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Abstract. In this paper, we propose a post-quantum public-key en-
cryption scheme whose security depends on a problem arising from a
multivariate non-linear indeterminate equation. The security of lattice
cryptosystems, which are considered to be the most promising candidate
for a post-quantum cryptosystem, is based on the shortest vector prob-
lem or the closest vector problem in the discrete linear solution spaces
of simultaneous equations. However, several improved attacks for the
underlying problems have recently been developed by using approxima-
tion methods, which result in requiring longer key sizes. As a scheme
to avoid such attacks, we propose a public-key encryption scheme based
on the “smallest” solution problem in the non-linear solution spaces of
multivariate indeterminate equations that was developed from the alge-
braic surface cryptosystem. Since no efficient algorithm to find such a
smallest solution is currently known, we introduce a new computational
assumption under which proposed scheme is proven to be secure in the
sense of IND-CPA. Then, we perform computational experiments based
on known attack methods and evaluate that the key size of our scheme
under the linear condition. This paper is a revised version of [4].

Keywords:Public-key Cryptosystem, Post-Quantum Cryptosystem, Inde-
terminate Equation, Smallest Solution Problem
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1 Introduction

In 1994, Shor proposed quantum algorithms that can solve the factorization
problem and the discrete logarithm problem in polynomial time [43]. This im-
plies that elliptic curve cryptosystems and the RSA cryptosystem will no longer
be secure once a quantum computer is built. Due to this, the importance of
“Post-quantum cryptosystems” (PQCs) that will still be secure after the de-
velopment of quantum computers has been recognized. With the recent active
studies to develop quantum computers, NIST announced that the process of
PQC standardization will begin in the end of 2017 [36]. Possible candidates for
a PQC include lattice-based encryptions, code-based encryptions, and multivari-
ate encryptions.

First lattice-based encryption was proposed in 1997 by Ajtai and Dwork [1].
Its security depends on the unique shortest vector problem in lattices. Goldreich
et al. proposed the GGH cryptosystem, whose security is based on the closest vec-
tor problem for an integer lattice [21]. However, according to Nguyen and Stern,
these schemes are not practical since they require large size parameters for se-
curity reasons [33, 32]. Hoffstein et al. proposed the NTRU cryptosystem, whose
security depends on the shortest vector problem for polynomial ring lattices [22].
In 2009, Regev proposed an LWE cryptosystem, whose security depends on the
“learning with error” (LWE) problem [41]. Currently, NTRU, LWE, and their
variants are relatively efficient among lattice-based encryption schemes.

However, there are several efficient approximation algorithms for finding the
(nearly) shortest/closest vectors, such as the LLL [27], BKZ [42], and BKZ2.0
[12] algorithms. Recently, several improved attacks for these underlying problems
using these methods, such as lattice decoding attacks [8] and subfield lattice
attacks [25] have been developed. In order to avoid these attacks, the public-key
sizes of lattice-based cryptosystems must be enlarged. Encryption schemes with
large key sizes require a large amount of memory in applications.

Code-based encryption was first proposed in 1978 by McEliece [30]. Its secu-
rity depends on the decoding problem for random linear codes, for which only
exponential algorithms are known. However, it requires a large public-key size, of
more than 1M bits. The multivariate public-key cryptosystem (MPKC) was first
introduced in 1989 by Matsumoto and Imai [23] and was improved by Patarin
[39]. Its security depends on the problem of solving non-linear equations (called
multivariate equations) over finite fields. While the problem is NP-hard in gen-
eral, almost all proposed schemes have been broken due to the special structure
of the equations that are used as public keys. Several schemes with resistance
against known attacks on MPKC have been proposed, but they still have large
public keys [40, 45, 47].

These candidates require large public-key sizes of more than 24K bits (under
128-bit security) to avoid improved attacks that take advantage of the special
structure of the schemes. Even though many PQC candidates have been pro-
posed, none of them are efficient enough for practical use. This might be due to
their large public-key sizes and the large amount of memory that is therefore re-
quired in applications. In an effort to find a more practical PQC, Akiyama et al.
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proposed the algebraic surface cryptosystem (ASC) [3], whose security depends
on the section-finding problem (the problem of solving some kind of indetermi-
nate equation). Although they claimed that their proposed scheme necessitates
much shorter public keys than the other candidates for PQC, the scheme was
broken by Faugére et al. [16]. In this paper, we intend to improve ASC by
modifying the underlying problem to make the scheme secure while keeping the
public-key size small relative to that of other PQC candidates.

Our Contribution. This paper proposes a post-quantum public-key encryption
scheme whose security is based on the smallest solution problem for non-linear
solution spaces of indeterminate equations, to which attack algorithms based
on approximation (e.g., LLL and BKZ) cannot be applied. Our scheme was
developed from ASC, which is designed such that its security depends on the
intractability of solving some non-linear indeterminate equation [3]. ASC was
broken by the ideal decomposition attack proposed in PKC 2010 [16]. We revise
the scheme to be secure against this attack by adding a noise term to the cipher
polynomial. Our scheme is provably secure in the sense of IND-CPA under the
intermediate equation of LWE (IE-LWE) assumption, which is a new computa-
tional assumption coming from analogy to the LWE assumption. An IND-CCA2
secure scheme is obtained by using a well-known conversion technique [17].

We refer to the public key encryption scheme as theGiophantusTM encryp-
tion scheme, which comes from the Diophantine equations used as the general
term for the indeterminate equations in integers6. In addition, the Giophantus
encryption scheme has the ring homomorphic property described in Section 11.

Table 1 shows the difference between Giophantus and other post-quantum
cryptography (PQC) candidates. In the table 1, “Linearity” indicates the lin-
earity of the underlying problem. Giophantus provides public-key cryptosystem
whose security depends on the computational hardness of solving indeterminate
equations. Solving non-linear indeterminate equations is a well-known hard prob-
lem in general. In particular, it is known that there is no general solution for
equations over Z or Fq[t] and no general algorithm for solving them. Although
this encryption scheme employs indeterminate equations over Fq[t]/(t

n− 1), the
scheme itself is potentially secure since we are able to apply non-linear equations
to the scheme.

This paper is organized as follows. Section 2 gives our notation and the
section 3 introduces basic mathematical definitions. In the section 4, we re-
call the algebraic surface encryptions, which our scheme was developed from.
In section 5, we define domain parameters and propose our encryption primi-
tive. Section 6 provides the computational assumption that makes our scheme
provably secure. In the section 7, we discuss some considerable attacks against
this assumption with computational experiments and the section 8 provides ap-

6 In the paper [4], we referred to this as the IEC (Indeterminate Equation Cryp-
tosystem) encryption scheme, but “IEC” may be confused with the standard
abbreviation for the International Electrotechnical Commission, and so we adopt
“Giophantus” instead.



4

Table 1. Comparison with other PQC candidates

Cryptosystem Underlying Linearity Provably
problem secure

Code Based Decoding Problem Linear+noise Yes

Lattice Based Shortest/Closest Linear+noise Yes
Vector Problem

Multivariate Solving Multivariate Non-linear No
Equations

Giophantus Solving Indeterminate Linear/Non-linear Yes
(Present) Equation +noise

propriate parameters. The section 9 makes our primitive IND-CCA secure by
applying Fujisaki-Okamoto conversion and the section 10 shows performance of
our scheme. The section 11 shows that our IND-CPA primitive has homomorphic
properties which will be benefit to cloud computing. We summarize the results
and discuss directions for future work in Section 12.

2 Notation

The notation in this paper includes the following.
M Plaintext in the set {0, 1}k, where k is bit length of

the plaintexts. The bit length is defined in domain
parameters which is described in Section 5.1.

ℓ A small integer which is larger than 1
(m1m2 · · ·mk)ℓ ℓ-ary representation of plaintext M , particularly the

case ℓ = 2, which is binary representation.
q A prime number much larger than ℓ
Fq The prime field identified with the set {0, · · · , q− 1}
x, y, t Variables used for the cryptographic primitives and

scheme
Fq[t] Univariate polynomial ring over Fq

Rq Quotient ring Fq[t]/(t
n − 1), which is Fq[t] modulo

tn − 1, where n is an integer larger than 1
Rℓ Subset of the quotient ring Rq, which consists of all

univariate polynomials of t up to degree n− 1 whose
coefficients are within the range {0, · · · , ℓ− 1}

Z[t]/(tn − 1) Quotient ring, which is Z[t] modulo tn − 1 where n
is an integer larger than 1

n Degree of the modulus tn−1 of the quotient ring Rq

max(S) Maximum value of ordered set S. If S =
{3, 8,−3, 4, 9}, then max(S) = 9.

X(x, y) Irreducible bivariate polynomial of x and y over the
ring Rq, with X(x, y) an element of Rq[x, y]

X(x, y) = 0 Indeterminate equation over the ring Rq
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r(x, y) Random bivariate polynomial of x and y over the
ring Rq, with r(x, y) an element of Rq[x, y]

e(x, y) Noise bivariate polynomial of x and y over the ring
Rq, with e(x, y) an element of Rℓ[x, y]

m(t) Plaintext polynomial that embeds a plaintextM into
Rℓ

c(x, y) Ciphertext polynomial over the ring Rq such that
c(x, y) is an element of Rq[x, y]

(ux(t), uy(t)) Small solution of the indeterminate equation
X(x, y) = 0 over the ring Rq, where ux(t) and uy(t)
are polynomials of t in Rℓ and satisfy the relation
X(ux(t), uy(t)) = 0

aij(t) Coefficient of the monomial xiyj belonging to the
irreducible bivariate polynomialX(x, y) over the ring
Rq, such that aij(t) is an element of Rq

rij(t) Coefficient of the monomial xiyj belonging to the
random bivariate polynomial r(x, y) over the ring Rq,
such that rij(t) is an element of Rq

eij(t) Coefficient of the monomial xiyj belonging to the
noise bivariate polynomial e(x, y) over the set Rℓ,
such that eij(t) is an element of Rℓ

ΓX Support set of the irreducible polynomial X(x, y).
Each element is a pair (i, j) of the exponents of xiyj ,
which is a non-zero monomial of X(x, y) such that
ΓX = {(i, j) ∈ (N ∪ {0})2|aij(t) ̸= 0}.

#ΓX Cardinality of the support set ΓX

FΓX/Rq Set of bivariate polynomials whose support set is ΓX

over the ring Rq

Γr Support set of the random polynomial r(x, y). Each
element is a pair (i, j) of the exponents of a non-
trivial monomial xiyj .

#Γr Cardinality of the support set Γr

FΓr/Rq Set of bivariate polynomials whose support set is Γr

over the ring Rq

Γe Support set of the random polynomial e(x, y). Each
element is a pair (i, j) of the exponents of a non-
trivial monomial xiyj .

#Γe Cardinality of the support set Γe

FΓe/Rℓ Set of bivariate polynomials whose support set is Γe

over the ring Rℓ

X(ΓX , ℓ)/Rq Subset of FΓX
/Rq, consisting of all bivariate polyno-

mials with a small zero point (ux(t), uy(t)) in Rℓ

dX Total degree of irreducible bivariate polynomial
X(x, y) such that
dX = max({ i+j | X(x, y) =

∑
(i,j)∈ΓX

aij(t)x
iyj })

dr Total degree of random bivariate polynomial r(x, y)
such that
dr = max({ i+ j | r(x, y) =

∑
(i,j)∈Γr

rij(t)x
iyj })

|.| Bit length of an integer, such as |5| = 3
a||b String concatenation of a and b.
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3 Preliminaries

In this section, we introduce some basic mathematical definitions and operations
needed in this paper.

3.1 Finite fields and polynomial Rings

A field is defined as a set with operations such as addition, subtraction, multipli-
cation and division that satisfy certain rules. Typical examples of fields are the
real number field R, the rational number field Q and finite fields Fq. Finite fields
Fq are fields with q elements, where q is a positive integer, called the order. It
is well known that the order is a prime p or a prime power pk. A prime field is
defined as a finite field whose order is prime. In this paper, we focus on the case
of prime fields written as sets:

Fq = {0, 1, · · · , q − 1} .

Its operations are described using the modulus of q as follows:

a+ b = a+ b mod q,
a− b = a− b mod q,
a · b = a · b mod q,
a/b = a · b−1 mod q,

(1)

where b−1 satisfies the condition b · b−1 = 1 mod q.

Example 1. The prime field F5 = {0, 1, 2, 3, 4} can be equipped with operations
modulo 5, such as

1 + 2 = 3, 2 + 4 = 1, 3− 1 = 2, 2− 3 = 4,

2 · 2 = 4, 2 · 3 = 1, 2/3 = 2 · 3−1 = 2 · 2 = 4.

Let R be a ring. A univariate polynomial ring is a set defined as

R[t] = {c0 + c1t+ · · ·+ cnt
n | ci ∈ R (0 ≤ i ≤ n) n ∈ N}, (2)

where t is a variable and ci is the coefficient of the monomial cit
i. Univariate

polynomials f(t) and g(t) can be described as

f(t) = a0 + a1t+ · · ·+ ant
n,

g(t) = b0 + b1t+ · · ·+ bnt
n ,

(3)

where ai and bi are elements of R. We note that neither an = 0 nor bn = 0 is
assumed in the expression of (3) above.

R[t] is a ring since addition and multiplication are defined as follows:

f + g = a0 + b0 + (a1 + b1)t+ · · ·+ (an + bn)t
n,

f · g = a0 · b0 + (a1 · b0 + a0 · b1)t+ · · ·+ (an · bn)t2n .
(4)
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Though an inverse of addition can be defined as

−f = −a0 − a1t− · · · − ant
n ,

an inverse of multiplication can be defined if and only if f(t) is a non-zero
constant, such as f(t) = a0.

Example 2. Let us consider a univariate polynomial in F5[t] and set f(t) =
2+ 3t+4t2 and g(t) = 4+ t+3t2. Then, f(t) + g(t) = 1+ 4t+2t2, f(t) · g(t) =
2t4 + 3t3 + 4t+ 3, and −f(t) = 3 + 2t+ t2.

F5[t] = {c0 + c1t+ · · ·+ cnt
n | ci ∈ F5 (0 ≤ i ≤ n) n ∈ N} . (5)

If a polynomial is written in f(t) =
∑n

i=0 cit
i such that the coefficient cn ̸= 0

then we define n to be the degree of f . Thus, the degree of f is the maximum
integer n such that cn ̸= 0. We denote this by deg f = n. In the example of f(t)
and g(t) above,

deg(f) = deg(g) = 2, deg(f(t) · g(t)) = 4 .

A bivariate polynomial ring is a set defined as

R[x, y] = {cn0xn + c(n−1)1x
n−1y + · · ·+ c0ny

n + · · ·+ c10x+ c01y + c00
| cij ∈ R (0 ≤ i, j ≤ n) n ∈ N}, (6)

where x and y are variables and cij are coefficients of the monomial cijx
iyj .

Set f(x, y) and g(x, y) as follows:

f(x, y) =
∑n

i=j=1 aijx
iyj

= an0x
n + a(n−1)1x

n−1y + · · ·+ a0ny
n + · · ·+ a10x+ a01y + a00,

g(x, y) =
∑n

i=j=1 bijx
iyj

= bn0x
n + b(n−1)1x

n−1y + · · ·+ b0ny
n + · · ·+ b10x+ b01y + b00 ,

(7)

where aij and bij are elements of R. Then we define addition and multiplication
as follows:

f + g =
∑n

i=j=0(aij + bij)x
iyj

= (an0 + bn0)x
n + (a(n−1)1 + b(n−1)1)x

n−1y + · · ·+ (a10 + b10)x
+(a01 + b01)y + a00 + b00,

f · g =
∑n

i1+j1=i2+j2=0(ai1j1bi2j2)x
iyj

= (an0bn0)x
2n + (an0b(n−1)1 + a(n−1)1bn0)x

2n−1y + · · ·
+(a01b00 + a00b01)y + a00b00.

(8)

An inverse of addition can be defined as

−f = −an0xn − a(n−1)1x
n−1y − · · · − a0ny

n − · · · − a10x− a01y − a00 .

However, an inverse of multiplication does not exist in general.
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Example 3. In the case of F5[x, y], set

f(x, y) = 2x2 + 3xy + y2 + 3x+ 3y + 4,
g(x, y) = x2 + 2xy + 3y2 + x+ 3y + 3 ,

(9)

and then f(x, y) + g(x, y) = 3x2 + 4y2 + 4x+ y + 2,

f(x, y) · g(x, y) = 2x4 + 2x3y + 3x2y2 + xy3 + 3 y4 + 3x2y + 2 y3 + 3x2

+4xy + 4 y2 + 3x+ y + 2

and −f(x, y) = 3x2 + 2xy + 4y2 + 2x+ 2y + 1.

Setting the bivariate polynomial f(x, y) =
∑n

i=j=0 cijx
iyj , the total degree

of f , denoted deg f , can be defined as

deg f := max({i+ j|cij ̸= 0}) .

We can determine the degrees for f(x, y) and g(x, y), described above, as follows.

deg(f(x, y)) = deg(g(x, y)) = 2, deg(f(x, y) · g(x, y)) = 4 .

3.2 The quotient ring Rq

The ring Rq is defined as the quotient ring of Fq[t] modulo tn − 1. Elements of
Rq are polynomials over Fq with degree at most n− 1 (since tn is equivalent to
1).

We can represent a ∈ Rq as a vector (a0, a1, · · · , an−2, an−1) representing

a = a0 + a1t+ · · ·+ an−2t
n−2 + an−1t

n−1

on Fq. When elements b, c ∈ Rq are represented in the same manner as a, we
can express ab+ c as

(
b0 b1 · · · bn−2 bn−1

)


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

an−2 an−1 · · · an−4 an−3

...
...

...
...

...
a1 an−1 · · · an−1 a0

 +
(
c0 c1 · · · cn−2 cn−1

)
(10)

on Fq.

Using this expression, the relation ab+ c = d can be described as

bA+ c = d ,

where vectors b and c correspond to b and c, respectively, and A is a matrix
corresponding to a. The vector d corresponds to the result of ab+ c.
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3.3 Monomial order

To describe a detailed specification of the proposal, we need to introduce the
monomial order of polynomials, which defines the order of calculation. First,
we define an exponent vector α = (i, j) ∈ Z2

≥0 of monomial xiyj , and then we

denote a monomial xiyj as xα.

Example 4. The exponent vectors of monomials 3x2y3 and 4x3 in Fq[x, y] are
(2, 3) and (3, 0) respectively.

We define the monomial ordering xα > xβ as follows.

Definition 1. A monomial ordering on bivariate polynomial ring Fq[x, y] is any
relation > on the set of monomials in Fq[x, y] or Z2

≥0 satisfying:

1. > is a total ordering such that any pair of monomials α and β satisfies
exactly one of the relations α < β, α = β, and α > β.

2. > is compatible with multiplication in Fq[x, y]. If α > β and there is some
γ ∈ Z2

≥0 then α+ γ > β + γ since the relation xαxγ > xβxγ is satisfied.
3. > induces a well ordering, such that there is a minimum element in any

non-empty subset of Z2
≥0 or monomial set.

Lexicographic ordering is an example of monomial ordering satisfying these
rules. It is defined as follows.

Definition 2. For any α = (α1, α2) ∈ Z2
≥0 and β = (β1, β2) ∈ Z2

≥0, the rela-
tion α >lex β (resp., α <lex β) holds when the leftmost non-zero entry of the
difference of the exponent vectors α − β is positive (resp., negative). We write
xα >lex xβ if α >lex β and analogously for <lex.

For example, (2, 1) >lex (1, 2) since the difference of the exponent vectors
α − β = (1,−1). Similarly, (2, 1) <lex (2, 2) since α − β = (0,−1), and the
leftmost non-zero entry is negative.

In this paper, we employ the graded lexicographic order, which is defined as
follows.

Definition 3. Let xα and xβ be monomials in Fq[x, y]. We define xα <grlex xβ

if α1 +α2 > β1 + β2, or if α1 +α2 = β1 + β2 and in the difference vector α− β,
the leftmost non-zero entry is positive.

For example, we have (0, 2) >grlex (1, 0) since α1 +α2 = 2 > 1 = β1 + β2. In
the case of (1, 1) >grlex (0, 2), we have α1+α2 = 2 = β1+β2 and α−β = (1,−1),
the leftmost non-zero entry is positive.

4 Design concept

4.1 Algebraic Surface Cryptosystem

The ASC was first announced in 2006 by K. Akiyama and Y. Goto [2]. The
algebraic surfaces are defined as a solution space of a three-variable polynomial
equation X(x, y, t) = 0 over a field K. The security of ASC depends on the
section-finding problem, defined as follows.
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Definition 4. (Section-finding problem) If X(x, y, t) = 0 is an algebraic surface
over a field K, then the problem of finding a parameterized curve
(x, y, t) = (ux(t), uy(t), t) on X is called the section-finding problem on X.

A section can be considered as a solution of X(x, y) = 0, which is an inde-
terminate equation over the ring K[t].

The problem of solving indeterminate equations over an arbitrary ring or
field is known to be hard. For example, the class of indeterminate equations over
the integer ring Z, called Diophantine equations, is undecidable (Hilbert’s 10th
problem). Being “undecidable” means that there is no general algorithm to solve
such indeterminate equations. The section-finding problem has been proven to
be undecidable [14].

We recall the method of algebraic surface encryption to see the conceptual
design for the scheme described in this paper. First, the simplest ASC can be
described as

c(x, y) = m(x, y) +X(x, y)r(x, y),

where X(x, y) is the public key, which defines an algebraic surface with a section.
The polynomials c(x, y) and r(x, y) are a ciphertext polynomial and a random
polynomial, respectively. The polynomial m(x, y) is a plaintext polynomial in
which a plaintext message is embedded. In the decryption phase, we substitute
the secret key (a section ofX(x, y)) into c(x, y). By the relationX(ux(t), uy(t)) =
0, we obtain

c(ux(t), uy(t)) = m(ux(t), uy(t)).

From the polynomial m(ux(t), uy(t)), we can recover the plaintext message as
follows. We can describe m(x, y) as

m(x, y) =
∑

(i,j,k)∈Γm

mijkx
iyjtk,

where each mijk is a variable, and substitute the section into m(x, y). We thus
obtain

m(ux(t), uy(t)) =
∑

(i,j,k)∈Γm

mijkux(t)
iuy(t)

jtk.

Comparing the coefficient of t, the simultaneous linear equations containing mijk

are constructed. When the number of variables is less than or equal to the
number of equations, we can detect the correct plaintext message by solving the
equations.

However, there exists an attack to break the scheme. We can expand the
cipher polynomial c(x, y) to

c(x, y) =
∑

(i,j,k)∈Γm

mijkx
iyjtk +

 ∑
(i,j,k)∈ΓX

aijkx
iyjtk

 ∑
(i,j,k)∈Γr

rijkx
iyjtk

 ,

(11)
where Γm,ΓX , and Γr are given as parameters, and the values aijk are the given
coefficients of the public key X. Each mijk and rijk is a variable. Comparing
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the coefficients of the monomials, we obtain the simultaneous linear equations
having the variables mijk and rijk. For decryption, the relation

#Γm +#Γr < #ΓXr

is required. However, in this case, the equations have unique solution with high
probability. We refer to this type of attack as the Linear Algebra attack.

To avoid the attack, K. Akiyama, Y. Goto and H. Miyake constructed the lat-
est ASC scheme in 2009 [3]. From the cryptographic point of view, the ciphertext
is equivalent to

c(x, y) = m(x, y)s(x, y) +X(x, y)r(x, y). (12)

Here, s(x, y) is employed as another random polynomial and the term product
m(x, y)s(x, y) equals X(x, y)r(x, y) (with Γms = ΓXr). To decrypt the cipher-
text, we have to divide m(ux(t), uy(t))s(ux(t), uy(t)) into m(ux(t), uy(t)) and
s(ux(t), uy(t)) by factoring. Since polynomial factoring is computationally easy
via the Berlekamp method, we can obtain m(ux(t), uy(t)) as a factor. The plain-
text is then recovered from m(ux(t), uy(t)) in the same way as in the previous
scheme.

Applying the Linear Algebra attack to this scheme, we need to consider
m(x, y)s(x, y) as a single polynomial g(x, y), since quadratic equations are de-
rived from the variables mijk and sijk. Therefore, the number of variables,
#Γr +#ΓXr, is greater than the number of equations, #ΓXr, and so the Linear
Algebra attack does not work.

Unfortunately, this scheme was also broken by the ideal decomposition
attack, which was described by Faugere et al. [16]. They found that the ideal
(c(x, y), X(x, y)) can be decomposed into (m(x, y), X(x, y)) and (s(x, y), X(x, y))
by calculating the resultant Resx(c(x, y), X(x, y)) and Resy(c(x, y), X(x, y)).
The plaintext message m(x, y) is then recovered by solving the linear equations.

The proposed primitive avoids both attacks. Our idea is to apply for the
ℓ-polynomial structure employed in NTRU encryption. The ciphertext is

c(x, y) = m(x, y) +X(x, y)r(x, y) + ℓ · e(x, y),

where e(x, y) is a random polynomial whose coefficients are small. The polyno-
mial e(x, y) works as a noise factor in the cipher, and we claim the condition

#Γe = #ΓXr

for resistance against the Linear Algebra attack. Needing the smallest solution
of X(x, y) to decrypt the message ensures this.

5 Our Proposed Encryption Scheme

This section provides an overview of the proposed encryption scheme.
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5.1 Domain parameters

We introduce parameters for the proposed scheme to be input to the key gener-
ation algorithm. Appropriate parameter settings are discussed in Section 8.

– ℓ: A small integer which is larger than 1.
– q: A prime which is cardinality of prime field Fq and is much larger than

ℓ.
– n: Degree of the modulus polynomial of the quotient ring Rq(= Fq[t]/(t

n−
1)). The n should be prime for the security reason.

– dX: Total degree of the irreducible bivariate polynomial X(x, y)
– dr: Total degree of the random bivariate polynomial r(x, y)
– mlen Length of the message M

The relation between ℓ and q is a critical condition for decryption. We require
the condition

q > ℓ− 1 + ℓ
dX+dr∑
k=0

(k + 1)nk(ℓ− 1)k+1 (13)

to decrypt any ciphertext encrypted by the proposed encryption primitive.
The support set of the irreducible polynomial X(x, y) with total degree dX

is defined such that

ΓX = {(i, j) ∈ (N ∪ {0})2 | 0 ≤ i, j, i+ j ≤ dX}

with graded lexicographic order. If dX is equal to 2, then

ΓX = {(2, 0), (1, 1), (0, 2), (1, 0), (0, 1), (0, 0)} ,

whose elements correspond to the monomials x2,xy,y2,x,y, and 1, in that order,
and the monomial order is called the graded lexicographic order.

The support set of the random polynomial r(x, y) with total degree dr is also
defined such that

Γr = {(i, j) ∈ (N ∪ {0})2 | 0 ≤ i, j, i+ j ≤ dr}

with graded lexicographic order. Since the total degree of the noise polynomial
e(x, y) is defined to be dX + dr, the Support set of the noise polynomial e(x, y)
is

Γe = {(i, j) ∈ (N ∪ {0})2 | 0 ≤ i, j, i+ j ≤ dX + dr}

with graded lexicographic order. If dX = dr = 2, then

Γe = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4), (3, 0), (2, 1), (1, 2), (0, 3), (2, 0),
(1, 1), (0, 2), (1, 0), (0, 1), (0, 0)} ,

whose elements correspond to the monomials x4,x3y,x2y2,xy3,y4,x2y,xy2,y3,x2,
xy,y2,x,y, and 1, in that order.
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5.2 Key Generation

The secret key is a small (not necessarily smallest) solution of the indeterminate
equation X(x, y) = 0:

(x, y) = (ux(t), uy(t)), ux(t), uy(t) ∈ Rℓ, (14)

where deg ux(t) = deg uy(t) = n−1. Note that ℓ is much smaller than q, and thus
we call (ux(t), uy(t)) a small solution. The public key is the indeterminate equa-
tion X(x, y) = 0, which is irreducible and has the small solution (ux(t), uy(t)):

X(x, y) =
∑

(i,j)∈ΓX

aij(t)x
iyj , (15)

where aij(t) ∈ Rq.
The key generation algorithm takes the parameters ℓ,q,n,dX, and dr as pa-

rameters, and is defined in Section 5.1. The secret key is generated as degree n−1
random polynomials ux(t), uy(t)(∈ Rℓ). The indeterminate equation X(x, y) = 0
is constructed according to the following procedure.

1. Generate a degree dX support set ΓX with graded lexicographic order.
2. Choose a coefficient of each monomial (except the constant term) as follows.

(a) Set X(x, y) = 0
(b) For each element (i, j) in ΓX − {(0, 0)}

i. Choose a coefficient aij(t) whose degree is n−1, uniformly at random
from the set Rq

ii. Set X(x, y) = X(x, y) + aij(t)x
iyj

3. Calculate the constant term a00(t) as
a00(t) = −

∑
(i,j)∈ΓX−{(0,0)} aij(t)ux(t)

iuy(t)
j(∈ Rq)

4. Confirm the polynomial X(x, y) is irreducible; if not, return to step 2a.

5.3 Encryption

1. Embed a plaintextM into the coefficients of the plaintext polynomialm(t)(∈
Rℓ) whose degree is n − 1. As an example, in the case of ℓ = 4, n = 3, a
plaintext M = (312)4 can be embedded such as m(t) = 3t2 + t+ 2.

2. Generate a support set Γr of degree dr with graded lexicographic order
3. Create a random polynomial r(x, y) as follows:

(a) Set r = 0
(b) For each (i, j) in Γr

i. Choose a coefficient rij(t) uniformly at random from the set Rq

ii. Set r(x, y) = r(x, y) + rij(t)x
iyj

4. Generate a support set Γe of degree dX+dr with graded lexicographic order
5. Create a noise polynomial e(x, y) as follows:

(a) Set e(x, y) = 0
(b) For each (i, j) in Γe

i. Choose a coefficient eij(t) uniformly at random from the set Rℓ

ii. Set e(x, y) = e(x, y) + eij(t)x
iyj

6. Construct the cipher polynomial c(x, y) as

c(x, y) = m(t) +X(x, y)r(x, y) + ℓ · e(x, y) (16)
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5.4 Decryption

1. Substitute the secret key that is a small solution (ux(t), uy(t)) over Rq of
X(x, y) = 0 into c(x, y):

c(ux(t), uy(t)) = m(t) + ℓ · e(ux(t), uy(t)) (17)

When the parameters ℓ and q satisfy the relation described above (13), each
coefficient of m(t) + ℓ · e(ux(t), uy(t)) ∈ Z/(tn − 1) is within the range from
0 to q − 1. Theorem 1 gives a proof of this fact.

2. Extract m(t) from c(ux(t), uy(t)) as

c(ux(t), uy(t)) (mod ℓ) = m(t),

where we consider c(ux(t), uy(t)) as an element of Z[t]
3. Recover the plaintext M from the coefficients of m(t).

Theorem 1. Let a ciphertext polynomial c(x, y)(∈ Rq[x, y]) encrypt a plain-
text polynomial m(t)(∈ Rℓ) with a public key X(x, y) and public parameters
(n, ℓ, q, dX, dr), applying the encryption algorithm in the section 5.3. The plain-
text polynomial m(t) can be recovered from the ciphertext c(x, y) with a corre-
sponding secret key (ux(t), uy(t)) and public parameters (n, ℓ, q, dX) by applying
the decryption algorithm in the section 5.4.

Proof. Since a secret key (ux(t), uy(t)) is a solution of the equation X(x, y) = 0,
we obtain

c(ux(t), uy(t)) = m(t) + ℓ · e(ux(t), uy(t)) (mod ℓ) ,

where the calculation is in the ring Rq[x, y].
Takem(t)+ℓ·e(ux(t), uy(t)) of Rq as a univariate polynomial over the integers

Z, where the coefficients are integers within the range 0 to q−1. Now we denote
by MC(f(t)) the maximum coefficient of a univariate polynomial f(t) over the
integer Z. If the condition

MC(m(t) + ℓ · e(ux(t), uy(t))) < q (18)

is satisfied in the univariate polynomial ring Z[t] for any possible m(t), e(x, y),
(ux(t), uy(t)), ℓ, then the conclusion

m(t) + ℓ · e(ux(t), uy(t)) (mod ℓ) = m(t)

follows. Here, m(t) is an element of Rℓ whose coefficients are restricted to the
range 0 to ℓ− 1.

To see the relation (18), we assume the coefficients of the polynomials ux(t), uy(t)
are maximum, such as

ux(t) = uy(t) = (ℓ− 1)(tn−1 + tn−2 + · · ·+ t+ 1) .
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We can see (tn−1 + tn−2 + · · ·+ t+1)k = nk−1(tn−1 + tn−2 + · · ·+ t+1) for any
positive integer k since the multiples have to be reduced by tn − 1. Then

ux(t)
k = uy(t)

k = (ℓ− 1)k · nk−1(tn−1 + tn−2 + · · ·+ t+ 1) ,

The support set Γe is

Γe = {(i, j) ∈ (N ∪ {0})2|0 ≤ i, j, i+ j ≤ dX + dr} .

Since there are 2Hk degree-k elements in Γe, the value of MC(e(ux(t), uy(t)) is
as follows:

MC(e(ux(t), u(t)) = MC(
∑

(i,j)∈Γe
eij(t)ux(t)

iuy(t)
j)

≤MC(
∑

(i,j)∈Γe
(ℓ− 1)(tn−1 + tn−2 + · · ·+ t+ 1)ux(t)

iuy(t)
j)

= (ℓ− 1)
∑dX+dr

k=0 2Hkn
k (̇ℓ− 1)k

=
∑dX+dr

k=0 k+1Ckn
k (̇ℓ− 1)k+1

=
∑dX+dr

k=0 (k + 1)nk (̇ℓ− 1)k+1.

So, we obtain the relation

MC(m(t) + ℓ · e(ux(t), u(t)) ≤ ℓ− 1 + ℓ
dX+dr∑
k=0

(k + 1)nk (̇ℓ− 1)k+1.

The condition (18) is always satisfied since q > ℓ − 1 + ℓ
∑dX+dr

k=0 (k + 1)nk (̇ℓ −
1)k+1.

6 Security assumption and proof for primitives
(IND-CPA)

In this section, we introduce a computational assumption and discuss some pos-
sible attacks under this assumption, based on the attacks for ASCs.

6.1 The smallest-solution problem

Let us express the solution u = (ux(t), uy(t)) (∈ (Zq[t]/(t
n− 1))2) of an indeter-

minate equation as

ux(t) =

n−1∑
i=0

αit
i, uy(t) =

n−1∑
i=0

βit
i.

The norm of the solution is defined as follows.

Norm(u) = max({αi, βi ∈ Z+
q | 0 ≤ i ≤ n− 1})

The security of our system depends on the smallest-solution problem, defined as
follows.
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Definition 5. (Smallest-solution Problem) If X(x, y) = 0 is an indeterminate
equation over the ring Zq[t]/(t

n − 1), then the problem of finding the solution
(x, y) = (ux(t), uy(t)) on Zq[t]/(t

n − 1) with the smallest norm is called the
smallest-solution problem on X.

Approximate lattice reduction algorithms cannot be directly applied to solv-
ing the problem because the solution space is non-linear.

6.2 Security assumption

Polynomials over Zq whose coefficients are in the range 0 to p−1 are called size-ℓ
polynomials. If a polynomial is size ℓ, this means that its coefficients are much
smaller than those of an ordinary polynomial, since ℓ is much smaller than q.
We define the set of polynomials that have zero points in size ℓ as follows:

X(ΓX , ℓ)/Rq = {X ∈ FΓX
/Rq | ∃ux(t), uy(t) ∈ Rℓ X(ux(t), uy(t)) = 0}.

Given sets of polynomials, such as X(ΓX , ℓ)/Rq, FΓr/Rq, and FΓXr/Rℓ, that
satisfy the condition

(0, 0) ∈ ΓX , (0, 0) ∈ Γr,

we define the decision problem as follows.

Definition 6. (IE-LWE problem) Writing the sets UX and TX as

UX = X(ΓX , ℓ)/Rq × FΓXr
/Rq, (19)

TX = {(X,Xr + e)|X ∈ X(ΓX , ℓ)/Rq, r ∈ FΓr/Rq, e ∈ FΓXr/Rℓ}, (20)

the IE-LWE problem is to distinguish the multivariate polynomials chosen from
a “noisy” set TX of polynomials or from a set UX − TX , where TX is a subset
of UX .

We define the IE-LWE assumption.

Definition 7. (IE-LWE assumption) The IE-LWE assumption is the assump-
tion that the advantage

AdvIE-LWE
B (k) :=∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

B(ℓ, q, n, Γr, ΓX , X, Y )→ 1

∣∣∣∣∣∣∣
(ℓ, q, n, ΓX , Γr, X)

R← GenG(1k);

r
U← FΓr/Rq; e

U← FΓXr/Rℓ;
Y := Xr + e


−Pr

B(ℓ, q, n, Γr, ΓX , X, Y )→ 1

∣∣∣∣∣∣∣
(ℓ, q, n, ΓX , Γr, X)

R← GenG(1k);

Y
U← FΓXr/Rq



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(21)

is negligible, where the function GenG(1k) outputs the domain parameters (i.e.,
ℓ,q,n,ΓX , and Γr) from the security parameter k and creates X from these do-
main parameters by the key generation algorithm in the section 5.2. In other
words,

AdvIE-LWE
B (k) < ϵ(k),
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where ϵ(k) is a negligible function in the security parameter k.

IE-LWE is an extended variation of R-LWE×
HNF, which is one of the variants

of R-LWE defined by the polynomial ring Rq. This is claimed by a provably se-
cure NTRU modification [44] and can be reduced to the shortest-vector problem
of the lattice derived from Rq. In this paper, we extend R-LWE×

HNF to the mul-
tivariate polynomial ring Rq[x, y] so that the dimension of the lattice is larger
than that of the lattice derived from Rq.

Theorem 2. Under the IE-LWE assumption, the Giophantus encryption scheme
Σ = (Gen,Enc,Dec) is secure in the sense of IND-CPA. Specifically, if there
is an adversary that runs in polynomial time and breaks the Giophantus en-
cryption scheme Σ in the sense of IND-CPA, then there exists an algorithm B
that solves the IE-LWE problem in probabilistic polynomial time. Moreover, the
following relation holds:

AdvIND-CPA
Σ,A (k) = 2 ·AdvIE-LWE

B (k).

Proof. Assume that Σ is not secure in the sense of IND-CPA. Then, there exists
an adversary A who breaks Σ in polynomial time with non-negligible advantage

AdvIND-CPA
Σ,A (k) ≥ ϵ(k),

where k is a security parameter. By using A, we construct an algorithmB solving
the IE-LWE problem in probabilistic polynomial time as follows. Without loss
of generality, we assume B outputs 1 when it decides that the input is sampled
from TX , and otherwise outputs 0.

Assume an oracle O that picks set S ←↩ U({TX , UX − TX}) and samples
from the set of S uniformly at random. Algorithm B first calls O to get a
sample (X

′
(x, y), C

′
(x, y)) from S. Then, the algorithm runs A with the public

key X(x, y)(= ℓX
′
(x, y) ∈ X(ΓX , ℓ)/Rq). Here, X(x, y) is chosen uniformly at

random from X(ΓX , ℓ)/Rq since the map X ′(x, y) → ℓX
′
(x, y) is invertible due

to the invertibility of ℓ modulo q.

When A outputs challenge messages m0(t),m1(t) ∈ Rℓ, the algorithm B
picks b either 0 or 1 uniformly at random, computes the challenge ciphertext
c(x, y) = ℓ ·C ′

(x, y)+mb(t) ∈ FΓe/Rq, and returns c(x, y) to A. Finally, when A

outputs its guess b
′
for b, the algorithm B outputs 1 if b

′
= b and 0 otherwise.

Here, c(x, y) is calculated as follows.

c(x, y) = ℓ · C
′
(x, y) +mb(t) = mb(t) +X(x, y)r(x, y) + ℓ · e(x, y).

If the sample (X
′
(x, y), C

′
(x, y)) is from TX , then it is impossible to distin-

guish c(x, y) from an element chosen from the ciphertext space uniformly at
randombecause r(x, y), and e(x, y) are chosen from FΓr/Rq and FΓe/Rℓ, respec-

tively, uniformly randomly. If the algorithm A outputs b
′
= b with non-negligible

advantage AdvIND-CPA
Σ,A (k), then we can calculate AdvIND-CPA

Σ,A (k) as follows.
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AdvIND-CPA
Σ,A (k)

= |Pr[b = b
′ |(X ′

(x, y), C
′
(x, y))

U← TX ]− Pr[b ̸= b
′ |(X ′

(x, y), C
′
(x, y))

U← TX ]|
= |Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]

−Pr[B(X
′
(x, y), C

′
(x, y))→ 0|(X ′

(x, y), C
′
(x, y))

U← TX ]|
= |Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]

−(1− Pr[B(X
′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ])|
= |2Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]− 1|
= 2|Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]− 1/2|.
(22)

If the sample is picked from the set UX − TX , then the map

C
′
(x, y) 7→ mb(t) + ℓ · C

′
(x, y)(= c(x, y))(∈ FΓe/Rq)

is invertible, since

c(x, y) 7→ ℓ−1(c(x, y)−mb(t))(∈ FΓe/Rq).

Then, c(x, y) is uniformly randomly in FΓe/Rq, and independent of b. It follows
that B outputs 1 with probability 1/2.

We are able to compute AdvIE-LWE
B (k) as follows.

AdvIE-LWE
B (k) = |Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]

−Pr[B(X
′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← UX − TX ]|
= |Pr[B(X

′
(x, y), C

′
(x, y))→ 1|(X ′

(x, y), C
′
(x, y))

U← TX ]− 1/2|
Comparing the equation (22), we have

AdvIND-CPA
Σ,A (k) = 2 ·AdvIE-LWE

B (k).

This is a contradiction to the assumption, since a polynomial time algorithm B
satisfying AdvIE-LWE

B (k) ≥ ϵ(k)/2 can be constructed. We conclude the desired
claim.

In addition, one can make the Giophantus encryption scheme IND-CCA2
secure by using well-known conversions, such as those in [17]. However, the
converted scheme is no longer homomorphic.

7 Security analysis

In this section, we introduce two possible attacks for the IE-LWE assumption.
However, other attacks against ASC, which this scheme was developed from,
cannot be applied to this problem. For example, the ideal decomposition attack
described in section 4.1 does not work on our scheme because our scheme does
not have a product structure such as m(x, y)s(x, y) in (12).

From this section, we assume degX(x, y) = deg r(x, y) = 1 and ℓ = 4.
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7.1 The Linear Algebra attack

For a given pair of polynomials (X(x, y), Y (x, y)), we can determine that
(X(x, y), Y (x, y)) is sampled from TX if we find r ∈ FΓr/Rq and e ∈ FΓXr/Rℓ

such that Y (x, y) = X(x, y)r(x, y) + e(x, y).
The IE-LWE searching problem, which finds polynomials r(x, y) and e(x, y)

of this type, can be solved by using the Linear Algebra attack (see Section 4.1) as
follows. We construct a system of linear equations by comparing the coefficients
of xiyj in the relation

∑
(i,j)∈Γe

dij(t)x
iyj =

 ∑
(i,j)∈ΓX

aij(t)x
iyj

 ∑
(i,j)∈Γr

rij(t)x
iyj

+

 ∑
(i,j)∈Γe

eij(t)x
iyj

 ,

(23)
where rij(t) and eij(t) are elements of Rq and Rℓ, respectively.

In the case degX = deg r = 1, we can express X,r,e, and Y in the following
manner.

X(x, y) = a10(t)x+ a01(t)y + a00(t),
r(x, y) = r10(t)x+ r01(t)y + r00(t),
e(x, y) = e20(t)x

2 + e11(t)xy + e02(t)y
2 + e10(t)x+ e01(t)y + e00(t),

Y (x, y) = d20(t)x
2 + d11(t)xy + d02(t)y

2 + d10(t)x+ d01(t)y + e00(t).

(24)

In this section, we employ a small example (25),

X(x, y) = (818 + 1072t)x+ (301 + 264t)y + (371 + 916t),
(ux, uy) = (1 + 3t, 3 + 2t),
r(x, y) = (1234 + 83t)x+ (188 + 675t)y + (853 + 1285t),
e(x, y) = 3x2 + (2 + t)xy + 3ty2 + (1 + 2t)x+ 2y + (2 + t),

(25)

to clarify the attack procedure. Here, n = 2, ℓ = 4, q = 1459, and a small solution
(ux, uy) satisfies X(ux(t), uy(t)) = 0. Then, Y (x, y)(= X(x, y)r(x, y) + e(x, y))
is

Y (x, y) = (1223 + 315t)x2 + (1402 + 1442t)xy + (1348 + 403t)y2 + (425 + 48t)x
+(123 + 179t)y + (968 + 426t).

When this example (X,Y ) is given by the IE-LWE oracle, we can establish
simultaneous linear equations (26) by comparing coefficients from both sides of
the equation Y (x, y) = X(x, y)r(x, y) + e(x, y), where r(x, y) and e(x, y) are
unknown.

a10(t)r10(t) + e20(t) = d20(t),
a10(t)r01(t) + a01(t)r10(t) + e11(t) = d11(t),
a01(t)r01(t) + e02(t) = d02(t),
a10(t)r00(t) + a00(t)r10(t) + e10(t) = d10(t),
a01(t)r00(t) + a00(t)r01(t) + e01(t) = d01(t),
a00(t)r00(t) + e00(t) = d00(t).

(26)
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In the case of example (25), we can write rij(t) = rij0+ rij1t, where rij0 and
rij1 are variables valued at {0, · · · q−1} in Fq, and also write eij(t) = eij0+eij1t,
where eij0 and eij1 are variables valued at {0, · · · ℓ− 1} in Fq.

By using the example (25) and considering (X,Y ), we can specify the equa-
tion (26) as follows.

(818 + 1072t)(r100 + r101t) + e200 + e201t = 1223 + 315t,
(818 + 1072t)(r010 + r011t) + (301 + 264t)(r100 + r101t) + e110 + e111t = 1402 + 1442t,
(301 + 264t)(r010 + r011t) + e020 + e021t = 1348 + 403t,
(818 + 1072t)(r000 + r001t) + (371 + 916t)(r100 + r101t) + e100 + e101t = 425 + 48t,
(301 + 264t)(r000 + r001t) + (371 + 916t)(r010 + r011t) + e010 + e011t = 123 + 179t,
(371 + 916t)(r000 + r001t) + e000 + e001t = 968 + 426t.

(27)
The system has the solution space with dimension at least 6 since there are

18 variables and 12 equations. In the case of degX(x, y) = deg r(x, y) = 1, a
linear system obtained by this attack has the solution space with dimension at
least 3n since the system has 9n variables and 6n equations.

If we can find a solution such that the values eij(t) are in Rℓ, then we conclude
that (X(x, y), Y (x, y)) is in TX . We can find them exactly by an exhaustive
search for the polynomial e(x, y), but this attack can be avoided by increasing
#Γe = 6n to

((ℓ− 1)ℓn−1)6n > 2k,

where k is a security parameter.
We employ a lattice-reduction attack to find a suitable small eij . Any element

a ∈ Rq can be written as a vector (a0, a1, · · · , an−2, an−1) for

a = a0 + a1t+ · · ·+ an−2t
n−2 + an−1t

n−1

on Fq. When elements b, c ∈ Rq are written in the same manner as a, we can
describe ab+ c as

(
b0 b1 · · · bn−2 bn−1

)


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

an−2 an−1 · · · an−4 an−3

...
...

...
...

...
a1 an−1 · · · an−1 a0

 +
(
c0 c1 · · · cn−2 cn−1

)
(28)

on Fq.
Using this expression, the first equation of (26) is described as

r10A10 + e20 = d20, (29)

where A10 is expressed as

A10 =


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

an−2 an−1 · · · an−4 an−3

...
...

...
...

...
a1 a2 · · · an−1 a0,
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and r10,e20, and d20 are denoted by

r10 =
(
r100 r101 · · · r10n−2 r10n−1

)
,

e20 =
(
e200 e201 · · · e20n−2 e20n−1

)
,

d20 =
(
d200 d201 · · · d20n−2 d20n−1

)
,

respectively. By using our example, this relation can be described as

(
r100 r101

) ( 818 1072
1072 818

)
+

(
e200 e201

)
=

(
1223 315

)
,

where each element is in Fq.

To apply lattice reduction to (29), we add the integer vector

u20 = (u200, · · · , u20n−1)

to (29), such as

r10A10 + qu20 + e20 = d20. (30)

This equation is defined over the integer ring Z. Then we can consider an integer
lattice

LLAA1 =

(
A10

qIn

)
,

where In denotes the n× n identity matrix. By using the example (25),

(
r100 r101 u100 u101

) 
818 1072
1072 818
1459 0
0 1459

 +
(
e200 e201

)
=

(
1223 315

)
.

If we find a point v closest to d20 in the lattice LLAA1 , then we can conclude
that d20 − v = ±e20 with high probability since

d20 − r10A10 − qu20 = ±e20 .

Therefore, we need to find the vector closest to d20 in the lattice LLAA1 to find
e20, since the vectors r20 and u20 corresponding to e20 are found at the same
time.

In the same way, ±e11,r10, and r01 can be detected from a point w closest
to the d11 in the lattice

LLAA2 =

A10

A01

qIn

 .

By using our example,
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LLAA2 =


301 264
264 301
818 1072
1072 818
1459 0
0 1459

 .

Therefore, we need to consider all equations in (26) simultaneously. Doing
so, we see that the linear algebra attack can be reduced to the closest-vector
problem (CVP) on the lattice

LLAA =



A10 A01 A00

A10 A01 A00

A10 A01 A00

qIn
qIn

qIn
qIn

qIn
qIn


(31)

and the vector d =
(
d20 d11 d02 d10 d01 d00

)
, where the blank spaces in (26)

indicate zero matrices.

More specifically, the lattice (31) is described as follows.

LLAA =



818 1072 301 264 0 0 371 916 0 0 0 0
1072 818 264 301 0 0 916 371 0 0 0 0
0 0 818 1072 301 264 0 0 371 916 0 0
0 0 1072 818 264 301 0 0 916 371 0 0
0 0 0 0 0 0 818 1072 301 264 371 916
0 0 0 0 0 0 1072 818 264 301 916 371

1459 0 0 0 0 0 0 0 0 0 0 0
0 1459 0 0 0 0 0 0 0 0 0 0
0 0 1459 0 0 0 0 0 0 0 0 0
0 0 0 1459 0 0 0 0 0 0 0 0
0 0 0 0 1459 0 0 0 0 0 0 0
0 0 0 0 0 1459 0 0 0 0 0 0
0 0 0 0 0 0 1459 0 0 0 0 0
0 0 0 0 0 0 0 1459 0 0 0 0
0 0 0 0 0 0 0 0 1459 0 0 0
0 0 0 0 0 0 0 0 0 1459 0 0
0 0 0 0 0 0 0 0 0 0 1459 0
0 0 0 0 0 0 0 0 0 0 0 1459


The Hermite normal form is calculated as
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B =



1 0 0 0 116 982 0 0 447 93 1220 712
0 1 0 0 982 116 0 0 93 447 712 1220
0 0 1 0 1257 183 0 0 239 1311 0 0
0 0 0 1 183 1257 0 0 1311 239 0 0
0 0 0 0 1459 0 0 0 0 0 0 0
0 0 0 0 0 1459 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1257 183 239 1311
0 0 0 0 0 0 0 1 183 1257 1311 239
0 0 0 0 0 0 0 0 1459 0 0 0
0 0 0 0 0 0 0 0 0 1459 0 0
0 0 0 0 0 0 0 0 0 0 1459 0
0 0 0 0 0 0 0 0 0 0 0 1459



.

This is a special case of a q-ary lattice, such as(
I A
O qI

)
. (32)

Here, A consists of sparse cyclic matrices.

While the CVP on lattices is NP-hard, we need to apply known approxi-
mation algorithms for solving CVP to evaluate appropriate parameters. This
paper introduces the embedding technique, which is an efficient method to solve
CVP. To simplify, we start by describing the embedding technique in the case of
degX(x, y) = deg r(x, y) = 1. The relation rA+ qu+ e = d is satisfied, where

r =
(
r100 r101 r010 r011 r000 r001

)
,

u =
(
u200 u201 u110 u111 u020 u021 u100 u101 u010 u011 u000 u001

)
,

e =
(
e200 e201 e110 e111 e020 e021 e100 e101 e010 e011 e000 e001

)
.

Since the vector e is short, we may find e by calculating the vector in the lattice
(A|qIn) closest to the vector d. If vector c is the closest vector, then there is a
possibility that the vector e is equal to the vector ±(d− c). In our example, the
correct vector of e is

e =
(
3 0 2 1 0 3 1 2 2 0 2 1

)
. (33)

This paper shows computational experiments intended to find the closest
vector by the embedding technique.

The embedding technique finds the closest vector from the lattice found by
adding the target vector to the original lattice, such as

Ld =

(
B 0
d µ

)
,

where d is a target vector and µ is a small integer, such as 1 or 2. When we reduce
the lattice Ld by applying the LLL or BKZ method, we can find the vector e as
a row vector whose last element equals µ or −µ in the reduced lattice.

For the example (25), the embedded lattice is
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818 1072 301 264 0 0 371 916 0 0 0 0 0
1072 818 264 301 0 0 916 371 0 0 0 0 0
0 0 818 1072 301 264 0 0 371 916 0 0 0
0 0 1072 818 264 301 0 0 916 371 0 0 0
0 0 0 0 0 0 818 1072 301 264 371 916 0
0 0 0 0 0 0 1072 818 264 301 916 371 0

1459 0 0 0 0 0 0 0 0 0 0 0 0
0 1459 0 0 0 0 0 0 0 0 0 0 0
0 0 1459 0 0 0 0 0 0 0 0 0 0
0 0 0 1459 0 0 0 0 0 0 0 0 0
0 0 0 0 1459 0 0 0 0 0 0 0 0
0 0 0 0 0 1459 0 0 0 0 0 0 0
0 0 0 0 0 0 1459 0 0 0 0 0 0
0 0 0 0 0 0 0 1459 0 0 0 0 0
0 0 0 0 0 0 0 0 1459 0 0 0 0
0 0 0 0 0 0 0 0 0 1459 0 0 0
0 0 0 0 0 0 0 0 0 0 1459 0 0
0 0 0 0 0 0 0 0 0 0 0 1459 0

1223 315 1402 1442 1348 403 425 48 123 179 968 426 2



,

since the vector d is
(
1223 315 1402 1442 1348 403 425 48 123 179 968 426

)
. Ap-

plying LLL to the lattice, we can detect a shortest vector(
3 0 2 1 0 3 1 2 2 0 2 1

)
as the first row from the reduced lattice

3 0 2 1 0 3 1 2 2 0 2 1 2
14 7 −4 −11 −2 1 −13 0 −6 15 −10 6 0
−11 14 −12 15 6 −3 −7 10 3 −1 7 −4 2
12 15 −1 −8 16 −11 −8 1 1 12 9 −7 4
7 14 −11 −4 1 −2 0 −13 15 −6 6 −10 0
2 4 −6 12 19 −13 11 −5 7 −3 −4 10 4
1 −15 20 −1 3 −3 −12 −9 6 23 −7 −2 2
2 −3 −4 −12 21 12 −1 11 −16 −2 −11 −12 4
3 11 −2 10 −1 −1 1 11 10 5 −17 −24 4
8 11 −12 19 −4 −9 19 −3 −6 11 9 −9 2
7 16 17 2 9 7 5 −3 −22 0 −3 3 −18
8 −10 −3 13 −9 −17 −4 10 −12 −20 −14 2 22
−61 61 36 −23 −21 23 28 −30 −39 18 −23 13 100



.

The vector equals the correct vector e in (33).

Subring restriction technique The linear algebra attack also works in a
subring of Rq[x, y][46]. The ring Rq[x, y] has three types of subrings or quotient

rings. These are R̃q[x, y], R̃q[x, f(t)], and R̃q[f(t), y], where R̃q is a sub-ring of

Rq and f(t) is an element of R̃q. If n is a composite number written as n = ab



25

where a and b are integers, then the quotient polynomial tn − 1 can be factored
into (ta − 1) and (ta(b−1) + ta(b−2) + · · · + ta + 1). The ring Fq[t]/(t

a − 1) is a
quotient ring of Rq. The paper [19] suggests that n be chosen as prime since
our scheme employs the same algebra Rq as NTRU. As in the section 5.1, we
assume n is prime, then we consider the effect of the attack in the subrings
Rq[x, f(t)] and Rq[f(t), y]. Moreover, it is sufficient to consider Rq[x, f(t)] since
both subrings have the same structure.

This section describes how this technique works on the ring Rq[x, f(t)] with
an example (25).

Let (X(x, y), Y (x, y)) be a sample from a distribution of TX or UX−TX . Then
we can detect whether the pair belongs to TX or not by solving the equation
Y (x, y) = X(x, y)r(x, y) + e(x, y) for r ∈ FΓr/Rq and e ∈ FΓXr/Rℓ. The lattice-
reduction algorithms (which have complexity exponential with respect to the
dimensionality of the lattice in general) can be applied as described above. By
using the subring technique, we can expect to make the reduction easier than
the original problem, since that allows reducing the dimension of the lattice.

For simplicity, let f(t) = 0. Then the polynomials (24) can be described as
follows.

X(x, 0) = a10(t)x+ a00(t),
r(x, 0) = r10(t)x+ r00(t),
e(x, 0) = e20(t)x

2 + e10(t)x+ e00(t),
Y (x, 0) = d20(t)x

2 + d10(t)x+ e00(t).

Recall the example (25) becomes the following.

X(x, y) = (818 + 1072t)x+ (301 + 264t)y + (371 + 916t),
Y (x, y) = (1223 + 315t)x2 + (1402 + 1442t)xy + (1348 + 403t)y2

+(425 + 48t)x+ (123 + 179t)y + (968 + 426t),
r(x, y) = (1234 + 83t)x+ (188 + 675t)y + (853 + 1285t),
e(x, y) = 3x2 + (2 + t)xy + 3ty2 + (1 + 2t)x+ 2y + (2 + t),

(34)

Then, we can find some partial solution of r(x, y) and e(x, y), such as e20(t),
e10(t), and e00(t), by solving the following linear equations.

a10(t)r10(t) + e20(t) = d20(t)
a10(t)r00(t) + a00(t)r10(t) + e10(t) = d10(t)
a00(t)r00(t) + e00(t) = d00(t)

(35)

By using the example (34) and considering (X,Y ), we can specify the equa-
tion (26) as follows.

(818 + 1072t)(r100 + r101t) + e200 + e201t = 1223 + 315t
(818 + 1072t)(r000 + r001t) + (371 + 916t)(r100 + r101t) + e100 + e101t = 425 + 48t
(371 + 916t)(r000 + r001t) + e000 + e001t = 968 + 426t

(36)
This system has the solution space whose dimension is 4 since there are 10

variables and 6 equations. In the case of degX(x, y) = deg r(x, y) = 1, a linear
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system obtained in this attack has a solution space with at least 2n dimensions
since the system has 5n variables and 3n equations.

If we can find a solution such that elements ei0(t) are in Rℓ, then we can
conclude that (X(x, y), Y (x, y)) is in TX with non-negligible probability 1−1/q6.
We need an n that satisfies

((ℓ− 1)ℓn−1)3n > 2k

to avoid an exhaustive attack on the polynomial e(x, y), where k is a security
parameter.

We can establish the lattice LRq [x,0]
LAA instead of LLAA to find the solution by

solving the CVP.

LRq [x,0]
LAA =


A10 A00

A10 A00

qIn
qIn

qIn

 (37)

and the vector d =
(
d20 d10 d00

)
, where the blank spaces in (37) indicate zero

matrices.
More specifically, the lattice (37) is described as follows.

LLAA =



818 1072 371 916 0 0
1072 818 916 371 0 0
0 0 818 1072 371 916
0 0 1072 818 916 371

1459 0 0 0 0 0
0 1459 0 0 0 0
0 0 1459 0 0 0
0 0 0 1459 0 0
0 0 0 0 1459 0
0 0 0 0 0 1459


,

The Hermite normal form is calculated as B.

B =


1 0 0 0 1220 712
0 1 0 0 712 1220
0 0 1 0 239 1311
0 0 0 1 1311 239
0 0 0 0 1459 0
0 0 0 0 0 1459


This matrix can be described as  I A

I B
qI

 , (38)

where A and B are cyclic matrices.
By using the embedding technique, we can find a shortest vector
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3 0 1 2 2 1 2

)
as the first row from the reduced lattice

3 0 1 2 2 1 2
2 3 −2 8 −4 −3 0
−3 −2 4 1 8 1 −4
−6 6 2 3 −3 −2 4
−3 −2 −8 2 3 4 0
−5 −3 5 7 −6 2 2
1 −9 4 −3 −1 −5 6


.

The vector equals the correct vector e in (33).
Let us assume that f(t) is not zero. Since the polynomial e(x, y) can be

described by

e(x, f(t)) = e20(t)x
2 +(e11(t)f(t)+ e10(t))x+(e02(t)f(t)

2 + e01(t)f(t)+ e00(t)),

the coefficients and the degree of f(t) should be small enough to detect the
polynomial e(x, f(t)) with small coefficients. SinceMC(e) can be estimated from
MC(e) ≤ n2 · ℓMC(f(t))2, we can see the case f(t) = 0 is most effective for
detecting the polynomial e(x, f(t)). So for the discussion of the subring technique
in Section 7.3 we consider only the ring Rq[x, f(t)].

7.2 Key recovery attack

If a solution (ũx(t), ũy(t)) ∈ R2
q to X(x, y) = 0 (not necessarily the secret

key), in which all coefficients are less than ℓ is found, then the IE-LWE prob-
lem can be solved with high probability, as follows. For an IE-LWE instance
(X(x, y), Y (x, y)), if all coefficients of ℓ · Y (ũx(t), ũy(t)) are multiples of ℓ, then
it can be concluded that (X,Y ) is sampled from TX . In fact, sampling (X,Y )
from TX implies that

ℓ · Y (ũx(t), ũy(t)) = ℓ(X(ũx(t), ũy(t))r(ũx(t), ũy(t)) + e(ũx(t), ũy(t))
= ℓ · e(ũx(t), ũy(t)),

and MC(e(ũx(t), ũy(t))) < q implies that all coefficients of ℓ · e(ũx(t), ũy(t))
are multiples of ℓ. On the other hand, if (X(x, y), Y (x, y)) is sampled from UX ,
then the probability that all coefficients of ℓ · Y (ũx(t), ũy(t)) are multiples of ℓ
is about 1/ℓn. Therefore if a small solution, such as (ũx(t), ũy(t)), can be found,
then the IE-LWE problem can be solved with a probability higher than 1−1/ℓn

by checking whether all coefficients of ℓ ·Y (ũx(t), ũy(t)) are multiples of ℓ. Since
n, ℓ ≥ 2, the probability 1− 1/ℓn is at least 3/4, which is non-negligible.

In the following, we consider the key recovery attack on our encryption
scheme (i.e., finding the small solution belonging to R2

ℓ , to X(x, y) = 0 over Rq,
by using lattice reduction techniques). First, we consider the case degX = 1. In
this case, we need to find ux(t), uy(t) ∈ R2

ℓ satisfying

a10(t)ux(t) + a01(t)uy(t) + a00(t) = 0. (39)
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We write this equation with a matrix and vectors, in the same manner as the
algebraic attack described above, as

(
ux uy

) (A10

A01

)
=

(
−a00

)
, (40)

where the vectors ux and uy corresponding to ux(t), and uy(t), respectively,
with elements restricted to {0, · · · , ℓ− 1} in Fq.

As the Linear Algebra attack, we apply lattice reduction to find a small
solution (ux(t), uy(t)). Then we add the integer vector u

u = (u0, · · · , un−1)

to (39), such as

uxA10 + uyA01 + qu = −a00. (41)

This equation is defined over the integer ring Z. We consider an integer matrix

A =

A10

A01

qIn


and (

ux uy u
) A10

A01

qIn

 =
(
−a00

)
. (42)

Then, we consider the lattice

LKRA = { x ∈ R3
q | xA = 0 } (43)

and let v be a solution to the system (39). Then, any solution of (39) can be
written as v +w (w ∈ LKRA). Observe that our target solution (ux,uy,u) of
(39) is expected to be relatively short among the solutions of (39) because all
of the coefficients of ux(t) and uy(t) are restricted to {0, · · · , ℓ − 1}, where ℓ
is much smaller than q. This observation leads us to an approach to the key-
recovery attack as follows. First, we solve the system (39) and find its solution
space LKRA and a solution v. Second, we solve CVP to find the vector w closest
to v, and then v −w is the smallest solution of (39) and is expected to be our
target solution (ux,uy,u).

We provide an example (44) to see the relation in a concrete manner.

X(x, y) = (968 + 302t)x+ (861 + 442t)y + (1109 + 271t)
(ux, uy) = (2 + 2t, 1 + 3t)

(44)

Here, n = 2,ℓ = 4, and q = 1459. Then we define a small solution (ux, uy) as

ux = ux0 + ux1t,
uy = uy0 + uy1t,
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where ux0,ux1,uy0, and uy1 are variables valued at {0, · · · , ℓ − 1} in Fq. This
gives

(968 + 302t)(ux0 + ux1t) + (861 + 442t)(uy0 + uy1t) + (1109 + 271t) = 0.

Moreover, we can transfer the above formula to the polynomial ring Z[t] by
adding q · u, which is described by u = u0 + u1t. Thus,

(968+302t)(ux0+ux1t)+(861+442t)(uy0+uy1t)+1459(u0+u1t)+(1109+271t) = 0.

We can describe the above formula as

A =


968 302
302 968
861 442
442 861
1459 0
0 1459


and

LKRA =


1 0 1014 1033 −912 −917
0 1 1033 1014 −917 −912
0 0 1459 0 −861 −442
0 0 0 1459 −442 −861

 , (45)

which is the same as the Hermite normal form. We can describe the lattice (45)
as

LKRA =

(
In A C
O qIn D

)
, (46)

where A, C, and D are cyclic matrices.
We also apply the embedding technique to find the lattice point of L+

KRA

that is closest to the solution v. Let

L+
KRA =

(
B 0T

v µ

)
,

where µ = 2 and B is the lattice LKRA, and v is a vector whose dimension is n.
Applying lattice reduction to the lattice L+

KRA, we expect to find the vector
(ux(t), uy(t), u(t),±µ) as the row vector whose last element is equal to µ or −µ.

For the example, since we can take a solution to the system (39)

v =
(
261060 0 0 −458 −173067 −53767

)
,
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we construct an embedding lattice such that

L+
KRA =


1 0 1014 1033 −912 −917 0
0 1 1033 1014 −917 −912 0
0 0 1459 0 −861 −442 0
0 0 0 1459 −442 −861 0

261060 0 0 −458 −173067 −53767 2

 ,

and we obtained a reduced lattice
2 2 1 3 −4 −4 2
7 7 −16 −4 0 0 12
1 3 20 −16 −9 1 2
−13 −12 −1 6 0 5 26
35 −42 6 4 −17 17 −6


by applying the LLL algorithm. So we find the shortest vector

v =
(
2 2 1 3 −4 −4 2

)
,

which corresponds to (ux0, ux1, uy0, uy1, u0, u1, µ) from the first row. The vector(
2 2 1 3

)
is equal to the correct vector (ux0, ux1, uy0, uy1) = (2, 2, 1, 3).

Recent lattice attacks, such as the lattice-decoding attack and the subfield-
lattice attack, do not apply to our scheme. See Subsection 7.4 for details.

Kernel technique Moreover, we applied the same reduction to the lattice

L
′

KRA =

(
I A
O qI

)
, (47)

omitting the cyclic matrices C and D from the original LKRA since these ma-
trices are not related to ux and uy directly. If we can get a small solution from

L′

KRA, then we should consider that reduction.
The result in table 2 shows that the attack is also valid, that is, small solutions

can be found by the reduction. The result tells us this attack is the most effective
against the proposed cryptosystem since the attack did not fail until n ≤ 120,
which is larger than LKRA.

7.3 Dominant attack to the proposed system

By the discussion of the last two sections, dimension of the lattice to attack as
follows.

Attack Original LLA Improved LLA KRA
Rank 6n 3n 2n

This table shows the key recovery attack is dominant to evaluate security of
the proposed system.
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7.4 Further discussion on lattice attacks

In this section, we discuss and analyze the impact of other lattice attacks, such
as a subfield lattice attack [25], on the proposed primitive.

Subfield lattice attack Here, we discuss the subfield lattice attack in the
context of our scheme. This attack can be applied to homomorphic variants of
NTRU. The attack reduces the lattice problem on certain number fields to the
problem on their appropriate subfields by using norm maps from the original
number fields to the subfields.

NTRU variants (i.e., the NTRU on Zq[x]/(x
2k + 1) and Zq[x]/(x

p − x − 1)
with prime numbers p and positive integers q) have been addressed in previous
experiments by Kirchner et al. [25, Section 5]. There is no proper nontrivial
subfield of the number field Q[x]/(xp−x−1), but the attack on Zq[x]/(x

p−x−1)
succeeds for many parameters. We infer that the size of the parameter q is
strongly related to the success or failure of the attack. As the size of q increases,
the volume of the lattice becomes larger, and SVP on the lattice becomes easier.
In fact, the subfield attacks on NTRU with relatively small q fail in some cases
(see [25, Figures 1 and 2]). Moreover, the form h = f/g of the public key for
NTRU seems to have a positive effect on the attack, where f and g are secret

polynomials with small coefficients and f is invertible in Zq[x] = (x2k + 1) or
Zq[x] = (xp − x− 1).

However, when comparing Table 5 in this paper with [25, Figures 1 and 2], it
is evident that the size of q in our scheme is much smaller than that in the NTRU
variants. Moreover, there is a gap between the forms of the keys (public/secret
keys) in our scheme and those in the above NTRU variants. The data show that
the lattices derived from the two attacks on our scheme are very different from
those derived from the subfield attacks on the above NTRU variants. Therefore,
the subfield attack does not appear to be applicable to our scheme.

8 Appropriate parameter values

8.1 Embedding technique in L′

KRA

This section intends to clear the mathematical structure of lattice L′

KRA which is
associated with the key recovery attack, under the condition of degX = deg r =
1 and ℓ = 4.

Recall the discussion in the subsection 7.2, the lattice L′

KRA can be described
as follows.

L
′

KRA =

(
I A
O qI

)
, (48)
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where A is an n×n cyclic lattice and I is n×n identity matrix. Then the lattice
L′

KRA is a q-ary lattice, where q is the minimum prime within the condition (13)
such as

q > ℓ−1+ℓ
2∑

k=0

(k+1)nk(ℓ−1)k+1 = 3+4(3+2·32n+3·33n2) = 324n2+72n+15

(49)
then we choose q as the smallest prime larger than 324n2 + 72n + 15, so we
conclude q is O(n2).

In this subsection, we investigate the structure of the lattice L+
KRA which is

described as

L+
KRA =

 I A 0
O qI 0
v µ

 , (50)

where v is a solution to the system (39) whose dimension is n, and µ is the
embedding factor. We choose µ = 2. In our experiments, we used the embedding
technique, which is a standard algorithm for solving CVP approximately and we
use LLL/BKZ algorithm as a lattice-basis reduction algorithm.

It is clear that the rank of L+
KRA is 2n + 1 and the determinant is 2qn.

The lattice L+
KRA has a shortest vector that is corresponding to the smallest

solution (ux(t), uy(t)) whose coefficients are restricted within {0, 1, 2, 3}. Then
the average norms of the shortest vectors v as follows.

||v|| ∼
√
7n. (51)

We conducted an experiment on the key-recovery attack to clear the charac-
teristics of the lattice L′

KRA (see Section 7.2). We suppose that the key-recovery
attack succeeds even if we find two polynomials with small coefficients < ℓ that
differ from the correct secret key (ux(t), uy(t)).

Our computing environment is as follows:

– CPU: AMD Opteron(TM) Processor 848
– Memory: 64 GB
– OS: Ubuntu 16.04.3
– Software: fplll 4.0.0

The experimental results given in Table 2 show that the key-recovery attack
for degX = 1 failed for n ≥ 130, which is a much higher threshold than for
the linear algebra attack. Here, the experiment took LLL algorithm to reduce
lattices.

In the Table 2, Norm1(L+
KRA) and Norm2(L+

KRA) are the norms of the short-
est vector v1 and the second shortest vector v2 in the LLL-reduced basis of lat-
tice L+

KRA, respectively. Norm1(L′

KRA) is the norms of the shortest vector in the

LLL-reduced basis of L′

KRA. ”Gap” indicates the gap of Norm1 and Norm2 such
that Gap = Norm2/Norm1. We conclude SVP of L+

KRA is unique-SVP since the
gap increases until the attack failed. We also note that Norm2(L+

KRA) is as same

as Norm1(L′

KRA) from our experiment in the Table 2.
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Table 2. Experimental results for the key-recovery attack by embedding technique

n q Rank Norm1 Norm2 Norm1 Gap Results Time (s)

L+
KRA L

′
KRA

10 33149 21 8 186 208 22 Success 0.02
20 131059 41 12 619 633 50 Success 0.09
30 293791 61 15 1416 1619 97 Success 0.26
40 521299 81 17 3236 3325 191 Success 0.76
50 813623 101 19 6013 6581 315 Success 1.77
60 1170751 121 21 11444 11738 552 Success 3.52
70 1592659 141 22 20796 20589 943 Success 6.45
80 2079401 161 24 37181 37601 1563 Success 10.74
90 2630917 181 25 66292 65551 2641 Success 57.79

100 3247243 201 27 106864 110512 4026 Success 318.16
110 3928361 221 28 186219 201748 6724 Success 788.46
120 4674289 241 29 307382 313401 10474 Success 1361.19
130 5484979 261 373397 574752 542968 2 Failure 2315.24

On the other hand, we may assume that

||λ2(L+
KRA)|| ≈ GH(L

′

KRA) (52)

in [8], where ||λ2(L+
KRA)|| denote the norm of the smallest vector linearly inde-

pendent from the shortest non-zero vector in the embedding lattice L+
KRA, and

GH(L′

KRA) is the Gaussian heuristic for the lattice L′

KRA, namely

GH(L
′

KRA) =
√
nq/πe.

So we conclude the norm ||λ2(L+
KRA)|| increases as the n increases.

Let (b1, · · · , b2n+1) be a sufficiently reduced basis of the lattice L+
KRA and we

write (b∗1, · · · , b∗2n+1) as a basis which is given by Gram-Schmidt orthonormaliza-
tion from the basis (b1, · · · , b2n+1). We investigate the behavior of log ||b∗i || (i =
1, · · · , 2n + 1) at n = 120 which is the last n where all examples are succeeded
in attacking in the Table 2.

The Fig. 1 shows the behavior, where the red line and the blue line indicate
the behavior in the case of β = 10 and β = 20 respectively. Here the basis
(b1, · · · , b2n+1) is given by BKZ-β which is implemented in Fplll 4.0.0 library.
The figure tells us the lattice L+

KRA satisfies the geometric series assumption
(GSA) and the absolute value of the slope of the line decreases gentry as the β
increases. Therefore the norm of the second shortest vector decreases as the β
increases.

Table 3 shows the slope and the y-intercept of the fitting line described
in Fig.1 and the correlation coefficient and the p-value indicate these lines well
approximate the samples. The Table 3 also shows the comparison with the values
of ||b∗2||/||b∗1|| and ||b2||/||b1|| then we observe ||b∗2||/||b∗1|| is almost the same as
||b2||/||b1||.
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Fig. 1. Behavior of log2 ||b∗i || (i = 2, · · · , 2n+ 1)

Table 3. The behavior log2 ||b∗i || and the comparison ||b∗2||/||b∗1|| and ||b2||/||b1||

Beta slope y-intercept correlation p-value ||b∗2||/||b∗1|| ||b2||/||b1||
coefficient

10 -0.08354 32.2740 > 0.999 < 0.001 4320402 4320505
20 -0.07493 31.2279 > 0.999 < 0.001 1783504 1783497

By the above observation, for the reduced basis bi we can set as follows.

||b∗1|| =
√
7n

||b∗2|| = δ2n
√
q

||b∗i || = −slope · ||b∗i−1|| (i = 3, 4, .., 2n+ 1) with − 1 < slope < 0 ,
(53)

where we assume that ||b∗2|| is equal to the non-zero shortest vector v obtained by
the underlying lattice reduction algorithm over the lattice L′

KRA and δ denotes
the root of Hermite factor which is defined

δ = (||v||/(detL
′

KRA)
1/2n)1/2n .

In the Table 3 ”slope” indicates the slope of the line of the GSA. We have the
following relationship:

||b∗1|| · ||b∗2|| · ||b∗3|| · · · ||b∗2n+1|| = det(L+
KRA) = 2qn. (54)
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Table 4. The parameters of LWE-problem and relation to our system

parameter description our system

n dimension of the associated lattice n
m number of samples 2n
q modulus > 324n2 + 72n+ 15
σ standard deviation 1.87

Then we can calculate

||b∗3|| = |slope| · ||b∗2||
||b∗4|| = |slope|2 · ||b∗2||

...
||b∗2n|| = |slope|2n−2 · ||b∗2||
||b∗2n+1|| = |slope|2n−1 · ||b∗2|| .

(55)

So we have √
7n · |slope|n(2n−1) · (δ2n · √q)2n = 2qn , (56)

and
log(|slope|) = (− log(7n)/2− 4n2 · log(δ) + log(2))/n(2n− 1) . (57)

The formula specifies the relation of log(|slope|) and δ with fixed n and q, where
q is the smallest prime larger than 324n2 + 72n+ 15 (See(49)).

8.2 Parameter estimation

In this section, we assume that the computational complexity for the key recovery
attack is as same as LWE problem(n,m, q, σ) since the last subsection observes
the same property of the LWE problem. The parameters n,m, q, σ are described
as follows. Here m = 2n, and q is the smallest prime larger than 324n2+72n+15
in our system. The standard deviation σ of the elements of the error vector
associated with LWE-problem, which is known as unique-SVP, can be calculated
as
√
mσ, when we use embedding technique with the embedding factor equals

2. In our system, the average norm for elements of the shortest vector v is
√
7n

by (51). So we have
√
2nσ =

√
7n, then σ =

√
7/2 follows.

To estimate secure parameter n we apply ”2016 Estimate” in [6], which is
applied to ”New Hope” [7], to our system.

First, Y.Chen suggests

δ0 = (((πβ)1/ββ)/(2πe))1/(2(β−1)) (58)

in [13], where δ0 is the root of Hermite factor of the shortest vector obtain
by BKZ with block size β. In ”2016 Estimate [6]”, Albrecht et al. suggest the
following inequality√

β/(2n)λ1(L+
KRA) ≥ δ2β−2n

0 (detL+
KRA)

1/2n , (59)
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holds for the basis reduction by the BKZ algorithm with block size β, where
λ1(L+

KRA) is the norm of the non-zero shortest vector in the lattice L+
KRA,

namely λ1(L+
KRA) ∼

√
7n. So we find the pair of n and β to satisfy the both

condition of (58) and (59) and estimate the complexity of lattice reduction by
the formula

8 · 2n · 20.292β+12.31 (60)

which is given by [9]. So, we design appropriate parameter values for our encryp-
tion scheme as shown in Table 5.

Table 5. Appropriate parameter values for our scheme

NIST k n q Secret key Public key Ciphertext
Category (bytes) (bytes) (bytes)

I 143 1201 467424411 600.5 14412 28824

III 207 1733 973190427 866.5 20796 41592

V 272 2267 1665292875 1133.5 27204 54408

Here, we denote the security parameter by k where k = 143, 207, 272 for
AES128, AES192, AES256, respectively.

9 Cryptographic scheme

This section shows a cryptographic scheme that satisfies IND-CCA2 security.
This scheme is constructed by applying Fujisaki–Okamoto conversion [17] to
our cryptographic primitive (which satisfies IND-CPA security as described in
Section 6).

9.1 Fujisaki–Okamoto conversion

Let Π := (K,E,D) be a public-key encryption scheme that satisfies IND-CPA
security, where K is the key-generation algorithm, E is the encryption algorithm,
andD is the decryption algorithm. Fujisaki–Okamoto conversion tells us that the
public-key encryption scheme Π̄ := (K̄, ĒH , D̄H) satisfies IND-CCA2 security,
such that

ĒH
pk = Epk((x||s),H(x||s)), (61)

where

– s is a random string chosen from an appropriate domain,
– H is a hash function

H : {0, 1}∗ → {0, 1}κ0

– Epk(message, coins) indicates the encryption of the indicated message using
the indicated coins as random bits.
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More precisely, the basic scheme Π̄ := (K̄, ĒH , D̄H) can be described as
follows.

– Let K̄(1κ) := K(1κ).
– ĒH

pk : {0, 1}κ−κ0 × {0, 1}κ0 → C is defined by

ĒH
pk(x, s) := Epk((x||s),H(x||s)),

where x ∈ {0, 1}κ−κ0 , s ∈ {0, 1}κ0 , and C is a cipher space whose elements
are valid ciphertexts.

– D̄H
sk : C → {0, 1}κ−κ0 ∪ {⊥} is defined by

D̄H
sk(y) :=

{
[Dsk(y)]

κ−κ0 if the condition (62) holds
⊥(null) otherwise

,

where [Dsk(y)]
κ−κ0 indicates the first (κ−κ0) bits of Dsk(y). The condition

for ciphertext verification is

y = Epk(Dsk(y),H(Dsk(y))). (62)

Specifically, the following theorem holds.

Theorem 3. Suppose Π is γ-uniform and (t
′
, 0, 0, ϵ

′
)-secure in the sense of

IND-CPA. Then, for any qH and qD, the scheme Π̄ is (t, qH , qD, ϵ)-secure in the
sense of IND-CCA2 in the random oracle model where

t = t
′ − qH · (Tϵ(κ) + c · κ)

ϵ = ϵ′ · (1− γ)−qD + qH · 2−(κ0−1).
(63)

In this, Tϵ(·) denotes the computational running time of Epk(·) and c is a con-
stant.

Here, γ-uniformity is defined as follows.

Definition 8. Let Π = (K,E,D) be a public-key encryption scheme. Let the
parameters mlen and clen denote the length of a plaintext message and a coins
tuple s, respectively. For a given x ∈ {0, 1}mlen and y ∈ C, define

γ(x, y) = Pr[s←R {0, 1}clen : y = Epk(x, s)].

We say that Π is γ-uniform (for any k ∈ N) if, for any x ∈ {0, 1}mlen and any
y ∈ C, γ(x, y) ≤ γ.

Now, we estimate the sizes of the parameters qD,qH , and γ of our encryption
scheme. First, we set the parameter qD to 264. We assume the parameter qH
is 22k to consider an exhaustive search for a quantum computer with Grover’s
algorithm. To calculate the parameter γ, we need to estimate the probability
γ(x, y) for any x ∈ {0, 1}mlen and y ∈ C. Let x0 be the fixed plaintext in
{0, 1}mlen and suppose the probability

Pr{∀s1, s2 ∈ {0, 1}clen|Epk(x0, s1) = Epk(x0, s2)}, s1 ̸= s2.} (64)
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If we write

Epk(x0, si) = m(t) +X(x, y)ri(x, y) + ℓ · ei(x, y) (i = 1, 2),

the condition (64) can be described as

ℓ−1 ·X(x, y)(r1(x, y)− r2(x, y)) = e2(x, y)− e1(x, y).

If e1(x, y) equals e2(x, y), then r1(x, y) = r2(x, y) since neither X(x, y) nor ℓ
equals 0. So, we can assume e1(x, y) ̸= e2(x, y). By the definition of the en-
cryption scheme, the coefficients of e2(x, y)− e1(x, y) are in Rq with coefficients
restricted to the range {0, · · · , ℓ − 1, q − ℓ + 1, · · · , q − 1}. Further, the coeffi-
cients of ℓ−1 ·X(x, y)(r1(x, y)− r2(x, y)) are in Rq with coefficients in the range
{0, · · · , q−1} and the coin r is in {0, 1}κ0 . Then, we can estimate the probability
(64) as

max({(2ℓ/q)#Γe·n, 2−κ0}).

Since the probability does not depend on the fixed x0, we can estimate

γ ≤ max({(2ℓ/q)#Γe·n, 2−κ0)}. (65)

By the condition (13), we can estimate q as follows.

q ≥ ℓ− 1 + ℓ
∑dX+dr

i=0 (i+ 1)ni(ℓ− 1)i+1

> ℓ
∑dX+dr

i=dX+dr(i+ 1)ni(ℓ− 1)i+1

= ℓ(dX + dr + 1)ndX+dr(ℓ− 1)dX+dr+1

> 2ℓ · n2(ℓ− 1)3

≥ 2ℓ · 22(ℓ− 1)3

The last inequality is satisfied since dX and dr are each larger than or equal to
1. Then

(2ℓ/q)#Γe·n < (1/22(ℓ− 1)3)#Γe·n < 1/22n.

If we set ℓ equals to 4, then 1/22n = 1/2κ < 1/2κ0 is satisfied since 2n = |ℓ|n = κ.
We conclude γ < 1/2κ0 in the case of ℓ = 4.

Then, ϵ can be calculated as follows.

ϵ = ϵ′ · (1− 2−κ0)−qD + qH · 2−(κ0−1)

∼ ϵ′ · (1 + (qD + qH) · 2−κ0)

Since k is larger than or equal to 128,

ϵ < ϵ′ · (1 + 2qH · 2−κ0)
= ϵ′ · (1 + 2 · 22k · 2−κ0)
= ϵ′ · (1 + 22k+1−κ0)

.

According to the relation, we set κ0 ≥ 2k + 1 since ϵ is negligible (such as
ϵ < 2ϵ′).
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9.2 Key Generation

Same as the section 5.2.

9.3 Encryption

Recall the domain parameters as follows (See 5.1).

– ℓ: A small integer which is larger than 1.

– q: A prime which is cardinality of prime field Fq and is much larger than
ℓ.

– n: Degree of the modulus polynomial of the quotient ring Rq(= Fq[t]/(t
n−

1)). The n should be prime for the security reason.

– dX: Total degree of the irreducible bivariate polynomial X(x, y)

– dr: Total degree of the random bivariate polynomial r(x, y)

– mlen Length of the message M

1. Set the length of the payload plen = ⌈n · |ℓ|/8⌉
2. Create a plaintext M whose payload is plen bytes in size

M = m||randombytes(plen−mlen) ,

where function randombytes(len) returns random data whose length is len.

3. Set the lower 8− |ℓ| · (n mod (8/|ℓ|)) bits of M to 0.

4. Initialize the seed expander with coins equal to H(M).

5. Embed a plaintextM into the coefficients of the plaintext polynomialm(t)(∈
Rℓ) whose degree is n− 1.

6. Generate a support set Γr of degree dr with graded lexicographic order

7. Create a random polynomial r(x, y) as follows:

(a) Set r = 0

(b) For each (i, j) in Γr

i. Choose a coefficient rij(t) uniformly at random from the set Rq

ii. Set r(x, y) = r(x, y) + rij(t)x
iyj

8. Generate a support set Γe of degree dX+dr with graded lexicographic order

9. Create a noise polynomial e(x, y) as follows:

(a) Set e(x, y) = 0

(b) For each (i, j) in Γe

i. Choose a coefficient eij(t) uniformly at random from the set Rℓ

ii. Set e(x, y) = e(x, y) + eij(t)x
iyj

10. Construct the cipher polynomial c(x, y) as

c(x, y) = m(t) +X(x, y)r(x, y) + ℓ · e(x, y) (66)
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9.4 Decryption

1. Substitute the secret key that is a small solution (ux(t), uy(t)) over Rq of
X(x, y) = 0 into c(x, y):

c(ux(t), uy(t)) = m(t) + ℓ · e(ux(t), uy(t)) (67)

When the parameters ℓ and q satisfy the relation described above (13), each
coefficient of m(t) + ℓ · e(ux(t), uy(t)) ∈ Z/(tn − 1) is within the range from
0 to q − 1. Theorem 1 gives a proof of this fact.

2. Extract m(t) from c(ux(t), uy(t)) as

c(ux(t), uy(t)) (mod ℓ) = m(t)

where we consider c(ux(t), uy(t)) as an element of Z[t]
3. Recover the plaintext M from the coefficients of m(t)
4. Initialize the seed expander with coins equal to H(M).
5. Encrypt the plaintext polynomial m(t)

c
′
(x, y) = m(t) +X(x, y)r(x, y) + ℓ · e(x, y)

6. If c
′
(x, y) equals c(x, y) then m = [M ]mlen and flag = valid; otherwise,

m = null and flag = invalid

Here, [x]len denotes extraction of the most significant len bits of x.

10 Performance analysis

This section shows the results of the preliminary performance analysis, which
is carried out by using a reference implementation and an optimized implemen-
tation (including this proposal). Table 6 and Table 7 show the cycles of each
function described in Sections 9.2 to 9.4. We carried out this analysis on a plat-
form with the following characteristics:

CPU Xeon E5-1620 3.6GHz
OS Windows 7, 64bit
memory 32 GB memory

Figure 2 shows the differences between these implementations.

11 Advantages

One of the advantage of the proposed cryptographic primitives described in Sec-
tion 5 is that the system has homomorphic properties. Homomorphic properties
allow us to compute on encrypted data without decoding. They can calculate ad-
dition and/or multiplication of single- or multiple-bit integers in the encrypted
state. These properties are attractive to industries such as the smart device
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Table 6. Performance of reference implementations

Name NIST Security keygen encrypt decrypt
Category (bits) (cycles) (cycles) (cycles)

IEC602 I 143 92909566 178456036 335353573

IEC868 III 207 160497017 378860493 716243384

IEC1134 V 272 239510004 626677271 1186128486

Table 7. Performance of optimized implementations

Name NIST Security keygen enceypt decrypt
Category (bits) (cycles) (cycles) (cycles)

IEC602 I 143 78272627 116773401 216049724

IEC868 III 207 131971731 248815749 466577361

IEC1134 V 272 191246205 420543208 792576864

community and cloud computing. These industries need to handle personal data
that must be kept secret from others. In the smart device community, we need
to send (for example) meter data to the electric power company. Although the
smart mater encrypts its output, the amount of data is too large to send at short
intervals. The data must be conslidated at intermediate nodes by calculating in
an encrypted state.

Table 8 describes the classification of homomorphic encryption (HE) with re-
spect to the computable number of times and sizes of public keys and encrypted
data. From the table, we see that sizes of the public keys and the ciphertext
increase with increasing the computable number of times. Somewhat homomor-
phic encryption (SHE) and fully homomorphic encryption (FHE) are realized by
lattice-based encryption such as LWE, NTRU, or Nuida–Kurosawa’s scheme. It
is clear that lattice-based encryption is as important as homomorphic encryp-
tion.

Table 8. Classification of homomorphic encryption

Type Number of operations Message Public key Ciphertext Example
Addition Multiplication (bit) size size

HE Any No Multi Small Small Paillier [38]
No Any Multi Small Small ElGamal [15]

SHE Any Once Multi Small Small Pairing [10]
Any Several Single Large Medium LWE [28]
Any Several Multi Large Medium Giophantus, NTRU [44]

FHE Any Any Single Large Large Lattice-based [20]
Any Any Multi Large Large Nuida–Kurosawa [37]
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Fig. 2. Performance of the reference and optimized implementations

11.1 Homomorphic property

The Giophantus cryptographic primitives have the ring homomorphic property.
When two different cipher polynomials

c1(x, y) = m1(t) +X(x, y)r1(x, y) + ℓ · e1(x, y)
c2(x, y) = m2(t) +X(x, y)r2(x, y) + ℓ · e2(x, y)

(68)

are given, we define the addition and multiplication as c1(x, y) + c2(x, y) and
c1(x, y)c2(x, y), respectively.

Additive homomorphism In the case of addition, we can decrypt as

(c1 + c2)(ux(t), uy(t)) = m1(t) +m2(t) + ℓ · (e1 + e2)(ux(t), uy(t)) (69)

and extract the plaintext

(c1 + c2)(ux(t), uy(t)) (mod ℓ) = m1(t) +m2(t) (70)

under the following conditions.

MC(m1(t) +m2(t)) < ℓ (71)

ℓ ·MC((e1 + e2)(ux(t), uy(t))) < q (72)

The condition (71) is to prevent the coefficients of the plaintext m1(t) +m2(t)
from overflowing beyond the range 0 to q−1. The condition (72) is to prevent the
coefficients of the noise term ℓ · (e1 + e2)(ux(t), uy(t)) from overflowing beyond
the range of 0 to q − 1.
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Let Na be the number of times to add ciphertext. Then we obtain the con-
dition of ℓ and q as follows:

ℓ > Na · λ, (73)

q > Na · (ℓ− 1 + ℓ

dX+dr∑
k=0

(k + 1)nk (̇ℓ− 1)k+1), (74)

where λ is a parameter giving the maximum size of the coefficients in m, ux(t)
and uy(t) in the case of using the homomorphic operations. So, we can perform
additional homomorphic operation between n log2 ℓ bit integers.

Multiplicative homomorphism We can multiply

(c1c2)(ux(t), uy(t)) = m1(t)m2(t) + ℓ · (m1(t)e2(ux(t), uy(t))
+m2(t)e1(ux(t), uy(t)) + ℓ · e1(ux(t), uy(t))e2(ux(t), uy(t)))

and extract the plaintext

(c1c2)(ux(t), uy(t)) (mod ℓ) = m1(t)m2(t) (75)

under the following conditions.

MC(m1(t)m2(t)) < ℓ (76)

degm1(t)m2(t) < n (77)

ℓ2 ·MC((e1e2)(ux(t), uy(t))) < q (78)

The condition (76) is to prevent the coefficients of the plaintext m1(t)m2(t) from
overflowing beyond the range 0 to ℓ − 1. Also, m1(t)m2(t) requires keeping the
degree under n since m1(t)m2(t) must be included in Rℓ, as required by the
condition (77).

The condition (78) is to prevent the coefficients of the noise term from over-
flowing beyond the range 0 to q − 1 after the multiplication.

Let Nm be the number of times to multiply ciphertext. Then, we obtain the
conditions for ℓ and n as follows.

λNm+1 < ℓ (79)

Nm degm(t) < n (80)

We can therefore perform Nm multiplicative homomorphic operations be-
tween n log2 λ/Nm bit integers. The condition for q can be calculated recursively
by applying the discussion for the condition (13) in the Theorem 1.
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12 Conclusion

In this study, we constructed a post-quantum encryption scheme whose secu-
rity is based on an IE-LWE problem and related to the small-solution problem
in non-linear spaces. This paper gave the algorithms for key generation, en-
cryption/decryption, and the security proof in the sense of IND-CPA. Then, we
discussed two attacks that can be applied to the IE-LWE problem and concluded
the key recovery attack is dominant of them in the case of degX(x, y) = 1. We
precisely investigated the lattice that is associated with the key recovery attack
and estimated an appropriate parameters of our scheme according to the ”2016
estimate” which is a reliable method to estimate the computational complexity
of the lattice reduction. We are going to estimate appropriate parameters for
degX(x, y) > 1.
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7. E. Alkim, L. Ducas, T. Pöppelmann, P.Schwabe, Post-quantum Key Exchange -
A New Hope, 25th USENIX Security Symposium (USENIX Security 16), pp.327–
343,(2016).

8. S. Bai, S. D. Galbraith, Lattice Decoding Attacks on Binary LWE, ACISP’14, 8544,
Lecture Notes in Computer Science, pp. 322–337, Springer International Publishing,
(2014).

9. A. Becker, L. Ducas, N. Gama, T. Laarhoven,”New directions in
nearest neighbor searching with applications to lattice sieving”,
https://eprint.iacr.org/2015/1128.pdf



45

10. D. Boneh, E.-J. Goh, K. Nissim, Evaluating 2-DNF Formulas on Ciphertexts, In:
Proc. of TCC’05, 3378, Lecture Notes in Computer Science, pp.325–341, Springer
Berlin Heidelberg, (2005).

11. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé, Classical hardness of
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