
Designing Proof of Transaction Puzzles for
Cryptocurrency

Taotao Li1,3, Parhat Abla1,2and Mingsheng Wang1, Qianwen Wei1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

parhat,wangmingsheng,weiqianwen@iie.ac.cn
2 University of Chinese Academy Science, Beijing 100049, China

3 Human University of Science and Technology, Xiangtan 411201, China
taotaolittl@outlook.com

Abstract. One of the Bitcoin’s innovations is the Proof of Work puzzle
(aka scratch-off puzzle) as a consensus protocol for anonymous networks
without pre-established PKI. Bitcoins based on the Proof of Work puz-
zle have been harshly blamed today for problems such as energy wasted
and not easily scalable. In this paper, we construct a novel Proof of
Transaction(PoT) puzzle, and prove that PoT puzzle satisfies the basic
construction conditions of scratch-off puzzle. We also show construction
of PoTcoin as application. To reduce the network load we use sequen-
tial aggregate signature. PoTcoin has many advantage but not limited
as strengthening the network topology, promoting currency circulation,
anti-outsourcing computing and environment-friendly.

Keywords: proof of transaction, sequential aggregate signature, blockchain

1 Introduction

Since 2008, Bitcoin[Nak08] becomes the most popular cryptocurrency in the
world. The most attractive part is a decentralized, distributed consensus mech-
anism (aka. Nakamoto consensus), that enables all participants in a peer-to-
peer(P2P) network to consensus on a distributed public ledger (blockchain). In
other words, the consensus is that thousands of independent nodes follow the
simple rules that follows a spontaneously,asynchronous interactions.All Bitcoin
attributes, including currency, transactions, payments, and security models that
do not rely on central agencies and trust, are all derivatives of this mechanism.

Nakamoto consensus mechanism is as follows: In a Bitcoin network, a node
(aka. miner) initiates a transaction and broadcasts it to the network. The other
nodes receive the transaction and validate the transaction according to the ver-
ification algorithm. The transaction that satisfies the verification is temporarily
saved to the node’s transaction pool and is again broadcast to other nodes.
Miners compete with others to solve a puzzle for obtaining the opportunity of
adding confirmed transactions to Bitcoin’s public ledger of past transactions.
Then, the solution will be broadcasted to other miners in the P2P network. If

2

the solution been verified, the miners will add the new block to the correspond-
ing blockchain and continue to mine the new block. At the same time, the lucky
miner(who firstly find the solution to the puzzle)will get corresponding reward
and transaction fee. The mining process is a concurrently process, it may be
the case that conflicting versions of blockchain, called branches or forks. Due to
the Bitcoin consensus mechanism [Nak08], miners solved the forking problem by
mining on the longest chain. Instead, the blocks on the shorter chain become
orphaned blocks, and all transactions in the orphaned blocks are returned to the
transaction pool for recertification.

In the consensus mechanism, the most important part is the Scratch off
Puzzle(SoP). The SoP used by Bitcoin is based on moderate hard computational
puzzle[Bac02][DN92], known as Proof of work(PoW) puzzle. Essence of PoW
puzzle is to solve the inequality, the miners keeps doing hash calculation to
find a randomness which satisfies the special inequality. Now, there are several
challenges for PoW puzzle. Firstly, unequal mining probability. Some oligarch use
their own mining resources or mining strategy, making their possession of scarcity
of resources (ie, physical resources) account for most of the entire network of
resources. Eventually leading to the probability of common miners successful
mining block is getting smaller and smaller. Indeed, over the past few years, the
computation power of large mine pool have exceeded the entire network by one-
third over several times [Vit13]. For example, GHash.io[GHa14] computation
power has more than half the amount of power in the entire network. Now, large
mine pools (F2Pool, AntPool, BTCC and BW) are all located in China. Their
total computing power reaches 60% of the whole network. Second, security is
severely challenged. Bitcoin’s security relies on the assumption that honest miner
control most of the power in the network. In other words, if the attacker controls
more than 50% of the network’s total power, the network is not secure (for
example, there exist double spending attack). Then, the above assumption has
been seriously questioned. Eyal and Sirer[ES13] state that when a selfish mine
pool owned more than 25% of the total network, and under the influence of selfish
mining strategies[LK16][SSZ16]and economies of scale[Moo59], it attracted more
Miners are constantly adding to the pool, making the computation power of the
mine pool has been more than half the power of the entire network or even
more. Eventually, the Bitcoin system is no longer safe to decentralized system.
Third, energy waste. In Bitcoin, in order to mine new blocks, miners run PoW
algorithms, constantly doing hash calculations, thus causing a lot of unnecessary
computational effort.

As mentioned above, a good SoP is crucial to the consensus mechanism and
the extensibility of the entire blockchain. In this paper, we propose new a SoP
- Proof of Transaction(PoT) puzzle. Our PoT puzzle is based on sequential ag-
gregate signatures[LMRS04]. sequential aggregate signature is a very interesting
model, the source of applying this model is as follows: 1© Consideration of the
transaction data in the blockchain. Obviously, a lot of data in the blockchain is
the transaction. In addition to the currency transfer function, these transaction
data have other attributes such as unforgeability, authenticity, traceability, etc.

3

How can we use these data functions and property once again perfect use? 2©
Who will generate the next block? Needless to say, the next block is generated by
Bitcoin miner in Bitcoin. In the PPcoin[KN12], the miner with large amount of
coins generates the next block. While in Ethereum [But14], the next block is pro-
duced by miners who have both large computation power and lots of coins. These
computation power and coins can then easily be increased by external resources
(such as nation state power), seriously affecting the security of the blockchain
and increasing the instability of the blockchain. Based on the above two ideas,
we used to sequential aggregate signature model. We use the transaction data in
the blockchain so that those users who have initiated those transactions generate
the next block. In other words, we give the mining right to those who really use
the blockchain users, so that these users really use the blockchain system as a
”master”. Unlike other cryptocurrencies, as computational power and coins in-
crease, nodes will dominate the block generation. On the contrary, in the system
we constructed, the number of transactions is not easily increased in a short
period of time. For the details of the sequential aggregate signature, see section
3.

We construct proof of transaction puzzle using sequential aggregate signa-
tures, and we show that proof of transaction puzzle satisfy the basic conditions
for constructing Scratch-off puzzle[MKKS15]. Based on proof of transaction puz-
zle, we designed PoTcoin that have good performance, such as strengthening the
network topology and facilitating the circulate of PoTcoin.

The contribution of this article is as follows:

• We successfully constructed a new Proof of Transcation puzzle using sequential
aggregate signature and proved that the basic conditions for constructing
Scratch-off puzzle are satisfied.

• We accelerate signature verification and reduce network load by using sequen-
tial aggregate signatures.

• Application for proof of transaction puzzle-PoTcoin. PoTcoin has the good
performance of strengthening the network topology, promoting the circulate
of PoTcoin, resistance to outsourcing computation and environment-friendly.

1.1 Related Work

As mentioned above, Bitcoin PoW puzzles have been severely challenged in per-
formance. In order to solve these problems, a large number of researchers have
proposed many new Scratch-off puzzles. These puzzles can be classified in three
main classes.

Scratch-off puzzle based on physical resources. Which is divided into
three categories, the first category of puzzles are based on the computation of the
hard puzzle. Mining depends on the CPU computability. Bitcoin is the use of such
computability continue to do SHA-256 calculations. Miller et al.[MJSP14] found
that it takes approximately 255 hashes to mine a new block(which is equivalent
to the amount of work required to crack a DES password), resulting in a waste
of computing and natural resources. And solving this puzzle has no real value

4

to society. Therefore, Scratch-off puzzles are considered based on useful com-
putational puzzle (eg, protein folding problems[Wol05]). In 2013, King [Kin13]
proposed Primecoin, using the huge computational power of the whole network
to find prime numbers, the disadvantage of which is that the complete proof of
security is ungiven. In 2014, Miller [MJSP14] proposed a Scratch-off puzzle based
on Proofs-of-Retrievability (PoR) [JK07]. The main feature of this mechanism is
the use of Bitcoin mining resources for distributed storage of archives, reducing
the overall waste of Bitcoin. The main drawback is that it takes longer time to
verify the results of the puzzle. The second type of scratch-off puzzle is based
on storage problems. The capability of mining new block is dependents on min-
ers storagability. Dziembowski [DFKP15] proposed Proof-of-Space (PoS) and
later PoS was improved [PPA+15][RD16][Dzi13]. The third type of scratch-off
puzzle is based on the CHPTCHA problem[ABHL03]. This type of scratch-off
puzzle can make miners more equally during successful mining a new blocks.
Blocki’s Proof-of-Human (PoH)[BZ16] puzzle is based on CHPTCHA[ABHL03]
and indistinguishability obfuscation (IO)[GGH+13] and uses human-machine in-
teraction to solve artificial intelligence problems (for example, reading distorted
letters). The solution to the problem must rely on human participation, making
the probability of each miners successfully mining new blocks more equally. How-
ever, the development achievements of IO [GGH+13] can not meet the demand
of mechanism of PoH, therefore the PoH is unable to practical implement.

Scratch-off puzzle based on virtual resources. The main advantage of
this type of Scratch-off puzzle is the reduction of consumption and the transfer
of physical resources needed for mining to virtual resources. For example, the
Nextcoin [Com16] which based on the Proof-of-Stake (PoS) [Kwo][But16], the
one who owns the large amount of coins during the mining process, decide to
produce the next block. At the same time, it also brought a significant flaw,
the centralization of the coin break the decentralization of the system. In other
words, with the more coin the miners, the greater the probability of mining new
blocks, resulting in a few number of the miners who have most of the coins, more
and more easy to mine the new block, making the system centralized.

Hybrid scratch-off puzzle based on physical resource and virtual
resource. This type of scratch-off puzzle increases security and increases the
cost of attacks. Duong[DFZ16] and Bentov[Ben] show that the advantage of this
mechanism is that honest nodes still have the chance to use stakes to prevent the
blockchain even if the malicious nodes have more than 50% computability. Typi-
cal cryptocurrencies are PPcoin [KN12], Ethereum [But14], TwinsCoin[CDFZ17].

Section 2 gives the basic knowledge and sequential aggregate signature are
given in section 3, then we define the PoT puzzle and show its security. In section
5 we give application of the PoT puzzle, and its advantage and we conclude the
whole article in last section.

5

2 Preliminaries

2.1 Assumption

PoT protocol is based on the Bitcoin protocol. In the PoT protocol, we assume
that the resources (the number of transactions that have been initiated and
recorded in the blockchain, hereinafter referred to as the number of transactions)
owned by each PoT user are equal, and we also assume that the number of users
in the PoT protocol is n, denoted as ui (i ∈ [1, n]), where the number of online
users is m, where m ≤ n. Note that this is an ”ideal assumption”. In reality,
each different user ui has a different number of transactions. However, this ideal
assumption is not loss of generality, because in reality user ui is a combination
of arbitrary users under ideal assumptions. We pointed out that in the protocol,
the number of users who really participate in the operation of the protocol
can not be determined. That is, we can not identify the number of users in
this protocol that are participating in the operational protocol. In short, this
is a static model under our assumption that the number of users is fixed while
running the protocol.

2.2 Scratch-off puzzle

As mentioned in the introduction, the Bitcoin protocol is based on a computa-
tionally moderate puzzle that all miners compete with each other to solve it.
However, it is common to call Bitcoin’s puzzle as proof of work puzzle, and the
basic requirements for building such a puzzle are somewhat different[CMSW09]
[DN92][GW14][SKR+11]. Miller et al.[MJSP14][MKKS15] shows some require-
ments that a Bitcoin puzzle(aka scratch-off puzzle) should satisfies.The following
gives Miller[MKKS15] for the definition of scratch-off puzzle and a scratch-off
puzzle must meet the three requirements.

In what follows, let λ denote a security parameter. A scratch-off puzzle is
parameterized by parameters(t, µ, d, t0) where, informally speaking, t denotes
the amount of work needed to attempt a single puzzle solution, µ refers to the
maximum amount by which an adversary can speed up the process of finding
solutions, d affects the average number of attempts to find a solution, and t0
denotes the initialiazation overhead of the algorithm.

Definition 1. A scratch-off puzzle is parameterized by parameters (t, µ, d, t0),
and consists of the following algorithms (satisfying properties explained shortly):

1) G(1λ)→ puz: generates a puzzle instance.
2) Work(puz,m,t) → ticket: The Work algorithm takes a puzzle instance puz,

some payload m, and time parameter t. It makes t unit scratch attempts,
using t · t+ t0 time steps in total. Here t = ploy(λ) is the unit scratch time,
and t0 can be thought of as the initialization and finalization cost of Work.

3) Verify(puz,m,ticket)→ {0,1}: checks if a ticket is valid for a specific instance
puz, and payload m. If ticket passes this check, we refer to it as a winning
ticket for (puz,m).

6

Intuitively, the honest Work algorithm makes t unit scratch attempts, and each
attempt has probability 2−d of finding a winning ticket, where d is called the
puzzles difficulty parameter. For simplicity, we will henceforth use the notation
ζ(t, d) := 1 − (1 − 2−d)t to refer to the probability of finding a winning ticket
using t scratch attempts. For technical reasons that will become apparent later,
we additionally define the shorthand ζ+(t, d) = ζ(t+ 1, d).

A scratch-off puzzle must satisfy three requirements:

1) Correctness. For any (puz,m,t), if Work(puz,m,t) outputs ticket 6= ⊥, then
Verify(puz,m,ticket) = 1.

2) Feasibility and parallelizability. Solving a scratch-off puzzle is feasible, and
can be parallelized. More formally, for any ` = poly(λ), for any t1, t2, ..., t` =
ploy(λ), let t :=

∑
i∈[`] ti.

Pr

puz ← G(1λ),
m← {0, 1}λ,

∀i ∈ [`] : ticketi ←Work(puz,m, ti),
∀i ∈ [`] : V erify(puz;m; ticketi)

 ≥ ζ(t)− negl(λ)

Intuitively, each unit scratch attempt, taking time t, has probability 2−d of
finding a winning ticket. Therefore, if ` potentially parallel processes each
makes t1, t2, ..., t` attempts, the probability of finding one winning ticket
overall is ζ(t)± negl(λ) where t =

∑
i∈[`] ti.

3) µ-Incompressibility. Roughly speaking, the work for solving a puzzle must
be incompressible in the sense that even the best adversary can speed up
the finding of a puzzle solution by at most a factor of µ.More formally, a
scratchoff puzzle is µ-incompressible (where µ ≥ 1) if for any probabilistic
poly-nomial-time adversary A taking at most t · t steps,

Pr

 puz ← (1λ),
(m, ticket)← A(puz) :

V erify(puz,m, ticket) = 1

 ≤ ζ+(µt)± negl(λ)

Note that ζ+(t) = 1− (1− 2−d)t+1 is roughly the probability of outputting
a winning ticket after t unit scratch attempts, though we additionally allow
the adversary to make a final guess at the end (as in [SKR+11]), and hence
the t+1 in the exponent instead of just t. Ideally, we would like the com-
pressibility factor µ to be as close to 1 as possible. When µ =1, the honest
Work algorithm is the optimal way to solve a puzzle.

3 Sequential Aggregate Signature Scheme

Aggregate signature[BGLS03](based on pairing) is a generalization of multi-
signature in which several users sign on distinct messages. In aggregate signature

7

those signatures are generated by individuals and aggregate them. Note that the
aggregating party may malicious. A sequential aggregate signature(SAS)[LMRS04]
is very same as aggregate signature but the every signer will sign the message by
some order. In a SAS scheme the signer may take the secret key and a message
to be signed plus a SAS signature so far as input and output a SAS signature.
Note that every signer will sign the message and aggregate then too. After all
the SAS signature should be valid corresponding to all the signers public keys.

In this paper our purpose is to construct a secure proof of puzzle, So we
didn’t go any further. The following definition and the security experiment are
very similar to [LOS+13] and the definition is as follows.

Definition 2. An aggregate signature is consisted of three PPT algorithms:
(KeyGen,AggregateSign, AggregateVerify) such that:

KeyGen(1n) input a security parameter 1n and output public-secret key pair
(pk,sk).

AggregateSign(σk, ((m1, pk1), · · · , (mk, pkk))) inputs an aggregate signature
σk and k tuple of message-public key pairs ((m1, pk1), · · · , (mk, pkk)) . Out-
puts an aggregate signature σk+1 and k+1 tuple of message-public key pairs
((m1, pk1), · · · , (mk+1, pkk+1))

AggregateVerify(σn, ((m1, pk1), · · · , (mn, pkn))) Checks aggregate signature against
the all messages and returns a boolean bit b. b=1 means σn match all the
messages, b=0 implies σn is a invalid signature.

A trivial sequential aggregate signature scheme can be constructed from or-
dinary signature scheme by putting all the signatures together. Namely, sup-
pose (Keygen, Sign, V erify) is a ordinary signature scheme , then we can ob-
tain a sequential signature scheme by letting AggregateSign(Mi,M, ski, σi) =
((M,mi), (σi, σ)), and AggregateV erify on the fly, where σ = Sign(mi, ski).

the security of sequential aggregate signature schemes(SAS) is defined as the
nonexistence of an adversary capable, within the restrict of a certain game, of
existentially forging a sequential aggregate signature. Existential forgery here
means that the adversary attempts to forge a sequential aggregate signature,
on messages of his choice, by some set of users not all of whose private keys
are known to the forger. We formalize this intuition as the sequential aggregate
chosen-key security model. In this model, the adversary A is given a single public
key. His goal is the existential forgery of a sequential aggregate signature. We
give the adversary power to choose all public keys except the challenge public
key. The adversary is also given access to a sequential aggregate signing oracle
on the challenge key. His advantage, AdvAAggSig , is defined to be his probability
of success in the following experiment between a challenger and a PPT adversary
A:

Setup choose (pk, sk) = Keygen(1n) , and give pk to A as a challenge.
Certification Query A provides key pairs (pk′, sk′) to C for certifying his

public key pk′. C = C, pk′, if sk′ is matching pk′.

8

Signature Query A can query a sequential aggregate signature under the
challenge public key pk, on a message M of his own choice. furthermore,
A provide an aggregate signature σ′ so far on message vector M under
public key pk. Challenger checks that the validity of σ′; that pk /∈ pk ;
that |pk| < n (n is upper bound on the length of sequential signature);
that pk ⊂ C. If any of them fails the return ⊥, otherwise respond with
σ = AggregateSign(sk,M, σ′,M,pk).

Output After polynomially many time querying the AggregateSign() algorithm,
A outputs a forgery (σ∗,M,pk) and this forgery must be valid under Ag-
gregateVerify(); pk ∈ pk and pk\{pk} ⊂ C ; |pk| ≤ n ;

We will denote the advantage of adversary successes in the above game by
AggSignForgeSASA and upper bound on the length of sequential aggregate sig-
nature by a positive integer n. ε and t positive reals , and qC , qS are polynomials
in security parameter. The security of sequential aggregate signature scheme is
given below:

Definition 3. A sequential aggregate signature scheme is (t, qC , qS , n, ε)−secure
if there not exists a t-time adversary making qC certification queries and making
qS queries to Signing algorithm and win the above game with advantage more
than ε,that:

Prob[AggSignForgeSASA (n) = 1] ≤ ε.

The probability is taken over the randomness used in the experiment and adver-
sary.

secure SAS schemes can be constructed permutations[LMRS04]. There is lat-
tice based SAS scheme[BB14] which is secure in the random oracle model[BR93].
It can be constructed by any collection of preimage sampleable trapdoor func-
tions like [GPV08] or more efficient one[MP12]. When we say SAS scheme we
mean by that a secure SAS scheme. We will use a simplified sequential signa-
ture scheme in our PoT puzzle, that all the messages which will be signed are
same, that m1 = m2 = · · · = mn in the definition 2. So we have a very short
message-signature pair which would be diffused to the peer to peer network, and
it essentially reduced the network load. So, when we are reducing the computa-
tion waste, we didn’t increase network load. In the next section we will describe
a new scratch-off puzzle using sequential aggregate signature scheme in detail
and prove its security.

4 Proof of Transaction Puzzle

In this section, we define the syntax and security of the proof of transaction
puzzle and use the sequential aggregate signature to illustrate the structure of
the proof of transaction puzzle.

9

4.1 Definition

In the proof of work puzzle, all the nodes in the entire network compete with each
other to solve the puzzle in each a epoch. The node that first provides the correct
answer indicates that it effectively solves the puzzle and obtains the block reward.
The proof of work puzzle is composed of a set of algorithms: setup algorithm
Setup(), puzzle instance generation algorithm G(), puzzle solution algorithm
C() and verification algorithm V(). In the setting algorithm, it is mainly used
to design public parameters. In the puzzle instance generation algorithm, it
mainly uses the parameters and data of the setting algorithm to generate a
puzzle instance. In the puzzle solving algorithm, the node keeps doing SHA-256
computation and tries to find the answer. It is worth noting that this is a non-
deterministic algorithm. Because each time a user try an answer, the user do not
know whether this answer will solve the puzzle; in the verification algorithm, the
node verifies the answers to the puzzle received in the network. Note that this is
a deterministic algorithm. Because each node receives the puzzle and answers,
through a verification computation the node can verify the correctness of the
answer. In order to reach a consensus, the proof of work puzzle must meet the
basic conditions for constructing Scratch-off puzzled.

Our proof of transaction puzzle and proof of work puzzle are similar, but
the main differences are as follows: (1) Unequal mining resources. In the proof
of work puzzle, the ability of miners to mining new block is proportional to the
computation power. The greater the calculated power of miners, the greater the
probability of mining new block. In proof of transaction puzzle, the probability
of users mining a new block is proportional to the number of transactions they
own. The more transactions they have, the greater the probability of mining new
block. (2) The form of the puzzle is different. In the proof of work puzzle, the
miners solve an inequality problem; in the proof of transaction puzzle , the user
is solving an equation problem; (3) The way to solve the puzzle are different. In
the proof of work puzzle, the miners constantly change the random numbers so
that the hash values of the random numbers and the public initial parameters
are less than the difficulty values. In proof of transaction puzzle , the user needs
to find a chain of sequential signatures whose length is equal to the difficulty
value. the syntax is as follow:

Definition 4 (Proof of Transaction Puzzle). The proof of transaction puzzle
consists of a set of algorithms (Setup, G, uO(·), V) as follows:

Setup: Setup is a system random setting algorithm that inputs the parameter
1λ (λ is a security parameter) and outputs a system common parameter
PP ← Setup(1λ), which includes a puzzle size parameter is ω = ploy(λ).

G: G is a probabilistic puzzle generation algorithm, input the common parameter
PP, and output the puzzle instance puz =

∑
i∈[1,ω] puzi ← G(PP).

10

uO(·): uO(·) is a puzzle-solving algorithm that outputs a answer σ ← uO(·)(PP, puz)
of length ω where O(·) is a signing oracle which input an online transaction
4, output the signature of the owner of the transaction5.

V: V is a deterministic puzzle verification algorithm that inputs public parame-
ters PP and a pair of puzzle-answer (puz, σ) and outputs a bit b := V (puz, σ, PP),
which also includes signature verification. b = 1 means that σ is the valid
signature of the puzzle puz, otherwise b = 0.

We require Setup, G, uO(·) are a probabilistic polynomial time algorithm, Verify
is a deterministic polynomial time algorithm.

Following notation of Miller et at.[MKKS15] we will let ε(k, ω) = 1 − (1 −
m−ω)k , where m represents the number of online users in the network and m−1

represents probability of a user obtaining a valid signature after calling signing
oracle once. In simple terms, ε(k, ω) represents the probability of the user calling
k times of signing oracle to get a valid answer to the puzzle.

Definition 5 (Honest User Solvability). If a proof of transaction puzzle sys-
tem (Setup, G, uO(·) , V) to be honest user-solvable for each polynomial k = ploy
(λ) honest user uO(·) who controls k work unit, the success probability of user is
expressed as follows:

Prob

PP ← Setup(1λ);
puz? ← G(PP));

σ? ← uO(·)(PP, puz?);
V (PP, puz?, σ?) = 1;

 ≥ ε(k, ω)− negl(λ)

Definition 6 (Adversarial User Unsolvability). If a proof of transaction
puzzle system (Setup, G, uO(·) , V) to be adversarial user unsolvability for each
polynomial k = ploy (λ) adversary A who controls at most k work unit, the
success probability of this adversary A is expressed as follows:

Prob

PP ← Setup(1λ);
puz? ← G(PP));

σ? ← AO(·)(PP, puz?);
V (PP, puz?, σ?) = 1;

 ≤ ε(k + 1, ω) + negl(λ)

Remark 1) in the proof of transaction system, the adversary can try to guess the
signature value he needs without calling the signing oracle, just as in[SKR+11],
after calling the signing oracle k times, allowing the adversary to guess the

4 This transaction is in the longest block chain
5 Note that this signature is for public parameters and the data which the user received

from former user

11

signature value. Therefore, the probability that ε(k+1, ω) = 1−(1−m−ω)k+1 is
approximately equal to probability of calling k times the signing oracle and then
obtain a valid answer. 2) Like Miller’s incompressibility factor µ in[MKKS15],
we have µ = 1 here. This is because our proof of transaction puzzle system is
optimal. As in Definition 3, honest users need at least k work units to solve the
puzzle.

4.2 Structure

In this part, we will present the structure of proof of transaction puzzle on Bitcoin
system. In Bitcoin system, the proof of work puzzle generates a puzzle instance
puz ← G(s) with the most recent public parameter s, and the miners try each of
them to a different randomness by constantly calling the random oracle(e.g.,the
SHA256 hash function). The random number x makes the hash value of public
parameter s and random number x less than the difficulty value. Namely, every
random number x selected by miners compute yi = RO(s, xi). If yi < Tω, the
corresponding xi is regarded as the answer to the proof of work. Given a random
oracle RO: {0, 1}? → {0, 1}n we will use the notation Tω = 2n−ω. Intutitively,
this ensures that RO(s, xi) < Tω with probability is 2−ω.

In our proof of transaction, we first give a security parameter λ, where ω =
ploy(λ) indicates the difficulty of the puzzle puz. The proof of transaction system
generates the puzzle instance puz ← G(s) with the latest public parameter s,
where s represents the hash of the block header of the packed block constructed
by the user, which contains the hash of the block header of the previous block,
and transaction information in the packed block. In order to solve the proof of
transaction puzzle, the user needs to call the signature oracle uO(·) to obtain the
signature of the next user, so that the length of a sequential signature chain is
equal to the difficulty value. First, each user ui computes σi = Hash(s), modifies
σi off the height H of the current blockchain to obtain a certain block Hi = σi
mod H. The purpose of which is to randomly select a block from the blockchain;
Then compute Txi = σimodφ(Hi) and broadcast Txi to the network. Here
the Txi is a transaction in block Hi, the purpose of this step is to randomly
selected a transaction from the block Hi. That is to say, the whole process
is equivalent to each user randomly select a transaction from the blockchain.
Secondly, the user who received the transaction verify that whether he is the
owner(who launched the transaction) of this transaction. If the user(ui+1) is
the owner of this transaction, the user ui+1 use his private key which used to
sign on the transaction Txi, to sign on s and σi and get a signature σ′i+1 =
Sign(σi, s). Further, do a Hash on σ′i+1 to get σi+1, modulo σi+1 by height H
of current block chain and get a block of Hi+1 = σi+1 mod H. Then compute
Txi+1 = σi+1modφ(Hi+1) and broadcast Txi+1 to the network. Similarly, the
user who received the transaction Txi+1 and verifies herself as the owner of the
transaction Txi+1, if he is the owner(ui+2) of the transaction . The user ui+2

use his private key that has been signed for this transaction Txi+1 and sign
on s and σi+1 and get σi+2 = Sign(σi+1, s). And so on, a series of signature
values (σi+3, σi+4, ..., σi+k) will be obtained; Finally, the user calculates length

12

τ of the series of signature values (σi+1, σi+2, ..., σi+k). If τ = k, it means that
the user successfully finds the answer Ticket := {s, [σi, σi+1, σi+2, ..., σi+k]} to
the puzzle puz. It is noteworthy that in order to reduce the load on the network,
we aggregate the signatures (σi+1, σi+2, ..., σi+k) into a short signature σ using a
sequential aggregate signature. The validation phase is to compute the validity
of (puz, T icket, ω). If the result of the calculation is 1, then the puzzle is solved
successfully. Otherwise, the result is 0.

Structure Our proof of transaction puzzle structure consists of the following
three phases (Setup, Scratch-off, Verify).

Setup s ← Setup(1λ). λ is a security parameter, ω = ploy(λ) indicates the
difficulty of puzzle puz. s is a parameter used to generate the puzzle puz ←
G(s), which indicates the header hash value of the packed block constructed
by the user itself.

Scratch-off puzzle puz :=
∑
i∈[1,ω] puzi is solved during the Scratch-off phase.

Each user can generate the parameter s, and then compute Hash value of s
and export the next user. After that, every user needs to call the signature
oracle to get the next user’s signature.

1: procedure PoT(s) . s is block information
2: σ1 ← Hash(s)
3: H1 = σ1mod H
4: Tx1 = σ1 mod φ(H1)
5: u1 ← Tx1
6: for i = 1 . . . k do
7: σ′i+1 ← u

O(·)
i (σ||s)

8: σi+1 = Hash(σ′i+1)
9: Hi+1 = σi+1mod H

10: Txi+1 = σi+1modφ(Hi+1)
11: ui+1 ← Txi+1

12: end for
13: return (m,σ) . a sequential aggregate signature on m
14: end procedure

The answer Ticket is defined as follows:

Ticket := {s, [σ1, σ2, , ..., σk+1]}

Verify Calculate b := V (puz, T icket, ω). If b = 1, then Ticket is the correct
answer to puz. That is, τ = ω. Otherwise, b = 0. The verification is necessary
to repeat the Scratch-off process to verify that each Scratch-off is performed
correctly.

To prove the security of the proof of transaction, we mimic Blocki’s proof
idea in[BZ16]. If the Definition 3 is true in the sequential aggregate signature,
we can easily verify that the proof of transaction puzzle is honest user solvable.
Next, we give the security theorem of our proof of transaction puzzle.

Theorem 1. If the sequential aggregate signature used in the PoT puzzle is se-
cure and Hash is random oracle, then PoT puzzle is adversarial user unsolvable.

13

Proof. Suppose there exists an adversary A which controls m work-unit and the
success probability in definition 6 is greater than ε(m + 1) + negl(λ), then we
can construct another adversary A′ who can (controls all secret keys except the
challenged one) success in the SAS security game with noticeably.

Let qH be the number of queries that A make to random oracle. Without
lose of generality, we assume that the adversary A query an input on the random
oracle only once. A′ works as follows:
Algorithm A′
The algorithm input a (pk, publicparam)

1 Choose uniform j ∈ {1, ..., qH}.
2 Run A in input publicparam,

3 When A makes ith random oracle query Hash(σi), answer it as follows:

– If i = j, choose any feasible number r such that pk = (r mod H) mod
φ(Hi), and return it to A as a response.

– If i 6= j, choose a random number r, and return r as a respond to the
query.

4 When A makes SAS query on (m,pk, σi−1) for pki, answers the query as
follows:

– if i = j, query (m,pk, σi−1) to SAS scheme and obtain σi.

– if i 6= j, produce a SAS signature σi by his own.

– return the SAS signature σi.

Now we define two games in the view of adversary A.
Game0: This is the real game. In this game A will communicate with a chal-
lenger who works as same as in the Procedure PoT (s). Namely, the challenger
take a SAS signature σi−1 so far as an input, then outputs a SAS signature σi
corresponding to pki; taking random oracle query and responses with randomly.
The adversary may query the random oracle and does two modulo computation
to decide the next signer’s public key. The A will query the random oracle at
most qH times and query on signing oracle at most m times, then it outputs a
valid SAS signature of length (m+1).
Game1: In this game A will communicate with algorithm A′. All the random
oracle and signing queries are responds by A′ as above. A may make qH times
random oracle query and m times SAS queries. After all it will outputs a SAS
signature of length m+1 .

Lemma 1. Game0 and Game1 are computationally indistinguishable.

Proof. Note that in Game0, the way to decide next signer in the SAS chain
is random due to the randomness returned by random oracle and two modulo
functions. In Game1 , all the queries are similar to Game0 but ith random
oracle query. Because the challenge public key is generated randomly, then the
next signer decision procedure too. The SAS queries in these two games are
completely indifferent. In the view of adversary A, these two games are indistin-
guishable. ut

14

Lemma 2. If A wins in Game1 with noticeably then A′ wins in experiment
AggSignforgeSASA′ with non negligibly.

Proof. If the adversary A successfully generate valid SAS signature of length
m+1 by querying signing oracle at most m times, then it should forge one of his
SAS signature. Without lose of generality, we assume that the adversary only
successfully generate an valid signature corresponding to a public key which is
decided by querying on random oracle. We can evaluate the success probability
of A′ as follows:

Prob[A′] = Prob[A ∧ k = i] (1)

= Prob[A|k = i] Prob[k = i] (2)

=
1

qH
Prob[A|k = i] (3)

Thus, if adversary A success with noticeably, then the adversary A will break
the SAS scheme non negligibly. ut

The proof of theorem1 is straight based on the above two lemmas. ut

5 Application—PoTcoin

In this section, we show how to use proof of transaction to construct a new
cryptocurrency– PoTcoin. As mentioned earlier, our PoT protocol is very simi-
lar to the PoW protocol, except that PoT is used instead of PoW. In PoTcoin,
we do not intend to detail the details of PoTcoin, we mainly focus on the differ-
ences between them. In the following discussion, we use bitcoin (or PoTcoin) to
represent coin units in the Bitcoin protocol (or PoT protocol).

5.1 Backgrand of Bitcoin

There are many interesting innovations and features in the Bitcoin protocol.
However, in order to give a better description our PoTcoin, we have given the
corresponding knowledge.

Blockchain. All transactions in Bitcoin are on blockchain. Blockchain is
stored in with a special cryptographic structure, and we represent the blockchain
as C = b0, ..., bN . C is valid if and only if bi(i ≤ N) is valid. A single block
bi = (Txi, Noncei, hi−1) is valid if and only if the following three conditions must
be met: Firstly, all transactions recorded in the block Txi are valid. That is to
say, each transaction is signed by the sender and the spent money is not less than
the expenditure; Secondly, the cryptographic hash value Hi−1 = SHA256(bi−1)
must be the hash value of the previous block bi−1; third, the random number
Noncei contained in the block bi satisfies SHA256(bi) < 2256−ω, where ω rep-
resents the difficulty parameter ,which we will discuss in detail below. The first
condition ensures that the user can not afford to spend other user’s money.
The second condition ensures that the user can not forge a new blockchain

15

C ′ = b0, ..., bi−1, b
′
i, b
′
i+1. The third condition ensures that it is moderated diffi-

cult to mine a new block on the blockchain.
Reward,epoch bitcoin is issued in a predetermined ratio in the Bitcoin

protocol. At this writing, 12.5 bitcoins are distributed about every 10 minutes
(a epoch). When a new time epoch begins, the node generates a puzzle puz by
calculating the latest block in the current blockchain. then, the nodes compete
with each other to solve the puzzle puz for this epoch. Whenever which node
firstly submits a valid answer, that node will get the reward newly mined within
that epoch.

5.2 PoTcoin

Similar to bitcoin, all PoTcoin transactions are recorded in the blockchain, de-
noted as C = b0, ..., bN , where each block bi = (Txi, T icketi, Hi−1) contains
three pieces of data, namely, all transactions Txi in the block bi, answer Ticketi
of the proof of transaction puzzle and hash Hi−1 = SHA256(bi−1) of the previ-
ous block b(i−1). In block bi, all transactions Txi must be valid and must contain
the hash value Hi−1 = SHA256(bi−1) of the previous block bi−1. In our PoT
protocol, each user can find answers to PoT puzzle and verify the validity of
the answer. In detail, suppose a given PoT puzzle system (Setup, G, uO(·), V),
each user can get the parameters s and ω by running the algorithm Setup, a
valid block bi must contain a valid Ticketi. Let the verifier output 1 after run-
ning algorithm V (puz, T icket, ω), ticket is the valid answer to the puz. Given
an effective blockchain C = b0, ..., bN , the user can construct a valid block by
constructing a valid block bN+1 = (TxN+1, T icketN+1, HN) to get PoTcoin. In
order to find TicketN+1, users must stay online and sign certain data to form
a sequential signature chain of length ω. In the process of forming a sequential
signature chain, if the next user to be exported not online or signature is not
available, users need to start again to form a new chain of sequential signatures.
Otherwise, the user finds a valid chain of sequential signatures and successfully
constructs a valid block bN+1.

The choice of parameters In Bitcoin, ω is a difficulty parameter. In gen-
eral, it takes about 10 minutes for a miners to generate a block [NBF+16], that
is, 2ω times can be compute to effectively mining new block. In a new difficulty
cycle, initially it takes 10 minutes or more to generate a block; however, as time
goes on and the change of the computability, the time to generate the block is
slowly less than 10 minutes ,until near the end, it may take less time to generate
blocks (such as 6 minutes). We can clearly recognize that the dynamic difficulty
is conducive to stability. If the difficulty is fixed, as more and more miners join
the Bitcoin system , the time to generate blocks will be reduced. Therefore, the
difficulty value ω must be periodically adjustable. In Bitcoin, the difficulty value
ω is adjusted every 2016 blocks for about two weeks and the difficult parameter
ω = ωold − log(

telapsed

2016×10min) [NBF+16].
In the PoT protocol, our difficulty parameter ω = ploy(λ) is very easy to

adjust. We can adjust the difficulty parameter ω directly by adjusting the secu-
rity parameter λ. When PoT system, generating the block time becomes smaller

16

or larger, we can adjust the security parameter λ, making the block generation
time stable at a certain time.

Reward distribute In the PoT protocol, on the one hand, we rewarded the
users who mined the block, on the other hand, we motivated the users to stay
online. The production of a new block requires a group of users to work together
to complete. Each user is likely to be the first miner to form an effective chain of
sequential signatures, but it is not so easy to become a second, third, etc. miner.
Therefore, we allocate rewards and transaction fees to the block according to
a certain percentage. We distribute the reward and the transaction fee to the
miners who participated to mine new block by a certain proportion to their order
in the sequential signature. For example, it takes k users to form a valid chain
of sequential signatures, and all the reward the users receive is denoted as M.
We divide k users into three equal batches of users. The first k / 3 users of the
sequential signature chain are share the M / 5 of reward. The second k / 3 users
share 3M / 10 reward; The last k / 3 part of users share M / 2 of reward. Of
course, this ratio is not necessarily fixed and may change as the actual situation
of the operation of the PoT protocol.

6 Advantage of PoTcoin

PoTcoin has the following advantages over bitcoin and other cryptocurrencies:

1. Enhancing network topology, facilitating PoTcoin circulation. In PoTcoin,
in order to get the reward, firstly, users must stay online; Secondly users
should initiate more transactions to increase their share of total transactions;
Finally, online user rate and transaction numbers increase in the network ,
and it will strengthen the network topology and facilitate the circulation of
PoTcoin .

2. Environmentally friendly. We know that cryptocurrencies such as Bitcoin con-
sume a large amount of useful computing resources such as energy or storage
space during mining [PPA+15]. And in our PoTcoin mining process, the user
stays mostly online and does some signature calculations and verification,
where resources are consumed as much as a normal computer consumes. So
we think PoTcoin is environment-friendly.

3. Resistance to outsourcing computation. In Bitcoin, some ”rational” miners
outsource their mining resources to one or more large mining pool in order to
expand their revenues and form Hosted mining, such as Alydian[DFKP15].
Hosted mining is very attractive, as it reduces the cost of miners mining due
to economies of scale. In the PoT protocol, it is clear that if a user outsources
his own mining resources (the ownership of the transaction – the private key
) to several large mining pool, then, the user reveals his private key, and the
large mining pool will able to take a way the PoTcoin in users account.

17

7 Conclusion

Currently, most cryptocurrencies are based on proof of work puzzle and proof
of stake puzzle. However, these cryptocurrencies are faced with a very serious
challenge. Bitcoin based on the proof of work face the problem of resource waste
and security. The Peercoin based on the proof of stake faces the centralization
of the currency.

In this paper, inspired by the challenges faced by cryptocurrencies, we con-
struct a novel proof of transcation puzzle for the first time using sequential
aggregation signatures. We show that proof of transcation puzzle satisfies the
basic conditions of constructing scratch-off puzzle. We also designed a new cryp-
tocurrency – PoTcoin, based on the proof of transcation puzzle. Our PoTcoin has
good performance, for example, strengthening the network topology, facilitating
the circulation of PoTcoin, resistance to outsourcing and environment-friendly.
We leave behind a public challenge that how many transactions the user owns
when the users will dominate the generation of blocks in the network? Just as
Eyal et al.[ES13] analyzed in Bitcoin, selfish miners will dominate the generation
of blocks in the network through selfish mining strategy, when selfish miners own
mining power more than 25% of the total network.

References

[ABHL03] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
Captcha: Using hard ai problems for security. Lecture Notes in Computer
Science, 2656:294–311, 2003.

[Bac02] Adam Back. Hashcash - a denial of service counter-measure. In USENIX
Technical Conference, 2002.

[BB14] Rachid El Bansarkhani and Johannes A. Buchmann. Towards lattice based
aggregate signatures. In Progress in Cryptology - AFRICACRYPT 2014 -
7th International Conference on Cryptology in Africa, Marrakesh, Morocco,
May 28-30, 2014. Proceedings, pages 336–355, 2014.

[Ben] Proof of activity: Extending bitcoin’s proof of work via proof , au-
thor=Bentov, Iddo and Lee, Charles and Mizrahi, Alex and Rosenfeld,
Meni, year=2014,.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings, pages 416–432, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS ’93, Proceedings of the
1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993., pages 62–73, 1993.

[But14] Vitalik Buterin. A next-generation smart contract and decentralized appli-
cation platform. 2014.

[But16] Vitalik Buterin. Proof of stake faq.
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ, 2016/ ,
2016.

18

[BZ16] Jeremiah Blocki and Hong Sheng Zhou. Designing proof of human-work
puzzles for cryptocurrency and beyond. In Proceedings, Part II, of the 14th
International Conference on Theory of Cryptography - Volume 9986, pages
517–546, 2016.

[CDFZ17] Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. Twin-
scoin: A cryptocurrency via proof-of-work and proof-of-stake. In In Cryp-
tology ePrint Archive, 2017.

[CMSW09] Liqun Chen, Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. Se-
curity notions and generic constructions for client puzzles. In International
Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, pages 505–523, 2009.

[Com16] NXT Community. Nxt whitepaper. https:
//www.dropbox.com/s/cbuwrorf672c0yy/ NxtWhitepaper v122 rev4.pdf/
, 2016.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. 9216:585–605, 2015.

[DFZ16] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining
proof-of-work and proof-of-stake securely. In In Cryptology ePrint Archive,
2016.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In International Cryptology Conference on Advances in Cryptology,
pages 139–147, 1992.

[Dzi13] Stefan Dziembowski. Proofs of space and a greener bitcoin. 2013.

[ES13] Ittay Eyal and Emin Gn Sirer. Majority is not enough: Bitcoin mining is
vulnerable. 8437:436–454, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits (extended abstract). Annual IEEE Sym-
posium on Foundations of Computer Science, 311(2):40–49, 2013.

[GHa14] http://arstechnica:com/security/2014/06/bitcoin/security/guarantee/
shattered/by/anonymousminer/with/51/network/power/ , 2014.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206, 2008.

[GW14] Bogdan Groza and Bogdan Warinschi. Cryptographic puzzles and dos re-
silience, revisited. 2014.

[JK07] Ari Juels and Burton S. Kaliski. Pors:proofs of retrievability for large files.
In ACM Conference on Computer and Communications Security, pages
584–597, 2007.

[Kin13] S. King. Primecoin: Cryptocurrency with prime number proof-of-work.
2013.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. 2012.

[Kwo] Jae Kwon. Tendermint: Consensus without mining.

[LK16] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale
transactions. 2016.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Se-
quential aggregate signatures from trapdoor permutations. In Advances

19

in Cryptology - EUROCRYPT 2004, International Conference on the The-
ory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, pages 74–90, 2004.

[LOS+13] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential aggregate signatures, multisignatures, and verifiably encrypted
signatures without random oracles. J. Cryptology, 26(2):340–373, 2013.

[MJSP14] A Miller, A Juels, E Shi, and B Parno. Permacoin: Repurposing bitcoin
work for data preservation. In IEEE Symposium on Security and Privacy,
pages 475–490, 2014.

[MKKS15] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonout-
sourceable scratch-off puzzles to discourage bitcoin mining coalitions. In
ACM Sigsac Conference on Computer and Communications Security, pages
680–691, 2015.

[Moo59] Frederick T Moore. Economies of scale: Some statistical evidence. Quarterly
Journal of Economics, 73(2):232–245, 1959.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
pages 700–718, 2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Con-
sulted, 2008.

[NBF+16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and Cryptocurrency Technologies: A Compre-
hensive Introduction. Princeton University Press, 2016.

[PPA+15] Sunoo Park, Krzysztof Pietrzak, Joel Alwen, Georg Fuchsbauer, and Peter
Gazi. Spacecoin : A cryptocurrency based on proofs of space. 2015.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
Theory of Cryptography Conference, pages 262–285, 2016.

[SKR+11] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and
Juan Gonzalez Nieto. Stronger difficulty notions for client puzzles and
denial-of-service-resistant protocols. In International Conference on Topics
in Cryptology: Ct-Rsa, pages 284–301, 2011.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal self-
ish mining strategies in bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 515–532, 2016.

[Vit13] VitalikButerin. Bitcoin network shaken by blockchain fork. 2013.
[Wol05] Peter G. Wolynes. Energy landscapes and solved protein-folding problems.

Philosophical Transactions, 363(1827):453, 2005.

