic [FS86] and a secure hash function H, a Σ-protocols can be
transformed into a NIZK argument in the following way: P computes a, applies
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H to a and obtains the challenge c = H(a), then computes z according to the
Σ-protocol and send the proof (a, c, z) to V. One can prove the property of
soundness and zero-knowledge of the new protocol in the random oracle (RO)
model [BR93] where we replace H by a random oracle in the way of [FS86].

We will construct NIZK in the common reference string model by applying
Fiat-Shamir heuristic to a Σ-protocol, which allows us to achieve perfect zero
knowledge without relying on a random oracle, though the soundness of our
construction is proved in the random oracle model.

2.2 Decentralized smart contracts over blockchains

A smart contract is a piece of code which is stored in the blockchain network on
each participant node. It can be seen as a digital version of a traditional contract.
The property of decentralization of blockchain has improved the development
of smart contracts. Assume in a payment system which owns the ACOUNT
architecture, user A want to transfer t coins to user B. Then we can deploy the
transfer action and some necessary checks in the blockchain as a smart contract
to automatically execute the operation in the following way. User A posts a
transaction on the blockchain that basically says

Transfer t of my coins to B, and σ is a signature of t.

Being triggered by this message, the smart contract first checks the validity of
the signature, and that A has more than t coins, If so does the transfer action and
publishes the transation on the blockchain, otherwise it ignores the transation.

In the simplified transaction above, anyone can learn the money t being
transfered from A to B (i.e. there is no guarantee in the privacy of users’ balance
and transaction amount). But we can get around this problem by changing the
verification procedure accordingly deployed in the smart contract. Suppose that
every user’s balance is encrypted with a homomorphic encryption scheme E(·)
and saved on the ledger in the form of ciphertext. A could post the transaction
as follows.

Transfer E(t) of my coins to B, here is a non-interactive zero knowledge proof
π to prove the correctness of E(t) and that my balance is larger than t.

In next section, we will introduce the abstract framework of a decentralized
smart contracts system that allows the users to transfer money with privacy of
balance and transaction amount and give a concrete construction of its main
building block, a NIZK argumment system.

3 NIZK Argument and DSC Scheme

In this section, we introduce the framewrok of a decentralized smart contract
(DSC) system with the property of hiding balance and transaction amount and
present a new NIZK argument for the two basic statements introduced in sec-
tion 1 to fulfill the DSC system. We also prove the correctness and security of
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the NIZK argument. With respect to the ”equivalence” statement, the basic idea
is that we first construct a Σ-protocol to prove the given two ciphertexts corre-
sponding to some transaction amount own a same plaintext which is encrypted
with an HE scheme. Then using Fiat-Shamir heuristic method, we build a NIZK
protocol between the two parties. As the second statement, ”enough”, we utilize
the technique borrowed from [CC+08] to construct a range proof. The main idea
of the range proof is that for a secret t ∈ [0, ul], the prover writes it in u-ary

notation (i.e., t =
∑l
j=0 tj · uj ) and shows that each element tj in the range

[0, u). Now the key technique to use is a set membership proof protocol. We get
the full NIZK scheme acting as a building block in our DSC system when put the
two proofs together. Note that we also put forward a system public parameter
generated once serving as common reference string in the NIZK argument which
can be reused in other proofs.

3.1 Decentralized smart contract system

Suppose a NIZK argument with a prover P and a verifier V, we deploy the
verification procedure in the blockchain to obtain a smart contract which can
automatically do the transfer operation. Following is a formal description of a
DSC system.

3.2 The construction of NIZK and its security

For the sake of simplicity, we only consider two parties A and B in the smart
contracts. Suppose that the plaintext space is [0, 2L), where L = 10× l. In order
to construct a concrete NIZK argument, we leave the implementation of Setup
and PartyInitial in DSC system to the NIZK argument system:

Setup. (p,G1, G2, GT , e, g1, g2) ← Gbp(1
n) is a bilinear group as described

in Section 2.1. Let h = gω1 be another generator of G1, where ω←$Zp. Let
gT = e(g1, g2) be a generator of GT . Given a key pair (sk = λ, vk = gλ2 )
of Boneh-Boyen signature scheme, we compute the signatures of the integers
between 0 and 210 − 1:

σ = (σ0, σ1, . . . , σ210−1) = (g
1
λ
1 , g

1
λ+1

1 , . . . , g
1

λ+210−1

1 );

and the following bilinear maps:

T = (T0, T1, . . . , T210−1) = (e(σ0, g2), e(σ1, g2), . . . , e(σ210−1, g2));

The public parameter now is the tuple of PP = (p,G1, G2, GT , e, g1, h, g2, gT , vk, σ, T )
which also serves as a common reference string1.

1 In order to improve the prover’s efficiency, we precompute σ, T in the Setup proce-
dure.
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Decentralized Smart Contract System

– Setup The algorithm Setup produces a system public parameter:
• input: security parameter n
• output: a system public parameter PP

– PartyInitial The algorithm PartyInitial generates every user’s (say A) informa-
tion using a homomorphic encryption scheme:
• input: PP
• output: PKA, SKA, CA = EncPKA(tA)

The public key PKA also links to the address for receiving coins. Only the ci-
phertext CA of A’s balance tA is stored in the account book.

– Transfer The algorithm Transfer is invoked when some party A transfer t coins
to B.
• input: PP, t, tA, PKA, CA, PKB

• A generates a transfer statement x and according NIZK proof π ←
P(x, PP,w), and posts them to the blockchain.

– Redeem The algorithm Redeem deployed in the blockchain for automatically
transfer will be triggered by the Transfer algorithm.
• input: PP, x, π
• if V(PP, x, π) = 1, then T finds the sender A and the receiver B from the

statement x, publishes the transaction and does the tranfer operation:

Update A’s balance to C′A = CA/Ct and B’s balance to C′B = CB · Ĉt;

otherwise, T ignores it.

Fig. 2: DSC System
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PartyInitial. Parties in the protocol use the homomorphic encryption de-
scribed in Definition 2. Consider a party A, its public key, private key, and
encryption algorithm is as follows:

– Private key: SKA = (xA1, xA2) ∈ Z2
p,

– Public key: PKA = (XA1, XA2) ∈ G2
1, where XA1 = gxA1

1 , XA2 = gxA2
1 ,

– Encryption: EncPKA(m; (y1, y2)) = (C1 = XA
y1
1 , C2 = XA

y2
2 , C3 = gy1+y21 ·

hm), where (y1, y2) denotes the randomness. For any valid ciphertext c,
one who has corresponding private key can decrypt it efficiently, since the
plaintext space is [0, 2L) where 2L � q. In this paper, we consider the
plaintext space of size [0, 230) (i.e., L is set to be 30).

Proof generation by P. Party A with balance tA does the following opera-
tions, when transfering t to party B:

1. From the account book, A gets the ciphertext of tA, C̃ = (C̃1, C̃2, C̃3) =

(XA
ỹ1
1 , XA

ỹ2
2 , g

ỹ1+ỹ2
1 ·htA). Note that A probably does not know ỹ1, ỹ2. After

randomly sampling y1, y2←$Zp, A generates the following ciphertext of t
under A’s public key (XA1, XA2):

C = (C1, C2, C3) = (XA
y1
1 , XA

y2
2 , g

y1+y2
1 · ht).

With the same randomness y1, y2, A generates the ciphertext of t under B’s’
public key:

Ĉ = (Ĉ1, Ĉ2, Ĉ3 = C3) = (XB
y1
1 , XB

y2
2 , g

y1+y2
1 · ht).

2. Define the language L proved by P as follows:
The statement x = (C, Ĉ, PKA, PKB , C̃) ∈ L if there exists a witness w =
(skA = (xA1, xA2), y1, y2, tA, t), such that

(a) Ci
Ĉi

=
(
XAi
XBi

)yi
, for i = 1, 2;

(b) C3 = gy1+y21 · ht;

(c) C̃3

C3
= C̃

1
xA1
1 · C̃

1
xA2
2 · g−y1−y21 · htA−t;

(d) t ∈ [0, 2L), t′ = tA − t ∈ [0, 2L),

where t =
∑l−1
j=0 tj ·

(
210
)j
, t′ =

∑l−1
j=0 t

′
j ·
(
210
)j
, 0 ≤ tj , t′j < 210;

OR there exists ω ∈ Zp, such that
(e) h = gω1 .

3. Taking PP as common input, A generates a NIZK proof for the above state-
ment with private input (skA, y1, y2, tA, t) in the following way:
For the proof generation of Equation (a), (b), (c), a Σ-protocol can be used.
Equation (d) can be proved by utilizing the range proof in [CC+08]. Equa-
tion (e) holding a trapdoor ω is designed for the simulator.

Randomly sample r1, r2, `, k←$Zp, compute Ri =
(
XAi
XBi

)ri
, i = 1, 2.

For j = 0, 1, . . . , l − 1, randomly sample vj , v
′
j , sj , wj , qj ,mj ←$Zp, then

compute:
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Vj = σ
vj
tj , V

′
j = σ

v′j
t′j

;

D1 =

l−1∏
j=0

(
h(2

10)j ·sj
)
· gr1+r21 ;

D2 =

l−1∏
j=0

(
h(2

10)j ·wj
)
· C̃`1 · C̃k2 · g

−r1−r2
1 ;

aj = T
−sj ·vj
tj · gqjT , a

′
j = T

−wj ·v′j
t′j

· gmjT ;

Randomly sample ĉ←$Zp, ẑ←$Zp, and set α = gẑ1
/
hĉ.

Let a = (R1, R2, {Vj , V ′j }
l−1
j=0, D1, D2, {aj , a′j}

l−1
j=0, α) represent the first mes-

sage of a Σ-protocol. Applying H to a,

c̃ = H(a);

where H represents a random oracle which can be instantiated by a secure
hash function.

Let c = c̃+ ĉ represent the challenge value of a Σ-protocol.

Compute (all modulo p):

z1 = r1 − c · y1; z2 = r2 − c · y2;

zvj = qj − c · vj ; zv′j = mj − c · v′j ;

ztj = sj − c · tj ; zt′j = wj − c · t′j ;

z` = `− c

xA1

; zk = k − c

xA2

;

Finally, A sends to B the proof:

π =
(
R1, R2, {Vj , V ′j }l−1j=0,D1, D2, {aj , a′j}l−1j=0, α, c,

z1, z2, {zvj , zv′j}
l−1
j=0, {ztj , zt′j}

l−1
j=0, z`, zk, ẑ

)
.

Proof verification by V. Upon receiving a proof π, the verifier V parses π
into the form as above, then computes c̃ and ĉ = c− c̃. With the common input
PP , ∀i = 1, 2; j = 0, 1, . . . , l − 1, V checks whether the following conditions
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hold:

Ri =
(Ci
Ĉi

)c
·
(XAi

XBi

)zi
; (1)

D1 =

l−1∏
j=0

(
h(2

10)j ·ztj
)
· Cc3 · g

z1+z2
1 ; (2)

D2 =

l−1∏
j=0

(
h
(210)j ·zt′

j

)
·
( C̃3

C3

)c
· C̃z`1 · C̃

zk
2 · g

−z1−z2
1 ; (3)

aj = e(Vj , vk)c · e(Vj , g2)−ztj · g
zvj
T , a′j = e(V ′j , vk)c · e(V ′j , g2)

−zt′
j · g

zv′
j

T ; (4)

gẑ1 = α · hĉ; (5)

Theorem 1. Assuming the DLIN, q-SDH assumptions, the protocol described
above is a NIZK argument with perfect completeness, perfect zero-knowledge and
computational soundness in the RO model. Furthermore, perfect zero-knowledge
holds in the standard CRS model.

Proof. We prove each direction separately.

Perfect Completeness. Perfect completeness follows by direct verification,
see appendix A for more details.
Soundness. The soundness follows from the property of special soundness
of Σ-protocols and the unforgeability of the Boneh-Boyen signature. If a
PPT prover P∗ generates an accepted argument π for an invalid statement,
where

π =
(
a =

(
R1, R2, {Vj , V ′j }l−1j=0,D1, D2, {aj , a′j}l−1j=0, α

)
, c,

z1, z2, {zvj , zv′j}
l−1
j=0, {ztj , zt′j}

l−1
j=0, z`, zk, ẑ

)
;

Then, we construct such an extractor Ext: Upon seeing the argument, Ext
rewinds P∗ to the oracle query H(a) that returned c̃. It then reprogram the
random oracle such that c̃′ = H(a) with c̃ 6= c̃′ and continue the execution of
P∗ with the modified random oracle. In expected polynomial time, another
valid argument appears:

π′ = (a, c′ = c̃′ + ĉ, z′1, z
′
2, {z′vj , z

′
v′j
}l−1j=0, {z

′
tj , z

′
t′j
}l−1j=0, z

′
`, z
′
k, ẑ).

The witness can be extracted by computing (for i = 0, 1; j = 0, 1, . . . , l− 1):

yi =
zi − z′i
c′ − c

, tj =
ztj − z′tj
c′ − c

, t′j =
zt′j − z

′
t′j

c′ − c
, xA1 =

c′ − c
z` − z′`

, xA2 =
c′ − c
zk − z′k

.

Conditioned on the extracted witness, if t /∈ [0, 2L) or t′ /∈ [0, 2L), then we
can successfully attack the Boneh-Boyen signature in a weak chosen message
attack model with non-negligible probability, taking P∗ as a subroutine.
A contradiction occurs.
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Perfect Zero-Knowledge. Unlike using the standard Fiat-Shamir heuristic
method, in our construction, we prove perfect zero-knowlege without relying
on a random oracle. To prove the zero-knowlege, we construct a simulator
Sim to prove statement h = gw1 , see Fig. 3.

Simulator for the New NIZK Argument

• Just do like the procedure of Setup and output:
(PP, td) = ((p,G1, G2, GT , e, g1, h, g2, gT , vk, σ, T ), ω) where h = gω1 .

• Choose randomly t, t′ ←$ [0, 2L); vj , v
′
j ←$Zp, and write t, t′ in base-210:

t =

l−1∑
j=0

(210)j · tj , t′ =

l−1∑
j=0

(210)j · t′j ,

then set Vj = σ
vj
tj
, V ′j = σ

v′j
t′j

, where j ∈ {0, 1, . . . , l − 1}.

• Choose c, z1, z2, zvj , zv′j , ztj , zt′j , z`, zk, u←$Zp, and compute (i = 1, 2; j =

0, 1, . . . , l − 1):

Ri =
(Ci
Ĉi

)c
·
(XAi
XBi

)zi
;

D1 =

l−1∏
j=0

(
h
(210)j ·ztj

)
· Cc3 · gz1+z21 ;

D2 =

l−1∏
j=0

(
h
(210)j ·zt′

j

)
·
( C̃3

C3

)c
· C̃z`1 · C̃

zk
2 · g

−z1−z2
1 ;

aj = e(Vj , vk)c · e(Vj , g2)
−ztj · g

zvj
T , a′j = e(V ′j , vk)c · e(V ′j , g2)

−zt′
j · g

zv′
j

T ;

α = gu1 ;

• Compute c̃ = H(R1, R2, {Vj , V ′j }l−1
j=0, D1, D2, {aj , a′j}l−1

j=0, α), and let ĉ = c− c̃, ẑ =
u+ ĉ · ω. Then output the simulated argument:

π =
(
R1, R2, {Vj , V ′j }l−1

j=0,D1, D2, {aj , a′j}l−1
j=0, α, c,

z1, z2, {zvj , zv′j}
l−1
j=0, {ztj , zt′j}

l−1
j=0, z`, zk, ẑ

)
.

Fig. 3: Simulator

Parse the argument into 3 parts:

π =
(
a = (R1, R2, {Vj , V ′j }l−1j=0,D1, D2, {aj , a′j}l−1j=0, α), c,

z = (z1, z2, {zvj , zv′j}
l−1
j=0, {ztj , zt′j}

l−1
j=0, z`, zk, ẑ)

)
.
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For the sake of clarity and convenience, we denote the simulated argument
by

π =
(
a = (R1,R2, {Vj ,V ′j}l−1j=0,D1,D2, {aj , a′j}l−1j=0,α), c,

z =(z1, z2, {zvj , zv′j}
l−1
j=0, {ztj , zt′j}

l−1
j=0, z`, zk, ẑ)

)
.

Observe that ĉ←$Zp is independent of a, c = H(a) + ĉ is uniformly dis-
tributed in Zp, and that c is also chosen from Zp at random in the simulation,
thus,

{c} ≡ {c}; (6)

which indicates the above two distributions are identical.
Set C = {c} = {c}. Conditioned on (6), given c̄ ∈ C , for every ρ ∈ Zp, since
ẑ, r1, r2, `, k, qj ,mj , sj , wj , vj , v

′
j ←$Zp where j = 0, 1, . . . , l − 1, and they

are all independent of c, we have

Pr[z1 = ρ|c = c̄] = Pr[r1 − cy1 mod p = ρ|c = c̄] =
1

p
;

Pr[z2 = ρ|c = c̄] = Pr[r2 − cy2 mod p = ρ|c = c̄] =
1

p
;

Pr[z` = ρ|c = c̄] = Pr[`− c

xA1

mod p = ρ|c = c̄] =
1

p
;

Pr[zk = ρ|c = c̄] = Pr[k − c

xA2

mod p = ρ|c = c̄] =
1

p
;

Pr[zvj = ρ|c = c̄] = Pr[qj − c · vj mod p = ρ|c = c̄] =
1

p
;

Pr[zv′j = ρ|c = c̄] = Pr[mj − c · v′j mod p = ρ|c = c̄] =
1

p
;

Pr[ztj = ρ|c = c̄] = Pr[sj − c · tj mod p = ρ|c = c̄] =
1

p
;

Pr[zt′j = ρ|c = c̄] = Pr[wj − c · t′j mod p = ρ|c = c̄] =
1

p
;

Pr[ẑ = ρ|c = c̄] =
1

p
.

In the simulated argument, under the same condition, given the value z1, z2, z`,
zk, zvj , zv′j , ztj , zt′j , u←$Zp which are independent of c, we have

Pr[z1 = ρ|c = c̄] =
1

p
; Pr[z2 = ρ|c = c̄] =

1

p
;

Pr[z` = ρ|c = c̄] =
1

p
; Pr[zk = ρ|c = c̄] =

1

p
;
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Pr[zvj = ρ|c = c̄] =
1

p
; Pr[zv′j = ρ|c = c̄] =

1

p
;

Pr[ztj = ρ|c = c̄] =
1

p
; Pr[zt′j = ρ|c = c̄] =

1

p
;

Pr[̂z = ρ|c = c̄] = Pr[u+ ĉ · ω = ρ|c = c̄] =
1

p
.

Set Z = {z1, z2, {z3j , z4j }
l−1
j=0, {z5j , z6j }

l−1
j=0, z

7, z8, z9 : zi←$Zp, i ∈ [10]}. Given
c̄←$ C , for every z̄ ∈ Z ,

Pr[z = z̄|c = c̄] = Pr[z = z̄|c = c̄]. (7)

Conditioned on (7), given c̄ ∈ C , z̄ ∈ Z , following from the verification
strategy, the messages R1, R2, D1, D2, aj , a

′
j , α in π are determined where

j = 0, 1, . . . , l − 1. For {Vj , V ′j }, we have

Pr[Vj = g|c = c̄, z = z̄] = Pr[σ
vj
tj = g|c = c̄, z = z̄] =

1

p
;

Pr[V ′j = g|c = c̄, z = z̄] = Pr[σ
v′j
t′j

= g|c = c̄, z = z̄] =
1

p
;

where g←$G1, since vj , v
′
j ←$Zp.

Note that in the simulated argument, for fixed c̄ ∈ C , z̄ ∈ Z , the messages
R1,R2,D1,D2, aj , a

′
j ,α are determined according to Sim. For arbitrary g ∈

G1, j = 0, 1, . . . , l − 1,

Pr[Vj = g|c = c̄, z = z̄] = Pr[σ
vj
tj = g|c = c̄, z = z̄] =

1

p
;

Pr[V ′j = g|c = c̄, z = z̄] = Pr[σ
v′j
t′j

= g|c = c̄, z = z̄] =
1

p
;

since vj , v
′
j ←$Zp.

Set A = {a1, a2, {a3j , a4j}
l−1
j=0, a

5, a6, {a7j , a8j}
l−1
j=0, a

9 : a1, a2, a3, a4, a5, a6j , a
7
j ,

a9←$G1, a
7
j , a

8
j ←$GT }. Thus, given c̄ ∈ C , z̄ ∈ Z , for arbitrary ā ∈ A ,

Pr[a = ā|c = c̄, z = z̄] = Pr[a = ā|c = c̄, z = z̄]. (8)

Combine (7) and (8), we conclude that for any non-uniform PPT adversaries
A = (A1,A2),

Pr[(x,w)← A1(1n), (a, c, ĉ, z)← P(x,w, PP ) : (x,w) ∈ R ∧ A2(a, c, ĉ, z) = 1]

= Pr[(x,w)← A1(1n), (a, c, ĉ, z)← Sim(x) : (x,w) ∈ R ∧ A2(a, c, ĉ, z) = 1].

(Perfect) Zero-knowledge property is obtained.
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3.3 An optimized verifier.

Instead of verifying equation (4) with computing 4l pairing computations, V
can select randomly d0, d

′
0, d1, d

′
1, . . . , dl−1, d

′
l−1←$Zp, and check whether the

following equation holds:

ad00 a
d1
1 · · · a

dl−1

l−1 (a′0)d
′
0(a′1)d

′
1 · · · (a′l−1)d

′
l−1 =

e(V cd00 V cd11 · · ·V cdl−1

l−1 (V ′0)cd
′
0(V ′1)cd

′
1 · · · (V ′l−1)cd

′
l−1 , vk)·

e(V
−zt0d0
0 V

−zt1d1
1 · · ·V

−ztl−1
dl−1

l−1 (V ′0)
−zt′0d

′
0(V ′1)

−zt′1d
′
1(V ′l−1)

−zt′
l−1

d′l−1 , g2)·

g
zv0d0+zv1d1+···+zvl−1

dl−1+zv′0
d′0+zv′1

d′1+···+zv′
l−1

d′l−1

T . (9)

Equation (9) only computes 2 pairing computations, which is more efficient
than (4), but induces computational completeness property. Next we discuss
the equivalence of this two equations.

– (4) ⇒ (9): Upon substitution of all the values of {aj}l−1j=0, {a′j}
l−1
j=0 in (4),

equation (9) is obtained.
– (9)⇒ (4): Consider equation (9):

Right Side

=

l−1∏
j=0

(
e(V

cdj
j , vk) · e((V ′j )cd

′
j , vk) · e(V −zjdjj , g2) · e((V ′j )

−zt′
j
d′j , g2) · g

zvj dj

T · g
zv′
j
d′j

T

)
=

l−1∏
j=0

(
e(Vj , vk)cdj · e(V ′j , vk)cd

′
j · e(Vj , g2)−ztj dj · e(V ′j , g2)

−zt′
j
d′j · g

zvj dj

T · g
zv′
j
d′j

T

)

=

l−1∏
j=0

((
e(Vj , vk)c · e(Vj , g2)−ztj · g

zvj
T

)dj · (e(V ′j , vk)c · e(V ′j , g2)
−zt′

j · g
zv′
j

T

)d′j);

Left Side =

l−1∏
j=0

((
aj
)dj(

a′j
)d′j).

if Left Side = Right Side, two cases occur:
1. ∀j = 0, 1, . . . , l − 1, aj = e(Vj , vk)c · e(Vj , g2)−ztj · g

zvj
T , a′j = e(V ′j , vk)c ·

e(V ′j , g2)
−zt′

j · g
zv′
j

T , which implies the correctness of (4).
2. There exist some dj or d′j = 0, which can lead to aj 6= e(Vj , vk)c ·
e(Vj , g2)−ztj ·g

zvj
T or a′j 6= e(V ′j , vk)c ·e(V ′j , g2)

−zt′
j ·g

zv′
j

T for some j ∈ [0, l).
This case happens with probability

2l∑
i=1

(
Ci2l

1

pi
(1− 1

p
)2l−i

)
=1− (1− 1

p
)2l <

2l

p
≤ 2l

2n−1
;
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which is a negilible probability, since p is a prime with n bits.

Overall, with an overwhelming probability 1− 2l
2n−1 , equation (4)⇔ (9).

4 Evaluation

We evaluated our NIZK argument system on a personal computer . In order to
show the superriorty of our scheme intuitively, we also took a comparison with
prior works.

4.1 Comparison

Let us discuss our protocol and compare it with other existing solutions in both
theoretical and practical aspects. Firstly, we focus on the computational com-
plexity in theorical aspects. The system parameter PP generated once for the
proof is of the size ||G2||+210 ·(||G1||+ ||GT ||) (omited the bilinear group param-
eters), while the size of the whole proof is (2l+5)·||G1||+2l·||GT ||+(4l+6)·||Zp||.
Secondly, in the practical performance, we implement our protocol utilizing the
MIRACL Library (more precise, miracl 7.0 version), consider the plaintext space
[0, 230) and take SHA256 hash function to instantiate our NIZK argument. The
experiment is based on coding language C++ on Windows system (Windows 7,
64 bits) with an Inter(R) Core(TM) i7-4770 CPU of 3.40 GHz and 16-GB RAM.
We now give a comparison in Table 1 between our scheme and the zero-knowledge
succinct non-interactive argument of knowledge (zk-SNARK) [BSCTV13] em-
ployed by Zerocash [BCG+14]. Additionally, in the public parameter size, we
omitted the basic parameters of ECC including e, p, g1, g2, gt, h which only ac-
count for a small proportion. Designed for the cloud/verifiable computing, the
zk-SNARK protocol owns significant efficiency in the verify process and proof
size, but it does not have the according efficiency in the running time of the
prove process. On one hand, our protocol has improved a lot, e.g., the running
time of Setup (corresponding to the KeyGen phase in Pinocchio) and Proof
are improved about 35.7x and amazing 1830x respectively, to get a trade-off be-
tween the prover and verifier obtaining two fairly fast algorithms. This result also
gives us confidence on applying our scheme in the computation-limited devices
like mobile-phones. On the other hand, the size of public parameter is improved
7.8x. Although we don’t a get better result in the Verify phase and the size of a
proof, since the absolute verifier’s running time and proof size are indeed small,
it is sufficient to construct a direct and efficient NIZK argument for our DSC
scheme.

2 Parameters (κ, ι, β, δ), polynomials of the security parameters n, are components
of a circuit C : Fβ × Fγ → Fδ with κ wires and ι gates. We refer the reader to
[BSCTV13] for more information.
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zk-SNARK This Paper Improvement

Theoretical
Public Parameter

Size
(6κ+ 2β + ι+ δ + 29)||G1||

+(ι+ 9)||G2||2
210(||G1||+ ||GT ||)

+||G2||
↑

Proof Size 7||G1||+ ||G2||
(2l + 5)||G1||+

2l||GT ||+
(4l + 6)||Zp||

↓

Practical

Setup 5 min 11s 8.7s 35.7x
Proof 1 min 59s 64.97ms 1830x
Verify 5.4ms 48.96ms 0.1x

Public Parameter
Size

3.4MB 0.44MB 7.8x

Proof Size 288B 3616B 0.1x

Table 1: Comparison with Pinocchio

5 Conclusion

In this paper, We present a main contribution: a decentralized smart contract
system with balance and transaction amount hiding under the ACCOUNT archi-
tecture. To implement this mechanism enabling programmability, we put forward
a homomorphic encryption scheme with the form like Pedersen commitment and
construct a contrete NIZK scheme to prove the validity of transactions. In our
NIZK argument system, the public parameter serves as the common reference
string which is only generated once for multi proofs. With respect to the security,
we can achieve the zero-knowledge property in the standard CRS model, while
the soundness can be obtained under the RO model. We also demonstrate the
practical performence of our NIZK scheme on a personal computer. The result
gives our confidence in applying our scheme in practice.

The NIZK scheme employed a range proof. There has been a lot of research on
the range proof so far such as [Sce09,CCJT13,CC+08,CLS10,CLZ12,BBB+17]. A
future direction is to utilize a new range proof to obtain more efficiency without
lose security. In the range proof, we utilize the weak Boneh-Boyen signature
scheme. It is also a way to develop our scheme to use alternative signature
schemes in the range proof.
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Appendix: The Completeness of Our Protocol

Our Protocol has the perfect completeness property. It is trivial to check the
correctness of equation (5).

1. The correctness of equation (1):

(Ci
C̃i

)c
·
(XAi

XBi

)zi
=
(XAi

XBi

)cyi+zi
=
(XAi

XBi

)ri
= Ri

2. The correctness of equation (2):

2∏
j=0

(
h(2

10)j ·ztj
)
· Cc3 · g

z1+z2
1

=
2∏
j=0

(
h(2

10)j ·ztj
)
·
(
gy1+y21 · ht

)c
· gz1+z21

=

2∏
j=0

(
h(2

10)j ·ztj
)
· hte · gcy1+cy2+z1+z21

=h
∑2
j=0(2

10)j ·ztj · hte · gcy1+z1+cy2+z21

=h
∑2
j=0(2

10)j ·(ztj+etj) · g(cy1+z1)+(cy2+z2)
1

=h
∑2
j=0(2

10)j ·sj · gr1+r21

=

2∏
j=0

(
210)j · sj

)
· gr1+r21 = D1
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3. The correctness of equation (3):

2∏
j=0

(
h
(210)j ·zt′

j

)
·
( C̃3

C3

)c
· C̃z`1 · C̃

zk
2 · g

−z1−z2
1

=

2∏
j=0

(
h
(210)j ·zt′

j

)
·
(
C̃

1
xA1
1 · C̃

1
xA2
2 · g−y1−y21 · htA−t

)c
·

C̃
`− c

xA1
1 · C̃

k− c
xA2

2 · g−z1−z21

=h
∑2
j=0(2

10)j ·zt′
j · C̃`1 · C̃k2 · g

−r1−r2
1 = D2

4. The correctness of equation (4), for the sake of simplicity we only consider
the cae of aj :

e(Vj , vk)c · e(Vj , g2)−ztj · g
zvj
T

=e(σtj , g
λ
2 )c·vj · e(σtj , g2)−ztj ·vj · e(g1, g2)zvj

=e(σtj , g2)cvj ·λ · e(σtj , g2)(ctj−sj)·vj · e(g1, g2)qj−cvj

=e(σtj , g2)cvj ·λ+cvj ·tj−sj ·vj · e(g1, g2)qj−cvj

=e(σtj , g2)−sj ·vj · e(g1, g2)qj · e(σtj , g2)cvj ·(λ+tj) · e(g1, g2)−cvj

=aj · e(g1, g2)
1

λ+tj
·cvj ·(λ+tj) · e(g1, g2)−cvj

=aj
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